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Abstract

The aim of this thesis is to develop and extend Bayesian statistical models in the
area of spatial modeling and apply them to child health outcomes, with particular
focus on childhood malnutrition and mortality among under-five children. The easy
availability of a geo-referenced database has stimulated a paradigm shift in method-
ological approaches to spatial analysis. This study reviewed the spatial methods
and disease mapping models developed for areal (lattice) data analysis. Observa-
tional data collected from complex design surveys and geographical locations often
violates the independent assumption of classical regression models. By relaxing the
restrictive linearity and normality assumptions of classical regression models, this
study first developed a flexible semi-parametric spatial model that accommodates
the usual fixed effect, nonlinear and geographical component in a unified model.
The approach was explored in the analysis of spatial patterns of child birth out-
comes in Nigeria. The study also addressed the issue of disease clustering, which
is of interest to epidemiologists and public health officials. The study then pro-
posed a Bayesian hierarchical analysis approach for Poisson count data and formu-
lated a Poisson version of generalized linear mixed models (GLMMs) for analyz-
ing childhood mortality. The model simultaneously addressed the problem of over-
dispersion and spatial dependence by the inclusion of the risk factors and random
effects in a single model. The proposed approach identified regions with elevated
relative risk or clustering of high mortality and evaluated the small scale geograph-
ical disparities in sub-populations across the regions. The study identified another
challenge in spatial data analysis, which are spatial autocorrelation and model mis-
specification. The study then fitted geoadditive mixed (GAM) models to analyze
childhood anaemia data belonging to a family of exponential distributions (Gaus-
sian, binary and multinomial). The GAM models are extension of generalized linear
mixed models by allowing the inclusion of splines for continuous covariate (or time)
trends with the parametric function. Lastly, the shared component model originally
developed for multiple disease mapping was reviewed and modified to suit the bi-
nary data at hand. A multivariate conditional autoregressive (MCAR) model was
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developed and applied to jointly analyze three child malnutrition indicators. The
approach facilitated the estimation of conditional correlation between the diseases;
assess the spatial association with the regions and geographical variation of indi-
vidual disease prevalence. The spatial analysis presented in this thesis is useful to
inform health-care policy and resource allocation. This thesis contributes to method-
ological applications in life sciences, environmental sciences, public health and agri-
culture. The present study expands the existing methods and tools for health impact
assessment in public health studies.
KEYWORDS: Conditional Autoregressive (CAR) model, Disease Mapping Models,
Multiple Disease mapping, Health Geography, Ecology Models, Spatial Epidemiol-
ogy, Childhood Health outcomes.
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Chapter 1

Introduction

Nutritional status is defined by Pridmore & Carr-Hill (2009) as the physiological
condition of an individual that reflects the balance between nutrient requirements
and intake together with the ability of the body to use these nutrients. Ge & Chang
(2001) describe malnutrition as a pathological state resulting from in- adequate nu-
trition, Both overnutrition, that is being overweight or obese due to consumption of
excess energy foods and other nutrients, and undernutrition are forms of malnutri-
tion. Undernutrition due to insufficient intake of energy or protein foods or of other
nutrients. Therefore even with enough food intake for energy requirements, a child
may be considered undernourished if he or she has inadequate micro-nutrients. De-
ficiency disease arises from insufficient intake of one or more specific nutrients, such
as vitamins or minerals, as reported in Ge & Chang (2001).
Undernutrition is pervasive in sub-Saharan Africa, where its prevalence is among
the highest in the world. A recent report by Black et al. (2008) indicated that among
children under-five years of age in developing countries undernutrition is highly
prevalent. They estimate that 178 million children show stunting due to chronic
malnutrition. Stunting is indicated when a child’s height-for-age Z score is lower
than - 2 standard deviations (SD). Similarly, a child is considered underweight if the
weight-for-age Z score is lower than - 2 SD. It is estimated that 112 million children
are underweight. Wasting, or acute malnutrition afflicts an estimated 55 million chil-
dren, is indicted by their having a weight-for-height Z score of between -2 SD and -3
SD. In 2011, it was reported that 165 million children were stunted, and 52 million
were wasted (UNICEF et al., 2012).
Protein-energy malnutrition and micro-nutrient deficiencies are two major forms of
malnutrition that contribute the most to the health burden in developing countries
(Soja & Kiran, 2016; Müller & Krawinkel, 2005). Globally, malnutrition in any form,
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is a recognized health issue, being the most important causes of illness and deaths in
pregnant women, and young children (Müller & Krawinkel, 2005). Marasmus and
kwashiorkor are forms of malnutrition due to, respectively, insufficient protein or
energy. Micronutrient deficiencies most common in developing countries include
insufficiencies of iron, iodine, vitamin A and zinc (Müller & Krawinkel, 2005).
There is evidence that undernutrition erodes the physical and intellectual develop-
ment in children, and retards their educational attainment (Alderman et al., 2006),
which then also affects the health and labour market productivity at adulthood
(Haddad et al., 2004; Victora et al., 2008). In other words, long-term consequences
of stunting affect adult health and human capital (Victora et al., 2008). Studies have
established that severe malnutrition in children arising from fetal growth restriction,
stunting, wasting, micro-nutrient deficiencies, and sub-optimal breastfeed leads to
high population mortality. Recent studies have established that childhood malnutri-
tion resulting from inadequate food intake of nutrients or from chronic diseases that
may lead to mild to moderate anaemia, is a major contributor to under-five mortal-
ity (Ehrhardt et al., 2006; Stevens et al., 2013; Alkema et al., 2014).
Furthermore, childhood malnutrition has a direct relationship with disease morbid-
ity and child mortality because it compromises the immune function, increases sus-
ceptibility to infectious diseases, hasten the progression and severity and duration
of disease, as shown by the findings of Bhutta et al. (2013). Undernutrition in un-
der -five children is also a consequence of poor health, as infectious diseases (e.g.
diarrhea, acute respiratory infections, TB and HIV) increase energy requirements
but also often reduce appetite and nutrient absorption, as reported in Bhutta et al.
(2013) and WHO (2013). Empirical studies reported in De Onis (2017) have shown
that poor nutritional status in a child is highly correlated with his or her vulnera-
bility to disease infections, to delayed physical and mental development, and to an
increased risk of dying. Although the proportion of under-five children who were
underweight is reported to have declined by 36 percent between 1990 and 2011, un-
dernutrition among children under five is nevertheless estimated to be associated
with 45% of child deaths worldwide.
According to 1 United Nation Convention on the Rights of the Child to Food and
Nutrition reported in Weingärtner (2009). The report emphasized the importance
of reducing child malnutrition and mortality as enshrined in the then United Na-
tions Millennium Development Goals (MDGs), which sets target for 50% reduction
in the prevalence of being underweight among under-five children between 1990

1United Nation Convention on the Rights of the Child to Food and Nutrition. Article 24(c) requires
States parties “to combat disease and malnutrition”. The Convention further emphasizes that States
parties shall ensure the provision of adequate nutritious food. This was reaffirmed in Article 11 of the
ICESCR, which requires States parties to ensure access to nutritionally adequate, culturally appropriate
and safe food and to combat malnutrition.
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1.1. Statement of Research Problem and Objective

and 2015, while MDG4 targets a two-third reduction in the mortality rate among
children under five years of age. The disparities in achieving these goals, which
vary from region to region, may hinder the universal progress across the world, par-
ticularly in the sub-Saharan Africa. According to (Easterly, 2009) and the poverty
index in the Petrou & Kupek (2010) report, high mortality and malnutrition still per-
sists among young children in eastern Asia, whilst the majority of countries in sub-
Saharan Africa had made little or non-substantial progress in this area and failed to
achieve the target goals by 2015. In 2012, Global Nutrition Targets (WHO GNT) were
introduced by the World Health Organization (WHO) member states endorsement
of a broader agenda to improve nutrition by 2025, which includes stunting, wast-
ing, low birth weight and overweight in under-five children, as reported in McGuire
(2015). The Sustainable Development Goals (2.2), which call for an end to all forms
of malnutrition by 2030, mean that attaining such universal progress cannot be sep-
arated from many other goals concerning child health ambitions (Forouzanfar et al.,
2016; Nilsson et al., 2016).
This study focused on modeling the prevalence of malnutrition among children and
child bearing mothers using childbirth outcomes and mortality among under-five
children in selected sub-Sahara African countries. It makes use of Bayesian dis-
ease mapping in hierarchical modeling with applications to non-Gaussian data. This
thesis was motivated by the availability of an enormous amount of geo-referenced
database from demographic and health surveys with inherent spatial dependence
properties. The output of the findings would be useful to policy makers allocat-
ing public health resources, in disease management, designing intervention pro-
grammes and to identify the potential risk factors of key nutrition indicators. The
study explored spatially aggregated data and sought to review the developments in
spatial statistical theory and its applications to understand one of the critical health
problems in Africa.

1.1 Statement of Research Problem and Objective

A variety of methods have been developed to deal with spatial data modeling and
disease mapping, for both single and multiple diseases response outcomes. The
spatial models are based on the use of random effects, which are split into spatial
and non-spatial components. The normality assumption in a non-spatial regres-
sion model is barely met when data comes from spatially correlated units. Nowa-
days, huge geo-referenced data resources and complex survey designs exhibit auto-
correlation and spatial heterogeneity across the locations or data points, which may
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1.2. Outlines of the Thesis

vary in space or time. The statistical challenges are to develop robust and flexible
methods that extend the existing models, while at the same time accommodating the
complex data structures. The proposed methods relax the restrictive assumptions of
the classical regression models concerning linearity and normality. This thesis ex-
plored several semi-parametric models for analyzing (lattice) areal data, which vary
over space. The aim of this thesis was to develop statistical models for spatially ag-
gregated (areal) data and apply the methods to investigate the child health outcomes
extracted from demographic and health survey (DHS) data. The specific objectives
for this thesis are:

• To review disease mapping models for single and multiple diseases.

