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ABSTRACT 

Respiratory syncytial virus (RSV), Human metapneumovirus (HMPV) and Influenza are 

some of the major causes of acute lower respiratory tract infections (ALRTI) in children. 

Children younger than 1 year are the most susceptible to these infections. RSV and influenza 

infections occur seasonally in temperate climate regions. We developed statistical models that 

were assessed and compared to predict the relationship between weather and RSV incidence 

in chapter 2.  

Human metapneumovirus (HMPV) have similar symptoms to those caused by 

respiratory syncytial virus (RSV). Currently, only a few models satisfactorily capture the 

dynamics of time series data of these two viruses. In chapter 3, we used a negative binomial 

model to investigate the relationship between RSV and HMPV while adjusting for climatic 

factors. In chapter 4, we considered multiple viruses incorporating the time varying effects of 

these components. The occurrence of different diseases in time contributes to multivariate 

time series data. In this chapter, we describe an approach to analyze multivariate time series 

of disease counts and model the contemporaneous relationship between pathogens namely, 

RSV, HMPV and Flu. The use of the models described in this study, could help public health 

officials predict increases in each pathogen infection incidence among children and help them 

prepare and respond more swiftly to increasing incidence in low-resource regions or 

communities. We conclude that, preventing and controlling RSV infection subsequently 

reduces the incidence of HMPV. 
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EXTENDED ABSTRACT 

Respiratory syncytial virus (RSV) is one of the major causes of acute lower respiratory tract 

infections (ALRTI) in children. Children younger than 1 year are the most susceptible to RSV 

infection. RSV infections occur seasonally in temperate climate regions. Based on RSV 

surveillance and climatic data, we developed statistical models that were assessed and 

compared to predict the relationship between weather and RSV incidence among refugee 

children younger than 5 years in Dadaab refugee camp in Kenya. Most time-series analyses 

rely on the assumption of Gaussian-distributed data. However, surveillance data often do not 

have a Gaussian distribution. We used a generalised linear model (GLM) with a sinusoidal 

component over time to account for seasonal variation and extended it to a generalised 

additive model (GAM) with smoothing cubic splines. Climatic factors were included as 

covariates in the models before and after timescale decompositions, and the results were 

compared. Models with decomposed covariates fit RSV incidence data better than those 

without. The Poisson GAM with decomposed covariates of climatic factors fit the data well 

and had a higher explanatory and predictive power than GLM. The best model predicted the 

relationship between atmospheric conditions and RSV infection incidence among children 

younger than 5 years.  

Human metapneumovirus (HMPV) have similar symptoms to those caused by 

respiratory syncytial virus (RSV). The modes of transmission and dynamics of these 

epidemics still remain poorly understood. Climatic factors have long been suspected to be 

implicated in impacting on the number of cases for these epidemics. Currently, only a few 

models satisfactorily capture the dynamics of time series data of these two viruses. In this 

study, we used a negative binomial model to investigate the relationship between RSV and 

HMPV while adjusting for climatic factors. We specifically aimed at establishing the 
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heterogeneity in the autoregressive effect to account for the influence between these viruses. 

Our findings showed that RSV contributed to the severity of HMPV. This was achieved 

through comparison of 12 models of various structures, including those with and without 

interaction between climatic cofactors.  

Most models do not consider multiple viruses nor incorporate the time varying effects of these 

components. Common ARIs etiologies identified in developing countries include respiratory 

syncytial virus (RSV), human metapneumovirus (HMPV), influenza viruses (Flu), 

parainfluenza viruses (PIV) and rhinoviruses with mixed co-infections in the respiratory tracts 

which make the etiology of Acute Respiratory Illness (ARI) complex. The occurrence of 

different diseases in time contributes to multivariate time series data. In this work, the 

surveillance data are aggregated by month and are not available at an individual level. This 

may lead to over-dispersion; hence the use of the negative binomial distribution. In this paper, 

we describe an approach to analyze multivariate time series of disease counts. A previously 

used model in the literature to address dependence between two different disease pathogens is 

extended. We model the contemporaneous relationship between pathogens, namely; RSV, 

HMPV and Flu from surveillance data in a refugee camp (Dadaab) for children under 5 years 

to investigate for serial correlation. The models evaluate for the presence of heterogeneity in 

the autoregressive effect for the different pathogens and whether after adjusting for 

seasonality, an epidemic component could be isolated within or between the pathogens. The 

model helps in distinguishing between an endemic and epidemic component of the time series 

that would allow the separation of the regular pattern from irregularities and outbreaks. The 

use of the models described in this study, can help public health officials predict increases in 

each pathogen infection incidence among children and help them prepare and respond more 

swiftly to increasing incidence in low-resource regions or communities. This knowledge helps 

public health officials to prepare for, and respond more effectively to increasing RSV 
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incidence in low-resource regions or communities. The study has improved our understanding 

of the dynamics of RSV and HMPV in relation to climatic cofactors; thereby, setting a 

platform to devise better intervention measures to combat the epidemics. We conclude that, 

preventing and controlling RSV infection subsequently reduces the incidence of HMPV. 
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1.1 Rationale for the research (nature and scope) 30 

The burden on mobility estimates for respiratory syncytial virus (RSV), Human 31 

metapneumovirus (HMPV) and influenza associated disease in the refugee camps in Kenya 32 

are limited. Although RSV has been shown to circulate throughout the year with biennial 33 

peaks, the timing and the meteorological determinants associations has never been described. 34 

The correlation between RSV and HMPV in the refugee settings and even in the tropical 35 

region has not been studied. Influenza is also known to circulate throughout the year but how 36 

its outbreaks relate with those of RSV has not been known. The modelling of the time series 37 

events of these viruses will not only help in the prediction of their outbreaks but also in 38 

estimating which outbreaks precede each other. The results could also be used by other 39 

countries in the tropical zone in Africa with similar settings to inform vaccination timings as 40 

control measures to prevent outbreaks. 41 

1.2 Justification 42 

Worldwide, as of 2005, 99% of deaths from RSV were reported by the World Health 43 

Organization (WHO) to occur in developing countries. The highest mortalities in 2015 caused 44 

by Acute Respiratory Infections (ARI) among children less than five years of age were in 45 

Sub-Saharan Africa. Epidemiological knowledge of the respiratory system has been mostly 46 

related to developed countries, though the burden of respiratory virus infections (RVIs) is 47 

more manifested in developing countries with very high hospitalization and mortality rates. 48 

Higher mortality is associated with increased displacement into overcrowded refugee camps. 49 

The RSV adversely impacts the health of adults and immunocompromised patients, and is 50 

associated with significant mortality and morbidity, particularly in young children and 51 

vulnerable infants. Most time-series analyses rely on the assumption of Gaussian-distributed 52 

data. However, surveillance data often do not have a Gaussian distribution. The wide range of 53 
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statistical methods used to explore the link between RSV outbreaks and climate makes it 54 

difficult to elucidate a definitive relationship. It is, therefore, crucial to establish good RSV 55 

surveillance systems in developing countries to help understand the dynamics of the disease. 56 

The Human metapneumovirus (HMPV) has similar symptoms to those caused by the 57 

respiratory syncytial virus (RSV). The modes of transmission and dynamics of these 58 

epidemics still remain poorly understood. Currently, only a few models satisfactorily capture 59 

the dynamics of time series data of these three viruses. 60 

1.3 Aims 61 

The Main aim of this thesis was to make use of available surveillance data to come up with 62 

models that could help explore the dynamics of acute respiratory infections. 63 

1.4 Objectives 64 

This thesis evaluated data for equatorial climatic region to aid accurate predictions of RSV, 65 

HMPV and Influenza outbreaks. A better understanding of the relationship between climate 66 

and RSV helps in making reliable predictions of its incidence and to establish good 67 

surveillance systems in developing countries to help understand the dynamics of the disease. 68 

Specifically our objectives were; 69 

i. To explore the best model that predicts the relationship between RSV incidence and 70 

climatic factors along spatio-temporal scales to determine whether a seasonal pattern 71 

of RSV infection exists.  72 

ii. To investigate the relationship between RSV and HMPV while adjusting for climatic 73 

factors. 74 

iii. To establish the heterogeneity in the autoregressive effect to account for the influence 75 
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between RSV, HMPV and Influenza viruses.  76 

iv. To assess the presence of influence of high incidences between these viruses and 77 

whether higher incidences of one virus are influenced by another and to investigate for 78 

serial correlation between them. 79 

 80 

 81 

 82 

1.5 Outline of thesis structure 83 

The objectives listed above were addressed through a surveillance study conducted in the 84 

Dadaab refugee camps in Kenya as shown in Figure 1.1 above.  Dadaab is located in the east 85 

 

Figure 1.1  A map showing the location of Dadaab refugee camps 
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of the country (Latitude 0⁰N, Longitude 40⁰E) and consists of five camps namely, Dagahaley, 86 

Ifo, Ifo2, Hagadera and Kambios. The neighboring weather station in Garissa, is about 100 87 

kilometers away from the Dadaab camp. The objectives were presented in the chapters 88 

described below.  89 

In chapter 2, we model RSV data that also include climatic data and discuss the effects of 90 

the climatic conditions on the RSV incidence. Based on RSV surveillance and climatic data, 91 

we develop statistical models that we use to assess, compare and predict the relationship 92 

between weather and RSV incidence among refugee children younger than 5 years in Dadaab 93 

refugee camps in Kenya. Surveillance data often do not have a Gaussian distribution. We 94 

therefore, use a generalised linear model (GLM) with a sinusoidal component over time to 95 

account for seasonal variation and extend it to a generalised additive model (GAM) with 96 

smoothing cubic splines. Climatic factors are included as covariates in the models before and 97 

after timescale decompositions, and the results are compared.  98 

 In chapter 3, we use a bivariate non-Gaussian time series model to describe RSV. We use 99 

a negative binomial model to investigate the relationship between RSV and HMPV while 100 

adjusting for climatic factors. We specifically aim at establishing the heterogeneity in the 101 

autoregressive effect to account for the influence between these viruses. Our findings show 102 

that RSV contributes to the severity of HMPV. This is achieved through comparisons of 12 103 

models of various structures, including those with and those without interactions between the 104 

climatic factors. 105 

In chapter 4, we model the multivariate associations of three time series of RSV, HMPV 106 

and Influenza and predict their outbreak detections. We describe an approach to analyse 107 

multivariate time series of disease counts. A previously used model in the literature to address 108 

dependence between two different disease pathogens is extended to investigate for serial 109 

correlation. The models evaluate for the presence of heterogeneity in the autoregressive effect 110 
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for the different pathogens and whether after adjusting for seasonality, an epidemic 111 

component could be isolated within or between the pathogens. 112 

Finally, we provide the overall key findings from the studies presented in this thesis in a 113 

discussion in chapter 5. We also discuss the implication of the findings and conclude with the 114 

recommendations for further studies. 115 

 116 
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 CHAPTER 2: Effects of Climate on Incidence of Respiratory Syncytial Virus 117 

Infections in a Refugee Camp in Kenya: A non-Gaussian Time-series Analysis 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 

 131 

 132 

 133 
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2.1 Abstract 140 

 141 

Respiratory syncytial virus (RSV) is one of the major causes of acute lower respiratory tract 142 

infections (ALRTI) in children. Children younger than 1 year are the most susceptible to RSV 143 

infection. RSV infections occur seasonally in temperate climate regions. Based on RSV 144 

surveillance and climatic data, we developed statistical models that were assessed and 145 

compared to predict the relationship between weather and RSV incidence among refugee 146 

children younger than 5 years in Dadaab refugee camp in Kenya. Most time-series analyses 147 

rely on the assumption of Gaussian-distributed data. However, surveillance data often do not 148 

have a Gaussian distribution. We used a generalised linear model (GLM) with a sinusoidal 149 

component over time to account for seasonal variation and extended it to a generalised 150 

additive model (GAM) with smoothing cubic splines. Climatic factors were included as 151 

covariates in the models before and after timescale decompositions, and the results were 152 

compared. Models with decomposed covariates fit RSV incidence data better than those 153 

without. The Poisson GAM with decomposed covariates of climatic factors fit the data well 154 

and had a higher explanatory and predictive power than GLM. The best model predicted the 155 

relationship between atmospheric conditions and RSV infection incidence among children 156 

younger than 5 years. This knowledge helps public health officials to prepare for, and respond 157 

more effectively to increasing RSV incidence in low-resource regions or communities. 158 

Keywords: Respiratory syncytial virus, time series, seasonal, climate, modeling. 159 

 160 
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 161 

2.2 Introduction 162 

 163 

Respiratory syncytial virus (RSV) is one of the major causes of acute lower respiratory tract 164 

infections (ALTRI) in infants and young children (1)(2). The RSV infections occur seasonally 165 

in temperate climate regions (3). The RSV adversely impacts the health of adults and 166 

immunocompromised patients, and is associated with significant mortality and morbidity, 167 

particularly in young children and vulnerable infants (4). Children younger than 1 year are 168 

most susceptible to RSV infection; often 60-70% of children in this age group have been 169 

infected at least once, and re-infection can occur throughout their lifetime (4)(5)(6).  170 

The RSV is shed in saliva and nasopharyngeal secretions (7). Infected hosts shed higher 171 

quantities of viral particles upon exposure to higher-ambient temperatures (8). Low humidity 172 

during winter enhances RSV viability, and enables its survival for up to 12 hours on 173 

nonporous surfaces (9). In dry air conditions, large droplets evaporate and remain air-borne 174 

for longer periods of time. Some studies have shown that airborne transmission appears to be 175 

sensitive to ambient humidity and temperature in temperate regions (8)(10). The RSV 176 

outbreaks show some seasonality that suggests a connection with atmospheric and 177 

environmental conditions (11)(12). Most RSV infections in temperate locations occur 178 

between November and April (13). The RSV infection has been associated with winter in 179 

these regions because people spend more time indoors, potentially in crowded conditions 180 

(14). Such climatic regions are different from those of Kenya, which is located on the equator 181 

and experiences bimodal seasonal rainfall due to the interaction of the Northern and Southern 182 

Hemisphere monsoon systems (15). However, variations in climatic factors, such as humidity, 183 

temperature, wind speed, rainfall etc., can have a significant impact on disease dynamics. 184 
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Therefore, it is essential that the RSV incidence be evaluated for equatorial climatic regions to 185 

aid accurate predictions of RSV outbreaks. (16)(17). 186 

The wide range of statistical methods used to explore the link between RSV outbreaks and 187 

climate makes it difficult to elucidate a definitive relationship. Pearson correlation analysis 188 

was previously used to explain the associations of RSV-positive cases with meteorological 189 

variables (11). The univariate analysis of variance (ANOVA), multiple regression analysis, 190 

and Spearman’s rank correlation were used to assess the association between RSV incidence 191 

and meteorological parameters (18). A better understanding of the relationship between 192 

climate and RSV helps in making reliable predictions of its incidence.  193 

Worldwide, as of 2005, 99% of deaths from RSV were reported by the World Health 194 

Organization (WHO) to occur in developing countries (19). It is, therefore, crucial to establish 195 

good RSV surveillance systems in developing countries to help understand the dynamics of 196 

the disease. In 2006, the U.S. Centers for Disease Control and Prevention (CDC) and the 197 

Kenya Medical Research Institute (KEMRI) established a respiratory illness surveillance 198 

system to detect disease outbreaks in Kenyan refugee camps (20). We used RSV incidence 199 

data from this system to explore the best model that predicts the relationship between RSV 200 

incidence and climatic factors along spatio-temporal scales to determine whether a seasonal 201 

pattern of RSV infection exists. A generalised linear model (GLM) with a sinusoidal 202 

component over time was used to account for seasonal variation and compared with a 203 

generalised additive model (GAM) with smoothing cubic splines. Climatic factors were 204 

included as covariates in the models before and after timescale decompositions.  205 
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2.3 Methods 206 

2.3.1 Data 207 

 208 

Surveillance for viral respiratory illnesses, including adenovirus, human metapneumovirus, 209 

influenza virus, parainfluenza viruses 1, 2 and 3, and RSV was implemented in Dadaab 210 

refugee camp in north eastern Kenya in 2007. Paediatric and adult patients who presented at a 211 

camp medical unit, and met the case definition for influenza-like illness (ILI) or severe acute 212 

respiratory infection (SARI), were enrolled into the laboratory-enhanced respiratory 213 

surveillance system and tested for all of the above diseases after an informed consent form 214 

was completed by adults, older minors, and guardians of all minors <15 years (20). The 215 

number of laboratory-confirmed cases was recorded on a daily basis from September 2007 to 216 

August 2011. The monthly counts of all RSV cases among children younger than 5 years 217 

were included in the present analysis; the main outcome of interest being monthly RSV 218 

incidence rate in this age group. The RSV incidence rate per 1,000 children younger than 5 219 

years was calculated by dividing monthly RSV counts by the monthly population of children 220 

younger than age 5 years in the camp. Local weather and climatic data, including: the mean 221 

temperature and mean dew point for the day (both in 0F); mean sea level pressure for the day 222 

in millibars; mean visibility for the day in miles; mean wind speed for the day in knots; 223 

minimum and maximum temperature (0F) reported during the day; and the total precipitation 224 

(in inches) reported during the day were obtained from the World Meteorological 225 

Organization’s (WMO’s), World Weather Watch Program, according to WMO Resolution 40 226 

(Cg-XII) (available at http://www7.ncdc.noaa.gov/CDO/cdo). The meteorological dataset 227 

consisted of measurements recorded at successive, equally spaced time points (covariates 228 
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used in the present study are provided in Table 2.1). Data used in the analysis are available 229 

upon request from the authors.  230 

Table 2.1 Covariates and their description. Non-decomposed and decomposed covariates 231 

into the seasonal (S), trend (T), and random (R) components. 232 

 233 

Covariate Description 

xt1 Wind speed 

xt2 amount of Rainfall 

xt3 Temperatures 

xt4 mean Dew point 

xt5 Visibility 

xt1S Seasonal, wind 

xt1T Trend, wind 

ξt1R Random, wind 

xt2S Seasonal, rainfall 

xt2T Trend, rainfall 

ξt2R Random, rainfall 

xt3S Seasonal, temperature 

xt3T Trend, temperature 

ξt3R Random, temperature 

xt4S Seasonal, dew 

xt4T Trend, dew 

ξt4R Random, dew 
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Covariate Description 

xt5S Seasonal, visibility 

xt5T Trend, visibility 

ξt5R Random, visibility 

 234 

2.3.2  Generalised Linear Models and Generalised Additive Models 235 
 236 

A Poisson distribution model was used in this analysis, as the outcome of interest (incident 237 

RSV cases) was non-Gaussian count data. Some authors have used Gaussian vector 238 

autoregressive models on multivariate counts that are serially correlated. Brandt and others 239 

used vector autoregressive methods that were based on Gaussian error process (21). However, 240 

such an assumption is not applicable to event count data because it produces biased estimates 241 

(22). So, as many of those methods apply for count series that approximate normality, they 242 

may not hold to dynamic events like the ones applied here. In the first model, seasonal effects 243 

on RSV incidence were analysed by using a generalised linear model (GLM) with a 244 

sinusoidal component to account for seasonal variation. The second model extended the GLM 245 

model to a generalised additive model (GAM) by applying smoothing cubic splines. The 246 

GAM is an extension of the GLM and is adaptable to non-normally distributed variables (23). 247 

GLM uses linear predictors specified as the expected value of a response variable ( ௝ܻ), which 248 

is expressed as ߟ ൌ ௝ሺߚ௝ߑ ௝ܺሻ. Here, ߚ௝ is a coefficient parameter and ௝ܺ represents the ݆-th 249 

explanatory variable. The GAMs extend these by replacing them with	ߟ ൌ ௝ߑ ௝݂ሺ ௝ܺሻ, where 250 

௝݂ሺ ௝ܺሻ are unspecified nonparametric functions estimated by including smoothing splines 251 

(24). GAMs allow for adjustments of the nonparametric, nonlinear, confounding effects of 252 

seasonality, trends, and weather variables, which have been previously used in modeling time-253 
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series data (25). In the present analysis, climatic time-series covariates were included in the 254 

GLM and GAM models and implemented in R language v3.1.0 (26). Both models were 255 

optimized for predictive accuracy and precision. 256 

Data were decomposed into three components. namely, trend, seasonal and random 257 

components, in order to independently evaluate the existence and strength of associations 258 

between RSV incidence and covariates on each time scale. Data decomposition was 259 

accomplished using Loess smoothing, a regression method that assigns a weighted 260 

polynomial to each component (27). The idea is that the time series is decomposed into trend, 261 

seasonal and remainder components. జܻ ൌ జܶ ൅ ܵజ ൅ ܴజ for ߭ ൌ 1 to N data points. The 262 

seasonal-trend decomposition approach uses the Loess (LOcal regrESSion) smoothing. For ݕ௜ 263 

and ݔ௜ measurements, a smooth estimate g(x) is provided by Loess for y at all values of x. A 264 

positive integer q is chosen to calculate g where a larger q yields greater smoothing. Closer q 265 

values of ݔ௜ to x are selected and each is weighted by how far it is from x. The weight given as 266 