• To develop a flexible model that captures all unobserved factors of regional ef-
fects and individual effects and applied to estimate the underlying risk factors
of child birth outcomes and anaemia among under-five children.

• To investigate the associations between various socio-demographic, bio-social,
and environmental factors and the child mortality rates and geographic distri-
bution.

• Recognizing extra components of variability associated with a small area health
survey, the study developed models that incorporate over-dispersion and spa-
tial heterogeneity for under-five mortality in a developing context.

• To construct models which jointly estimate the conditional correlation among
multiple malnutrition indicators among under- five children and their spatial
association within the region.

1.2 Outlines of the Thesis

This thesis developed techniques for analyzing spatial or spatial-temporal data aris-
ing from demographic and health surveys for public health, epidemiology, environ-
mental and ecological studies relating to child health problem. Chapter 1 provided
the background about childhood malnutrition and developing techniques in spa-
tial epidemiology. In Chapter 2, relevant literature relating to statistical methods,
disease mapping models and spatial epidemiology are reviewed and systematically
evaluated. The remaining chapters in this thesis constitute the spatial method, its
applications and include material published in high impact journals or conference
proceedings.
In Chapter 3, by relaxing the linearity assumptions of the classical statistical models,
a semi-parametric model is proposed to investigate socio-demographic factors and
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1.2. Outlines of the Thesis

geographic location on the child birth defects in a developing country. A cumula-
tive multinomial regression model was proposed to analyze ordinal data of child
birth size. It recognizes child birth weight as an important health parameter for ob-
stetricians and gynecologists and a good health indicator of a child-bearing mother.
In survey reporting, the mothers or nurses frequently estimate their infant’s birth
weight and make a classification in ordinal category (low, normal, large) instead of
recording an actual birth weight. The study fitted a Geoadditive logistic regression
model to analyze the binary outcome and the polytomous response with different
kind of covariates in a unified manner. The fixed effect components of the model are
estimated in a parametric manner and the non-linear effect was modeled using pe-
nalized P-spline. The spatial component was modeled using conditional autoregres-
sive error. A penalized maximum likelihood estimation was performed to estimate
the model parameters. The proposed method was applied to child birth weight data
of children born between 2003–2008 obtained from the 2008 Nigeria Demographic
and Health Survey (NDHS).
Chapter 4 deals with Poisson counts that are spatially aggregated over regions A
Poisson log-linear model with random effects was proposed to investigate the rela-
tive risk and the underlying risk factors of mortality among children less than five
years. The study applied Bayesian hierarchical spatial models to assess the geo-
graphical variation in child death counts over areal units defined by administrative
areas (states) or sub-region. A crude standardized mortality ratio (SMR) was first
estimated for each state (district) and mapped to assess an elevated relative risk
or unusual clusters of low (high) child mortality across the regions in the country.
Spatial generalized linear mixed models (GLMMs) formulated from Poisson distri-
butions were proposed to analyze the mortality counts that accommodate the over-
dispersion and spatial dependence in the data. The commonly used Poisson-gamma
model was first constructed to investigate the extra variability in the death counts.
We later introduced Poisson log-normal, conditional autoregressive (CAR) and the
convolution model known as Besag, York and Mollie (BYM) model. A full Bayesian
inference was performed via the Markov chain Monte Carlo computation technique
to estimate the model parameters and potential risk factors. The goodness of fit mea-
sure by means of the deviance information criterion (DIC) was used to compare the
models performance.
In Chapter 5, we discuss three probability distributions for different data struc- ture.
The distributions were applied to analyze of anaemia in children less than five years
of age. Spatial generalized additive mixed models (GAMM) were formulated and
applied on the response variables belonging to a family of exponential distribu tions
(Gaussian, binomial and multinomial). GAMMs are extension of generalized linear
mixed models (GLMMs) utilized in the previous chapters (3 and 4). The advantage
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1.2. Outlines of the Thesis

of GAMMs lies in their use of splines, which is a general term for describing the
class of smooth and piecewise polynomials. Given data over a defined over a time
period or a metrical covariate, the splines are, in essence, used to capture compli-
cated temporal trends (or continuous variables), which are often missed by a single
parametric function.
In the previous chapters, the discussion was focused on one single univariate out-
come at a time, so the spatial correlation induced in the case of multiple diseases
was neglected. However, two or more diseases may co-vary and share common
risk factors or a geographical pattern. Therefore in Chapter 6, the shared compo-
nent model, originally developed for Poisson count in multiple diseases modeling,
is reviewed and modified to suit the binary data at hand for the study. A multi-
variate conditional auto-regressive (MCAR) model is proposed to analyze, jointly,
the three malnutrition indicators among under-five children and the small area geo-
graphical variation. The MCAR analysis permits the joint estimation of conditional
correlation between the diseases, the spatial association within the region, and the
marginal geographical variation in prevalence of each disease across regions or dis-
tricts. The multivariate approach provides a versatile and robust method to model
simultaneously two correlation structures; firstly, between the multiple diseases and,
secondly, within the geographical areas through the variance co-variance structure.
The MCAR model was constructed via a conditionally induced model that allows
estimation of conditional correlation between the diseases, which would have been
neglected in a separate univariate analysis.
Chapter 7 presents a summary of the study, highlights the conclusions, makes rec-
ommendations and indicates the potential for future research.
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Chapter 2

Literature Review

This chapter contains an introductory section in which the relevant literature pro-
viding the theoretical basis of this thesis is reviewed. The purpose of this chapter
is to provide an overview of the key methodological concepts employed in the re-
search. The chapter is organized as follows. Section 2.1 explains the spatial data and
survey data that feature throughout this research. Section 2.2 explains the theory of
Markov random fields and describes some related models for areal or lattice data
that are used throughout the thesis. Section 2.3 describes the spatial modeling and
disease mapping. Statistical models are outlined and the concept of smoothing is
also discussed. Section 2.4 describes the Bayesian estimation approach, sampling
procedure and shows its relevance in the research.

2.1 Demographic and Health Survey database

The data which motivated this work was acquired from the Demographic and Health
Surveys (DHS) programme. The DHS programme (Corsi et al., 2012) is designed to
collect and analyze reliable demographic and health data for regional and national
family and health planning. The U.S. Agency for International Development (US-
AID) provided the funds for the survey data collection and it is implemented by
Macro International Inc. The standard procedure of DHS methodology involves col-
lecting complete birth histories from women of child bearing age concerning fam-
ily planning, reproductive health, maternal health, child survival, and the control
and prevention of sexually transmitted diseases such as HIV and AIDS. The data
are made available to researcher, who should register and submit a research pro-
posal through the website by sending a request to the MEASURES Program. The
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2.2. Spatial Epidemiology

researcher then get permission to download and use the data strictly for intended
research purpose (www.measureDHS.com). The strategic objective of MEASURE
is to improve and institutionalize its health development activities by supporting
data collection, analysis and evaluation. The procedures are designed to improve
programme performance and to better understand programme impact in the health
sectors of many developing countries. To date, the DHS and related programmes
have provided technical assistance for more than 100 surveys in Africa, Asia, the
middle-east, Latin America, and the Caribbean.
For the purpose of the present study, the DHS database was assessed and down-
loaded the needed data relating to children health in some sub-Saharan African
countries. The information provided is self-reported by child bearing women of
reproductive age between 15-49 years and men aged 15-59 years. The data include
information on family planning, household members, home environment, demo-
graphic characteristics, all children born, place of delivery, child birth weight, nu-
tritional status, child deaths, distance to health facilities, antenatal care, and skilled
health professionals. In addition, the interviewers also recorded geographic infor-
mation system (GIS) data for the locations (latitude-longitude) of the respondent’s
place of residence.

2.2 Spatial Epidemiology

Spatial epidemiology, sometimes called geographical epidemiology, is the study of
the geographical distribution of mortality or disease incidence and its relationship
to potential risk factors. The analysis of such incidence plays a prominent role in
the understanding of the aetiology of diseases in public health and epidemiological
studies. To efficiently carry out analysis on spatial data, the analyst must account
for spatial dependence and extra variability in the population size (Aregay et al.,
2017). Spatial epidemiological study can be classified into three broad areas of study,
which Elliot et al. (2000) listed as disease mapping, geographical correlation studies
and disease clustering in population surveillance.
Spatial data are data which have a certain location in space in relation to their place
of collection. Let s ∈ Rd be a data location in a d−dimensional Euclidean space and
assume the potential datum Z(∼) at spatial location s is a random quantity. Suppose
a random variable s varies over a set of locations, index D ⊂ Rd, then a multivariate
random field (or random process) is defined by

{
Z(s) : s ∈ Rd

}
could be formed as

suggested by Cressie (1993). In spatial data analysis, two types of spatial data are
encountered namely: point referenced and lattice(areal) data.

• Point referenced data are observations collected at geographical locations, say
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2.2. Spatial Epidemiology

s over a fixed continuous space. For example, point level data arises when
the exact geographical locations of the individual cases of disease is known,
which is expressed in terms of longitude and latitude of the location. Some-
times the point referenced data are described as in the geostatistical data analy-
sis or geocoded data, as detailed by Banerjee et al. (2014). With such data, the
research interest is to make inferences on the distribution of health outcome
over the entire region under study and the analyses are based on the infor-
mation collected at location, s. Such analyses do account for spatial depen-
dence as a function of distance between pairs of locations in Rd, and such mea-
surements are facilitated by the availability of Geographic Information Sys-
tems (GIS) tools. The information that captures the precise individual location
(place) through the use of point referenced data are rarely used for disease
mapping. In particular, the confidentiality issues, which surrounds the regula-
tions of individual health outcomes (Jin et al., 2005).