௜ߥ ൌ ܹሺ|ݔ௜ െ  ሻ is the distance from the 267ݔ௚ሺߣ ሻ where W is the tricube weight function and|ݔ

qth farthest point (for ݍ ൏ ܰ. if ݍ ൒ ܰ, additional scale terms must be used). For selected 268 

ሺݔ௜,  ௜, a polynomial of degree d is fit. Some data points are considered 269ߥ ௜ሻ and with weightsݕ

more heavily in the regression depending on the weights allowed. We introduced a GLM for 270 

time-series data, with a sinusoidal component over time to account for seasonal variations. 271 

The GLM was extended to include a smoothing function using the GAM approach to the 272 

Poisson distribution (28) In each model, a data-driven smoothing function of time was fitted, 273 

and compared with those fitted, using sine and cosine functions in the Fourier basis. 274 

The observed number of RSV counts, ௧ܻ  at a given month ݐ	 ൌ 	1,⋯ , ݊ from the population at 275 

risk is assumed to follow a Poisson random variable: ௧ܻ ∼ Poissonሺߤ௧ሻ. We let ݊௧ be the 276 

population of children age 5 years and younger who are at risk of RSV in the camp. The 277 
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expected value (mean) of ௧ܻ  is ܧሺ ௧ܻሻ ൌ μ௧ ൌ ݊௧Ɵ௧ where the dependence of covariates on Ɵ௧ 278 

is modeled by Ɵ௧ ൌ Ղ௫೟
೅ఉ. Therefore, a Poisson GLM of the form ܧሺ ௧ܻሻ ൌ μ௧ ൌ ݊௧Ղ௫೟

೅ఉ is 279 

used. More explicitly, to model the incidence of RSV, we use: 280 

log μ௧ ൌ ଴ߚ ൅ ௧ିଵݕߙ ൅෍෍෍෍ߚ௞௦௟ݔሺ௧ି௟ሻ௞௦

௤

௟ୀ଴

௥

௦ୀଵ

௠

௞ୀଵ

൅ ݏ݋ଵܿߟ ൤
ݐߨ2
ܶ
൨ ൅ ݊݅ݏଶߟ ൤

ݐߨ2
ܶ
൨

௡

௧ୀଵ

൅ log ݊௧ , 282 

  (2.1) 281 

where	μ௧	is the infection rate for the month, ߚ .ݐ଴ is the intercept, ߙ is the coefficient of the 283 

lagged RSV counts by one month, which is represented by ݕ௧ିଵ, ݔሺ௧ି௟ሻ௞௦, is the decomposed 284 

measured covariate, ߚ௞௦௟ their corresponding coefficients with ݇	 ൌ 	1,⋯ ,݉ covariates and 285 

	ݏ ൌ 	1,⋯ ,  th decomposition of the ݇-th covariate. This additive time-286-ݎ corresponding to ݎ

scale decomposition of the ݇-th covariate into the seasonal (S), trend (T), and random (R) 287 

components is;  288 

ሺ௧ି௟ሻ௞௦ݔ௞௦௟ߚ ൌ ሺ௧ି௟ሻ௞ௌݔ௞ௌ௟ߚ ൅	ߚ௞்௟ݔሺ௧ି௟ሻ௞் ൅	ߦሺ௧ି௟ሻ௞ோ,    (2.2) 289 

for every ݇ in ሼ1,⋯ ,݉ሽ. In the above case, ݏ takes on three levels S, T, and R. This 290 

decomposition helps in assessing for the significance of the seasonal and trend components of 291 

the covariates in explaining the RSV incidence. The combination of the seasonal and trend 292 

components makes up the patterns in the covariates. The ݈ ൌ 	0,1,⋯ ,  distributed lags where 293 ݍ

	ݐ is the maximum lag and ݍ ൌ 	1,⋯ , ݊ are the time points. The terms ߟଵ and ߟଶ are 294 

coefficients of the sine and cosine function, respectively. Here, ܶ is the number of time 295 

periods described by one cosine function over the interval ሾ0,2ߨሿ.  296 

Using a cosine function, we specified two periods: one that defines the measure of RSV 297 

infection (month) and the other that is described by one cosine cycle. After fitting all 298 

covariates in the GLM model, the most parsimonious model was identified. The maximum 299 
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lag for each covariate was obtained by comparing different lagged models using Akaike 300 

information criterion (AIC). The maximum lag for each covariate was used to run 301 

“crossbasis” in the “dlnm” package for time-series models (29)(30). The same covariates were 302 

used to fit the GAM model. 303 

 The corresponding GAM for the Poisson model is: 304 

log μ௧ ൌ ଴ߚ ൅ ௧ିଵݕߙ ൅෍෍෍෍ߚ௞௦௟ߖ௞

௤

௟ୀ଴

ሺݔሺ௧ି௟ሻ௞௦

௥

௦ୀଵ

௠

௞ୀଵ

௡

௧ୀଵ

, ሺ௧ି௟ሻ௞௦ሻߣ ൅	ߖ௞ାଵሺݐ, ௞ାଵሻߣ ൅ log ݊௧ , 306 

  (2.3) 305 

where ߣሺ௧ି௟ሻ௞௦	is the smoothing parameter or the degrees of freedom for covariates, ߣ௞ାଵ is a 307 

smoothing parameter for time and Ψ∙ is the smoothing function. Larger values of ߣ∙ are 308 

indicative of a less-smooth function. 309 

The trend cycles represent long-term changes in the levels or values of the covariate, while 310 

the periodic changes are the fluctuations of constant length. The GLM model (2.1) has the 311 

Logit link function. The residual deviance for these models takes on the form ܦ ൌ312 

െ2log	ሺܮ௧௘௦௧/ܮ௦௔௧), where ܮ௧௘௦௧ and ܮ௦௔௧ are the maximized likelihoods under the test and 313 

saturated models, respectively. The model selection and fitting was done using the "glmulti" 314 

package (31) and "gam" (32) in "mgcv" package (24) in the R language v3.1.0. 315 

2.3.3 Ethical Considerations 316 

 317 

Ethical approval for the surveillance activities was obtained from the KEMRI Ethical Review 318 

Committee (SSC Protocol Number 1161). Institutional review was waived by CDC because 319 
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the study was considered to be a non-research public health activity. Informed written consent 320 

was obtained from all participants and from the guardians of minors.  321 

2.4 Results and discussions 322 

2.4.1 Data exploration 323 

 324 

A peak in RSV incidence occurred every 11-12 months, particularly from October to January 325 

(Figure 2.1). Other than these peaks, there was relatively low RSV incidence (≤ 20 cases per 326 

1000 person months), the RSV incidence rate per 1,000 children younger than 5 years. 327 

 

Figure 2.1  Plot of RSV incidence in Dadaab. Fluctuations in the data are roughly constant 

over time, indicating that the RSV time series could likely be described using an additive 

model. 
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The decomposed data, seasonal pattern, trend line, and random component of the RSV, wind, 328 

rainfall, and temperature time series are shown in Figure 2.6 - 2.9. The seasonal pattern of 329 

RSV incidence regularly repeated itself, with two distinct peaks annually (Figure 2.6). The 330 

magnitude of the seasonal components of the decomposed covariates did not vary annually 331 

(Figure 2.6 – 2.11). This justifies the use of additive, rather than multiplicative 332 

decomposition. There was a positive correlation between temperature and RSV incidence 333 

(Figure 2.2B). There was a significant moderate correlation between RSV incidence and wind 334 

speed (ߩ ൌ 	െ0.4651, ݌ ൌ 	0.001) (Figure 2.2A); an insignificant weak correlation between 335 

RSV incidence and temperature (ߩ ൌ ݌ ,0.1850 ൌ 0.224) (Figure 2.2B); an insignificant 336 

weak correlation between RSV incidence and dew point ሺߩ ൌ ݌ ,0.230 ൌ 0.128) (Figure 337 

2.2C); and for temperature and wind speed (Figure 2.2D). We fitted a parabolic curve using: 338 

ଷݔ ൌ ɤ଴ ൅ ɤଵሺݔଵ െ ɤଶሻଶ where ɤ଴,ଵ,ଶ are constants, and the regression fit was significant (݌ ൌ339 

0.002). Here, ݔଵ and ݔଷ represent wind speed and temperature, respectively. Since the 340 

relationship between the two is quadratic, there is no problem of multi-collinearity between 341 

them.   342 
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Figure 2.2  Correlation-regression analysis. A: Correlation between RSV 

incidence and wind speed; B: Correlation between RSV incidence and 

temperature; C: Correlation between incidence and dew point; and D: 

Correlation between temperature and wind speed. In these plots, the regression 

lines of best fit are indicated by bold blue lines between RSV incidence and dew 

point; and D: Correlation between temperature and wind speed. In these plots, 

the regression lines of best fit are indicated by bold blue lines.  
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2.4.2 Model assessment and comparison 343 

 344 

The trend component of the wind decomposition model decreased slightly immediately after 345 

2008, then increased steadily to a peak in early 2009, followed by a decrease to a minimum 346 

value in late 2010 (Figure 2.7). To determine the best predictive model, we compared the 347 

performance of the four models described in the methods chapter. The best GLMs and GAMs 348 

from the Poisson were compared using the AIC and residual deviances (Table 2.2).  349 

Model Deviance 

explained 

(%) 

   AIC 

Poisson GLMa 

log μ௧ ൌ ଴ߚ ൅ ௧ିଵݕߙ ൅෍෍෍෍ߚ௞௦௟ݔሺ௧ି௟ሻ௞௦

௤

௟ୀ଴

௥

௦ୀଵ

௠

௞ୀଵ

൅ ݏ݋ଵܿߟ ൤
ݐߨ2
ܶ
൨ ൅ ݊݅ݏଶߟ ൤

ݐߨ2
ܶ
൨

௡

௧ୀଵ

൅ log ݊௧ 

 

 

  34.3 

  

 

 446.86 

Poisson GLMb 

log μ௧ ൌ ଴ߚ ൅ ௧ିଵݕߙ ൅ ݏ݋ଵܿߟ ൤
ݐߨ2
ܶ
൨ ൅ ݊݅ݏଶߟ ൤

ݐߨ2
ܶ
൨ ൅ log ݊௧ 

 

29.4 

 

477.25 

Poisson GAMa 

log μ௧ ൌ ଴ߚ ൅ ௧ିଵݕߙ ൅෍෍෍෍ߚ௞௦௟ߖ௞

௤

௟ୀ଴

ሺݔሺ௧ି௟ሻ௞௦

௥

௦ୀଵ

௠

௞ୀଵ

௡

௧ୀଵ

, ሺ௧ି௟ሻ௞௦ሻߣ ൅	ߖ௞ାଵሺݐ, ௞ାଵሻߣ ൅ log ݊௧ 

 

 

65.3 

 

 

       317.17 

Poisson GAMb 

log μ௧ ൌ ଴ߚ ൅ ௧ିଵݕߙ ൅	ߖ௞ାଵሺݐ, ௞ାଵሻߣ ൅ log ݊௧ 

 

59.5 

 

346.44 

Table 2.2 Model diagnostic and performance results   

The superscripts a,b indicate models with and without covariate decomposition, respectively. 
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The AIC was used to judge the best model from the set of models that had a good fit. The best 350 

models all had covariates with ݌ ൏ 	0.05. This was the case for models with and without 351 

decomposed covariates. Of all the models that were evaluated, the Poisson GAM with 352 

decomposed covariates had the best fit to the data (AIC = 317.17 and a Deviance explained = 353 

65.3%, Table 2.2). Figure 2.3 shows the best model fit to the RSV incidence data with 354 

decomposed covariates comparing the Poisson GLM and the Poisson GAM, where the 355 

Poisson GAM fits the data well.   356 

Table 2.3 ANOVA model for the best performing model, the Poisson GAM with covariate 357 

decomposition. 358 

Variable lag df ܨ-value ݌-value 

Seasonal, wind speed 1 4 28.81 <0.0001 

Trend, wind speed 3 4 17.99   0.0012 

Seasonal, rainfall 0 4 27.70 <0.0001 

Trend, mean dew point 2 4 45.59 <0.0001 

Trend, visibility 2 4 68.18 <0.0001 

Month  3   2.48   0.4784 

 359 

The best model in its reduced form is the Poisson GAMa (Table 2.4). Table 2.3 contains the 360 

corresponding ANOVA results for the Poisson GAMa. From this table, the wind with both the 361 

trend and seasonal effects (seasonal effect of rainfall, trend mean dew point, and the trend 362 

effect of visibility) significantly explained RSV incidence. We note that time in months did 363 

not significantly explain RSV incidence, further demonstrating the importance of using 364 

climactic factors to explain the seasonality of RSV.  365 
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The direction of effects demonstrated nonlinear relationships with RSV incidence, except in 366 

the case of seasonal wind speed, which had a linear relationship (Figure 2.4). High wind 367 

speed within the same month had a significant negative effect on the RSV incidence. The 368 

trend component of the wind speed in the two months preceding incident RSV cases had a 369 

nonlinear relationship with RSV incidence. As the wind speed increased, incidence fluctuated 370 

from low to high, returning to low incidence when the speeds were highest. An increase in the 371 

seasonal component of rainfall in the four months preceding RSV cases was associated with 372 

an increase in RSV incidence. When rainfall was at its lowest, RSV incidence increased then 373 

returned to baseline when rainfall reached its maximum. The trend effect of the mean dew 374 

point 1 month preceding incident cases was associated with an increase in RSV incidence 375 

until dew point reached its maximum. The increase in visibility trend component 2 months 376 

preceding incident RSV cases demonstrated a constant effect on RSV incidence, which 377 

peaked when the visibility was 19.5 miles and troughed when the visibility was at its highest. 378 
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  379 

Figure 2.3  Best model fit to the RSV incidence data (bold lines) with decomposed 

covariates. A: Poisson, GLM. B: Poisson, GAM. The standard error bars to the model 

fit are indicated by the dotted lines (95% confidence bounds). The base year in all these 

plots was September 2009. 
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 380 

 381 

 

Figure 2.4 Best model fit (Poisson, GAM) to the RSV incidence data with the signifficant 

decomposed covariates. Seasonal wind speed, Trend wind speed, Seasonal rainfall, Trend 

rainfall and Trend visibility. The standard error bars to the model fit are indicated by the 

grey shade (95% confidence bounds). RSV incidence units as cases per 1,000 person 

months. 
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The best model residual analysis (Figure 2.5) reveals that there was a slight improvement to the 382 

fit when the decomposed covariates were included into the model. Due to having less data 383 

points and many parameters there was an over-fit to the data in general. 384 

 385 

Figure 2.5 Residual plots to the best GAM models (Poisson, GAM without covariate 386 

decomposition and Poisson, GAM with covariate decomposition) to the RSV incidence 387 

data.  388 

2.4.3 Implication of results and comparison to related studies 389 

 390 

Our data showed seasonal variations for RSV incidence (Figure 2.6). The Poisson GAM with 391 

decomposed covariates out-performed the GLM variant, thereby relaxing its linearity. 392 
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Generally, the role of climatic factors in determining disease dynamics is rather complex to 393 

decipher (33). In the literature, there is strong evidence that the relationship between climatic 394 

factors and RSV incidence varies widely between geographical regions (18). Previous studies 395 

have shown that climatic factors might be associated with RSV, although it remains unclear 396 

what these factors are or exactly how they impact RSV incidence. We performed a correlation 397 

analysis for each covariate with RSV by fitting regression lines to test the level of significance 398 

between the climatic variables (Figures 2.2A-2.2C). A recent study by Agoti et al (34) on 399 

RSV strains using the same RSV surveillance data showed that there were six epidemic peaks 400 

within the three year study period: two peaks each year; the first and the last peaks were 401 

composed of group B strains and the other four peaks were composed of group A strains. 402 

Agoti’s study, in conjunction with our findings, show that onset of RSV infections in Kenya 403 

can be reliably predicted. Our findings, in comparison with other studies, also suggest that the 404 

relationship between RSV incidence and climatic factors varies widely; for instance, from 405 

2004 to 2012 in tropical and sub-tropical zones such as Hong Kong, China, Singapore, Kuala 406 

Lumpur, Malaysia, Medellin and Colombia outbreaks occurred primarily during the hot and 407 

rainy seasons (14).  408 

The ability to predict increases in RSV incidence, based on prevailing meteorological 409 

conditions, could potentially inform the application of public health interventions and 410 

provisions of healthcare in Kenya, and perhaps, in other regions with a similar climate and 411 

equatorial location. Currently, there is no RSV vaccine available; however, in developed 412 

countries, infants at risk of severe outcomes can be administered monthly doses of the anti-413 

RSV antibody, palivizumab, during outbreaks of RSV (3)(8). Because predicting the 414 

incidence of RSV could optimize the cost-effectiveness of immunoprophylaxis; our model 415 

might be useful to apply in a cost-benefit analysis of this approach in Kenya. In most 416 
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temperate climate regions, RSV occurs as an annual epidemic. For instance, Noyola and 417 

Mandeville found that temperature was the predominant atmospheric condition explaining the 418 

annual spread and variability of RSV incidence in San Luis Potosi, Mexico (35). Using 419 

correlation and regression analysis, Noyola and colleagues (35) observed that the weekly 420 

number of RSV incidence between October 2002 and May 2006 was correlated to ambient 421 

temperature, barometric pressure, relative humidity, vapor tension, dew point, precipitation, 422 

and hours. Our findings corroborate what they observed for the same climatic factors. The 423 

modeling has aided identification of factors influencing RSV incidence and provided 424 

indicators for devising measures to prevent the spread of the disease.  425 

Our analysis showed that other climatic factors affecting RSV seasonality can improve the 426 

performance of a predictive model. Khor et al (18) demonstrated that, in Malaysia, ambient 427 

temperature was inversely associated with RSV activity, even though the highest number of 428 

cases may not always coincide with the lowest temperature. A negative correlation between 429 

the mean minimum temperatures and RSV incidence was recently reported in Italy (11). The 430 

RSV transmission that occurs during cold weather is facilitated by its stability in secretions, 431 

since inhalation of cold air slows down the mucociliary escalator. This reduces phagocytic 432 

activity of leukocytes, increasing the host’s vulnerability to infection. There is evidence of 433 

RSV epidemics occurring in tropical areas with high temperatures during rainy seasons, a 434 

phenomenon that our data are exhibiting (36)(37). However, the exact mechanisms of how 435 

climatic factors affect RSV incidence requires further investigations, especially across 436 

geographically diverse regions. The relationship between the dynamics in wind speed and 437 

direction, and how these dynamics influence the climate of geographical regions like Dadaab, 438 

remains unclear. Understanding such complex relationships between the co-factors explaining 439 

the spread of RSV is essential to predict its incidence. 440 
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A foreseeable limitation of our models is that with log- or logit-links; the mean value zero 441 

corresponds to an infinite range on a linear predictor scale. For count data with a relatively 442 

large number of zeros clustered closely within the covariate space, GAMs might suffer from 443 

identifiability problems, especially the Poisson family. For the over-dispersion parameter, the 444 

assumption of equal mean and variance inherent in the Poisson GAM might be violated; 445 

hence, it has to be replaced by variances that exceed the mean. Our data show a cyclic and 446 

seasonal behaviour for RSV incidence among children (Figure 2.1). The Poisson GAM from 447 

this analysis demonstrated that climatic factors, including wind speed, rainfall, dew point and 448 

visibility, significantly affected RSV incidence. The use of atmospheric condition data can 449 

help public health officials predict increases in RSV infection incidence among children and 450 

help them prepare and respond more swiftly to increasing RSV incidence in low-resource 451 

regions or communities. While specific vaccines, antiviral medications and immunoglobulins 452 

are not available to control RSV in these settings, agencies responsible for managing 453 

healthcare in crisis-affected populations can increase preparedness for RSV outbreaks by 454 

establishing additional patient-isolation areas and bed space, ensuring that all healthcare 455 

workers are provided with adequate personal protective equipment (e.g., facial masks and 456 

gloves) and appropriate amounts of hand sanitizers and adequate hand-washing facilities for 457 

healthcare workers are readily available.  458 

Health education is important; crisis-affected populations should be made aware of the 459 

symptoms and signs of RSV, how it spreads, and how to protect themselves and their loved 460 

ones. Health education should focus on how to cover coughs, keep appropriate social 461 

distancing (e.g., not being too close to others, not shaking hands), and the importance of 462 

washing hands with soap. In particular, our model indicates that when the wind speed in knots 463 

change from high to low, these interventions should be enhanced to prevent spread of RSV 464 
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infections in Kenya. In the future, these models could be validated with new RSV surveillance 465 

data to see how well they perform to predict increases in RSV incidence particularly for 466 

geographical regions with similar climatic attributes to Dadaab. 467 
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2.6 Supporting Information 489 

 

Figure 2.6 Decomposition of RSV time-series data. The variation in the remainder 

component is approximately the same as the variation in the data. The variations in the 

seasonal and trend components are about 3 to 4 times smaller than that observed in the 

data. The long-term trend components appear to be generally increasing. The random 

(remainder), the bottom plot, show the residual variation in the data after the long-term 

trend and seasonality are removed. 
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 490 

 491 

 

 

 

 

Figure 2.7 Decomposition of wind time-series data. The variation in the trend is much 

smaller than that in the data. The variations in the seasonal and remainder components 

are marginally smaller than the variation in the data (grey bars on the right). 
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 492 

 

Figure 2.8  Decomposition of rainfall time-series data. The variations in the seasonal 

and remainder components do not deviate much from that in the data. The variation in 

the trend component is roughly 4 times less than the variation in the data. 
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 493 

 

Figure 2.9  Decomposition of temperature time-series data. The trend component has a 

much smaller variation than that in the data. The seasonal and remainder components 

show marginally smaller variation than that observed in the data. The long-term trend 

components appear to be generally increasing. 
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 494 

 495 

 

Figure 2.10 Decomposition of Dew time-series data. The trend exhibits approximately 

3 times the overall variation in the Dew data (large grey bar relative to the grey bar on 

the right-hand of the data plot). The long-term trend components appear to be generally 

increasing. 
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 496 

Figure 2.11 Decomposition of visibility time-series data. The season accounts for a very 497 

small portion of the overall variation in the visibility value (large grey bar relative to the 498 

grey bar on the right-hand of the data plot). The long-term trend components seem to be 499 

generally decreasing. 500 

 501 

 502 

 503 

 504 

 505 

 506 
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Table 2.1 Selected Poisson candidate models. 507 

Covariates GLMa GLMb GAMa GAMb 

 Est(se) Est(se) Est(se) Est(se) 

Intercept -0.69(0.074)*** -0.71(0.070)*** -2.71(4.111) -2.09(0.637)** 

yt-1 0.004(0.004) 0.02(0.004) *** -0.0006(0.007) 0.01 (0.006). 

xt1  -0.82(0.441).   

xt2  -1.21(0.427) **   

xt3  -2.43(0.408) ***   

xt4  1.33(0.454) **   

xt1S -6.45(0.917) ***    

xt1T  1.69(0.286) ***    

xt2S -1.12(0.246) ***    

xt4T 0.630(0.254) *    

xt5T -1.22(0.423) **    

Cos(2πt/12) 1.27(0. 277)*** -0.70(0.182)***   

Sin(2πt/12) -1.20(0.210) ***    

ns(xt1,4)1    -5.45(0.792)*** 

ns(xt1,4)2    -1.67 (0.784)* 

ns(xt1,4)3    -0.32 (1.287) 

ns(xt1,4)4    -1.78(0.723)* 

ns(xt2,4)1    -1.03(0.337)** 

ns(xt2,4)2    1.51(0.399)*** 

ns(xt2,4)3    0.00(0.000) 

ns(xt2,4)4    -3.37(0.614)*** 
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Covariates GLMa GLMb GAMa GAMb 

 Est(se) Est(se) Est(se) Est(se) 

ns(xt3,4)1    -1.41(0.484)** 

ns(xt3,4)2    -1.34(0.602)* 

ns(xt3,4)3    -1.25 (1.043) 

ns(xt3,4)4    -0.14(0.687) 

ns(xt4,4)1    2.80(0.448)*** 

ns(xt4,4)2    2.43(0.490)*** 

ns(xt4,4)3    4.72(0.997)*** 

ns(xt4,4)4    3.21(0.732)*** 

ns(xt1S, 4)1   -10.97(6.153).  

ns(xt1S, 4)2    -3.71(2.241).  

ns(xt1S, 4)3   -13.25(10.110)  

ns(xt1S, 4)4    -7.19(4.857)  

ns(xt1T, 4)1   2.86(1.406)*  

ns(xt1T, 4)2   -0.07(1.076)  

ns(xt1T, 4)3   1.01(2.711)  

ns(xt1T, 4)4   2.05(0.700)**  

ns(xt2S, 4)1   -2.31(3.019)  

ns(xt2S, 4)2   3.87(2.245).  

ns(xt2S, 4)3   -0.88(2.411)  

ns(xt2S, 4)4   0.46(0.781)  

ns(xt4T, 4)1    4.12(1.307)**  

ns(xt4T, 4)2   7.33(1.125)***  
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Covariates GLMa GLMb GAMa GAMb 

 Est(se) Est(se) Est(se) Est(se) 

ns(xt4T, 4)3   13.36(2.437)***  

ns(xt4T, 4)4   -2.032(0.948)*  

ns(xt5T, 4)1   -6.31(1.646)***  

ns(xt5T, 4)2   -5.53(1.563)***  

ns(xt5T, 4)3   -3.17(1.835).  

ns(xt5T, 4)4   -10.03(1.334)***  

ns(t, 4)1   5.65(4.180) 2.08(1.156) . 

ns(t, 4)2   5.87(4.794) 1.01(0.786)   

ns(t, 4)3   0.00(0.000 2.49(0.666) *** 

ns(t, 4)4   -5.57 (4.299) -1.43(0.326) *** 

 508 

 509 
Signif. codes: ݌ ൏ ݌ ;’***‘ 0 ൏ ݌ ;’**‘ 0.001 ൏ ݌ ;’*‘ 0.01 ൏ ݌ ;’.‘ 0.05 ൏ ݌ ;’ ‘ 0.1 ൏ 1 510 

ns stands for natural splines, and the numbers inside and outside the brackets represent the 511 

degrees of freedom for the splines. 512 

 513 

 514 

 515 

 516 
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CHAPTER 3: Time Series Non-Gaussian Bayesian Bivariate Model Applied to 517 

Data on HMPV and RSV: A Case of Dadaab in Kenya 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 
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3.1 Abstract  541 

 542 

Human metapneumovirus (HMPV) have similar symptoms to those caused by respiratory 543 

syncytial virus (RSV). The modes of transmission and dynamics of these epidemics still 544 

remain poorly understood. Climatic factors have long been suspected to be implicated in 545 

impacting on the number of cases for these epidemics. Currently, only a few models 546 

satisfactorily capture the dynamics of time series data of these two viruses. In this study, we 547 

used a negative binomial model to investigate the relationship between RSV and HMPV 548 

while adjusting for climatic factors. We specifically aimed at establishing the heterogeneity in 549 

the autoregressive effect to account for the influence between these viruses. Our objective was 550 

to assess the presence of influence of high incidences between the viruses and whether higher 551 

incidences of one virus are influenced by the other. Our findings showed that RSV 552 

contributed to the severity of HMPV. This was achieved through comparison of 12 models of 553 

various structures, including those with and without interaction between climatic cofactors. 554 

The study has improved our understanding of the dynamics of RSV and HMPV in relation to 555 

climatic cofactors there by setting a platform to devise better intervention measures to combat 556 

the epidemics. We conclude that preventing and controlling RSV infection subsequently 557 

reduces the incidence of HMPV. 558 

Keywords: Non-Gaussian Bivariate Bayesian model, RSV, HMPV, epidemic, time series, 559 

climatic factors. 560 

 561 

 562 
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3.2 Introduction 563 

 564 

Epidemiological knowledge of the respiratory system has been mostly related to developed 565 

countries, though the burden of respiratory virus infections (RVIs) is more manifested in 566 

developing countries with very high hospitalization and mortality rates (38). Higher mortality 567 

is associated with increased displacement into overcrowded refugee camps (39). The burden 568 

of RVIs is considerably high during crises times (40) and is more severe in infants (41). 569 

Recently, Pastula et al. (42) highlighted that hospitalization for respiratory syncytial virus 570 

(RSV) is not limited to infants but also to adults. In 2001, HMPV was identified as a potential 571 

etiologic agent for respiratory infections (43). A study at Queen Mary Hospital in Hong Kong 572 

showed that the peaks of HMPV and that of RSV activity occurred in spring and the early 573 

months of summer and viral diagnoses during the study period showed that RSV and HMPV 574 

had similar seasonality (44). Guerrero et al. (45) indicate that RSV but not HMPV induces a 575 

productive infection in human monocyte-derived dendritic cells. Reinfection by RSV has a 576 

great impact on human health and may cause long-term effects on the host immune response 577 

(46). Greensill et al. (47) detected HMPV in 21 out of 30 infants infected with severe RSV 578 

and were hospitalized requiring intensive-care unit ventilator support. Konig et al. (48) found 579 

out that 60% cases with HMPV had RSV. They also found that HMPV contributed to the 580 

severity of Lower respiratory tract infections (LRTIs) at a lower rate than RSV and 581 

coinfection was considered a cause of severe lower respiratory tract disease. The HMPV 582 

infections have similar symptoms to those caused by RSV (49)(50). The HMPV and RSV 583 

share similar risk factors (51) and simultaneous detection times (52). The HMPV and RSV 584 

may cross-react directly or indirectly because they are both co-viruses to each other (53). 585 
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In this paper, we used surveillance data aggregated by month in a time series model and the 586 

negative binomial distribution to address the issue of over-dispersion. We model the 587 

relationship between two viruses, namely, RSV and HMPV. Meteorological variables were 588 

included in the model to help assess for serial correlation. Held et al. (54) suggested that 589 

environmental factors can be incorporated in these models to improve model fit to data and 590 

predictions. These models help to assess the presence of influence of high incidences between 591 

the viruses and whether higher incidences of one virus are influenced by another. They also 592 

aid in evaluating if an epidemic component can be isolated within or between the viruses and 593 

how the autoregressive component captures the residual temporal dependence in the time-594 

series, after adjusting for seasonal effects. In section 3.3, we show the statistical model fitting 595 

with and without climatic covariates to a bivariate time-series. In section 3.4 we show the 596 

applicability of the models illustrated with a real world example and discuss the results 597 

obtained and finally conclude in section 3.5.  598 

3.3 Methods 599 

3.3.1 Statistical modelling 600 

 601 

Modeling count data is faced with many challenges since count outcomes do not meet the 602 

usual normality assumption required of many standard statistical tests. Typical log-603 

transformation to induce normality does not often work, or categorization of the outcome may 604 

lead in loss of information as described by O’Hara and Kotze (55). The most commonly used 605 

models to study the dynamics of epidemics and predict future outbreaks using count data are 606 

the Poisson (56) and the negative binomial distributions (57). In this work we model the time-607 

evolution of two epidemics using a bivariate approach suggested by Held et al. (54). We 608 
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assume that we have ݅ ൌ 1, … ,݉ ‘viruses’ and denote with ݕ௜௧	the number of cases in virus i 609 

at time t. The general model for the multivariate time series of count events ሼݕ௜௧, ݅ ൌ610 

1,… ,݉; ݐ	 ൌ 1, … , ܶሽ for different virus type ݅ at time ݐ assumes a Poisson distribution with 611 

conditional mean µ௜௧ given by  612 

log	ሺ	µ௜௧ሻ ൌ ௜,௧ିଵݕ௜,௧ିଵߣ ൅	߶௜,௧ିଵ෍߱௜௝ݕ௝,௧ିଵ
௝ஷ௜

൅	ߟ௜,௧ߥ௜௧	.																					ሺ3.1ሻ 613 

It holds VARሺݕ௜,௧หݕ௜,௧ିଵ൯ ൌ E൫ݕ௜,௧หݕ௜,௧ିଵ൯ ൌ µ௜௧. Hence, in the case of a conditional Poisson 614 

response model the conditional mean µ௜௧,is identical to the conditional variance δ of the 615 

observed process. 616 

In model 3.1, ߣ௜,௧ିଵ is the autoregressive parameter representing the proportion of epidemic 617 

cases from the total number of cases for virus type i at time t. When ߣ௜,௧ିଵ ൒ 1 (an outbreak 618 

occurs) there is an influx of the endemic cases, and ߣ௜,௧ିଵ ൏ 1 means the process is stable (no 619 

outbreak occurs). The ߶௜,௧ିଵ quantifies the influence of all other virus types ݆ on ݅; ߟ௜,௧ 620 

corresponds to an offset term in the model (the monthly varying population counts at time 621 ݐ 

on virus type ݅) and ߥ௜௧ is the endemic component as subsequently shown in equation (3.5). 622 

The variable ݕ௝,௧ିଵ denotes the number of cases observed in virus type ݆ at time ݐ െ 1. ߱௜௝ ൌ623 

1	  if pathogens j and i have an autoregressive effect on each other and 0 otherwise, 624 

This model is aggregation consistent where the aggregated counts ݕ௧ ൌ ∑ ௜௧ݕ
௠
௜ୀଵ  have the 625 

mean, 626 

௧ሻࣆሺ݃݋݈ ൌ ௧ିଵ࢟ࣅ ൅	ࣘ௧ିଵࢆ௧ିଵ ൅	ࣁ௧ࣇ௧, 627 

where, ࢆ௧ିଵ ൌ ∑ ߱௜௝ݕ௝,௧ିଵ௝ஷ௜ , ௧ࣁ ൌ ∑ ௜,௧ߟ
௠
௜ୀଵ 	, ࣘ௧ ൌ ∑ ߶௜,௧

௠
௜ୀଵ 	 , ௧ࣇ ൌ 	∑ ௜,௧ߥ

௠
௜ୀଵ .So, the 628 

parameter ࣅ  has the same interpretation for the aggregated counts similar to the counts ݕ௜௧.	In 629 
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the presence of over-dispersion, the Poisson model is replaced by a negative binomial model 630 

where the conditional mean remains unchanged but the variance δ is modified to 631 

௧ሺ1ࣆ ൅ ࣒ ሻ with over-dispersion parameter࣒௧ࣆ ൐ 0. The extent of over-dispersion is 632 

captured by how far the term ࣒ deviates from zero. An extensive discussion on handling 633 

over-dispersion can be found in the work of Ver Hoef and Boveng (58). We are interested in 634 

two different types of viruses transmitted through the same route, i.e. respiratory illness. Let 635 

	݇ ௞ coefficients in the model and࣎ ௞,௧ିଵ denote climatic covariates withݔ ൌ 	1, … ,  636 ܭ

covariates. In the model, it is assumed that the cases follow a negative binomial distribution, 637 

,௧ࣆ௧ିଵ~NegBinሺ࢟|௧࢟  ሻ, with conditional mean 638࣒

௧ሻࣆሺ݃݋݈ ൌ ௧ିଵ࢟௧ିଵࣅ ൅ ௞,௧ିଵݔ௞࣎ ൅	ࣘ௧ିଵࢆ௧ିଵ ൅ exp	ሺࣁ௧ሻ 640 

                           (3.2) 639 

and conditional variance 641 

௧ሺ1ࣆ ൅  ሻ.          (3.3) 642࣒௧ࣆ

The incidence of the disease ࣆ௧was additively decomposed into two parts. The first part, 643 

௧ࣈ ൌ ௧ିଵ࢟௧ିଵࣅ ൅ ࣘ௧ିଵࢠ௧ିଵ ൅  ௞,௧ିଵ 645ݔ௞࣎

            (3.4) 644 

is the epidemic component explaining the outbreaks or irregularities in the data including the 646 

interaction between viruses. The second part is ߥ௜,௧ ൌ expሺߟ௜,௧ሻ, which is expressed in log-647 

scale as 648 

logሺߥ௜௧ሻ ൌ ௜ߙ	 ൅෍ሼࢽ௦

ௌ

௦ୀଵ

sinሺ߱௦ݐሻ ൅ ௦ࢾ cosሺ߱௦ݐሻሽ	. 650 

                (3.5) 649 
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This is the endemic component that explains the baseline incidence rate of cases. The endemic 651 

and epidemic components of the time series were explored and studied allowing for the 652 

separation of the regular pattern from irregular ones in estimating the epidemic peaks. The 653 

parameter ߙ௜ allows for different incidence levels of the viruses, and ܵ is the virus specific 654 

number of harmonic waves. The term in curly brackets captures seasonal variations. 655 

௦ are the seasonal parameters, while ߱௦ࢾ	and	௦ࢽ ൌ  for monthly data are the Fourier 656 12/ݏߨ2

frequencies.  657 

 658 

3.3.2 Likelihood and posterior distribution 659 

The counts ࢟௧,	conditional on the previous observation ࢟௧ିଵ	(Only lag one was applied in our 660 

case because more than one lag did not fit the data well) are assumed to follow a Negative 661 

binomial distribution with mean  662 

௧ࣆ	ࣂ௧ࣆ                              ൌ ࣈ ൅ ࣇ	663 (3.6)                           , 

,ଵߠሺ = ࣂ  … , ,௠,߰ଵߠ … ,߰௠ሻ்  The log-likelihood of the observation ࢟௧	is given as 664 

	݈ሺࣂሻ ൌ෍݈௧ሺ
௧

 ሻ 666࣒,ࣂ

                      (3.7) 665 

and the likelihood as, 667 

݂ሺ࢟௧|ࣂሻ ൌ ݌ݔ݁ ൝෍݈௧ሺ
௧

ሻൡ࣒,ࣂ , 669 

                                              (3.8) 668 

where, 670 
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݈௧ሺ࣒,ࣂሻ ∝ Γ	݃݋݈ ቀ࢟௧ ൅
ଵ

࣒
ቁ െ Γ݃݋݈ ቀ

ଵ

࣒
ቁ ൅	

ଵ

࣒
݃݋݈ ቀ

ଵ

ଵାࣆ࣒೟ሺࣂሻ
ቁ ൅671 

݃݋௧݈࢟ ቀ
ሻࣂ೟ሺࣆ࣒

ଵାࣆ࣒೟ሺࣂሻ
ቁ,																																																																																																																			ሺ3.9ሻ672 

           673 

and Γሺ. ሻ is the gamma function and  ࣒ and ࣎ are the dispersion parameters. The gamma priors 674 

are assumed for ࣒ and 675 ,࣎ 

 676 ,(࣒ߚ,࣒ߙሺܽܩ	~	࣒

 677 .(࣎ߚ,࣎ߙሺܽܩ	~	࣎

The virus dependent effects ߙ௜	are assumed to be independent and normally distributed with a 678 

large variance, 679 

α = (ߙଵ, …, ߙூ)~N(0,ߪఈଶI), ߪఈଶ ൌ 106, 680 

where I is an identity matrix. All model parameters are non-negative and therefore we propose 681 

gamma prior distributions for them. The rate parameters ࣅ௧, assumes independent gamma 682 

priors with gamma hyperpriors on the second parameter, 683 

,ሺܽܽܩ~ࣅߚ and (ࣅߚ,ࣅߙሺܽܩ	~௧ࣅ  ܾሻ . 684 

Where we use ࣅߙ	 ൌ 1, ܽ ൌ 10	and	ܾ ൌ 10, with values for ࣅߙ	, a and b chosen arbitrarily. 685 

Independent normal priors are assumed for ࢽ and 686 ,ࢾ 

ఊଶߪ ,(ఊଶIߪ,0)N~(ூߛ ,… ,ଵߛ) = ࢽ ൌ 106, 687 

ఋߪ,N(0~(ூߜ ,… ,ଵߜ) = ࢾ
ଶI), ߪఋ

ଶ ൌ 106. 688 

The parameter ࣘ௧ assumes gamma priors, ࣘ௧	~	ܽܩሺ689 .(ࣘߚ,ࣘߙ 
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The posterior distribution is therefore given as, 690 

݂ሺ࢟|ࣂ௧ሻ ∝ 	݂ሺ࢟௧|ࣂሻ݂ሺࣂሻ	, 691 

which can be expressed as, 692 

݂ሺ࢟|ࣂ௧ሻ ∝ ݌ݔ݁	 ൝෍݈௧ሺ
௧

ሻൡ࣒,ࣂ ൈෑ݁ି
ଵ
ଶ௖ఙࢽ

మ
ௌ

௦ୀଵ

ൈෑ݁ି
ଵ
ଶ௖ఙࢾ

మ
ௌ

௦ୀଵ

ൈෑ݁ି
ଵ
ଶ௖ఙഀ೔

మ
௠

௜ୀଵ

693 

ൈෑߣ௜
ఈഊ೔ିଵ݁

ିఉഊ೔
ഊ೔

௠

௜ୀଵ

௜ߣ
௔ିଵ݁ି௕ఒ೔ ൈෑ߰௜

ఈഗ೔ିଵ݁
ିఉഗ೔

ഗ೔
௠

௜ୀଵ

ൈෑ߶௜
ఈഝ೔ିଵ݁

ିఉഝ೔
ഝ೔

௠

௜ୀଵ

694 

ൈෑ߬௜
ఈഓ೔ିଵ݁ିఉഓ೔

ഓ೔
.																																																																																															ሺ3.10ሻ

௠

௜ୀଵ

 695 

3.3.3 Simulations    696 

We investigated the proposed model performance on simulated data. We simulated bivariate 697 

data using a frequentist approach in R software using the package “Surveillance” previously 698 

used by Held et al.(59)(60). We used the function “hhh4” with the class “disprog” to simulate 699 

two disease pathogen counts replicated 10000 times. We then applied the Bayesian approach to 700 

compare different models based on varied scenarios. We considered a situation with the 701 

presence of overdispersion where parameter ߰ ௜ ് 0 assumed the negative binomial distribution 702 

and where ߰௜ ൌ 0  assumed the Poisson distribution. We also considered the presence and 703 

absence of parameter ߣ௜ (the ‘epidemic’ component) to evaluate temporal dependence. In this 704 

simulation we disregarded the linear trend. It is evident from Table 3.1, that the simulation 705 

results show that ߰௜ ൌ 0 and therefore the best performing model is the Poisson (model 3.2) 706 

with the presence of the epidemic component having the least AIC = 1626.58.  707 

 708 

 709 
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Table 3.1 Simulation results including Parameter estimates, Standard errors and measure 710 

of model Goodness of Fit. 711 

Parameter Model1 

ሺ0=ࣅ 0=࣒) 