• The second level of spatial data is the areal or lattice data. The areal type ob-
servation are data measured on a collection of subsets of points in a region Rd,
which is spatially aggregated over the regions formed. The areal data come
from either irregular or regular areas. A location which consists of a set of
regularly spaced points are called regular lattice, and such data are used in
remote sensing from satellite observation of earth images, known as pixels.
The second category of areal data are called irregular lattice and they do nei-
ther follow a predictable pattern nor precise geometrically connections. The
irregular lattice data are in the forms of administrative units, local government
area, district, counties, regions, states etc and they are commonly utilized in
disease mapping. The geographical distribution of disease summary can be
modelled at aggregated district level, administrative units or any sub-national
level are relatively easy to obtain than the individual health outcome for the
sake of confidentiality issues. Disease mapping is an important subtopic in
spatial epidemiology usually conducted at aggregated areal unit, especially
with sensitive health outcome like HIV/AIDS. Recent studies have adopted
the setting as proposed in the work of Elliot et al. (2000), which is popularly
used for disease mapping.

Disease mapping provides a linkage between two other areas of spatial epidemiol-
ogy: small area estimation and ecological-spatial regression. Disease maps as de-
scribed by Banerjee (2016) are often useful to identify spatial clusters of unusual
high and low incidence, generate hypotheses regarding common underlying envi-
ronmental, demographic, or cultural factors shared by the neighboring regions. In
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2.2. Spatial Epidemiology

spatial data analysis of small area-specific level, it is important to take into account
unobserved hetereogeniety and spatial dependence in the statistical model. Ignoring
autocorrelation in spatial analysis can lead to underestimation of the model param-
eters and as such leading to erroneous conclusions about the hypothesis (Wakefield
& Elliott, 1999; Waldhoer et al., 2008). In addition, another prominent challenges
frequently encountered in small area estimation include data sparsity, which often
arises from a large population size, over-dispersion, and measurement errors (Beale
et al., 2008; Hampton et al., 2011; Caprarelli & Fletcher, 2014).
Over the years, random effect models are commonly formulated as a means of mod-
eling the spatial autocorrelation and heterogeneity in disease mapping models. In
a simple representation, a random effect, φi, represents a random effect specific to
area i, which is used to account for unexplained spatial autocorrelation. For a set
of random effects, φ = (φ1, φ2, . . . , φn) are commonly represnted by conditional au-
toregresive (CAR) prior distribution first proposed by Besag (1974). The CAR prior
introduced by Besag (1974) and later extended by Besag et al. (1991), called the in-
trinsic CAR (ICAR) prior, is defined by the set of conditional distributions as

φi|φj , j 6= i, σφ
2 v N

∑
j 6=i

wijφj
wij

,
σφ

2

wij

 (2.1)

The CAR priors can also be modeled via a multivariate normal distribution defined
as

φ ∼ N(0,Σ),with Σ = σ2(D −W)−1 (2.2)

with a covariance function, Σ that reflects the spatial correlation between the ran-
dom effects. Besag et al. (1991) later proposed intrinsic CAR (ICAR) prior with co-
variance matrix, Σ = σ2(D −W)−1, where σ is a conditional variance parameter
and D and W are matrices determined by the neighbourhood structure of the data.
In equation (2.1) above, i ∼ j denotes region i and j sharing a common boundary
and φ−i represents the random effects of all regions excluding region i, and wij is
the element of a spatial weights matrix W corresponding to row i and column j in
matrix 2.1b and σφ

2 is the variance parameter that controls the amount of spatial
smoothness as reported in Rue & Held (2005) and Banerjee et al. (2014).
In the case of areal data analysis, the producure to evaluate the spatial dependence
is by the introduction of conditional autoregressive (CAR) prior error, such meth-
ods and applications can be found in Li & Lin (2006) and Waller & Gotway (2004).
One popular strategy to capture the spatial dependence is by utilizing the variance-
covariace matrix structure to model each element of the correlation matrix as a fuc-
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2.2. Spatial Epidemiology

tion of distance. For example, in Best et al. (2005), the variance-covariace matrix is
expressed Σu(i,j) = exp(−di,jφ), where di,j measures the distance between the cen-
troids in region i and j and φ represents a common parameter describing the overall
extent of spatial dependence involved. Other proceduce for estimating spatial cor-
relation in analysing geostatistical data can be found in Cressie (1993) and Leroux
et al. (2000).

Furthermore, the extent of spatial correlation may be induced in the the response
may be determined by the smoothensss arising from the ommited factors, which
may vary from acrosss the regions. Clayton & Kaldor (1987) extended the use
of mixed models for geographical data to account for the extra-Poisson variability
through the introduction of random effects, where the random effects are often spa-
tially correlated in a disease mapping context.
The autocorrelation and overdispersion arising from the population sizes and spatial
dependence are re-occurring challenges in public health and survey data, especially
when rare diseases are involved. The sparsity of population usual result in large
variability in the estimated mortality rates or disease incidence, thus masking the
true variability from the potential underlying factors. To handle the true variability
(spatial risk ensemble), several approaches have been proposed in the form of mixed
effect models. One of the popular method is spatially varying random effects, which
explores the borrowing strength from the neighbouring regions to mitigate the effect
of sparsely populated regions and produce a better inference, for more readings, see
Banerjee et al. (2014); Lawson (2013) and Leroux et al. (2000).
Disease mapping of mortality rates is very useful to epidemiologist, and public
health. The use of crude mortality rates or disease incidence to estimate rare disease
risk in small areas such as administrative units, health centers and ward levels, is
problematic as the approach does not account for the high variability in population
sizes over the regions nor account for spatial variation of the regions understudy.
More so, the interpretation of spatial distribution of the disease or mortality rates
are also misleading. Bayesian inference provides an alternative way to produce a
standardized smooth maps by borrowing information from the neighboring areas
across the regions. The early developments of disease mapping models include the
use of empirical Bayes (EB) techniques discussed by several authors among them are
well documented in Clayton & Kaldor (1987); Clayton (1992); Mollié (1999) and Ley-
land & Davies (2005) to estimate model parameters and plug-in approximations for
the statistical inference. These eventually yielded unbiased estimates of the relative
risk, but underestimate the variance. However the EB approach does not account
for uncertainty resulting from the hyper-parameters.
Recently, the full Bayesian (FB) approach has gained prominence in the field of dis-
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2.2. Spatial Epidemiology

ease mapping and modeling. Inference is based on Markov Chain Monte Carlo(MCMC)
simulation techniques due to their pioneering work by Besag et al. (1991) commonly
referred to as the BYM, and subsequent applications by Bernardinelli & Montomoli
(1992); Ugarte et al. (2009); Catelan et al. (2010) and Congdon (2014). Their proposal
was to model the relative risks of each region by combination of fixed and random
effects. Under CAR, the conditional distribution could be modeled via neighbor-
hood structure where the random effects in a region given all the other regions is
simply taken as the weighted average of all the other random effects. Besag et al.
(1991) considered the weights based on neighboring structure on adjacent areas,
where regions sharing a common boundary were assigned a weight matrix of 1 and
0 otherwise. Gosoniu et al. (2010) extended their model by including both spatially
unstructured random effects and spatially structured random effects through the
convolution model. Research has shown that the fully Bayesian model produced
better estimates than the EB as reported in Moura & Migon (2002) and Gosoniu et al.
(2010). Bernardinelli & Montomoli (1992) compared the EB methods with the fully
Bayesian methods and concluded that the fully Bayesian approach offers greater
flexibility and better estimates of the credible regions of geographical distribtion for
disease rates. There is a vast amount of literature on the development and applica-
tion of disease mapping techniques among them Besag et al. (1991); Torabi & Rosy-
chuk (2012) and Best et al. (2005).
Other previous studies on modeling count data have seen considerable develop-
ment on space-time models. Spatial and spatio-temporal disease mapping models
are common tools for the estimation of the risk of disease, identifying regions and
periods with high risk and time trends for disease incidence or prevalence. Bernar-
dinelli & Montomoli (1992) approach is one of the first for spatio-temporal models
for count data. They assumed a Poisson GLM with a linear predictor containing
separate terms for space and time as well as a space-time interaction effect which
allows for different temporal trend in different in different areas or regions. Waller
et al. (1997) proposed a spatio-temporal model which is an extension of the BYM or
the convolution model due to Besag et al. (1991). In their study, Waller et al. (1997)
assumed that the covariate effects are constant over time and the disease counts
followed a Poisson distribution. They treated each year as a separate time period
and estimated the overall trend of increasing lung cancer deaths by incorporating
both spatial clustering and uncorrelated heterogeneity. Knorr-Held & Best (2001)
proposed spatio-temporal model consisting of a pair of area-specific random effects,
that included both unstructured and structured random effects via convolution prior
on space and also a similar prior for temporal trends to describe the spatial and
spatio-temporal variation.
Traditionally, Markov random fields (MRF) have been successful used in a non-
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hierarchical setting as a direct approach for the observed data, but not as a model
for unobserved parameter such has been used in spatial context of Besag (1974) and
Künsch (1987) nor the approach which corresponds to what is known as state-space
models in the temporal domain in the work by Harvey & Stock (1989). The Marko-
vian property facilitates the estimation of high dimensional models than it is usually
done using general multivariate Gaussian models.
Markov random fields belongs to the class of parametric models which utilizes the
Markov property theory. MRFs play a pivotal role in the development of statistical
methodology for analyzing spatial data. For detail, see Clifford (1990) and Haran
(2011), and its importance for disease mapping models. Sometimes, a situation may
occur in which a location includes all other locations as neighbours, in this case, it
is not a MRF, the situation is known as ‘saturated’ neighbourhood structure. Such
neighbourhood structure that assumes a random field approach instead a MRF for
spatial modeling are discussed in details, in Besag & Kooperberg (1995); Cressie &
Verzelen (2008) and Wolpert & Ickstadt (1998). The neighbourhood structure can
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(a) Relationship between nodes in an undirected graph
W=

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0


(b) Adjacency matrix consisting of of six (6) nodes

take two popular forms of representation: as a finite graph displayed in Figure 2.1a
with six nodes or as an adjacency matrix, W. Figure 2.1a shows an example of a
simple undirected graph and a corresponding adjacency matrix, displayed in Figure
2.1b. According to (Assunção & Krainski, 2009), the neighbourhood matrix, as dis-
pled in Figure(2.1b) is defined as a n × n matrix, which contains diagonal elements
of W of zeros and off-diagonal element wij = 1 if regions i and j share a common
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boundary and zero otherwise.
Alternatively, a first-order neighbourhood can also be contructed for each region and
the adjacency matrix is defined by a symmetric representation of the neighbourhood
arrangement (Harary, 1962). For more complex models, higher-order neighbour-
hood configuration are defined in the literature. For example, a good number of
different neighborhood strutures and guidelines have been investigated and tech-
niques are documented in Earnest et al. (2007) and Stakhovych & Bijmolt (2009).
From the Hammersley–Clifford Theorem and Brook’s Lemma, for details see Besag
& Kooperberg (1995); White & Ghosh (2009),and Banerjee et al. (2014), which states
that the conditional prior distribution in equation (2.1) can be written jointly as a
prior distribution of φ as Gaussian Markov Random Field (GRMF) defined by

φ v Nm

(
0,

1

σ2
φ

(B−W)−1

)
(2.3)

where B is defined as a diagonal matrix withBii = mi. Re-parameterizing in term of
covariance matrix, Leroux et al. (2000) replaced (B−W) with an equivalent matrix,
R with element satisfying

Rij =

{
1 if i = j

−wij i 6= j
(2.4)

Compared to the joint modeling approach in equation (2.3), it is obvious that the
CAR model in (2.1) would enhance a more efficient sampling of each φi, as it be-
comes amenable to Bayesian estimation via Markov Chain Monte Carlo (MCMC)
simulation technique.
A close examination of equations (2.1) and (2.3), it indicates that covariance matrix,
(B−W) is singular, meaning it cannot be inverted. Though a full conditional of each
φi can result into proper prior, but the joint distribution of the covariance matrix in
equation (2.3) does not exit, leading to impropriety of the joint prior. In order to sal-
vage the problem of improper prior, one can add a constant, (say, c) to each element
in φ, and then the joint probability density, p(φ) becomes unaffected. The equation
(2.3) can therefore be re-written as a pairwise difference representation defined by

p(φ) ∝ exp

− 1

2σ2
φ

∑
i 6=j

(φi − φj)2

 (2.5)

Doing so, the elements in φ tends to be determined uniquely to a constant. Invari-
ably, the remedies provided are either imposition of a sum-to-zero constraint, i.e.
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∑
i φ

m
i = 0 over the φi’s or the exclusion of intercept from the full model. Alterna-

tively, Cressie (1993) provided a proper CAR model in terms of the neighborhood
matrix, W for equation (2.3) by multiplying by a constant, α, making the matrix,
(B− αW) non-singular.

2.3 Bayesian Inference

From a Bayesian framework, there is no fundamental distinction between observa-
tions and parameters of a statistical model: all are considered random quantities.
Let y denote the observed data, and θ denote the model parameters and missing
data. Unlike the classical statistical inference which summarizes θ with a point esti-
mate, Bayesian inference provides a distribution of plausible values for the param-
eter given the observed data (Carlin et al., 2010). The distribution which describes
the the parameters after the data is observed is called posterior distribution and it is
obtained as the product of the likelihood and the prior distribution through Bayes
theorem (Banerjee et al., 2014). The posterior distribution can be expressed as:

p(θ|y) =
p(y|θ)p(θ)
p(y)

=
P (y|θ)p(θ)∫
p(y|θ)p(θ) dθ

(2.6)

where p(θ) is the prior distribution of the parameter, and p(y) is the marginal distri-
bution of y, given as

p(y) =

∫
p(y|θ)p(θ) d(θ) (2.7)

p(y) does not depend on observed model parameters. The denominator in equation
(2.6) i.e

∫
p(y|θ)p(θ) d(θ) is called the normalizing constant equal to the marginal pdf

of y . The likelihood can be expressed as the product of individual contributions, as
follows:

p(y|θ) =
n∏
i=1

p(yi|θ) (2.8)

The posterior distribution in equation (2.6) can be specified in proportional terms
and mathematically expressed as:

p(θ|y) ∝ p(y|θ)p(θ|λ) (2.9)

Thus, the expression in quation (2.9) is often treated as the un-normalized poste-
rior distribution, see Bernardo et al. (2008) and Polson et al. (2013) for more details.
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2.3. Bayesian Inference

The integration in equation (2.7) to determine P (y) does not have to be a closed
form, since the posterior distribution is estimated using Markov Chain Monte Car-
los (MCMC) simulation.
It is common practice to treat λ as unknown and the posterior distribution as in-
tractable. The method of dealing with these unknown quantities determines the
type of Bayesian approach. Empirical Bayes can be used to replace λ in the right
hand side of equation (2.9). In other hands, a full Bayesian approach can be ap-
plied to estimate the unknown information prior and conditional distributions via
the marginal distributions of the observations, detialed techique can found in the
literature, see Ghosh et al. (2006) and Carlin et al. (2010) for more readings.
However, the variance of empirical Bayes estimators are known to be too small such
that they do not account for additional variability to the parameter estimate in hi-
erarchical modeling as detailed in Carlin et al. (2010) and Berger et al. (1994). More
so, for the Bayesian approach adjust to variance estimates, the full Bayesian meth-
ods are recommended to guarantee convergence and adequate representation of the
distribution of underlying rates and details are documented in Ghosh et al. (1999)
and Lawson (2013). In the disease mapping nomenclature, this model occurs when
the data likelihood is Poisson and there is a common relative risk parameter with a
single gamma prior distribution as explained in Lesaffre & Lawson (2012).
The theory of the MCMC algorithm is commonly used to perform posterior infer-
ence in the case where the product of the likelihood and the prior are analytically
intractable. By considering conditional independence between the parameters, the
posterior distribution in equation (2.6) can be rewritten as

p(θ|y) ∝ p(y|θ)p(θ1|θr1) . . . . . . p(θT |θrT )

where T is the total number of parameters in the model including the hyper-parameters.
The marginal posterior distribution is useful in order to make inference about each
parameter. Thus the marginal posterior distribution for the tth parameter is obtained
by integrating out the other parameters..

p(θt|y) =

∫
. . .

∫
p(θ1, . . . , θg, . . . θT |y) d(θrt) (2.10)

=

∫
. . .

∫
p(θt|θrtp(θrt) (2.11)

The integration needed to compute p(θt|y) is often impracticable according to Baner-
jee et al. (2014) and Gilks et al. (1995). This method involves a set of procedures
which use iterative simulation of parameter values from the posterior distribution
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via a Markov Chain (MC) approach.
The MCMC techniques enable the analyst to estimate the parameter of highly com-
plicated models corresponding to the posterior distribution with high accuracy. This
method has greatly contributed to the development, advancement and propagation
of Bayesian theory. Gómez-Rubio & Rue (2018) stated that the MCMC is a generic
algorithm that ensures the Markov Chain converges eventually to the target (sta-
tionary) distribution and under mild assumptions, see also Besag (1974) and Cressie
(1993) for more discussion. A Markov chain is a stochastic process in which future
states are independent of the past given the present states and the chain converges to
a stationary distribution which is the unnormalized posterior distribution as desired
was discussed in Geman & Geman (1984) and Christensen & Meyer (2001). This pro-
cess is defined by θ(1), θ(2), . . . , θ(T ) such that P (θ(t+1)|θ(t), . . . , θ(1)) = P (θ(t+1)|θ(t)).
That is, the distribution of θ at time t + 1 given all the preceding θ values (for
t, t− 1, . . . , 1) depends only on the value θ(t) of the previous sequence t.
As t→∞, the distribution of θ(t) converges to its equilibrium, which is independent
of the initial of the chain θ(0). This condition occurs, when the MC is irreducible, ape-
riodic and positive- recurrent as stated in Roberts et al. (2004) and Gelfand (2000).
The MCMC sampling method for constructing the Markov chain is summarized in
the following steps:

1. Select an initial value θ(0)

2. Sequentially generate θ(t+1)|θ(t) values from P (θ|y) until the equilibrium dis-
tribution is reached.

3. Monitor the converge of the algorithm using the convergence diagnostics. If
convergence diagnostics fails, we generate more samples.

4. Cut off the first B observations. B is called the burn-in period meaning the
first B iteration values are eliminated from the sample to avoid the influence of
initial values.

5. Consider
{
θ(B+1), θ(B+2), . . . , θ(T )

}
as the sample for the posterior analysis.

6. Plot the posterior distribution.

7. Finally, obtain summary results of the posterior distribution.

There are other alternative MCMC techniques such as the Gibbs sampler algorithms
developed by Geman & Geman (1984) and later generalized by Gelfand (2000), slice
sampling algorithm due to Brooks et al. (2011) and Walker (2007) can also be used.
MCMC sampling simulations are routinely performed with software such as R pro-
gramming software (Team, 2014) and WinBUGS (Lunn et al., 2000).
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Chapter 3