Model2 

ሺ0≠ࣅ 0=࣒) 

Model3 

ሺ0=ࣅ 0≠࣒) 

Model4 

ሺ0≠ࣅ 0≠࣒) 

 ૚ - - 0.0000  (0.0000) 0.0000 (0.0000)࣒

 ૛ - - 0.0000 (0.0000) 0.0000 (0.0001)࣒

 ૚ - 0.1730 (0.3135) - 0.1743 (0.3072)ࣅ

 ૛ - 0.4337 (0.2010) - 0.4482 (0.2115)ࣅ

ࣘ૚ 0.4727 (0.2262) 0.4586 (0.2300) 0.4726 (0.3092) 0.4585 (0.2300) 

ࣘ૛ 0.8123 (0.0420) 0.0963 (0.2204) 0.3034 (0.2204) 0.1485 (0.2424) 

  1630.33  1636.92 1626.58  1644.14 ࡯ࡵ࡭

 712 

 713 

This method of analysis failed to detect over-dispersion in the simulated data and there was 714 

temporal dependence.  715 

3.3.4 Application on data 716 

 717 

Let ሼݕ௜௧, ݅ ൌ 1, 2; ݐ	 ൌ 1,… ,48ሽ be the time series of virus counts for RSV (ݕଵ௧ሻ	and HMPV 718 

 ଶ௧ሻ over the 48 months study time-frame. The bivariate model for the two time series would 719ݕ)

therefore be; 720 

log ቆ
µଵ,௧
µଶ,௧

ቇ ൌ ቆ
ଵ,௧ିଵߣ
߶ଶ,௧ିଵ

߶ଵ,௧ିଵ
ଶ,௧ିଵߣ

ቇ ቆ
ଵ,௧ିଵݕ
ଶ,௧ିଵݕ

ቇ ൅ ቆ
߬1,1	߬1,2	߬1,3	߬1,4
߬2,1	߬2,2	߬2,3	߬2,4

ቇ൮

	ଵ,௧ିଵݔ
	ଶ,௧ିଵݔ
	ଷ,௧ିଵݔ
ସ,௧ିଵݔ

൲ ൅ ௧ߟ ቆ
ଵ,௧ߥ
ଶ,௧ߥ

ቇ, 721 

where 722 
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ଵ,௧ߥ ൌ ଵߙ ൅ ɤଵ,ଵ sinሺ߱ଵݐሻ ൅	ߜଵ,ଵcosሺ߱ଵݐሻ ൅ ɤଵ,ଶ sinሺ߱ଶݐሻ ൅  ሻ, 723ݐଵ,ଶcosሺ߱ଶߜ

ଶ,௧ߥ ൌ ଶߙ ൅ ɤଶ,ଵ sinሺ߱ଵݐሻ ൅	ߜଶ,ଵcosሺ߱ଵݐሻ ൅ ɤଶ,ଶ sinሺ߱ଶݐሻ ൅  ሻ 724ݐଶ,ଶcosሺ߱ଶߜ

and ݔଵ,௧ିଵ, ,ଶ,௧ିଵݔ  ସ,௧ିଵ are the climatic factors representing rainfall, wind speed, 725ݔ ଷ,௧ିଵ andݔ

mean dew point and visibility, respectively. The term ߟ௧ corresponds to an offset term in the 726 

model (the monthly varying population counts at time t). 727 

The models were compared for their fit to the epidemic data. Naturally, models are compared 728 

for their performance based on the ability to fit well on data and their reliability in predicting 729 

future epidemic outbreaks. Fundamentally, in our model fitting to data we searched for the 730 

model that provided the best trade-off between the fit to data and the model structure 731 

complexity. Often, approaches such as the Akaike information criterion (AIC) and Bayesian 732 

information criterion (BIC) are sufficient for ranking and selecting the best performing 733 

models. However, when the data is non-Gaussian and the model is Bayesian, like in our case, 734 

then the deviance information criterion (DIC) is more appropriate. For the comparison of our 735 

models, we used the DIC proposed by Spiegelhalter et al. (61), specifically for Bayesian 736 

based models and it is a Bayesian generalisation of the AIC and BIC. The model with the 737 

smallest DIC value gives the better trade-off between model fit and complexity; therefore, it is 738 

considered as the model that best predicts a replication of a data set with a similar structure as 739 

that which was observed currently (62).  740 

To further assess the model performance with regards to the parameters, sensitivity analysis to 741 

alternative prior assumptions was performed because there are no true priors in the Bayesian 742 

analysis. In order to ensure reliable and robust results from our best model, it was crucial to 743 

verify how sensitive the resulting posteriors were for each prior input for the epidemic 744 

parameter ߣ௜௧ and ߶௜௧, the parameter that quantifies the influence of one virus on the other. 745 
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Therefore, we assumed independent Gamma priors with uniform hyper-priors on the second 746 

parameter, ߣ௜௧~	ܽܩሺߙఒ,ߚఒ) and ߚఒ~ܽݐ݁ܤሺܽ, ܾሻ using ߙఒ	 ൌ 1, ܽ ൌ 0.5	and	ܾ ൌ 0.5. Similarly 747 

for the influential parameter we used the uniform prior, ߶௜௧~ܽݐ݁ܤሺߙథ,ߚథ). To our 748 

understanding this comparison of models has not yet been done using RSV and HMPV time 749 

series data. All the models in our work were run and tested in the statistical software 750 

WinBUGS 14. The models differed on the epidemic part ߦ௜,௧	by the assumptions made on the 751 

interactions between the viruses. We used 6 models depending on the assumptions applied as 752 

explained below with each model with a corresponding inclusion of climatic factors giving 753 

rise to a total of 12 models. (Table 3.2).  754 

Table 3.2 Models of the epidemic part ξ(i,t)  with assumptions made on interactions 755 

between the viruses with and without the climatic factors. 756 

Model ࢚,࢏ࣈ	 (with climatic factors) ࢚,࢏ࣈ	 (without climatic factors)  

௜,௧ିଵݕߣ 1 ൅ ߬௜,௞ݔ௞,௧ିଵ ݕߣ௜,௧ିଵ 

௜,௧ିଵݕߣ 2 ൅ ߶∑ ௝௜௝ஷ௜ݓ ௝,௧ିଵݕ ൅ ߬௜,௞ݔ௞,௧ିଵ   ݕߣ௜,௧ିଵ ൅ ߶෍ݓ௝௜
௝ஷ௜

 ௝,௧ିଵݕ

௜,௧ିଵݕ௜ߣ 3 ൅ ߬௜,௞ݔ௞,௧ିଵ ߣ௜ݕ௜,௧ିଵ 

௜,௧ିଵݕ௜ߣ 4 ൅෍ݓ௝௜
௝ஷ௜

߶௜ݕ௝,௧ିଵ ൅ ߬௜,௞ݔ௞,௧ିଵ ߣ௜ݕ௜,௧ିଵ ൅෍ݓ௝௜
௝ஷ௜

߶௜ݕ௝,௧ିଵ 

௜,௧ିଵݕ௜,௧ିଵߣ 5 ൅ ߬௜,௞ݔ௞,௧ିଵ ߣ௜,௧ିଵݕ௜,௧ିଵ 

௜,௧ିଵݕ௜,௧ିଵߣ 6 ൅෍ݓ௝௜
௝ஷ௜

߶௜,௧ିଵݕ௝,௧ିଵ ൅ ߬௜,௞ݔ௞,௧ିଵ ߣ௜,௧ିଵݕ௜,௧ିଵ ൅෍ݓ௝௜
௝ஷ௜

߶௜,௧ିଵݕ௝,௧ିଵ 

 757 
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In model 1 it is assumed that the incidence rate is the same in every virus; hence, no 758 

interactions between the viruses. Model 2 assumes that there is the interaction between 759 

viruses where the sum of related viruses at the same time point has an equal rate. In Table 3.2, 760 

Models 3 and 4 are generalisations of models 1 and 2, respectively; with a different rate for 761 

each virus. Models 5 and 6 generalise model 3 and 4, respectively; with a different rate for 762 

each virus per time point. The best model was then evaluated on whether; there were 763 

interactions between cases of RSV and HMPV (alternatively stated as ߶ୖୗ୚ ് ߶HMPV ് 0ሻ, the 764 

existence of the influence of RSV on HMPV (߶ୖୗ୚ ൌ 0, ߶ୌ୑୔୚ ് 0ሻ,			the existence of the 765 

influence of HMPV on RSV (߶ୌ୑୔୚ ൌ 0, ߶RSV ് 0ሻ or there were no interactions at all 766 

(߶ୖୗ୚ ൌ ߶HMPV ൌ 0ሻ.  767 

3.4 Results and Discussions  768 

3.4.1 Data 769 
 770 

The monthly observed number of RSV and HMPV cases in Dadaab from September 2007 to 771 

August 2011 that were collected in the surveillance system was plotted (Figure 3.1). Similar 772 

trends were also observed by Agoti et al (63)and Nyoka et al (64). Wilkesmann et al. (65) 773 

showed that HMPV and RSV causes similar symptoms and clinical severity with similar 774 

seasonality. A similar finding was reached by Kim et al. (66) who investigated the clinical 775 

and epidemiological assessment of HMPV and RSV in Seoul, Korea, 2003-2008.  776 

 777 

 778 

 779 

 780 
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3.4.2 Exploratory Data Analysis (EDA)  781 
 782 

Figure 3.1 shows the monthly counts of RSV and HMPV epidemics plotted against time. The 783 

plot shows cumulative counts of HMPV cases that were approximately 2.5 times less than the 784 

RSV counts for the same timeframe. 785 

 786 

Figure 3.1 The monthly counts of epidemics (a) RSV and (b) HMPV plotted against time. 787 

The cumulative counts of HMPV cases were approximately 2.5 times less than the RSV 788 

counts for the same time-frame 789 

 790 
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The HMPV data shows a strong seasonality pattern as indicated by the four peaks during 791 

November of the years 2007, 2008 and 2009 while a fourth peak appears in March 2011 792 

(Figure 3.1(b)). Figure 3.2 show that the epidemics coincide in timing of their occurrence 793 

peaks, especially in March 2011. 794 

 795 

Figure 3.2 The monthly counts of RSV and HMPV plotted against time. Overall, the 796 

epidemics coincide in timing of their occurrence peaks, especially in March 2011 797 

 798 

 This plot shows that the HMPV peaks coincide with the RSV peaks. In their paper, Cuevas et 799 

al. (43) observed that HMPV incidence had increased with increases in RSV incidence. 800 

Another study in Yemeni children younger than 2 years identified co-infections of RSV and 801 

HMPV, and also showed that there were seasonal variations of RSV and HMPV with a peak 802 

of RSV in December and January and a peak of HMPV in February and March (67).  803 

Figure 3.3 shows a plot of time versus the disease counts along with a smoothing spline fit to 804 

the data. Both plots accentuate the need to include the nonlinearity effect in our models. The 805 

histograms indicate the disease counts are skewed to the left and therefore are not normally 806 
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distributed. In this case, we know that we need to use non-Gaussian techniques to model this 807 

data. These insights are used to develop the mean function for the models.  808 

 809 

Figure 3.3 Scatter plots and histograms for RSV and HMPV counts. Both are skewed to 810 

the right (the red solid lines denote the fitted curves using smoothing splines) 811 
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Changes of dispersion and dependence in time are accounted for in the covariance structure of 812 

the model. As time progresses, the change in dispersion is evident from Figure 3.1 and Figure 813 

3.3. The correlation plot in Figure 3.4 captures the strength of dependence.  814 

 815 

Figure 3.4 Correlation matrix and marginal distribution of the disease counts and the 816 

climatic factors. Signif. codes for correlations: ࢋ࢛࢒ࢇ࢜࢖ ൏ ૙ ‘***’; ࢋ࢛࢒ࢇ࢜࢖ ൏ ૙. ૙૙૚ ‘**’; 817 

ࢋ࢛࢒ࢇ࢜࢖ ൏ ૙. ૙૚ ‘*’ 818 

There is a significant moderate positive dependence with disease pathogens and a significant 819 

moderate negative correlation of both the disease pathogens with the speed of wind.  The 820 
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marginal distribution for each of the disease pathogen and each of the climatic variables is 821 

examined in Figure 3.4. The distributions of the disease pathogens as previously highlighted 822 

in Figure 3.3 are right-skewed and have outliers, as shown in Figure 3.4. 823 

3.4.3 Model Results 824 
 825 

We compared 12 models with various structures (Table 3.2) and the results for the DIC values 826 

are given in Table 3.3. 827 

Table 3.3 Comparison DIC values for different models. 828 

Model 1 2 3 4 5 6 

DIC (with climatic factors) 

DIC (without climatic factors) 

490.43 

549.82 

558.30 

541.11 

559.46 

548.44 

558.45 

536.09 

502.17  

571.72   

173.52 

 744.22  

 829 

 Model 6 and 1 with climatic factors clearly out-perform the other models since, overall, they 830 

have lower DIC values. Model 6 with climatic factors had the least DIC value (173.52) and 831 

provided the best fit and explanation for the variation observed in the data. This is probably 832 

due to the seasonality nature of the climatic factors therefore by including them in the model 833 

supports the seasonality of RSV and HMPV thereby explaining the data better. The models 834 

showed that the inclusion of climatic factors play an important role in the estimation of the 835 

number of cases for the two epidemics (RSV and HMPV). From our previous work using the 836 

same dataset we noted a similar conclusion that the use of climatic factors explained the 837 

seasonality of RSV (64). This implies that having considered the different rate for each virus 838 

at every time point, the models with the best fit to data were those with climatic factors. We 839 
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further considered different scenarios on the best model with four sub-models (results are 840 

shown in Table 3.4).  841 

Table 3.4 Four sub-models from the best model. The symbols “−” and “√” mean the 842 

absence and presence of interactions, respectively. Model 6 (i) no interactions between 843 

HMPV and RSV (ϕ_HMPV=ϕ_RSV=0); Model 6 (ii) influence of HMPV on RSV 844 

(ϕ_RSV≠0,ϕ_HMPV=0), Model 6 (iii) influence of RSV on HMPV 845 

(ϕ_RSV=0,ϕ_HMPV≠0) and Model 6 (iv) interactions between HMPV and RSV 846 

(ϕ_HMPV≠ϕ_RSV≠0). 847 

Model HMPV→RSV RSV→HMPV DIC 

6(i) − − 543.68 

6(ii) √ − 457.61 

6(iii) − √ 112.14 

6(iv) √ √ 173.52 

 848 

Model 6(i) in Table 3.4 does not allow for interactions between HMPV and RSV (߶ୌ୑୔୚ ൌ849 

߶RSV ൌ 0ሻ and its DIC value is 543.68. Model 6(ii) includes the influence of HMPV on RSV 850 

with influence of RSV on HMPV equal to zero. This model yielded a DIC value of 457.61. 851 

Model 6(iii) includes the influence of RSV on HMPV where the influence of HMPV on RSV 852 

is zero. Compared to the others, this model yielded the smallest DIC value of 112.14 (Table 853 

3.4). The results from sensitivity analysis shown in Figure 3.5, indicates that this model is 854 

robust and insensitive to the prior distribution since its posterior distribution did not 855 

dramatically change upon altering the base prior parameter values. Model 6(iv) has both the 856 
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influence of RSV on HMPV and the influence of HMPV on RSV which is the full model with 857 

a DIC value of 173.52 (Table 3.4).  858 

 859 

Figure 3.4 Posterior median values for the priors with Gamma and Beta distributions for 860 

the best model. Plots showing the Posterior median values of (a) λ_HMPV and (b) 861 

ϕ_HMPV for model 6(iii). Median_Beta and median_Gamma are the posterior medians 862 

from the Beta distribution and the Gamma distribution priors respectively. 863 

 864 
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This indicates that the additional parameter (i.e., influence of HMPV on RSV) into model 865 

6(iii) does not significantly improve the model fit to data. A similar observation was made by 866 

Lazar et al. who noted that HMPV did not contribute to the severity of RSV (68). In our study 867 

we have shown that incidence of RSV influenced that of HMPV from the best model fit. This 868 

is corroborated in findings from a similar investigation of the influence of RSV on HMPV by 869 

Greensill et al. (47) in which 70% of children infected with RSV were co-infected with 870 

HMPV.  871 

 872 
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Figure 3.6 Posterior median and point-wise 95% credibility intervals for the best model. 873 

Plots showing the Posterior median and point-wise 95% credibility interval of (a) 874 

λ_HMPV and (b) ϕ_HMPV for model 6(iii). 875 

Elsewhere, Cuevas et al. (43) observed that HMPV incidence increased with increasing 876 

number of RSV cases, suggesting the presence of a strong association between the dynamics 877 

of the two epidemics. 878 

The epidemic parameter ߣୌ୑୔୚ for model 6(iii) in Figure 3.6(a) does not exceed the value 1. 879 

This implies that the time series is stable without a detection of an outbreak of HMPV due to 880 

the influence of RSV. Figure 3.6(b) shows the influence of RSV on HMPV with biannual 881 

peaks noted over the study period. The other parameters estimated in this model are shown in 882 

the supplementary materials (Table 3.5) that includes the posterior median and point-wise 883 

95% credibility intervals. In particular from this table (Table 3.5), the posterior median and 884 

the point-wise 95% credibility intervals for the overdispersion parameters ߰ுெ௉௏	and	߰ோௌ௏  885 

were 7.762(0.238, 116.1) and 4.688(0.090, 97.33) respectively. This indicates the existence of 886 

overdispersion which relaxes our adoption of the negative-binomial modelling. Figure 3.8 - 887 

3.11 in supplementary materials show the posterior median and point-wise 95% credibility 888 

intervals for the climatic factors. Figure 3.7 shows the scatter plots of realized vs. posterior 889 

predictive values for RSV and HMPV from the best model fit measuring the discrepancies 890 

between observed and predictive values. As can be seen, there was some systematic 891 

difference between the realized and posterior predictive values but this was the best fit among 892 

the models fitted. 893 
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 894 

Figure 3.7 Realised vs. Posterior Predictive Values of RSV and HMPV Disease Counts for 895 

the best model 896 

 897 

Some of the limitations of this study were that the available time series data for the viruses 898 

was only for a four year time-frame which is short for time series analysis and that the 899 

climatic factors were from the neighboring weather station in Garissa, which is about 100 900 

kilometers away from the Dadaab camp. Nevertheless, the weather measurements are a good 901 

representation of the actual weather around Dadaab. There was no establishment of whether 902 

patients were co-infected during virus testing. We used the DIC which is an approximation to 903 

a penalized loss function based on the deviance to evaluate the models. DIC under-penalized 904 

the more complex models and therefore its application is valid only when the number of 905 

parameters is much smaller than the number of independent observations(69). Classical model 906 
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selection was used that assumes that there is at least a best model for deducing inferences 907 

from the data. The criterion used to select the best model did not allow for the computation of 908 

weights of each fitted model to quantify for uncertainty, that is the model averaging 909 

techniques were not used(70). 910 

3.5 Conclusion 911 

 912 

We provided a comprehensive comparison of RSV and HMPV in a refugee camp setting by 913 

using a bivariate non-Gaussian model to jointly model the epidemics. By comparing various 914 

model structures, we identified a model that could better explain the variations although it did 915 

not satisfactorily fit the epidemic data. The models and estimated parameters also provided 916 

clues into the dynamics and stability of the two epidemics. Our results demonstrated the 917 

influence of RSV on HMPV while adjusting for climatic factors. The climatic factors played a 918 

significant role in explaining the influence of RSV incidence on HMPV incidence. These 919 

models are important to the public health implication since controlling the incidence of RSV 920 

would consequently reduce the incidence of HMPV.  921 
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Supplementary materials 953 

 954 

Table 3.5 Posterior median and point-wise 95% credibility intervals for the best model. 955 

Parameter 5.0% Median 95% 

alpha1 -4.283 -3.998 -3.683 

alpha2 -3.765 -3.765 -3.481 

delta11 -2.564 -2.564 -1.979 

delta21 -4.783 -4.783 -4.023 

gamma11 -6.303 -5.653 -4.812 

gamma21 -9.209 -7.965 -6.934 

psi1 0.238 7.762 116.1 

psi2 0.090 4.688 97.33 

 956 

 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 
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 965 

Figure Legends 966 

 967 

Figure 3.8 Posterior median and point-wise 95% credibility intervals for the best model. 968 

Plots showing the Posterior median and point-wise 95% credibility interval of (a) 969 

τ_(Rainfall_RSV) and (b) τ_(Rainfall_HMPV) for model 6(iii). 970 
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 971 

 972 

Figure 3.9 Posterior median and point-wise 95% credibility intervals for the best model. 973 

Plots showing the Posterior median and point-wise 95% credibility interval of (a) 974 

τ_(Wind_RSV) and (b) τ_(Wind_HMPV) for model 6(iii). 975 
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 976 

 977 

Figure 3.10 Posterior median and point-wise 95% credibility intervals for the best model. 978 