Semiparametric Multinomial

Ordinal Model to Analyze Spatial

Patterns of Child Birth Weight in

Nigeria

A child’s birth weight is the result of fetal growth and a good predictor of infant
morbidity and mortality. Birth weight, according to Bassler et al. (2009), is a strong
indicator of not only the mother’s health but also of a newborn’s chances of survival,
growth, long term health and psychological development. In the last three decades,
there has been increasing evidence that low birth weight and pregnancy compli-
cations are independently associated with the increased risk of mortality and early
morbidity in babies, and poor maternal health outcomes (Goldstein, 1981; Rees et al.,
1996; Madsen et al., 2010). Black et al. (2016) give an estimate of 303,000 maternal
deaths occurred in 2015 worldwide due to complications in pregnancy or childbirth,
and 5.9 million deaths among children of under five years age; of which 45% oc-
curred within the first 28 days of life.
For a simple epidemiological interpretation, low birth weight (LBW) is defined as
a birth weight of less than 2500 g. As UNICEF (2008) reports, LBW is a significant
health problem in many parts of the world due to its immediate and long-term con-
sequences. Reports by Villar & Belizan (1982) and Villar et al. (2006) have shown that
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3.1. The Data

about one-half of the LBW outcomes in industrialized countries are due to infants
being born preterm ( < 37 weeks gestation), while, in developing countries, most
LWB infants have been affected by restricted intrauterine growth that may have be-
gun early in pregnancy. A number of studies have investigated the impact of mater-
nal socio-economic characteristics on their newborns’ birth weight. However, there
is scanty research work that investigates, jointly, the influence of the geographical
variations in mothers location and other underlying determinants of birth weight.
In epidemiology and social sciences research, generalized linear models (GLM) (Mc-
Culloch, 1997) are commonly applied to investigate the influence of underlying fac-
tors on the response variable of interest. But, in these cases, the values of dependent
variables are qualitative categories (e.g. small, normal, large) and some covariates
are not necessarily linear functions of the response variables. Therefore the classical
regression model is technically inappropriate, and even ordinary logistic regression
may yield biased estimates. A few of these studies on determinants of child birth
weight have employed linear and logistic regression models in studying the associ-
ation between air pollution and birth weight (Currie et al., 2009; Proietti et al., 2013;
Charnigo et al., 2010). For example, Uthman (2008b) recently used nonlinear func-
tions to directly describe the relationship between birth weight and infant mortality
in Nigeria. Of recent, generalized additive models (GAMs) and their extension have
been successfully applied in many fields of study, see Khatab & Fahrmeir (2009) and
Sapra (2013) for more discussion.
This study therefore proposes a structured additive regression model to examine
the influence of different kinds of covariates on a categorical response variable. The
motivation behind this study is the utility of the approach in analyzing a multivari-
ate natural ordered response, while simultaneously handling covariates of different
types in a unified framework. We also explore a small area estimation of the spatial
residual effects in child birth weight that are not captured by the underlying factors,
and which would have been neglected in the classical regression approach.
This chapter is structured as five sections. In Section 3.1, we discuss the data in terms
of sampling procedure and statistical methods. The models to be used are outlined
in Sections 3.2 and 3.3. Section 3.4 presents the results of the data analysis, while
Section 3.5 is a discussion of the results. In Section 3.6, the concluding remarks are
given.

3.1 The Data

For data at national household-level on fertility, family planning and children’s nu-
tritional status the demographic and Health Surveys (DHS) are reliable sources. The
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2008 Nigeria DHS (NDHS) was designed to provide, among other things, informa-
tion on maternal health, prenatal and postnatal care, attitudes and micronutrient
supplementation during pregnancy. The survey covers a representative national
sample of women of reproductive age (15-49 years) and it includes data on chil-
dren’s weights at birth and up 59 months . Other variables relate to levels and
trends in fertility; sexual partners; fertility preferences; awareness and use of fam-
ily planning methods; infant’s and young children’s feeding practices; nutritional
status of mothers and childhood mortality. As noted earlier, maternal health out-
comes such as child birth weight play a vital role in understanding the epidemiol-
ogy of public health problems, children’s growth restriction, infant mortality trend
and childhood survival. The detailed information about the sampling techniques
of the NDHS survey have been published in the final report of National Population
Commission (2009).
Nigeria is made up of six geopolitical zones, which when subdivided at the sec-
ondary administrative level give overall 36 states and the Federal Capital Territory
(FCT) . The states and FCT are further subdivided into local government areas. Fig-
ure 3.1 displays the map of Nigeria showing the states grouped into geopolitical
zones. NDHS-2008 utilizes a two-stage probability sampling method. At the first
stage, 888 clusters, consisting of 286 urban and 602 rural areas, were selected from
the sampling frame as used during the 2006 National Population Census (NPC).
The primary sampling unit, is defined by an enumeration area (EA) for the 2006
NPC, and known as a cluster in the 2008 NDHS. The sample frame of households
in each selected cluster was obtained and the households were randomly drawn
for interviewing. At the second stage, a sample representative consisting of 36,800
households was randomly drawn for an interview with a minimum target of 950
interviews per state, in at least 41 clusters. In each state, the number of households
selected for interview was proportionally distributed among urban and rural areas.
Interviews were conducted for 33 385 women aged 15-49 and 15 486 men aged 15-9,
resulting in a total response rate of 97% interviewed. This means over two-thirds of
the respondents were women.
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Figure 3.1: Map of Nigeria showing 36 states (districts) and Federal Capital Territory (FCT)
by geopolitical zones.

The selection of explanatory variables was done on the basis of previous empirical
studies such as by Uthman (2008b) and Frederick et al. (2008) among others. In the
original 2008 NDHS, the mother’s estimation of the size of her baby at birth was
asked for children born in five years before the survey. The birth size was given
in five scale categories: very small, small, average, larger than average, and very
large. In this report, very small and small are combined into one category to repre-
sent the detrimental birth outcome. The other three categories are considered non-
detrimental. The response variable is constructed by categorizing the child birth size
into four-ways by (low, average (normal), large, very large) and the percentage dis-
tribution presented in the Table 3.1. This type of categorization is consistent with
previous reports by Rutstein (2000) and Wardlaw (2004). The percentages computed
for the four-way birth category were low size, 4239 (14.82%), larger than average
7852 (27.4%), very much larger than average, 5160 (18%) and normal size 10,732
(37.5%). The total number of births in 2008 NDHS classified by sizes was 27,983
(97%) children out of total live births of 28,647 births.
The categorical covariates are grouped into two broad categories according to birth
sizes. The bivariate analysis that used χ2-statistic test is presented in Table 3.2. The
variables are derived from child and mother characteristics, as well as environmen-
tal factors, e.g., place of residence and childhood diseases (diarrhea, fever, cough)
and nutrition status of the child, for further analysis. The analysis showed that all
the covariate groups differ significantly in their proportional distribution in the two-
way classification of birth size.
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Table 3.1: Frequency distribution of child birth weights by size category in the 2008 Nigeria
Demographic and Health Survey (NDHS).

Birth Size
Birth Weight

Response Frequency Percent
Intervals (in kg)

Low <2.5 1 4239 14.82

Average 2.5–3.2 2 10,732 37.46

Large 3.3–4.0 3 7852 27.41

Very large >4.0 4 5160 18.11

A four-way classification of the birth weight distribution was presented in Table 3.3.
The proportion of low weight deliveries exhibits an inverse relationship with the
birth order 1–4, except order 5 (5 + order). Further, the low birth deliveries also de-
cline linearly with rise in maternal educational levels. Further, the low birth weight
also shows an inverse linear relationship with increase in household wealth index.
In other words, the household wealth index can be expressed as an inverse associa-
tion with low birth weight. It is also noteworthy that there are differential variations
in patterns across the six geopolitical zones. The highest prevalence of low birth
weights were recorded in the North East and North West regions of the country.
Table 3.3 presents the summary of the descriptive analysis of social and demographic
characteristics of the households interviewed in the survey , which is categorized
into four-way child birth size. The percentage distribution in Table 3.3 is similar to
Table 3.2 and includes other categories. Analysis in Table 3.3 shows that a higher
proportion of the women did not attend antenatal sessions. Also, the proportion of
women, who did not attend antenatal checks were higher than those who attended,
which cuts across the four birth strata. About half of these women (48%) received
iron syrup supplementation during pregnancy. Of these women, 77 percent of the
children they delivered (within the last five year) did not receive postnatal vitamin
A supplementation. The analysis further showed that a substantial percentage of the
children who were born with low birth weight also suffered from childhood under-
nutrition (such as stunting and wasting). The percentage of malnourished children
declines linearly as the birth size increases. The descriptive statistics in Table 3.4 also
includes mean and standard deviations of some metrical covariates, considered in
the multivariate analysis.
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Table 3.2: Frequency distribution of some categorical covariates by Two-way classification
and Bivariate analysis based on 2008 Nigeria DHS.

Low Size Normal Size

cbw < 2500 n(%) cbw ≥ 2500 (n%) p-Value

North Central 463 (22.5) 4534 (17.3) <0.001 ∗∗

North East 306 (14.8) 6197 (23.7)

North West 367 (17.8) 7528 (28.7)

South East 221 (10.7) 2191 (8.3)

South South 269 (13.1) 2974 (11.3)

South West 434 (21.1) 2850 (10.8)

Child’s sex

Female 1977 (47.0) 12,302 (52.0) <0.001 ∗∗

Male 2262 (53.0) 11,442 (48.0)

Residence

Rural 3320 (78.0) 17,231 (73.0) <0.001 ∗∗

Urban 919 (22.0) 6513 (27.0)

Birth Types

Single 4005 (94.5) 23,068 (97.0) <0.001∗∗

Twin 234 (5.5) 676 (2.8)

Birth order

1st order 803 (19.0) 4412 (19.0) <0.001 ∗∗

2nd order 660 (16.0) 4195 (18.0)

3rd order 586 (14.0) 3703 (16.0)

4th order 523 (12.0) 3111 (13.0)

≥5th order 1667 (39.0) 8323 (35.0)

Mother education

Incomplete Primary 2772 (65.4) 11,275 (47.0) <0.001 ∗∗

Primary 765 (18.0) 5646 (23.8)

Secondary 591 (13.9) 5617 (23.7)

High 111 (2.6) 1206 (5.1)

Mother employed

No 1522 (36.0) 7279 (31.0) <0.001 ∗∗

Yes 1813 (43.0) 11,773 (50.0) 23
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Table 3.2: Cont.

Low Size Normal Size

cbw < 2500g n(%) cbw ≥ 2500 g n(%) p-Value

Maternal wealth Index

Poorest 1490 (35.1) 5982 (25.2) <0.001 ∗∗

Poor 1103 (26.0) 5584 (23.5)

Average 756 (17.8) 4684 (19.7)

Rich 529 (12.5) 4123 (17.4)

Richest 361 (8.5) 3371 (14.2)

Diarrhea

No 3079 (72.0) 18,967 (79.9) <0.001 ∗∗

Yes 512(12.1) 2108 (8.9)

Fever

No 2988 (70.0) 17,745 (75.0) <0.001 ∗∗

Yes 604 (14.0) 3317 (14.0)

Cough

No 3089 (73.0) 18,615 (78.0) <0.001 ∗∗

Yes 502 (12.0) 2420 (10.0)

Vitamin A Supp.

No 2219 (52.0) 11,257 (47.0) <0.001 ∗∗

Yes 433 (10.0) 3547 (15.0)

Antenatal

No 1656 (39.0) 6683 (28.0) <0.001 ∗∗

Yes 1003 (24.0) 8224 (35.0)

Stunted

No 1448 (34.0) 10,125 (43.0) <0.001 ∗∗

Yes 1217 (29.0) 6026 (25.0)

Wasted

No 1639 (39.0) 11,764 (50.0) <0.001 ∗∗

Yes 1026 (24.0) 4387 (18.0)

Underweight

No 2230 (52.0) 14,142 (59.0) <0.001 ∗∗

Yes 435 (10.0) 2011 (8.5)

Iron

No 1656 (39.0) 6683 (28.0) <0.001 ∗∗

Yes 1003 (24.0) 8224 (35.0)

The p-value marked with ∗∗ indicates that the variable was significant at 1% level. All

p-values correspond to Pearson Chi-square test of contingency.
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Table 3.3: Descriptive summary of the socio-demographic characteristics (covariates) used
in the model by four-way category of birth size in 2008 NDHS.

Four-Way Category of Child Birth Weight

Covariates Low Average Large Very Large Total
n (%) n (%) n (%) n (%) N

Zones
North Central (NC) 772 (18.2) 1638 (15.3) 1286 (16.4) 1220 (23.6) 5046
North East (NE) 1255 (29.6) 2670 (24.9) 1467 (18.7) 1062 (20.6) 6559
North West (NW) 1270 (30.0) 2744 (25.6) 2343 (29.8) 1372 (26.6) 7947
South East (SE) 293 (6.9) 1147 (10.7) 665 (8.5) 281 (5.4) 2450
South South (SS) 292 (6.9) 1389 (12.9) 934 (11.9) 629 (12.2) 3327
South West (SW) 357 (8.4) 1144 (10.7) 1157 (14.7) 596 (14.6) 3318

Place of residence
Rural 3320 (78.0) 7825 (73.0) 5645 (72.0) 3761 (73.0) 21,034
Urban 919 (22.0) 2907 (27.0) 2207 (28.0) 1399 (27.0) 7613

Sex of child
Male 1977 (46.6) 5373 (50.1) 4083 (52.0) 2846 (55.2) 14,604
Female 2262 (53.4) 5359 (49.9) 3769 (48.0) 2314 (44.8) 14,043

Child birth type
Singleton 5064 (98.1) 4005 (94.5) 10,364 (96.6) 7640 (97.3) 27,685
Twin 96 (1.9) 234 (5.5) 368 (3.4) 212 (2.7) 962

Malaria drug during pregnancy
No 1656 (39.0) 3115 (29.0) 2180 (28.0) 1388 (27.0) 8420
Yes 1003 (24.0) 3479 (32.0) 2775 (35.0) 1970 (38.0) 9295

Child birth order
1st order 803 (19.0) 1975 (18.0) 1495 (19.0) 942 (18.0) 5353
2nd order 660 (16.0) 1901 (18.0) 1406 (18.0) 888 (17.0) 4969
3rd order 586 (14.0) 1670 (16.0) 1219 (16.0) 814 (16.0) 4388
4th order 523 (12.0) 1426 (13.0) 1005 (13.0) 680 (13.0) 3712
5th order 1667 (39.0) 3760 (35.0) 2727 (35.0) 1836 (36.0) 10,225

Child Spacing (within 3 years)
<2 child 3305 (78.0) 8572 (80.0) 6413 (82.0) 4209 (82.0) 22,950
≥2 934 (22.0) 2160 (20.0) 1439 (18.0) 951 (18.0) 5697

Wealth Index
Poorest 1490 (35.1) 2971 (27.7) 1913 (24.4) 1098 (21.3) 7604
poor 1103 (26.0) 2581 (24.0) 1810 (23.1) 1193 (23.1) 6871
Middle 756 (17.8) 2002 (18.7) 1502 (19.1) 1180 (22.9) 5609
Richer 529 (12.5) 1793 (16.7) 1409 (17.9) 921 (17.8) 4755
Richest 361 (8.5) 1385 (12.9) 1218 (15.5) 768 (14.9) 3808

Under-nutrition
Stunting
Not 1448 (34.2) 4442 (41.4) 3300 (42.0) 2383 (46.2) 11,747
Yes 1217 (28.7) 2750 (25.6) 2010 (25.5) 1266 (24.5) 7356
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Table 3.3: Cont.

Four-Way Category of Child Birth Weight

Covariates Low Average Large Very Large Total
N (%) N (%) N (%) N (%) N

Wasting
Not 2831 (54.9) 1639 (38.7) 5064 (47.2) 3869 (49.3) 13,616
Yes 818 (15.9) 1026 (24.2) 2128 (19.8) 1441 (18.4) 5487
Underweight
Not 2230 (52.6) 6196 (57.7) 4672 (59.3) 3274 (63.4) 16,630
Yes 435 (10.3) 997 (9.3) 639 (8.1) 375 (7.3) 2475
Diarrhea in last 2 weeks
No 3079 (72.6) 8556 (74.7) 6315 (80.4) 4096 (79.4) 22,372
Yes 512 (12.1) 915 (8.5) 694 (8.8) 499 (9.7) 2645

Fever in last 2 weeks
No 2988 (70.0) 7991 (74.0) 5898 (75.0) 3856 (75.1) 21,039
Yes 604 (14.0) 1482 (14.0) 1100 (14.2) 735 (14.0) 3965

Cough in last 2 weeks
No 3089 (72.9) 8426 (78.5) 6182 (78.7) 4007 (77.7) 22,011
Yes 502 (11.8) 1042 (9.7) 810 (10.3) 568 (11.0) 2965

Antenatal
No 1028 (24.3) 3005 (28.0) 2380 (30.3) 1776 (34.4) 8256
Yes 237 (5.6) 938 (8.7) 777(9.9) 530 (10.3) 2500

Vitamin A
No 2219 (52.0) 5175 (48.0) 3678 (47.0) 2404 (47.0) 13,591
Yes 433 (19.0) 1354 (10.0) 1234 (13.0) 959 (16.0) 4011

Iron/Syrup Supplementation
No 1656 (39.0) 3115 (29.0) 2180 (28.0) 1388 (27.0) 8420
Yes 1003 (24.0) 3479 (32.0) 2775 (35.0) 1970 (38.0) 9295

Table 3.4: Descriptive statistics of the continuous covariates used in the model by Four-way
category of birth size in 2008 NDHS.

Four-Way Category of Child Birth Weight
Covariates

Low Average Large Very Large

Child weight at birth (in kg) 2.57 (0.58) 3.09 (0.59) 3.42 (0.68) 3.79 (0.79)

Mother’s age at first birth (in years) 18.7 (4.06) 19.1 (4.19) 19.4 (4.28) 19.2 (4.20)

Mother’s body mass index 21.7 (3.69) 22.3 (3.80) 22.6 (3.91) 22.8 (3.97)

Mother’s age, (in years) 27.1 (7.31) 27.2 (7.00) 27.5 (6.91) 27.4 (6.91)

Mother’s height (in cms) 157 (6.50) 158 (6.52) 158 (6.79) 158 (7.06)

Mother’s weight, (in kg) 53.9 (10.3) 55.6 (11.6) 56.5 (11.2) 57.3 (11.5)
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3.2 The Model formulations

This study utilizes data obtained from the 2008 Nigeria Demography Health Survey
(NDHS). The data set on child birth was generated with the aim of assessing the in-
fluence of some covariates on the response (child birth size) as reported in the health
surveys. NDHS data set contains several other variables, but only those that are
related to child birth weight and those similar to the ones considered in the descrip-
tive analysis were selected. The children involved in the survey had ages ranging
between 1–59 months and the respondents (mothers) are in reproductive age range
of 15–49 years.
The response variable of interest (child birth weight) is classified as

Model A yi1 =

{
1 if the child birth weight is ≤ 2500 g
0 otherwise

A multi-categorical representation of the response variable is coded as

Model B yi2 =


1 : small, if the cbw is < 2500 g
2 : average, if the cbw is ≥ 2.5 & < 3.2 kg
3 : large, if the cbw is ≥ 3.2 & < 4.0 kg
4 : very large, if the cbw is ≥ 4.0 kg

where yi1 is binary response outcome and yi2 is an ordered categorical response out-
come. The present study intends to apply a flexible regression model to quantify the
effects of fixed and non-linear factors as well as geographical variations of the child
birth size based on the response variables, yi1 and yi2 defined above.

3.2.1 The Geoadditive Models

We propose a structured additive regression model to examine the impact of dif-
ferent types of covariates on low child birth weight as a binary logit model. The
parameters in the model are estimated in a unified regression model. We employ
BayesX 2.0.1 version software for fitting the structured additive regression models,
which were developed by Brezger et al. (2003) via penalized maximum likelihood
(PMLE) methods. With a varying combination of covariates, we formulate three
different model specifications:

A.1 η = Spatial + random effects (No Covariates)
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A.2 η = Linear effects ONLY (Linear model)

A.3 η = Non-linear + linear effects + spatial effects (Geoadditive model).

Our model selection strategy is as follows. To convey the potentially extreme distri-
butions, we consider:

• a baseline model (A.1) without covariate, which includes only the spatial effect
components

• a purely linear model (A.2), all covariates are categorical fixed effects and

• and a full model (A.3) includes the spatial effects, categorical and continuous
covariates.

The continuous variables are modeled using P-smooth splines, the categorical co-
variates using dummy variables,(1) represents a factor level , (−1) as reference, 0
other levels) and the geo-spatial components are modeled by a Markov random
field. This contrasts with whereas model II, which includes only fixed (categorical)
effects.