Plots showing the Posterior median and point-wise 95% credibility interval of (a) 979 

τ_(Dew_RSV) and (b) τ_(Dew_HMPV) for model 6(iii). 980 
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 981 

 982 

Figure 3.11 Posterior median and point-wise 95% credibility intervals for the best model. 983 

Plots showing the Posterior median and point-wise 95% credibility interval of (a) 984 

τ_(Visibility_RSV) and (b) τ_(Visibility_HMPV) for model 6(iii). 985 

 986 

 987 
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CHAPTER 4: A Non-Gaussian Bayesian Model of Multiple Time Series 988 

Epidemics of Acute Respiratory Illness: Case of Dabaab in Kenya 989 
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4.1 Abstract 1012 
 1013 

Most models do not consider multiple viruses nor incorporate the time varying effects of these 1014 

components. Common ARIs etiologies identified in developing countries include respiratory 1015 

syncytial virus (RSV), human metapneumovirus (HMPV), influenza viruses (Flu), 1016 

parainfluenza viruses (PIV) and rhinoviruses with mixed co-infections in the respiratory tracts 1017 

which make the etiology of Acute Respiratory Illness (ARI) complex. The occurrence of 1018 

different diseases in time contributes to multivariate time series data. In this work, the 1019 

surveillance data are aggregated by month and are not available at an individual level. This 1020 

may lead to over-dispersion; hence the use of the negative binomial distribution. In this paper, 1021 

we describe an approach to analyze multivariate time series of disease counts. A previously 1022 

used model in the literature to address dependence between two different disease pathogens is 1023 

extended. We model the contemporaneous relationship between pathogens namely, RSV, 1024 

HMPV and Flu from surveillance data in a refugee camp (Dadaab) for children under 5 years 1025 

to investigate for serial correlation. The models evaluate for the presence of heterogeneity in 1026 

the autoregressive effect for the different pathogens and whether after adjusting for 1027 

seasonality, an epidemic component could be isolated within or between the pathogens. The 1028 

model helps in distinguishing between an endemic and epidemic component of the time series 1029 

that would allow the separation of the regular pattern from irregularities and outbreaks. The 1030 

use of the models described in this study, could help public health officials predict increases 1031 

in each pathogen infection incidence among children and help them prepare and respond more 1032 

swiftly to increasing incidence in low-resource regions or communities. 1033 

Keywords: Respiratory syncytial virus, human metapneumovirus, influenza, time series, 1034 

seasonal, modeling. 1035 
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 1036 

4.2 Introduction 1037 
 1038 

Common ARIs etiologies identified in developing countries include respiratory syncytial 1039 

virus (RSV), human metapneumovirus (HMPV), influenza viruses (Flu), parainfluenza 1040 

viruses (PIV) and rhinoviruses with mixed co-infections in the respiratory tracts which make 1041 

the etiology of Acute Respiratory Illness (ARI) complex (71). The highest mortalities in 2015 1042 

caused by ARI among children less than five years of age were in Sub-Saharan Africa (72). 1043 

Co-infections of multiple viral etiologies of lower respiratory tract was detected among 1044 

Egyptian children under 5 years of age (73). In their paper, Ivana et. al (74) assessed and 1045 

explored the proportional contribution of mixed viral infections and their separate 1046 

contributions of flu, PIV, and adeno viruses to severe acute lower respiratory infections in 1047 

children less than 5 years. In the past decade, progressive availability of vaccines against 1048 

influenza has led to reduced mobility and mortality. Due to lack of useful vaccines to prevent 1049 

the infection of respiratory viruses, knowledge of etiology of viruses is vital to successful 1050 

implementation of prevention, control and treatment strategies (75). There is therefore 1051 

urgency to study the characteristics and the epidemiology of respiratory tract pathogen 1052 

infections in developing countries with limited data (76). Causal link between viruses and 1053 

association between mixed infections and increase in disease severity is also challenging (77). 1054 

Most models do not consider multiple viruses nor incorporate the time varying effects of these 1055 

components (78). The extent of illness in children caused by relative contributions of different 1056 

pathogens is not available(48). The log-linear, Poisson, binomial and logistic regression are 1057 

widely used to analyze event count data in univariate models (71)(78)(79)(80). Currently, 1058 

only a few methods address dynamic multiple time series of count data. Vector autoregressive 1059 
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models are used to identify the lead, lag and contemporaneous relationships within and 1060 

between time series. It is challenging to model these relationships using likelihood based 1061 

methods. The lead and lag relationships of the within and between time series are specified 1062 

using the spatial correlation structure (81). Jung et al. (2011) proposed a dynamic factor 1063 

model for multivariate count time series that allows for serial correlation and idiosyncratic 1064 

factors. This represents a non-trivial contemporaneous and temporal interaction across the 1065 

series (82). The occurrence of different diseases in time contributes to multivariate time series 1066 

data. For this, an integer-valued autoregressive model of order 1 for count data on bivariate 1067 

time series was used (83). 1068 

Infectious surveillance data has been used to model age groups and geographical regions as 1069 

different time series data for the multivariate case. The spatio-temporal dependence is 1070 

considered in the later, in which case the minimum likelihood estimation was used in the 1071 

model formulation. However, the covariance information is not obtained from their model 1072 

(54). Models with a tendency of pollution causing respiratory disease were done for three 1073 

disease categories. Available independent series of observations and covariates made it 1074 

possible to model the fixed and random effects for between-series variation. The covariates 1075 

included weather conditions and seasonal effects that depicted modeling factors with an acute 1076 

effect on subjects (79). Jorgensen et al (80) analyzed daily visit counts for respiratory diseases 1077 

where counts were categorized as asthma, bronchitis and ear infection, with the covariates 1078 

such as temperature, maximum and minimum relative humidity.  1079 

In this paper, the surveillance data are aggregated by month and are not available at an 1080 

individual level. This may lead to over-dispersion; hence the use of the negative binomial 1081 

distribution. We model the contemporaneous relationship between pathogens, namely, RSV, 1082 

ADENO, HMPV, Flu and PIV and the meteorological variables to investigate for serial 1083 
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correlation. Held et al. suggested that environmental factors could be incorporated in the 1084 

model if they do exist (54). The meteorological and seasonal variables are assumed to have an 1085 

immediate effect on disease incidence. The models evaluate for the presence of heterogeneity 1086 

in the autoregressive effect for the different pathogens and whether after adjusting for 1087 

seasonality, an epidemic component could be isolated within or between the pathogens. The 1088 

model helps in distinguishing between an endemic and epidemic component of the time series 1089 

that would allow the separation of the regular pattern from irregularities and outbreaks.  1090 

4.3 Methods 1091 
 1092 

4.3.1 Model formulation 1093 
 1094 

We denote ൛ݕ௜,௧; ݅ ൌ 1,… . , ,ܫ ݐ ൌ 1,… . , ܶൟ the multivariate time series of disease counts for 1095 

the specific disease pathogens. Here T denotes the length of the time series and I denotes the 1096 

number of pathogens monitored. The methods in this study are motivated by a branching 1097 

process with immigration by Paul et al (84) where the model below for the multivariate time 1098 

series of infectious disease counts is suggested , 1099 

௧ࣆ ൌ ઩࢟௧ିଵ ൅	ࣇ௧		 ,                                                               (4.1) 1100 

as the mean incidence which comprises of two additive components namely: an epidemic or 1101 

autoregressive component	઩࢟௧ିଵ, and an endemic component ࣇ௧	. The vectors  ࣆ௧, ઩࢟௧ିଵ	and 1102 

௜ on the diagonal and elements ሺΛሻ௜௝ߣ are of length m and ઩ is a m x m matrix with		௧ࣇ ൌ1103 

߶௜߱௜௝ for i്j. Taking the variation of different pathogens into account, the inclusion of 1104 

߶௜ ∑߱௜௝  ௝,௧ିଵ in the epidemic component leads to the model, 1105ݕ
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௧ࣆ ൌ ௧ିଵ࢟௧ିଵࣅ	 ൅	ࣘ௧ିଵࢆ௧ିଵ ൅	ࣁ௧࣏௧	, 1107 

    (4.2) 1106 

where ࣘ௧ିଵ is the autoregressive effect of pathogen j on pathogen i and ࣁ௧ corresponds to an 1108 

offset and ࢆ௧ିଵ ൌ ∑ ߱௜௝ݕ௝,௧ିଵ௝ஷ௜ where, ߱௜௝ ൌ 1 if pathogens j and i have an autoregressive 1109 

effect on each other and 0 otherwise. The endemic component ߭௜,௧ can be expressed as, 1110 

൫߭௜,௧൯݃݋݈ ൌ ௜ߙ	 ൅ ൝෍ࢽ௦

ௌ

௦ୀଵ

ሻݐሺ߱௦݊݅ݏ ൅ ௦ࢾ ሻൡݐሺ߱௦ݏ݋ܿ , 1112 

                                (4.3) 1111 

where ߙ௜ is an intercept and the terms in curly brackets are the seasonal variation. 1113 

Letting ݔ௞,௧ିଵ denote climatic covariates with ࣎௞ coefficients in the model and ݇	 ൌ 	1,… ,  1114 ܭ

covariates, then the conditional mean becomes 1115 

௧ሻࣆሺ݃݋݈ ൌ ௧ିଵ࢟௧ିଵࣅ ൅ ௞,௧ିଵݔ௞࣎ ൅	ࣘ௧ିଵࢆ௧ିଵ ൅ exp	ሺࣁ௧ሻ	1117 

 1116 

4.3.2 Simulations study 1118 
 1119 

The proposed model performance is investigated in this chapter on simulated data. We use 1120 

both the frequentist and Bayesian approaches to compare the models with varying parameter 1121 

estimates. The frequentist approach simulated multivariate data for five time series using 1122 

package ‘Surveillance’ in R software as used earlier on by Held et al. in 2005(54) applied to 1123 

model (4.2) above. The package uses the retrospective analysis of epidemic spread providing 1124 

tools for visualization and simulation. Multivariate count time series models are estimated by 1125 

‘hhh4’ function as applied by Meyer and Held in 2016(84) and by Paul and Held in 2011(59). 1126 
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The function uses the object of class ‘disProg’ that simulates the disease pathogen counts 1127 

10000 times. The absence of the over-dispersion parameter ߰௜	indicates that Poisson 1128 

distribution was assumed while its presence assumes the negative binomial distribution. In 1129 

this study, both distributions are used and evaluated. The autoregressive parameter  ߣ௜ (the 1130 

‘epidemic’ component) was varied in the models to allow for the evaluation of whether the 1131 

inclusion or exclusion of previous cases allowed for temporal dependence. The other 1132 

autoregressive parameter ߶௜ was included in all the models for the adjacent pathogens where 1133 

we assumed that all of them were correlated to each other and therefore the observations 1134 

 ௝,௧ିଵ at previous time points were used for the autoregression. The linear trend was not used 1135ݕ

in the simulation in this study. The simulation returned a list with the following elements: 1136 

Data, which is a ‘disProObj’ of simulated data, mean which is a matrix with mean ߤ௜,௧ used to 1137 

simulate the data, endemic which is a matrix with the endemic part ߭௜,௧ and coefs which is a 1138 

list of all the parameters of the model. The simulated data was then used to fit the models for 1139 

purposes of comparison. The simulated data is assumed to follow a Poisson distribution with 1140 

the conditional mean shown in model 4.1 above. In the presence of over-dispersion, the 1141 

Poisson model is replaced by a negative binomial model where the conditional mean remains 1142 

unchanged but the variance δ is modified to µ௜,௧ ቀ1 ൅ 	µ௜,௧߰௜ቁ with over-dispersion parameter 1143 

߰௜ ൐ 0 for every i –th virus. 1144 

The results of the simulation study as presented in Table 4.1 show the standard errors for the 1145 

model parameter estimates and the measure of model goodness of fit.  The model in Table 4.1 1146 

with the autoregressive parameter  ߣ௜ (model 3) and with ߰௜ ് 0	was the best with an AIC of 1147 

5037.81. This implies that the inclusion of previous cases ݕ௜,௧ିଵ	allowed for temporal 1148 

dependence. Model 1 with fixed	߰௜ ൌ 0		, had its AIC value greater than that of model 3 and 1149 
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that the presence of the parameter ߰௜ in the best model indicates that there was over-1150 

dispersion.  1151 

Table 4.1 Simulation results including Parameter estimates, Standard errors and measure 1152 

of model Goodness of Fit. 1153 

Parameter Model1 

 0≠ࣅ 0=࣒

Model2 

 0=ࣅ 0=࣒

Model3 

 0≠ࣅ 0≠࣒

Model4 

 0=ࣅ 0≠࣒

 ૚ - - 15.7978 (0.0162) 9.8814 (0.0253)࣒

 ૛ - - 21.0527 (0.0146) 12.1951 (0.0185)࣒

 ૜ - - 62.8931 (0.0148) 29.4117 (0.0177)࣒

 ૝ - - 7.8802 (0.0283) 4.2355 (0.0363)࣒

 ૞ - - 13.6426 (0.0208) 2.6144 (0.0475)࣒

 - ૚ 0.6174 (0.0341) - 0.6187 (0.0476)ࣅ

 - ૛ 0.4090 (0.0487) - 0.4115 (0.0621)ࣅ

 - ૜ 0.3562 (0.0624) - 0.3875 (0.0674)ࣅ

 - ૝ 0.5362 (0.0466) - 0.5914 (0.0706)ࣅ

 - ૞ 0.8634 (0.0336) - 0.8273 (0.0428)ࣅ

ࣘ૚ 0.1060 (0.0086) 0.1639 (0.0080) 0.0945 (0.0108) 0.2042 (0.0132) 

ࣘ૛ 0.1491 (0.0125) 0.2519 (0.0073) 0.1409 (0.0151) 0.2373 (0.0102) 
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Parameter Model1 

 0≠ߣ 0=߰

Model2 

 0=ߣ 0=߰

Model3 

 0≠ߣ 0≠߰

Model4 

 0=ߣ 0≠߰

ࣘ૜  0.0842 (0.0130) 0.1626 (0.0075) 0.0870 (0.0138) 0.1678 (0.0088) 

ࣘ૝ 0.0449 (0.0072) 0.1431 (0.0062) 0.0573 (0.0110) 0.1731 (0.0102) 

ࣘ૞ 0.0000 (0.0000) 0.1268 (0.0060) 0.0000 (0.0000) 0.2183 (0.0153) 

 5463.39 5037.81 5984.87 5449.11 ࡯ࡵ࡭

 1154 

4.3.3 Cointegration analysis 1155 

 1156 
We explored for cointegration of the five time series using the Johansen procedure which 1157 

allowed us to test whether the time series formed a cointegrating relationship. This test is due 1158 

to Johansen (85) and summarized by QuantStart Team(86). This procedure assumes a vector 1159 

autoregressive model of the form  1160 

࢚܆ ൌ ࣆ ൅	࡭ଵିܜ܆૚ ൅ ⋯൅	࡭௣ܘିܜ܆ ൅1161 (4.4)                                  ,    ܜ܅ 

where ࣆ is the vector-valued mean of the series, ࡭௜ are the coefficient matrices for each lag 1162 

and ܜ܅ is the multivariate Gaussian noise. 1163 

A Vector Error Correction Model (VECM) can be formed by differencing the series in Eqn 1164 

4.4 as, 1165 

௧ࢄ߂ ൌ ࣆ ൅ ૚ିܜ܆࡭	 ൅ ௧ିଵࢄ߂ଵࢣ ൅ ⋯൅	ࢣ௣ࢄ߂௧ି௣ ൅ܜ܅	1166 (4.5)                       , 
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where ࢄ߂௧ ≔ ܜ܆ െ  is the coefficient matrices for the first 1167 ࡭ ,௧ିଵ is the differencing operatorࢄ

lag and ࢣ௜ are the matrices for each differencing lag. 1168 

The test checks for the situation of no cointegration, which occurs when 0 = ۯ. The Johansen 1169 

test can check for multiple linear combinations of time series for forming stationary 1170 

portifolios by carrying out an eigenvalue decomposition of A. The rank of the matrix ۯ is 1171 

given by r and the Johansen test sequentially tests if this rank is equal to zero, one, 1172 

through	ݎ ൌ ݊ െ 1, where n is the number of time series under test. The null hypothesis is ݎ ൌ1173 

0 which means that there is no cointegration and a rank ݎ ൐ 0 indicates that a cointegrating 1174 

relationship between two or more time series exist. 1175 

4.3.4  Bayesian analysis 1176 
 1177 

The set of parameters, ߠ௜ ൌ ൫ߣ௜, ߶௜, ,௜ߙ ,௜,ଵߛ … , ,௜,௦೔ߛ ,௜,ଵߜ … , ௜,௦೔൯ߜ
்
 1178 = ߠ , 

ሺߠଵ, … , ,௠,߰ଵߠ … , ߰௠ሻ்  from the log-likelihood of the observation ݕ௜,௧	 in model 4.2 and 1179 

model 4.3 are given as 1180 

݈ሺߠሻ ൌ෍݈௜,௧ሺ
௜,௧

,௜ߠ ߰௜ሻ, 1182 

                                       (4.5) 1181 

and the likelihood as, 1183 

݂൫ݕ௜,௧หߠ௜൯ ൌ ݌ݔ݁ ൝෍݈௜,௧ሺ
௜,௧

,௜ߠ ߰௜ሻൡ , 1185 

                                                                     (4.6) 1184 

where, 1186 
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݈௜,௧ሺߠ௜, ߰௜ሻ ∝ Γ	݃݋݈ ቀݕ௜,௧ ൅
ଵ

ట೔
ቁ െ Γ݃݋݈ ቀ

ଵ

ట೔
ቁ ൅	

ଵ

ట೔
݃݋݈ ቀ

ଵ

ଵାట೔	ஜ೔೟ሺఏ೔ሻ
ቁ ൅1187 

݃݋௜,௧݈ݕ											 ቀ
ట೔	ஜ೔೟ሺఏ೔ሻ

ଵାట೔	ஜ೔೟ሺఏ೔ሻ
ቁ,         1188 

                             (4.7) 1189 

and Γሺ. ሻ is the gamma function and the dispersion parameters ߰௜ 	for ݅ ൌ 1,… ,݉. The 1190 

gamma priors are assumed, 1191 

߰௜	~	ܽܩሺߙట,ߚట). 1192 

The pathogen dependent effects ߙ௜	are assumed to be independent and normally distributed 1193 

with a large variance since our data is counts where n is large, 1194 

α = (ߙଵ, …, ߙூ)~N(0,ߪఈଶI), ߪఈଶ ൌ 106, 1195 

where I is an identity matrix. Since all model parameters are non-negative we propose gamma 1196 

prior distributions for them. The rate parameters ߣ௜, assumes independent gamma priors with 1197 

gamma hyperpriors on the second parameter, 1198 

,ሺܽܽܩ~ఒߚ ఒ) andߚ,ఒߙሺܽܩ	~௜ߣ ܾሻ  1199 

using ߙఒ	 ൌ 1, ܽ ൌ 10	and	ܾ ൌ 10. 1200 

Independent normal priors are assumed for ߛ௜ and ߜ௜, 1201 

ఊଶߪ ,(ఊଶIߪ,0)N~(ூߛ ,… ,ଵߛ) = ߛ ൌ 106, 1202 

ఋߪ,N(0~(ூߜ ,… ,ଵߜ) = ߜ
ଶI), ߪఋ

ଶ ൌ 106. 1203 

The parameter ߶௜ assumes gamma priors, ߶௜	~	ܽܩሺߙథ,ߚథ). 1204 

The posterior distribution is therefore given as, 1205 
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݂൫ߠ௜หݕ௜,௧൯ ∝ 	݂൫ݕ௜,௧หߠ௜൯݂ሺߠ௜ሻ	, 1206 

which can be expressed as, 1207 

݂൫ߠ௜หݕ௜,௧൯ ∝ ݌ݔ݁	 ൝෍݈௜,௧ሺ
௜,௧

,௜ߠ ߰௜ሻൡ ൈෑ݁ି
ଵ
ଶ௖ఙം೔

మ

௦೔

௦ୀଵ

ൈෑ݁ି
ଵ
ଶ௖ఙഃ೔

మ
௦೔

௦ୀଵ

ൈෑ݁ି
ଵ
ଶ௖ఙഀ೔

మ
.