3.2.2 Multinomial Logit Models

In recent decades, there has been growing interest in the application of an ordinal
logistic regression model, and its transformation into a latent variable model, as
has been described in Agresti (2003); Liu & Agresti (2005) and Tutz (2003). Such
regression models, which are based on multi-categorical outcomes, are sometimes
called cumulative regression models. Their distributional form had been previously
investigated in the literature, by for instance McCullagh et al. (1973) and Fahrmeir
& Lang (2001). The models can be motivated from latent variables such that the
response variable Y , which could be birth weight, can be written as a categorical
ordered response of a continuous latent (utility) variable, thus:

Z = η + ε (3.1)

where η is a predictor depending on covariates and parameters and ε is the error
term. The two variables Y and Z are linked by Y = j if and only if

θj−1 < Z ≤ θj , j = 1, 2, . . . k. In our case, k=4. (3.2)

with thresholds −∞ < θ0 < θ1 < . . . < θk =∞.
In a multinomial logit model setting, the error variables, ε in (3.1) are independent
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across the categories and assumed to be standard extreme value distributed with
function F . Hence, it follows that Y obeys a cumulative model. The predictor is
then defined as

Pr(yi ≤ j|η) = F (θj − η) (3.3)

For identifiability, the linear combination does not contain an intercept term γ0, oth-
erwise one of the thresholds must be set to zero. The probability of a child born with
the jth birth category as against the reference category, say, very large birth size, is
expressed in the multinomial logit model given by

Pr(yi = j|yi ≥ j, ηj) =
exp(θj − ηj)

1 + exp(θj − ηj)
= F (θj − ηj) (3.4)

Consider a set of regression observations (yi, xi, si, vi), i = 1, 2, . . . , n, where yi is
either binary or categorical response variable, xi represents a metrical (continuous)
covariate such as mother’s age at time of child’s birth, her body mass index, and the
spatial conponent, si ∈ [1, . . . , 37 of the district (states in Nigeria). A further vector
v = (vi1, . . . , viq) represents the categorical covariates. For a model as specified
above, we propose a semiparametric predictor as suggested by Tutz (2003), which is
defined as

ηj = θji − (f(xi) + fspat(si) + v′iγ) (3.5)

where, f(xi) and fspat(si) represent the estimates of the unknown non-linear smooth-
ing effects of the metrical covariates xi and the spatial effect respectively, while vi is
a vector of the fixed (categorical) effect. The spatial component, fspat(si) captures the
random effects of the area si, s ∈ {1, . . . , 37}, where the woman i resides in Nigeria.
The spatial component, fspat(si) is further split into two components:fstr(si) and
funstr(si) as spatially structured (correlated) and unstructured (uncorrelated) ran-
dom effects respectively.
We also formulate three different model specifications for the semiparametric multi-
nomial logit model with the following predictors:

B.1 η = Spatial + random effects (No Covariates)

B.2 η = Linear effects ONLY (Linear model)

B.3 η = Non-linear and Linear effects + Spatial effects (Geoadditive model)

The model composition is the same as defined in Section 3.2 above for the low birth
weight (binary data structure).
Generally, we adopt the appropriate re-parameterization to estimate the model pa-
rameters. The semiparametric multinomial logit model (5.4) can be rewritten as a
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mixed effect formulation, as suggested in Fahrmeir et al. (2004); Kneib (2006) and
Wood (2011) of the predictor. The estimation was done via a penalized likelihood
approach, where the smooth functions and model parameters are then estimated
simultaneously. Inference is therefore achieved with the empirical Bayes approach
based on generalized linear mixed model (GLMM) methodology, by partitioning
the coefficients into a penalized and unpenalized part yielding a variance compo-
nent model, as suggested in Fahrmeir et al. (2004) and Ruppert et al. (2003). Based
on the GLMM formulation approach, regression and variance components can be
estimated using the iterative weighted least squares and restricted maximum like-
lihood (REML) developed for GLMM by Fahrmeir et al. (2004) and Brezger (2005).
The statistical inference is based on Markov chain Monte Carlo (MCMC) simulation
technique as discussed in Fahrmeir et al. (2004) and implemented on a mixed model
approach using restricted maximum likelihood (Fahrmeir et al., 2013; Kneib, 2006).
All model parameters were estimated in the BayesX software package developed by
Brezger et al. (2003).
Akaike information criterion (AIC)and the Bayesian information criterion (BIC) are
adopted as measures for model selection. The measures are commonly used in the
choice of model within a maximum likelihood framework (Fahrmeir & Lang, 2001).
The AIC is defined as AIC = −2l(θ̂) + 2edf , while the BIC = −2l(θ̂) + log(n)edf ,
where l is the conditional log likelihood given the penalized parameters, edf is the
effective degree of freedom, which are estimated by the trace of the matrix that maps
the un-penalized estimates on the penalized estimates corrected for the smoothing
parameters uncertainty as defined in Wood et al. (2016). In addition to the two model
fit criteria, we also considered the generalized cross validation (GCV) by Golub et al.
(1979), which measures the ability of the selected model to predict the data. The GCV
is calculated as GCV = ||yi−µ−i||2

[n−tr(A)]2
, where µ denotes the prediction of E(yi) obtained

from the model fitted to all data except yi observation and tr(A) is the trace of the
influencing matrix with the leading diagonal element A = {Aii}.

3.3 Statistical Analysis and Results

We fitted six semi-parametric logit models, three binary models and three multi-
nomial models, for the two data structured response variables, We fitted six semi-
parametric models for the two data structured response variables (3 binary logit
models and three multinomial (birth size)) with different combination of covariates,
and the geographical components. The models A.1 and B.1 had the geographical
components as the only predictors (No covariates). The models A.2. and B.2 consist
of purely linear predictors on binary and multinomial ordinal responses respectively.
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The models can be described as simple linear models with all covariates exerted
fixed effects on the response variable, which may not be true in real life situation by
considering the complex nature of survey data structure .
For the models A.3 and B.3, we fit a spatial semi-parametric model consisting of
spatial effects, linear and non-linear covariates. The categorical covariates (environ-
mental factor, mother and child characteristics) as fixed effects and geographical lo-
cation of the woman were simultaneously estimated on the response variable (birth
weight). The outputs of the analysis are presented in the form of Tables, non-linear
graphics and spatial maps.

Table 3.5: Model comparison values based on Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) for the three specified models together with
the marginal log-likelihood (LL) and Generalized cross validation(GCV)

Model -2LL df AIC BIC GCV

Binary logit model

A.1 22,449.4 35.7 22,520.7 22,814.6 0.804

A.2 4990.1 26.0 5042.1 5221.5 0.685

A.3 6052.1 55.5 6163.2 6557.6 0.676

Multinomial logit model

B.1 72,630.1 38.0 72,630.0 73,019.5 2.530

B.2 19,103.4 26.0 19,155.4 19,334.8 2.587

B.3 23,533.1 67.1 23,667.2 24,144.3 2.453

For the AIC, on the binary logit model, we found that the model without covariates
(A.1) gave 22520.7, the linear model (A.2) gave 5042.1, while the full model (A.3)
gave 6163.13. On the cumulative multinomial logit model, for the model without
the covariates (B.1) we obtained AIC = 72630.0, and for the geoadditive model (B.3)
AIC =23667.2. In both models A and B, we conclude that the model with the co-
variates effects is a better model than the one without any covariate. AIC relies
on model likelihood from the data and the number of parameters estimated in the
model. How- ever, the models A.1 & B.1 and model A.3 & B.3 included spatial
structured effects of the geographical location of the woman (respondent), and such

31



3.3. Statistical Analysis and Results

models are more complex than the linear models A.2 and B.2. Therefore in addition
to the Akaike Information Criterion (AIC), we also investigated the values of the
Bayesian Information Criterion (BIC), which put emphasis on the model complex-
ity rather than the simplicity. Furthermore, the generalized cross validation (GCV)
criterion emphasizes the model optimality rather than simplicity or complexity, as
explored by the former two criteria. The researcher is left with varying options in
selecting the preferred model.

The models A.2 & B.2 can be described as simple linear models with all covariates
exerting fixed effects on the response variables. The spatial heterogeneity random
effects (structured and unstructured effects) are completely ignored or excluded in
the model B.2, so therefore the variability inherent as a result of geographical loca-
tion of the respondents could not be captured in the model. Therefore, this model
(B.2) could not account for larger proportions of the variation in the data and the
model yielded the lowest values for the AIC, BIC and GCV for all options of model
specification.

3.3.1 Fixed Effects of socio-demographic factors

Table 3.6 presents the posterior estimates of fixed effects of the socio-demographics
variables considered in the binary logit model. A careful interpretation of the coef-
ficient signs of these estimates and the 95% confidence interval is observed. When-
ever the 95% credible intervals include zero, it will be interpreted as the effect is
not statistically significant at the 5% probability level. A factor with negative coeffi-
cient indicates that the effect of the variable (factor) would reduce (lower) the chance
low birth weight (LBW) outcome compared to the reference factor, while a positive
coefficient would raise(increase) the probability low birth weight prevalence. The
signs of the coefficient estimates for the models A.2 (linear) and A.3 (geoadditive)
look similar. Model A.2 can be described as a sub-model of A.3. The interpretation
would be based on model A.3.
The results showed that there was evidence of significant association with higher
probability of low birth weight in the North East compared with the North Central
region. This indicates that women in the North East had higher odds of low birth
weight prevalence or higher risk of low birth size than the North Central zone. All
other geopolitical zones indicate lesser likelihood of low birth size but these were
not statistically significant. Marginally, the Southern Zones had lower prevalence of
low birth sizes when compared with the Northern parts of Nigeria.
The results from Table 3.6 (column models A.2 and A.3) further showed that a male
child had a higher probability of being born with low birth weight and a child born
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from a multiple (twin) birth also had higher odds of low birth weight than a single
birth. This implies that a male child had a higher odds of being born with a low
birth weight compared to a female counterpart. That is the odds of LBW for males
was 18% higher than that for female children (i.e. male =exp(0.171) refer model A.3
column, Table 3.6). A child born from a multiple birth would increase the odds of
LBW by 45% compared with a single birth. A short birth interval (2 or more children
within 3 years) also showed a significantly higher probability of low birth weight
compared with a well spaced birth interval, indicating that a short birth interval in-
creases the odds of LBW by 17%, OR = 1.17, 95% CI (1.07, 1.29) compared with a
single child birth.
In addition, environmental factors include poor household, death of sibling 2 and 4,
firewood/ dung method of cooking and mother smoking, disease morbidity during
pregnancy were found to contribute to the higher odds of LBW, although they were
not statistically significant at 5% probability level. That is children born to moth-
ers, who suffered from disease morbidity would increase the odds of giving birth to
very low birth weight (i.e. there are positive association between LWB and diseases
morbidity). There was significant association between childhood under-nutrition
(wasting) and low birth weight. The result showed that children born of low birth
weight would suffer of growth restriction in their early life(infancy).
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Table 3.6: Summary of three binary logistic models based on 2008 Nigeria DHS