௠

௜ୀଵ

 1211 

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) were 1208 

sufficiently used for ranking and selecting the best performing models. For the models done 1209 

using Bayesian, the deviance information criterion (DIC) is more appropriate and was used. 1210 

4.4 Results  1212 

4.4.1 Exploratory Data Analysis (EDA)  1213 

 1214 
The data consisted of monthly counts of health facility visits in Dadaab for respiratory 1215 

viruses, namely: RSV, ADENO, HMPV, Flu and PIV as monthly cases obtained from 1216 

September 2007 to August 2011. A combined plot of the five epidemics time profiles was 1217 

analysed for similarities in timing and overall dynamics of the epidemics. We evaluate for the 1218 

occurrence in the peaks of the epidemics. In our analysis, a time-evolution analysis of the 1219 

epidemics is provided (Figure 4.1). In this figure we see that the incidence for some of the 1220 

epidemic like Flu is lower compared to the other epidemics. Such low levels of incidence lead 1221 

to sparse data, which can be problematic for accurate and reliable predictive modeling. Figure 1222 

4.2 shows a plot of time versus the disease counts along with a smoothing spline fit to the 1223 

data. All the plots accentuate the need to include the nonlinearity effect in our models. The 1224 

histograms indicate the disease counts are skewed to the left and therefore are not normally 1225 

distributed. In this case, we know that we need to use non-Gaussian techniques to model this 1226 

data. These insights are used to develop the mean function for these models. The correlation  1227 
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plot in Figure 4.3 captures the strength of dependence.  1228 

 1229 

Figure 4.1 Time series plot of the epidemics. Overall, the number of HMPV cases were 1230 

the lowest compared to all the other epidemics. There is no synchrony in the time of 1231 

occurrence of the epidemic peaks. The intensity of the few peaks shows variations in both 1232 

amplitude and frequency. 1233 



82 

 1234 

Figure 4.2 Scatter plots and histograms for RSV, HMPV and Flu counts. All are skewed 1235 

to the right (the red solid lines denote the fitted curves using smoothing splines) 1236 

 1237 

There is a significant positive dependence between RSV and HMPV disease pathogens. 1238 
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 1239 

Figure 4.3 Correlation matrix and marginal distribution of the disease counts. Signif. 1240 

codes: ࢖ ൏ ૙ ‘***’ 1241 

 1242 

 In order to avoid spurious correlation in fitting the time series models, we evaluated for 1243 

cointegration between them as seen in Table 4.2. 1244 
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Table 4.2 Values of test statistic and critical values of cointegration tests. 1245 

 1246 

 This was done by sequentially carrying out the hypothesis tests beginning with the null 1247 

hypoothesis of ݎ ൌ 0 versus the alternative hypothesis of 	ݎ ൐ 0 . From Table 4.2(a), there 1248 

was clear evidence to reject the null hypothesis at the 1% level (98.20> 78.87) and we could 1249 

likely conclude that ݎ ൐ 0 . Similarly when we carried out the ݎ ൑ 1  null hypothesis versus 1250 

the ݎ ൐ 1 alternative hypothesis we had sufficient evidence to reject the null hypothesis at the 1251 

1% level (66.25> 55.43) and could conclude ݎ	 ൐ 1 . Similarly when we carried out the ݎ ൑1252 

2  null hypothesis versus the ݎ ൐ 2 alternative hypothesis we had sufficient evidence to reject 1253 

the null hypothesis at the 1% level (39.13 > 37.22) and could conclude 	ݎ	 ൐ 2 . However, for 1254 

the ݎ ൑ 3  hypothesis we could only reject the null hypothesis at the 5% level (20.47 > 17.95). 1255 

This was a weaker evidence than the previous hypotheses and, although it suggested we could 1256 

reject the null at this level, r might equal three, rather than exceeded three. What this meant, 1257 

was that it may be possible to form a linear combination with only three pathogens rather than 1258 

requiring all five to form a cointegrating portfolio. Upon testing the various combinations of 1259 

pathogens, a set consisting of RSV, HMPV and Flu was not cointegrated. Table 4.2 (b) shows 1260 

(a) Test 

Statistic 

Significance levels  (b) Test 

Statistic 

Significance levels 

  10% 5% 1%    10% 5% 1% 

r<= 4  7.72  6.5  8.18  11.65             

r<= 3  20.47  15.66  17.95  23.52             

r<= 2  39.13  28.71  31.52  37.22    r <= 2  14.11  6.5  8.18  11.65 

r<= 1  66.25  45.23  48.28  55.43    r <= 1  34.04  15.66  17.95  23.52 

r= 0  98.2  66.49  70.6  78.87    r= 0  56.61  28.71  31.52  37.22 
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that when we carried out the ݎ ൑ 2  null hypothesis versus the ݎ ൐ 2 alternative hypothesis 1261 

we had sufficient evidence to reject the null hypothesis at the 1% level (14.11 > 11.65).  1262 

 4.4.2 Model Results 1263 

 1264 
We extended the analysis of the monthly incidences adjusting for seasonality and checked 1265 

whether an epidemic component could be isolated within or between this set of three 1266 

pathogens that were not cointegrated using a Bayesian approach. After fitting the possible 1267 

combinations of the pathogen interactions as is seen in Table 4.3, model 4 that includes the 1268 

influence of HMPV on RSV and the influence of Flu on RSV with the rest of the interactions 1269 

equal to zero yielded a DIC value of 817.969.  1270 

Table 4.3 Models for different interaction combinations of the three pathogens, RSV, 1271 

HMPV and Flu. The symbols “−” and “√” mean the absence and presence of interactions, 1272 

respectively and measure of model Goodness of Fit (DIC). 1273 

Model RSV→HMPV HMPV→RSV RSV→Flu Flu→ 

RSV  

HMPV 

→Flu 

Flu→HMPV DIC 

1 − − − − − − 829.102 

2 √ √ − − − − 822.606 

3 √ − √ − − − 827.406 

4 √ − − √ − − 817.969 

5 √ − − − √ − 831.144 

6 √ − − − − √ 821.404 
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Model RSV→HMPV HMPV→RSV RSV→Flu Flu→ 

RSV  

HMPV 

→Flu 

Flu→HMPV DIC 

7 − √ √ − − − 830.879 

8 − √ − √ − − 832.900 

9 − √ − − √ − 832.917 

10 − √ − − − √ 833.097 

11 − − √ √ − − 830.361 

12 − − √ − √ − 825.633 

13 − − √ − − √ 830.895 

14 − − − √ √ − 827.758 

15 − − − √ − √ 830.973 

16 √ √ √ − − − 819.647 

17 √ − √ √ − − 819.511 

18 √ − − √ √ − 821.346 

19 √ − − − √ √ 821.651 

20 − √ √ √ − − 832.529 

21 − √ − √ √ − 832.807 

22 − √ − − √ √ 832.961 
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Model RSV→HMPV HMPV→RSV RSV→Flu Flu→ 

RSV  

HMPV 

→Flu 

Flu→HMPV DIC 

23 − − √ √ √ − 827.288 

24 − − √ − √ √ 827.647 

25 − − − √ √ √ 827.942 

26 √ √ √ √ − − 821.193 

27 √ − √ √ √ − 819.503 

28 √ − − √ √ √ 821.418 

29 − √ √ √ √ − 832.333 

30 − √ − √ √ √ 832.702 

31 − − √ √ √ √ 827.602 

32 √ √ √ √ √ √ 821.475 

 1274 

Compared to the others, this model yielded the smallest value and therefore resulted to be the 1275 

best. In our study we have shown that the incidence of RSV peaks influence those of HMPV 1276 

and consequently, the incidence of Flu peaks influence those of RSV as shown from the best 1277 

model fit. This intuitively implies that incidence of Flu peaks influence those of HMPV. The 1278 

model shows that the interactions that best describes the best model are those of RSV with 1279 

HMPV and Flu with RSV. We further fitted the best model with including the climatic 1280 

factors. The model with the climatic factors yielded smaller DIC value of 759.219. This 1281 
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implied the need to include the climatic factors to improve the fit. The model parameter 1282 

estimates for the best model are shown in Table 4.4.  1283 

Table 4.4 Posterior median and point-wise 95% credibility intervals for the best model. 1284 

Parameter 5% median 95% 

alpha(RSV) -6.079 -3.902 -3.047 

alpha(HMPV) -8.226 -5.106 -4.194 

alpha(Flu) -5.257 -4.689 -4.129 

beta(RSV) 0.9619 1.401 2.038 

beta(HMPV) 0.6685 1.063 1.649 

beta(Flu) 0.8314 1.353 1.947 

delta(RSV) -6.302 -3.577 -2.344 

delta(HMPV) -6.556 -3.737 -2.282 

delta(Flu) -4.699 -2.555 -1.56 

gamma(RSV) -5.437 -3.883 -1.677 

gamma(HMPV) -11.49 -2.38 -0.1207 

gamma(Flu) -5.073 -2.31 -0.7587 

Psi(RSV) 0.1564  5.257 108.1 

psi(HMPV) 0.1525 4.448 102.0 

psi(Flu) 0.4901  7.574 113.3 

 1285 

They are the posterior median with their corresponding 95% credibility intervals. It is shown 1286 

that the over-dispersion parameter ߰௜ for every i –th virus from Table 4.1 is greater than zero 1287 

for the best model.  This guarantees the use of the negative binomial distribution rather than 1288 
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the Poisson distribution that assume	߰௜ ൌ 0. Figure 4.4 shows the scatter plots of realized vs. 1289 

posterior predictive values for RSV, HMPV and flu from the best model fit measuring the 1290 

discrepancies between observed and predictive values.  1291 

 1292 

Figure 4.4 Realised vs. Posterior Predictive Values of RSV, HMPV and Flu Disease 1293 

Counts for the best model 1294 

 1295 

As can be seen, there was some systematic difference between the realized and posterior 1296 

predictive values but this was the best fit among the models fitted. 1297 

 1298 
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4.5 Discussion  1299 

 1300 

Common causes of ARI are respiratory viruses. The RSV and influenza are associated with an 1301 

increased number of hospitalizations. In the tropical regions, there is an expected increase 1302 

during the rainy seasons. Comprehensive insight into the recent state of Flu-A and Flu-B viruses 1303 

was discussed by Matheka et al. (87). In their work, they explored the then existing epidemic 1304 

patterns, discussed challenges associated to combating the epidemic and suggested intervention 1305 

and control measures particularly in East Africa. The RSV has been associated with climatic 1306 

factors and has been found to have biennial peaks(64). Some previous work has been done to 1307 

show that there is interaction between RSV and influenza(88)(89). In their work they were able 1308 

to show that the first peak of ARI was explained by one pathogen while the next peak was 1309 

associated with the other pathogen. Alternating patterns of RSV and influenza have been 1310 

reported in San Luis Potosi(88). These variations in patterns at the same time could be due to 1311 

the presence of influenza and RSV occurrence(89). Poisson regression models were used for 1312 

the analysis of time series data for RSV and influenza(90)(91).The two pathogens were found 1313 

to be seasonally related and it was difficult to disentangle one from the other. Analysis of RSV 1314 

from the effect of season and influenza infection was mentioned to have begun(90). A recent 1315 

study in the United States that used seasonal variation in the analysis of time trends of deaths 1316 

showed that RSV contribution to mortality was less than that by influenza(91). Viral 1317 

interference has been argued to be there between influenza and RSV and this interference has 1318 

been seen among viruses by many studies(92). Arguedas-Flatts et. al (92) in their paper, used a 1319 

two pathogen epidemic model to study the interaction of influenza and RSV. In our study, we 1320 

extended this bivariate modeling to include HMPV pathogen and aimed at understanding the 1321 

multiple interactions among the three pathogens. 1322 
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The HMPV and RSV has shown to cause similar clinical severity and symptoms with similar 1323 

seasonality(65). Kim et al. (66) who investigated the epidemiological and clinical assessment 1324 

of HMPV and RSV in Seoul, Korea, 2003-2008 had similar findings. Cuevas et al. (43) 1325 

observed the increase in HMPV incidence as RSV incidence increased. Co-infections of RSV 1326 

and HMPV were identified in a study in Yemeni among children younger than 2 years which 1327 

showed seasonal variations of HMPV and RSV with peaks of RSV in December and January 1328 

and for HMPV in February and March (67).  1329 

The models used in our study have been able to capture the serial correlation between the three 1330 

pathogens namely, RSV, HMPV and influenza. Our results show that there is presence of 1331 

interference between the three viruses which lead to occurrence of sequential peaks supporting 1332 

for superinfection.  1333 

 1334 

Some limitations to this study include the short time series of four years monthly data points of 1335 

infected counts. The model used did not consider all the possible three pathogen combinations 1336 

for serial correlations among those five available in the surveillance data. We did not adjust for 1337 

the climatic variables as covariates in our models because this would have made them complex 1338 

to evaluate. We would recommend the use of more time series data and adjustments with 1339 

climatic variables as covariates to be used in the future research to help in the understanding of 1340 

these interactions. 1341 

4.6 Conclusion  1342 
 1343 

Whereas seasonal influenza, RSV and HMPV have long been recognised as causes of 1344 

mobility and mortality in countries with temperate climates, recent studies have shown that 1345 

only influenza has a vaccine to prevent its advances and control outbreaks. This study has 1346 
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used data and models that could be useful to detect outbreaks of these viruses and for 1347 

developments of effective vaccines. The model could help in managing the occurrence of 1348 

outbreaks by use of flu vaccines. Due to the interactions of the three viruses studied in the 1349 

model, vaccinating against influenza subsequently reduces HMPV and RSV infections. 1350 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 1356 

FOR FURTHER RESEARCH 1357 

 1358 

 1359 

 1360 
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 1374 

 1375 

 1376 

 1377 

 1378 

 1379 
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5.1 Introduction 1380 

 1381 

Globally, a large number of human respiratory tract infections are associated with viruses 1382 

including RSV, HMPV and influenza. In this final chapter, we present the synthesis and 1383 

overview of the key findings of the studies included in this thesis. In this chapter we highlight 1384 

the objectives, discuss the challenges of the studies, make recommendations for further 1385 

research that is needed, and finalise with the general conclusion. 1386 

 1387 

5.2 Aims and objectives 1388 

 1389 

The aim of our models was to study any relationships of influenza with other pathogens so 1390 

that vaccinating against it would help reduce the spread of the others. The main objective of 1391 

this thesis was to better understand the relationship between climate and RSV, HMPV and 1392 

influenza in making reliable predictions of their incidence and to establish good surveillance 1393 

systems in developing countries to help understand the dynamics of the disease. Specifically 1394 

our objectives were; 1395 

i. To explore the best model that predicts the relationship between RSV incidence and 1396 

climatic factors along spatio-temporal scales to determine whether a seasonal pattern 1397 

of RSV infection exists.  1398 

ii. To investigate the relationship between RSV and HMPV while adjusting for climatic 1399 

factors. 1400 

iii. To establish the heterogeneity in the autoregressive effect to account for the influence 1401 

between RSV, HMPV and Influenza viruses.  1402 

iv. To assess the presence of influence of high incidences between these viruses and 1403 
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whether higher incidences of one virus are influenced by another and to investigate for 1404 

serial correlation between them. 1405 

These objectives were addressed in chapter 2 to chapter 4 of this thesis.  1406 

 1407 

5.3 Challenges 1408 

 1409 

Lack of adequate surveillance data remains a challenge to this study. Collection of more data 1410 

would help in the future to model outbreak detection. Most models have not considered 1411 

multiple viruses nor incorporated the time varying effects. The extent of illness in children 1412 

caused by relative contributions of different pathogens is not available. The log-linear, 1413 

Poisson, binomial and logistic regression are widely used to analyze event count data in 1414 

univariate models and currently, only a few methods address dynamic multiple time series of 1415 

count data. Furthermore, variations in climatic factors, such as humidity, temperature, wind 1416 

speed and rainfall can have a significant impact on disease dynamics. These climatic factors 1417 

are essential in evaluating ARI for equatorial climatic regions to aid accurate predictions of 1418 

their outbreaks.  1419 

5.4 Future possibilities 1420 

 1421 

Modeling of these viruses requires more data to enable the estimation of predictions to detect 1422 

outbreaks so that these could be controlled in a timely manner. We would recommend the use 1423 

of more time series data and adjustments with climatic variables as covariates to be used in 1424 

the future research to help in the understanding of these interactions. Exploring zero inflated 1425 

models with the Poisson GAM models that we fitted would be recommended. 1426 
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5.5 Final comments and summary conclusions 1427 

 1428 

We provided a comprehensive comparison of RSV and HMPV in a refugee camp setting by 1429 

using a bivariate non-Gaussian model to jointly model the epidemics. By comparing various 1430 

model structures, we identified a model that satisfactorily fits the epidemic data, thereby 1431 

explaining most of the observed variation therein. The models and estimated parameters also 1432 

provided clues into the dynamics and stability of the three epidemics. The modelling of the 1433 

time series events of these viruses helped in the prediction of their outbreaks but also in 1434 

estimating which outbreaks preceded each other. Due to lack of useful vaccines to prevent the 1435 

infection of respiratory viruses, knowledge of etiology of viruses is vital to successful 1436 

implementation of prevention, control and treatment strategies.The results could also be used 1437 

by other countries in the tropical zone in Africa with similar settings to inform vaccination 1438 

timings as control measures to prevent outbreaks.  1439 

Our results demonstrated the influence of RSV on HMPV while adjusting for climatic factors. 1440 

The climatic factors played a significant role in explaining the influence of RSV incidence on 1441 

HMPV incidence. These models are important to the public health implication since 1442 

controlling the incidence of RSV would consequently reduce the incidence of HMPV. The 1443 

models could help in managing the occurrence of outbreaks by use of flu vaccines. Due to the 1444 

interactions of the three viruses studied in the model, vaccinating against influenza 1445 

subsequently could reduce HMPV and RSV infections. 1446 

 1447 

Analysis codes 1448 

library(tsModel);  1449 

library(gam);  1450 

library(rJava);  1451 
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library(glmulti);  1452 

library(lattice); 1453 

library(TSA);  1454 

library(DAAG);  1455 

library(mgcv);  1456 

library(forecast);  1457 

library(splines)  1458 

library(modEvA);  1459 

install.packages("modEvA", repos="http://R-Forge.R-project.org") 1460 

##---------------------------------------------------------------- 1461 

## load survey data 1462 

windtimeseries <- ts(RSV$wind,frequency=12, start=c(2007,9)) # wind tmeseries 1463 

t = 1:length(windtimeseries); # timevector 1464 

rainfalltimeseries <- ts(RSV$rainfall,frequency=12, start=c(2007,9)) # rainfall timeseries 1465 

Temptimeseries  <- ts(RSV$Temp,frequency=12, start=c(2007,9))    # Temp timeseries 1466 

dewtimeseries   <- ts(RSV$dew,frequency=12, start=c(2007,9))     # dew  timeseries 1467 

VISIBtimeseries <- ts(RSV$VISIB,frequency=12, start=c(2007,9))   # VISIB timeseries 1468 

RSV_proptimeseries <- ts(RSV$prop,frequency=12, start=c(2007,9)) # RSV incidence 1469 

timeseries 1470 

RSV_proptimeseriescomponents <- decompose(RSV_proptimeseries) 1471 

RSV_postimeseries <- ts(RSV$rsv_pos,frequency=12, start=c(2007,9)) #RSV events 1472 

timeseries 1473 

setwd("C:\\Data\\Course\\PhD\\Analysis\\Doc\\Papers\\Paper 1") 1474 

#------------------------- STL decomposition-------------------------------------- 1475 

  RSV.stl   = stl(RSV_postimeseries, s.window="periodic")  # RSV 1476 
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  wind.stl  = stl(windtimeseries, s.window="periodic")     # wind 1477 

  rain.stl  = stl(rainfalltimeseries, s.window="periodic") # rainfall 1478 

  temp.stl  = stl(Temptimeseries, s.window="periodic")     # temperature 1479 

  dew.stl   = stl(dewtimeseries, s.window="periodic")      # dew 1480 

  visib.stl = stl(VISIBtimeseries, s.window="periodic")    # precipitation 1481 

 1482 

tiff("S1_Fig.tiff", res=600, compression = "lzw", height=5, width=5, units="in") 1483 

  plot(RSV.stl); dev.off() # S1_Fig 1484 

tiff("S2_Fig.tiff", res=600, compression = "lzw", height=5, width=5, units="in") 1485 

  plot(wind.stl); dev.off()  # S2_Fig 1486 

tiff("S3_Fig.tiff", res=600, compression = "lzw", height=5, width=5, units="in") 1487 

  plot(rain.stl); dev.off()  # S3_Fig 1488 

tiff("S4_Fig.tiff", res=600, compression = "lzw", height=5, width=5, units="in") 1489 

  plot(temp.stl); dev.off()  # S4_Fig 1490 

tiff("S5_Fig.tiff", res=600, compression = "lzw", height=5, width=5, units="in") 1491 

  plot(dew.stl); dev.off()  # S5_Fig 1492 

tiff("S6_Fig.tiff", res=600, compression = "lzw", height=5, width=5, units="in") 1493 

  plot(visib.stl); dev.off() # S6_Fig 1494 

 1495 

rsv_events <- as.vector(RSV_postimeseries) # RSV incidence  1496 

wnd  <- as.vector(windtimeseries) # wind 1497 

rain <- as.vector(rainfalltimeseries) # rainfall 1498 

tmp  <- as.vector(Temptimeseries) # temperature 1499 

dew  <- as.vector(dewtimeseries) # dew 1500 

precipitation <- as.vector(VISIBtimeseries) # precipitation 1501 
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 1502 

##----------------plot Figure 2.A to F below------------------------------- 1503 

tiff("Figure2.tiff", res=600, compression = "lzw", height=7, width=8, units="in") 1504 

op02 <- par(mfrow = c(2,2), oma = c(2,2,0,0) + 0.17, mar = c(4,4,1,1) + 0) 1505 

plot(wnd,rsv_events,pch=16,xlab="Wind speed (knots)",ylab="RSV cases",col="gray20", 1506 

     ylim=c(0,70)) # wnd and RSv events 1507 

  model_rsv_wnd <- lm(rsv_events ~ wnd); abline(model_rsv_wnd,col="blue",lwd=2) 1508 

      text(9,65,"A (??= -0.4651, p= 0.001)") 1509 

plot(tmp,rsv_events,pch=16,xlab= expression(paste("Temperature, ",degree,"F")), 1510 

     ylab="RSV cases",col="gray20", ylim=c(0,70)) # temp and RSv events 1511 

  model_rsv_tmp <- lm(rsv_events ~ tmp); abline(model_rsv_tmp,col="blue",lwd=2) 1512 

      text(86,65,"B (??=0.1850, p=0.224)") 1513 

plot(dew,rsv_events,pch=16,xlab=expression(paste("Dew, ",degree,"F")), 1514 

     ylab="RSV cases",col="gray20", 1515 

     ylim=c(0,70)) # dew and RSv events 1516 

  model_rsv_dew <- lm(rsv_events ~ dew); abline(model_rsv_dew,col="blue",lwd=2) 1517 

      text(72,65,"C (??=0.230, p=0.128)") 1518 

  h1 <- mean(wnd); k1 <- max(tmp); a1 <- -1 1519 

  yfit<- nls(tmp ~ a*(wnd - h)^2 + k, start = list(a = a1, h = h1, k = k1)) 1520 

  yfitParm <- summary(yfit)$para[,1]; cbind(h1,k1,a1) 1521 

  ymod <- yfitParm[1]*(wnd - yfitParm[2])^2 + yfitParm[3]; 1522 

  tmp.fitted <- (summary(yfit)$coef[1])*(wnd - (summary(yfit)$coef[2]))^2 + 1523 

summary(yfit)$coef[3]; 1524 

plot(tmp.fitted ~ wnd,xlab="Wind (knots)",ylab=expression(paste("Temperature, 1525 

",degree,"F")), 1526 
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     col="blue",lty=1,pch=16, ylim=c(78,90)) # 1527 

plot(wnd,predict(yfit),col="black",type="l",pch=1) 1528 

  lines(wnd,tmp,col="gray20",lwd=2,pch=16,type="p") # wind and temperature 1529 

  text(10,89,"D (p=0.002)") 1530 

par(op02); dev.off() 1531 

 1532 

##------------------------set variables for model fit ----------------------------- 1533 

###  RSV: 1534 

  RSV.s <- ts.union(RSVts=RSV.stl$time.series[,1]) 1535 

  RSV.t <- ts.union(RSVts=RSV.stl$time.series[,2]) 1536 

  RSV.r <- ts.union(RSVts=RSV.stl$time.series[,3]) 1537 

  # par(mfrow=c(3,1)); plot(RSV.s, main="Seasonal"); plot(RSV.t, main="Trend"); 1538 

plot(RSV.r, main="Remainder") 1539 

##  rainfall: 1540 

  rain.s <- ts.union(raints=rain.stl$time.series[,1]) 1541 

  rain.t <- ts.union(raints=rain.stl$time.series[,2]) 1542 

  rain.r <- ts.union(raints=rain.stl$time.series[,3]) 1543 

  # par(mfrow=c(3,1)); plot(rain.s, main="Seasonal"); plot(rain.t, main="Trend"); plot(rain.r, 1544 

main="Remainder") 1545 

##  wind: 1546 

  wind.s <- ts.union(windts=wind.stl$time.series[,1]) 1547 

  wind.t <- ts.union(windts=wind.stl$time.series[,2]) 1548 

  wind.r <- ts.union(windts=wind.stl$time.series[,3]) 1549 

  # par(mfrow=c(3,1)); plot(wind.s, main="Seasonal"); plot(wind.t, main="Trend"); 1550 

plot(wind.r, main="Remainder") 1551 
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##  temperature: 1552 

  temp.s <- ts.union(tempts=temp.stl$time.series[,1]) 1553 

  temp.t <- ts.union(tempts=temp.stl$time.series[,2]) 1554 

  temp.r <- ts.union(tempts=temp.stl$time.series[,3]) 1555 

  # par(mfrow=c(3,1)); plot(temp.s, main="Seasonal"); plot(temp.t, main="Trend"); 1556 

plot(temp.r, main="Remainder") 1557 

##  dew: 1558 

  dew.s <- ts.union(dewts=dew.stl$time.series[,1]) 1559 

  dew.t <- ts.union(dewts=dew.stl$time.series[,2]) 1560 

  dew.r <- ts.union(dewts=dew.stl$time.series[,3]) 1561 

  # par(mfrow=c(3,1)); plot(dew.s, main="Seasonal"); plot(dew.t, main="Trend"); plot(dew.r, 1562 

main="Remainder") 1563 

##  visib: precipitation 1564 

  visib.s <- ts.union(visibts=visib.stl$time.series[,1]) 1565 

  visib.t <- ts.union(visibts=visib.stl$time.series[,2]) 1566 

  visib.r <- ts.union(visibts=visib.stl$time.series[,3]) 1567 

  # par(mfrow=c(3,1)); plot(visib.s, main="Seasonal"); plot(visib.t, main="Trend"); 1568 

plot(visib.r, main="Remainder") 1569 

 1570 

 1571 

## --------------- Correlation analsys: model fits------------------------------------ 1572 

# plot(wnd,rsv_events,pch=16,col="gray20",xlab="Wind speed", ylab="RSV 1573 

incidence",main="A") # wnd and RSv events 1574 

model_rsv_wnd <- lm(rsv_events ~ wnd); summary(model_rsv_wnd) 1575 

cor.test(rsv_events,wnd) 1576 
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# abline(model_rsv_wnd,col="black"); model_rsv_wnd 1577 

model_rsv_tmp <- lm(rsv_events ~ tmp); summary(model_rsv_wnd) 1578 

cor.test(rsv_events,tmp) 1579 

model_rsv_dew <- lm(rsv_events ~ dew ); summary(model_rsv_dew ) 1580 

cor.test(rsv_events,dew ) 1581 

model_tmp_wnd <- lm(tmp ~ wnd); summary(model_tmp_wnd) 1582 

cor.test(tmp ,wnd) 1583 

## --------------------------------------------------------------------------------- 1584 

## Dadaab RSV Poisson GLM model 1585 

probRSVti <- RSV$prop ; # incidence 1586 

#RSV$rsv_pos <- cbind(RSV$rsv_pos,(RSV$pop - RSV$rsv_pos)); 1587 

# plot(t,probRSVti,pch=16,col="gray20",xlab="Time",ylab="incidence") 1588 

 1589 

##-------- no-decomposed covariates----------------------------------------------- 1590 

x1 <- as.vector(windtimeseries)     # wind (x1) 1591 

x2 <- as.vector(rainfalltimeseries) # rainfall (x2) 1592 

x3 <- as.vector(Temptimeseries)     # temp (x3) 1593 

x4 <- as.vector(dewtimeseries)      # dew (x4) 1594 

x5 <- as.vector(VISIBtimeseries)    # visib/precipitation (x5) 1595 

##-------- decomposed covariates---------------------------------------------------- 1596 

x1S <- as.vector(wind.s); # windtimeseriescomponents$seasonal; (x1S) 1597 

x1T <- as.vector(wind.t); # windtimeseriescomponents$trend; (x1T) 1598 

x1R <- as.vector(wind.r); # windtimeseriescomponents$random; (x1R) 1599 

x2S <- as.vector(rain.s); # rainfalltimeseriescomponents$seasonal; (x2S) 1600 

x2T <- as.vector(rain.t); # rainfalltimeseriescomponents$trend; (x2T) 1601 
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x2R <- as.vector(rain.r); # rainfalltimeseriescomponents$random; (x2R) 1602 

x3S <- as.vector(temp.s); # Temptimeseriescomponents$seasonal; (x3S) 1603 

x3T <- as.vector(temp.t); # Temptimeseriescomponents$trend; (x3T) 1604 

x3R <- as.vector(temp.r); # Temptimeseriescomponents$random; (x3R) 1605 

x4S <- as.vector(dew.s); # dewtimeseriescomponents$seasonal; (x4S) 1606 

x4T <- as.vector(dew.t); # dewtimeseriescomponents$trend; (x4T) 1607 

x4R <- as.vector(dew.r); # dewtimeseriescomponents$random; (x4R) 1608 

x5S <- as.vector(visib.s); # VISIBtimeseriescomponents$seasonal; (x5S) 1609 

x5T <- as.vector(visib.t); # VISIBtimeseriescomponents$trend; (x5T) 1610 

x5R <- as.vector(visib.r); # VISIBtimeseriescomponents$random; (x5R) 1611 

RSVcases.s <- as.vector(RSV$prop); # proportion of RSV cases, response. 1612 

cosA <- as.numeric(cos(2*pi*(1/12)*t)); sinA <- as.numeric(sin(2*pi*(1/12)*t)); 1613 

##----------------------------------------------------------------------------------------- 1614 

# par(mfrow=c(1,1)); plot(cosA,type="l",col="black",xlab="Time index",ylab="Amplitude") 1615 

# lines(sinA,type="l",col="red") 1616 

 1617 

Dsquared <- function(binglm.1a, adjust = FALSE) { 1618 

# calculates the explained deviance of a GLM 1619 

# model: a model object of class "glm" 1620 

# adjust: logical, whether or not to use the adjusted deviance taking into acount the nr of 1621 

observations 1622 

# and parameters (Weisberg 1980; Guisan & Zimmermann 2000) 1623 

  d2 <- (binglm.1a$null.deviance - binglm.1a$deviance) / binglm.1a$null.deviance 1624 

  if (adjust) { 1625 

    n <- length(binglm.1a$fitted.values);  1626 
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    p <- length(binglm.1a$coefficients) 1627 

    d2 <- 1 - ((n - 1) / (n - p)) * (1 - d2)} 1628 

  return(d2)} # end Dsquared function 1629 

 1630 

## Data exploratory Analysis 1631 

data2<-data.frame(RSV$prop,RSV$wind,RSV$Temp,RSV$rainfall,RSV$dew,RSV$VISIB) 1632 

  attach(data2) 1633 

  data2.ts <- ts(data2,frequency=12, start=c(2007,9)); plot(data2.ts) 1634 

par(mfrow=c(2,2)) 1635 

  cc1=ccf(RSV.wind,RSV.prop);cc2=ccf(RSV.rainfall,RSV.prop) 1636 

  cc3=ccf(RSV.Temp,RSV.prop);cc4=ccf(RSV.dew,RSV.prop) 1637 

  cc5=ccf(RSV.VISIB,RSV.prop) 1638 

  cc1; cc2; cc3; cc4; cc5 1639 

library(astsa); library("dlnm") 1640 

  lag2.plot(RSV.rainfall,RSV.prop,11) 1641 

  lag2.plot(RSV.wind,RSV.prop,11) 1642 

  lag2.plot(RSV.Temp,RSV.prop,11) 1643 

  lag2.plot(RSV.dew,RSV.prop,11) 1644 

  lag2.plot(RSV.VISIB,RSV.prop,11) 1645 

## Define the function LAG 1646 

LAG <- function(x,k){n = length(x) 1647 

  xx=x 1648 

  xx[1:(n-k)]=x[(k+1):n] 1649 

  xx[(n-k+1):n]=NA 1650 

  xx} 1651 
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z=1:20 1652 

LAG(z,2) 1653 

lagpad <- function(x, k) { 1654 

    c(rep(NA, k), x)[1 : length(x)]  1655 

} 1656 

z=1:20 1657 

lagpad(z,2) 1658 

 1659 

RSV$lag_yt_1<-lagpad(RSV$rsv_pos,1) 1660 

RSV$lag_yt_2<-lagpad(RSV$rsv_pos,2) 1661 

library(MASS) 1662 

 1663 

##Choosing the best glm Poisson models to be compared using the "glmulti" package 1664 

library(glmulti) 1665 

 1666 

posglmulti.1a <- glmulti(rsv_pos ~  1667 

lag_yt_1 + x1 + x2 + x3 + x4 + x5 + cosA + sinA + offset(log(RSV$pop/1000)),# best model 1668 

without decomposition of the incidence rate per 1000 children 1669 

data=RSV, family = poisson,level = 1, method = "h", crit = "aic",  1670 

confsetsize = 5,plotty = F, report = F) 1671 

summary(posglmulti.1a) 1672 

posglmulti.1a@formulas 1673 

summary(posglmulti.1a@objects[[1]]) 1674 

 1675 

 1676 
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posglmulti.1b <- glmulti(rsv_pos ~  1677 

lag_yt_1 + x1S + x1T + x2S + x2T + x3S + x4S + x4T + x5S + x5T + cosA + sinA  + 1678 

offset(log(RSV$pop/1000)), # best model with decomposition 1679 

data=RSV, family = poisson,level = 1, method = "h", crit = "aic", #rsv_pos ~ 1 + x1S + x1T + 1680 

x2S + x4T + x5T + cosA + sinA 1681 

confsetsize = 5,plotty = F, report = F) 1682 

summary(posglmulti.1b) 1683 

posglmulti.1b@formulas 1684 

summary(posglmulti.1b@objects[[1]]) 1685 

 1686 

 1687 

## Dadaab RSV Poisson GLM model ====== MODEL 3.a 1688 

========================================= 1689 

## Testing for max lag for each of the covariates in the GLM models without decomposition 1690 

selected above 1691 

LAGG=4 1692 

posglm.x1<-glm(rsv_pos ~ LAG(x1,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1693 

family = poisson) 1694 

summary(posglm.x1) 1695 

 1696 

LAGG=3 1697 

posglm.x2<-glm(rsv_pos ~ LAG(x2,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1698 

family = poisson) 1699 

summary(posglm.x2) 1700 

 1701 
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LAGG=2 1702 

posglm.x3<-glm(rsv_pos ~ LAG(x3,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1703 

family = poisson) 1704 

summary(posglm.x3) 1705 

 1706 

LAGG=1 1707 

posglm.x4<-glm(rsv_pos ~ LAG(x4,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1708 

family = poisson) 1709 

summary(posglm.x4) 1710 

 1711 

 1712 

LAGG=3 1713 

posglm.x1S<-glm(rsv_pos ~ LAG(x1S,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1714 

family = poisson) 1715 

summary(posglm.x1S) 1716 

 1717 

LAGG=5 1718 

posglm.x1T<-glm(rsv_pos ~ LAG(x1T,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1719 

family = poisson) 1720 

summary(posglm.x1T) 1721 

 1722 

LAGG=4 1723 

posglm.x2S<-glm(rsv_pos ~ LAG(x2S,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1724 

family = poisson) 1725 

summary(posglm.x2S) 1726 
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 1727 

LAGG=5 1728 

posglm.x4T<-glm(rsv_pos ~ LAG(x4T,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1729 

family = poisson) 1730 

summary(posglm.x4T) 1731 

 1732 

LAGG=10 1733 

posglm.x5T<-glm(rsv_pos ~ LAG(x5T,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1734 

family = poisson) 1735 

summary(posglm.x5T) 1736 

 1737 

 1738 

 1739 

library(dlnm) 1740 

## specify the two cross-bases for each of the variables for the GLM model 1741 

basisposglm.x1 <- crossbasis(x1, vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 3, maxlag 1742 

= 4) 1743 

  summary(basisposglm.x1 ) 1744 

basisposglm.x2 <- crossbasis(x2, vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 2, maxlag 1745 

= 3) 1746 

  summary(basisposglm.x2 ) 1747 

basisposglm.x3 <- crossbasis(x3, vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 1, maxlag 1748 

= 2) 1749 

  summary(basisposglm.x3 ) 1750 
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basisposglm.x4 <- crossbasis(x4, vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 3, maxlag 1751 

= 4) 1752 

  summary(basisposglm.x4 ) 1753 

 1754 

basisposglm.x1S <- crossbasis(x1S , vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 0, 1755 

maxlag = 1) 1756 

  summary(basisposglm.x1S ) 1757 

basisposglm.x1T <- crossbasis(x1T , vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 4, 1758 

maxlag = 5) 1759 

  summary(basisposglm.x1T ) 1760 

basisposglm.x2S <- crossbasis(x2S , vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 3, 1761 

maxlag = 4) 1762 

  summary(basisposglm.x2S ) 1763 

basisposglm.x4T <- crossbasis(x4T , vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 4, 1764 

maxlag = 5) 1765 

  summary(basisposglm.x4T ) 1766 

basisposglm.x5T <- crossbasis(x5T , vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 9, 1767 

maxlag = 10) 1768 

  summary(basisposglm.x5T ) 1769 

 1770 

## fitting the models 1771 

## Dadaab RSV Poisson GLM model ====== MODEL 3.a 1772 

========================================= 1773 

 1774 

posglm.1a <- glm(rsv_pos ~  1775 
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# lag_yt_1 + x1 + x2 + x3 + x4 + cosA + offset(log(RSV$pop/1000)), # model without 1776 

decomposition                     1777 

lag_yt_1 + basisposglm.x1 + basisposglm.x2 + basisposglm.x3 + basisposglm.x4 + cosA  + 1778 

offset(log(RSV$pop/1000)), # best model without decomposition of the Poisson GLM model 1779 

  data=RSV, family = poisson) 1780 

  summary(posglm.1a) 1781 

  Dsquared(posglm.1a, adjust = TRUE) 1782 

#posglm.1a@formulas 1783 

#posglm.1a@objects 1784 

#summary(posglm.1a@objects[[1]])  ## plot(residuals(posglm.1a@objects[[1]])) 1785 

#weightable(posglm.1a) 1786 

# plot(posglm.1a) 1787 

# plot(posglm.1a,type="r") 1788 

# par(mfrow=c(1,2)); plot(posglm.1a,type="s"); plot(posglm.1a,type="w") 1789 

 1790 

## Dadaab RSV Poisson GLM model ====== MODEL 3.b 1791 

========================================= 1792 

 1793 

posglm.1b <- glm(rsv_pos ~  1794 

# x1S + x1T + x2S + x4T + x5T  1795 

# + cosA + sinA + offset(log(RSV$pop/1000)), # model with decomposition 1796 

basisposglm.x1S + basisposglm.x1T + basisposglm.x2S + basisposglm.x4T + 1797 

basisposglm.x5T +  1798 

cosA + sinA + offset(log(RSV$pop/1000)), # best model with decomposition 1799 

data=RSV, family = poisson) 1800 
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summary(posglm.1b) 1801 

Dsquared(posglm.1b, adjust = TRUE) 1802 

#posglm.1b@formulas 1803 

#posglm.1b@objects 1804 

#summary(posglm.1b@objects[[1]])  ## plot(residuals(posglm.1b@objects[[1]])) 1805 

#weightable(posglm.1b) 1806 

# plot(posglm.1b) 1807 

# plot(posglm.1b,type="r") 1808 

# par(mfrow=c(1,2)); plot(posglm.1b,type="s"); plot(posglm.1b,type="w") 1809 

 1810 

 1811 

## Testing for max lag for each of the covariates in the GAM models for the same covariates 1812 

fitted in the GLM model above 1813 

library(mgcv) 1814 

 1815 

LAGG=2 1816 

posgam.x1<-gam(rsv_pos ~ LAG(x1,LAGG) + offset(log(RSV$pop/1000)), data=RSV,  1817 

 family = poisson) 1818 

aic(posgam.x1) 1819 

 1820 

LAGG=1 1821 

posgam.x2<-gam(rsv_pos ~ LAG(x2,LAGG) + offset(log(RSV$pop/1000)), data=RSV,  1822 

 family = poisson) 1823 

aic(posgam.x2) 1824 

 1825 
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LAGG=2 1826 

posgam.x3<-gam(rsv_pos ~ LAG(x3,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1827 

 family = poisson) 1828 

aic(posgam.x3) 1829 

 1830 

LAGG=1 1831 

posgam.x4<-gam(rsv_pos ~ LAG(x4,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1832 

 family = poisson) 1833 

aic(posgam.x4) 1834 

 1835 

LAGG=4 1836 

posgam.x1S<-gam(rsv_pos ~ LAG(x1S,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1837 

 family = poisson) 1838 

aic(posgam.x1S) 1839 

 1840 

LAGG=6 1841 

posgam.x1T<-gam(rsv_pos ~ LAG(x1T,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1842 

 family = poisson) 1843 

aic(posgam.x1T) 1844 

 1845 

LAGG=8 1846 

posgam.x2S<-gam(rsv_pos ~ LAG(x2S,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1847 

 family = poisson) 1848 

aic(posgam.x2S) 1849 

 1850 
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LAGG=3 1851 

posgam.x4T<-gam(rsv_pos ~ LAG(x4T,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1852 

 family = poisson) 1853 

aic(posgam.x4T) 1854 

 1855 

LAGG=6 1856 

posgam.x5T<-gam(rsv_pos ~ LAG(x5T,LAGG)+ offset(log(RSV$pop/1000)), data=RSV,  1857 

 family = poisson) 1858 

aic(posgam.x5T) 1859 

 1860 

## specify the two cross-bases for each of the variables for the GAM model 1861 

basisposgam.x1 <- crossbasis(x1, vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 1, 1862 

maxlag = 2) 1863 

  summary(basisposgam.x1 ) 1864 

basisposgam.x2 <- crossbasis(x2, vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 0, 1865 

maxlag = 1) 1866 

  summary(basisposgam.x2 ) 1867 

basisposgam.x3 <- crossbasis(x3, vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 1, 1868 

maxlag = 2) 1869 

  summary(basisposgam.x3 ) 1870 

basisposgam.x4 <- crossbasis(x4, vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 0, 1871 

maxlag = 1) 1872 

  summary(basisposgam.x4 ) 1873 

 1874 
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basisposgam.x1S <- crossbasis(x1S , vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 3, 1875 

maxlag = 4) 1876 

  summary(basisposgam.x1S ) 1877 

basisposgam.x1T <- crossbasis(x1T , vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 5, 1878 

maxlag = 6) 1879 

  summary(basisposgam.x1T ) 1880 

basisposgam.x2S <- crossbasis(x2S , vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 7, 1881 

maxlag = 8) 1882 

  summary(basisposgam.x2S ) 1883 

basisposgam.x4T <- crossbasis(x4T , vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 2, 1884 

maxlag = 3) 1885 

  summary(basisposgam.x4T ) 1886 

basisposgam.x5T <- crossbasis(x5T , vartype = "bs", vardegree = 44, vardf = 4,  lagdf = 5, 1887 

maxlag = 6) 1888 

  summary(basisposgam.x5T ) 1889 

 1890 

## Dadaab RSV Poisson GAM model  ====== MODEL 4.a 1891 

========================================= 1892 

 1893 

 1894 

posgam.1a <- gam(rsv_pos ~ lag_yt_1 + ns(basisposgam.x1,4) + ns(basisposgam.x2,4) + 1895 

ns(basisposgam.x3,4)  1896 

   + ns(basisposgam.x4,4)+ ns(mont,4)+ offset(log(RSV$pop/1000)), # best, without 1897 

decomposition 1898 

data=RSV, family = poisson) 1899 
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summary(posgam.1a) 1900 

posgam.1a$coeff 1901 

summary.gam(posgam.1a)$sp.criterion # measure of performance 1902 

summary.gam(posgam.1a)$r.sq # adj.R-sq, measure of performance 1903 

AIC(posgam.1a) 1904 

plot(posgam.1a,pages=1) 1905 

gam.check(posgam.1a) 1906 

 1907 

 1908 

## Dadaab RSV Poisson GAM model  ====== MODEL 4.b 1909 

========================================= 1910 

 1911 

posgam.1b <- gam(rsv_pos ~ 1912 

ns(basisposgam.x1S,2*2) + ns(basisposgam.x1T,2*2) + ns(basisposgam.x2S,2*2) + 1913 

ns(basisposgam.x4T,2*2) + ns(basisposgam.x5T,2*2) + ns(mont,2*2)+ 1914 

offset(log(RSV$pop/1000)),             1915 

data=RSV, family = poisson)# with decomposition       1916 

summary(posgam.1b) 1917 

posgam.1b$coeff 1918 

summary.gam(posgam.1b)$sp.criterion # measure of performance 1919 

summary.gam(posgam.1b)$r.sq # adj.R-sq, measure of performance 1920 

AIC(posgam.1b) 1921 

plot(posgam.1b,pages=1) 1922 

gam.check(posgam.1b) 1923 

 1924 



116 

# gam.check(posgam.1b) # overview on model performance 1925 

# vis.gam(posgam.1b,view=c("x1T","x2T")) 1926 

 1927 

 1928 

posgam.1bb <- gam(rsv_pos ~ 1929 

s(x1S) + s(x1T) + s(x2S) + s(x4T) + s(x5T) + ns(mont,2)+ offset(log(RSV$pop/1000)),                  1930 

data=RSV, family = poisson) 1931 

 1932 

tiff("Figure4.tiff", res=600, compression = "lzw", height=8, width=8, units="in") 1933 

op05 <- par(mfrow = c(3,2), mar=c(4,5,0.5,0.5), oma=c(1.5,3,1,1)) 1934 

##oma = c(5,4,0,0) + 0.1, mar = c(0,0,1,1) + 0.7) 1935 

# par(mfrow = c(3,2)) 1936 

plot(posgam.1bb, select=1, shade=TRUE, xlab="Seasonal, wind speed (knots)",  1937 

     cex.lab=1.5, ylab="") 1938 

text(3,40,"A", cex=1.6) 1939 

# screen(2) 1940 

plot(posgam.1bb, select=2, shade=TRUE, xlab="Trend, wind speed (knots)",  1941 

     cex.lab=1.5, ylab="") 1942 

text(8.3,40,"B", cex=1.6) 1943 

plot(posgam.1bb, select=3, shade=TRUE, xlab="Seasonal, rainfall (inches)", 1944 

     ylab="RSV Incidence", cex.lab=1.6) 1945 

text(1.8,40,"C", cex=1.6) 1946 

# screen(4) 1947 

plot(posgam.1bb, select=4, shade=TRUE, xlab="Trend, dew point (degres fahrenheit)",  1948 

     cex.lab=1.5, ylab="") 1949 
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text(1.8,40,"D", cex=1.6) 1950 

# screen(5) 1951 

plot(posgam.1bb, select=5, shade=TRUE, xlab="Trend, visibility(miles)",  1952 

     cex.lab=1.5, ylab="") 1953 

text(21,40,"E", cex=1.6) 1954 

 1955 

# title(ylab="RSV Incidence (cases per 1000 person months)", 1956 

#       cex.lab=1.5, cex.axis=1.5, outer = TRUE, line = 3) 1957 

# close.screen(all=TRUE) 1958 

par(op05); 1959 

dev.off() 1960 

 1961 

 1962 

##--------------------------COMPARE MODEL PERFORMANCES---------------------------------1963 

- 1964 

 1965 

print(AIC(posgam.1a)) # Poisson, GAM, without decomposition 1966 

print(AIC(posgam.1b)) # Poisson, GAM, with decomposition 1967 

 1968 

anova(posgam.1a,posgam.1b, test="Chisq") 1969 

anova(posgam.1b) 1970 

 1971 

##----------------plot Residual------------------------------- 1972 

tiff("Residual.tiff", res=600, compression = "lzw", height=7, width=8, units="in") 1973 

op03 <- par(mfrow = c(2,1), oma = c(2,2,0,0) + 0.17, mar = c(4,4,1,1) + 0) 1974 
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gam.check(posgam.1a) 1975 

text(-1,2,"Poisson GAM without covariate decomposition") 1976 

gam.check(posgam.1b) 1977 

text(-1.09,1,"Poisson GAM with covariate decomposition") 1978 

par(op03); dev.off() 1979 

 1980 

 1981 

 1982 

csN <- RSV$rsv_pos 1983 

popN <- 1000 1984 

fracP <- csN/popN  1985 

##----------------plot Figure 1.A and B, below------------------------------- 1986 

tiff("Figure1.tiff", res=600, compression = "lzw", height=9, width=8, units="in") 1987 

op01 <- par(mfrow = c(1,1), mar=c(4, 6, 2, 1) + 0.1) 1988 

# op01 <- par(mfrow = c(2,1), oma = c(2,2,0,0) + 0.17, mar = c(4,4,1,1) + 0.4) 1989 

plot((RSV_proptimeseriescomponents$x)*popN*csN, xlab="Time (month/year)", 1990 

     ylab="RSV Incidence (cases \nper 1000 person 1991 

months)",lwd=1,pch=16,col="gray20",type="o", #ylim=c(0,0.8), 1992 

     main=expression(A)) 1993 

 1994 

grid (NULL,NULL,col="grey") # Figure_1.a 1995 

periodogram(RSV_proptimeseriescomponents$x,log='no',plot=TRUE, 1996 

            ylab="Periodogram", xlab="Frequency",lwd=2,main=expression(B))  # Figure_1.b 1997 

par(op01) 1998 

dev.off() 1999 
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 2000 

## =================PLOTS MODEL FITS WITHOUT DECOMPOSED 2001 

COVARIATES=============== 2002 

 2003 

# best GLM without decomposed covariates, Poisson model-1 ------------------------ 2004 

  p.posglm.1a <- predict(posglm.1a,RSV,type = "link",se.fit = TRUE) # @objects[[1]] 2005 

  prob.posglm.1a <- as.vector(exp(p.posglm.1a$fit)/(RSV$pop + exp(p.posglm.1a$fit))); # 2006 

RSV$ 2007 

  sd.e_posglm.1a <- as.vector(exp(p.posglm.1a$se.fit)/(RSV$pop + exp(p.posglm.1a$se.fit))); 2008 

  upr.pglm.1a <- prob.posglm.1a + (1.96*sd.e_posglm.1a);  2009 

  lwr.pglm.1a <- prob.posglm.1a - (1.96*sd.e_posglm.1a); 2010 

# best GAM without decomposed covariates, Poisson model-2 ----------------------- 2011 

  p.posgam.1a <- predict(posgam.1a,se.fit = TRUE) 2012 

  prob.posgam.1a <- as.vector(exp(p.posgam.1a$fit)/(RSV$pop + exp(p.posgam.1a$fit))); 2013 

#RSV$ 2014 

  sd.e_posgam.1a <- as.vector(exp(p.posgam.1a$se.fit)/(RSV$pop + 2015 

exp(p.posgam.1a$se.fit))); #RSV$ 2016 

  upr.pgam.1a <- prob.posgam.1a + (1.96*sd.e_posgam.1a); 2017 

  lwr.pgam.1a <- prob.posgam.1a - (1.96*sd.e_posgam.1a); 2018 

 2019 

##----plot best model fits to data: plot Figure 10.A to C, below------------- 2020 

tiff("Figure3.tiff", res=600, compression = "lzw", height=8, width=10, units="in") 2021 

op03 <- par(mfrow = c(2,1), oma = c(5,4,0,0) + 0.2, mar = c(0,0,1,1) + 0.7) 2022 

plot(t, csN*(probRSVti*popN),col="gray20",pch=16,xlab="Time") #ylim=c(0,0.8)) 2023 

  lines(t, csN*popN*prob.posglm.1a,col="blue",lwd=2) 2024 
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  lines(t, csN*popN*upr.pglm.1a,col="black",type="l",lty=3,lwd=1); 2025 

  lines(t, csN*popN*lwr.pglm.1a,col="black",type="l",lty=3,lwd=1) 2026 

  text(47,0.9*max(csN*probRSVti*popN),"A", cex=1.5) 2027 

plot(t, csN*(probRSVti*popN),col="gray20",pch=16,xlab="Time") #ylim=c(0,0.8)) 2028 

  lines(t, csN*popN*prob.posgam.1a,col="blue",lwd=2) 2029 

  lines(t, csN*popN*upr.pgam.1a,col="black",type="l",lty=3,lwd=1); 2030 

  lines(t, csN*popN*lwr.pgam.1a,col="black",type="l",lty=3,lwd=1) 2031 

  text(47,0.9*max(csN*probRSVti*popN),"B", cex=1.5) 2032 

title(xlab = "Time (months)",ylab = "RSV Incidence (cases per 1000 person months)", 2033 

      cex.lab=1.5, cex.axis=1.5, outer = TRUE, line = 3) 2034 

par(op03);  2035 

dev.off() 2036 

 2037 

## =================PLOTS MODEL FITS WITH DECOMPOSED 2038 

COVARIATES================== 2039 

# best GLM with decomposed covariates, Poisson model-3 --------------------------- 2040 

  p.posglm.1b <- predict(posglm.1b,RSV,type = "link",se.fit = TRUE) 2041 

  prob.posglm.1b <- as.vector(exp(p.posglm.1b$fit)/(RSV$pop + exp(p.posglm.1b$fit))); 2042 

  sd.e_posglm.1b <- as.vector(exp(p.posglm.1b$se.fit)/(RSV$pop + exp(p.posglm.1b$se.fit))); 2043 

  upr.pglm.1b <- prob.posglm.1b + (1.96*sd.e_posglm.1b);  2044 

  lwr.pglm.1b <- prob.posglm.1b - (1.96*sd.e_posglm.1b); 2045 

# best GAM with decomposed covariates, Poisson model-4 -------------------------- 2046 

  p.posgam.1b <- predict(posgam.1b,se.fit = TRUE) 2047 

  prob.posgam.1b <- as.vector(exp(p.posgam.1b$fit)/(RSV$pop + exp(p.posgam.1b$fit))); 2048 
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  sd.e_posgam.1b <- as.vector(exp(p.posgam.1b$se.fit)/(RSV$pop + 2049 

exp(p.posgam.1b$se.fit))); 2050 

  upr.pgam.1b <- prob.posgam.1b + (1.96*sd.e_posgam.1b); 2051 

  lwr.pgam.1b <- prob.posgam.1b - (1.96*sd.e_posgam.1b); 2052 

 2053 

##-----plot best model fits to data: plot Figure 3.A to C, below----------------------------------- 2054 

tiff("FigureS1.tiff", res=600, compression = "lzw", height=5, width=5, units="in") 2055 

incide<- probRSVti*1000 2056 

op04 <- par(mfrow = c(2,2), oma = c(5,4,0,0) + 0.1, mar = c(0,0,1,1) + 0.7) 2057 

plot(t,incide,col="gray20",pch=16,xlab="Time",ylab="RSV Incidence",ylim=c(0,2)) 2058 

  lines(t,prob.posglm.1b,col="orangered",lwd=2) 2059 

  lines(t,upr.pglm.1b,col="black",type="l",lty=3,lwd=1); 2060 

  lines(t,lwr.pglm.1b,col="black",type="l",lty=3,lwd=1); text(45,1.5,"C") 2061 

plot(t,incide,col="gray20",pch=16,xlab="Time",ylab="RSV Incidence",ylim=c(0,2)) 2062 

  lines(t,prob.posgam.1b,col="orangered",lwd=2) 2063 

  lines(t,upr.pgam.1b,col="black",type="l",lty=3,lwd=1); 2064 

  lines(t,lwr.pgam.1b,col="black",type="l",lty=3,lwd=1); text(45,1.5,"D") 2065 

title(xlab = "Time (months)",ylab = "RSV Incidence",outer = TRUE, line = 3) 2066 

par(op04); dev.off() 2067 

 2068 

# Bivariate Negative Binomial Model: RSV and HMPV 2069 

 2070 

model{ 2071 

#Likelihood 2072 

for (t in 2:T)  2073 
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 { 2074 

 rsv[t] ~ dnegbin(p1[t],psi1) 2075 

 p1[t]<-psi1/(psi1+mu1[t]) 2076 

 hmpv[t] ~ dnegbin(p2[t],psi2) 2077 

 p2[t]<-psi2/(psi2+mu2[t])  2078 

 nu1[t] <-alpha1+gamma11*sin(2*3.14/12)+delta11*cos(2*3.14/12) 2079 

 nu2[t] <-alpha2+gamma21*sin(2*3.14/12)+delta21*cos(2*3.14/12) 2080 

  2081 

 log(mu1[t]) <-lambda1[t-1]*rsv[t-1]+tao11[t-1]* 2082 

 rainfall[t-1] + tao12[t-1]*wind[t-1] + tao13[t-1]*dew[t-1] + tao14[t-1]*visibility[t-1] + 2083 

log(pop[t])*nu1[t]  2084 

 log(mu2[t]) <-lambda2[t-1]*hmpv[t-1]+phi2[t-1]*rsv[t-1]+tao21[t-1]*rainfall[t-1] + 2085 

tao22[t-1]*wind[t-1] + tao23[t-1]*dew[t-1] + tao24[t-1]*visibility[t-1] +log(pop[t])*nu2[t] 2086 

 } 2087 

 2088 

# log-likelihood ll[t] <-  2089 

  2090 

 2091 

# Priors 2092 

 2093 

 psi1~dgamma(0.1,0.01) 2094 

 psi2~dgamma(0.1,0.01) 2095 

 gamma11~dnorm(0.0, 0.001) 2096 

 gamma21~dnorm(0.0, 0.001) 2097 

 delta11~dnorm(0.0, 0.001) 2098 
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 delta21~dnorm(0.0, 0.001) 2099 

 alpha1~dnorm(0.0, 0.001) 2100 

 alpha2~dnorm(0.0, 0.001)  2101 

 2102 

 beta1~dgamma(10,10) 2103 

 beta2~dgamma(10,10)  2104 

  2105 

  2106 

  2107 

 for (t in 1:(T-1))  2108 

 { 2109 

  phi2[t]~dgamma(1,0.5) 2110 

  lambda1[t]~dgamma(1,beta1) 2111 

  lambda2[t]~dgamma(1,beta2) 2112 

  tao11[t]~dgamma(10,10) 2113 

  tao12[t]~dgamma(10,10) 2114 

  tao13[t]~dgamma(10,10) 2115 

  tao14[t]~dgamma(10,10) 2116 

    tao21[t]~dgamma(10,10)  2117 

  tao22[t]~dgamma(10,10) 2118 

  tao23[t]~dgamma(10,10) 2119 

  tao24[t]~dgamma(10,10) 2120 

 } 2121 

 } 2122 

   2123 
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 2124 

# Multivariate Poisson Model: RSV,HMPV,FLU 2125 

 2126 

model{ 2127 

#Likelihood 2128 

for (t in 2:T)  2129 

 { 2130 

 rsv[t] ~  dnegbin(p1[t],psi1) 2131 

 p1[t]<-psi1/(psi1+mu1[t]) 2132 

 hmpv[t] ~ dnegbin(p2[t],psi2) 2133 

 p2[t]<-psi2/(psi2+mu2[t]) 2134 

 flu[t] ~ dnegbin(p3[t],psi3) 2135 

 p3[t]<-psi3/(psi3+mu3[t]) 2136 

     2137 

 nu1[t] <-alpha1+gamma11*sin(2*3.14/12)+delta11*cos(2*3.14/12) 2138 

 nu2[t] <-alpha2+gamma21*sin(2*3.14/12)+delta21*cos(2*3.14/12) 2139 

 nu3[t] <-alpha3+gamma31*sin(2*3.14/12)+delta31*cos(2*3.14/12) 2140 

  2141 

log(mu1[t]) <-lambda1[t-1]*rsv[t-1]+phi1[t-1]*hmpv[t-1] +tao11[t-1]* 2142 

 rainfall[t-1] + tao12[t-1]*wind[t-1] + tao13[t-1]*dew[t-1] + tao14[t-1]*visibility[t-1] + 2143 

log(pop[t])*nu1[t]  2144 

log(mu2[t]) <-lambda2[t-1]*hmpv[t-1]+phi3[t-1]*rsv[t-1] +tao21[t-1]*rainfall[t-1] + tao22[t-2145 

1]*wind[t-1] + tao23[t-1]*dew[t-1] + tao24[t-1]*visibility[t-1] +log(pop[t])*nu2[t] 2146 

log(mu3[t]) <-lambda3[t-1]*flu[t-1]+tao31[t-1]*rainfall[t-1] + tao32[t-1]*wind[t-1] + tao33[t-2147 

1]*dew[t-1] + tao34[t-1]*visibility[t-1] +log(pop[t])*nu3[t] 2148 
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       2149 

 } 2150 

 2151 

# log-likelihood ll[t] <-  2152 

  2153 

 2154 

# Priors 2155 

 2156 

 psi1~dgamma(0.1,0.01) 2157 

 psi2~dgamma(0.1,0.01) 2158 

 psi3~dgamma(0.1,0.01) 2159 

  2160 

 gamma11~dnorm(0.0, 0.001) 2161 

 gamma21~dnorm(0.0, 0.001) 2162 

 gamma31~dnorm(0.0, 0.001) 2163 

 2164 

 delta11~dnorm(0.0, 0.001) 2165 

 delta21~dnorm(0.0, 0.001) 2166 

 delta31~dnorm(0.0, 0.001) 2167 

 2168 

 alpha1~dnorm(0.0, 0.001) 2169 

 alpha2~dnorm(0.0, 0.001)  2170 

 alpha3~dnorm(0.0, 0.001) 2171 

 2172 

 beta1~dgamma(10,10) 2173 
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 beta2~dgamma(10,10)  2174 

 beta3~dgamma(10,10) 2175 

  2176 

 for (t in 1:(T-1))  2177 

 { 2178 

  phi1[t]~dgamma(1,0.1) 2179 

  phi3[t]~dgamma(1,0.1) 2180 

  lambda1[t]~dgamma(1,beta1) 2181 

  lambda2[t]~dgamma(1,beta2) 2182 

  lambda3[t]~dgamma(1,beta3)   2183 

  tao11[t]~dgamma(10,10) 2184 

  tao12[t]~dgamma(10,10) 2185 

  tao13[t]~dgamma(10,10) 2186 

  tao14[t]~dgamma(10,10) 2187 

    tao21[t]~dgamma(10,10)  2188 

  tao22[t]~dgamma(10,10) 2189 

  tao23[t]~dgamma(10,10) 2190 

  tao24[t]~dgamma(10,10) 2191 

  tao31[t]~dgamma(10,10)  2192 

  tao32[t]~dgamma(10,10) 2193 

  tao33[t]~dgamma(10,10) 2194 

  tao34[t]~dgamma(10,10) 2195 

 }  2196 

} 2197 

 2198 
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