Model A.1 Model A.2 Model A.3
Variable Est. 95% CI Est. 95% CI Est. 95% CI

Intercept −1.956 (−2.156, −1.756) −1.400 (−1.656, −1.143) −1.193 (−1.962, −0.424)

Geopolitical zones
North central (ref) - - 0 0
North East (NE) - - 0.188 (0.023, 0.354) 0.448 ∗ (0.004, 0.892)
North West (NW) - - −0.143 (−0.343, 0.056) 0.265 (−0.153, 0.682)
South east (SE) - - 0.049 ( −0.162, 0.261) −0.165 (−0.653, 0.324)
South South (SS) - - −0.226 (−0.426, −0.026) −0.390 (−0.051, 0.062)
South West (SW) - - 0.137 ( −0.027, 0.301) −0.228 (−0.680, 0.223)

Child’s sex
Female (ref.) - - 0 0
Male - - 0.1797∗ (0.106, 0.254) 0.171∗ (0.104, 0.237)

Type of birth
Singleton (ref.) - - 0 0
Multiple birth - - 0.206 (−0.023, 0.434) 0.377 (0.162, 0.592)

Place of residence
Rural (ref.) - - 0 0
Urban - - −0.0114 (−0.104, 0.0810) −0.038 (−0.124, 0.049)

Mode of cooking
Cook gas, kerosene (ref.) - - - - 0
Firewood/dung - - - - 0.068 (−0.158, 0.295)

Not literate (ref.) - - 0 0
literate - - −0.184 (−0.272, −0.096) −0.118 (−0.199, −0.037)

Not (ref.) - - - - 0
Smoke - - - - 0.474 (−0.233, 1.180)

No sibling dead (ref.) - - 0
dead 2 - - - - 0.181 (−0.034, 0.396)
dead 3 - - - - −0.369 (−0.679, −0.058)
dead 4 - - - - 0.144 (−0.166, 0.454)
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Table 3.6: Cont.

Model A.1 Model A.2 Model A.3
Variable Est. 95% CI Est. 95% CI Est. 95% CI

Child spacing last 3 years
<2 birth (ref.) - - 0 0
≥2 birth - - 0.200 (0.091, 0.308) 0.159 (0.063, 0.254)

stunted - - 0.047 (−0.040, 0.134) - -
wasted - - 0.226 (0.134, 0.318) - -

Micro-nutrient supplement.
No (ref.) - - 0 0
Prenatal iron/Syrup - - −0.282 (−0.375, −0.189) −0.234 (−0.318, −0.150)

Supplementation
No (ref.) - - 0 0
Postnatal vitamin A - - 0.010 (−0.073, 0.093) −0.059 (−0.137, 0.019)

No (ref.) - - 0 0
Antenatal - - −0.083 (−0.183, 0.017) −0.045 (−0.139, 0.050)

Poorest (ref.) - - 0 0
Quintile 1 - - 0.020 (−0.138, 0.178) 0.030 (−0.117, 0.178)
Quintile 2 −0.121 (−0.265, 0.023) −0.081 (−0.216, 0.053)
Quintile 3 - - 0.005 (−0.144, 0.154) 0.007 (−0.129, 0.143)
Quintile 4 - - 0.051 (−0.141, 0.241) −0.077 (−0.290, 0.137)

No (ref.) - - 0 0
diarrhea - - 0.090 (−0.022, 0.203) 0.062 (−0.043, 0.167)
fever - - −0.019 (−0.131,0.093) 0.021 (−0.083, 0.125)
cough - - 0.059 (−0.058, 0.176) −0.022 (−0.132, 0.089)

−= indicates the corresponding variable was not included in the model;
CI = confidence intervals; ∗ significant at 5 percent significance level.

There was evidence that micro-nutrient intervention such as iron syrup supple-
mentation during pregnancy would reduce the chance of low birth weight. Also,
postnatal vitamin A to children would boost the growth of child born of low birth
weight, although vitamin A supplementation was not significant. Iron supplemen-
tation to pregnant mother was significant and reduced the odds of LBW by 21%,
i.e. OR=0.79, 95% CI (0.73, 0.86), compared to those mothers, who did not take iron
syrups. Mother, who attended antenatal also had lesser likelihood of giving birth to
a child with low birth weight.
The results further showed a strong impact of mother characteristics for improv-
ing her birth outcome. Maternal literacy (ability to read or write), urban resident
mother, mother belonging to richer household would likely reduce their chances of
giving birth to a child with low birth weight. A literate mother would have a lesser
probability (reduce odds) of giving birth to a child with LBW by 11%, i.e. OR=0.89,
95% CI(0.82, 0.96) compared to an illiterate mother. The result showed a significant
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evidence that mothers who used firewood/dung/agricultural residues method for
cooking would significantly reduce the relative odds of the larger birth size to low
birth size over gas/kerosene cooking (refer Model A.3 column, Table 3.6, though not
significant in our case.
We further present the estimates of Model B.3 in Table 3.7, iron syrup supplementa-
tion to mothers during pregnancy would significantly increase the relative odds of
larger birth size than those mothers with no supplements. Mother literacy was found
to be significant with relative higher likelihood of large size to low birth size for non-
literate mother. Similar influence of categorical covariates were observed from the
multinomial model as presented in Table 3.7. The model B.2(linear model) can be
considered as a sub-model of model B.3. Furthermore, the parameter signs of the
variables in the models are similar. From the results on model B.3, the estimates of
the threshold parameters θ1, θ2 and θ3 are presented along with the categorical vari-
ables estimates. We interpret threshold(cut point) parameters as a negative(positive)
value corresponds to less (higher) likelihood of the birth weights category shifting
left(right) on the latent scale. For instance, a negative sign of θ1 and θ2 signifies a
shift on the latent scale to the left side, yielding a lower probability for category of
low birth weight and average size categories respectively.
This can also be interpreted in terms of the relative odds of shifting from very low
category to higher birth outcome. For instance the relative odds of shifting from very
low to low birth size per unit increase in the predictors is given by θ1, shifting from
low birth to normal size for θ2, shifting from normal to large birth size for θ3. This
can be stated as the relative odds of a low birth size to an normal birth size( about
2500 grams) , (exp(−1.76) = 6.12), i.e. about 2 times lesser chances of shifting form
low birth category to normal birth size, and (exp(1.812) = 1.42), 1.41 times odds
of getting normal(average) birth size to large birth weight (refer Table 3.7, column
Model B.3). Similarly, a positive sign of θ3 signifies a shift on the latent scale to the
right side, yielding a higher probability of moving for the larger category to very
large.
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Table 3.7: Summary of of three Multinomial logit models based on 2008 Nigeria DHS

Variable
Model B.1 Model B.2 Model B.3

Est. (95% CI) Est. (95% CI) Est. (95% CI)

Threshold
θ1: low birth size −1.899 (−1.940 , −1.860) −1.089 (−1.614, − 0.564) −1.760 (−1.970, −1.550)
θ2: average size 0.096 ( 0.070, 0.120) −0.513 (−1.037, 0.011) 0.350 (0.140, 0.550)
θ3: large size 1.551 (1.52, 1.58) 1.037 (0.513, 1.562) 1.812 (1.61, 2.020)

NC (ref.)
NE - - −0.140 ∗ (−0.240, −0.039) 0.301 (−0.165, 0.770)
NW - - −0.176 ∗ (−0.287, −0.065) 0.473 (0.020, 0.930)
SE - - 0.249 ∗ (0.133, 0.365) −0.630 (−0.618, 0.280)
SS - - 0.100 (−0.004, 0.203) 0.054 (−0.422, 0.530)

Female (ref.)
Male 0.040 (−0.002, 0.081) −0.178 ∗ (−0.221, −0.130)

Single birth (ref.)
Multiple birth 0.078 −0.081, 0.238) −0.271 (−0.434, −0.110)

No (ref.) 0 0
stunted - - 0.025 (−0.025, 0.076) −0.014 (−0.066, 0.040)
wasted - - −0.001 (−0.057, 0.056) −0.176 ∗ (−0.235, −0.121)
underweight - - - - -

Birth Order 1 (ref.) 0 0
Order 2 - - - – 0.017 (−0.075, 0.110)
Order 3 - - - – 0.040 (−0.053, 0.130)
Order 4 - - - – 0.001 (−0.098, 0.100)
Order 5 - - - – 0.032 (−0.049, 0.110)

Rural (ref.) 0 0
Urban 0.057 ∗ (0.005, 0.109) −0.035 (−0.090, 0.02)

Children last 3 years
< 2 birth (ref.) - - 0 0
≥ 2 birth −0.056 (−0.123, 0.011) −0.103 ∗ (−0.173, −0.03)

−= indicates the corresponding variable was not included in the model;
CI = confidence interval; ∗ significant at 5% significance level.
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Table 3.7: Cont.

Variable
Model B.1 Model B.2 Model B.3

Est. (95% CI) Est. (95% CI) Est. (95% CI)

No supplement(ref.) 0 0

Iron/Syrup during pregnancy 0.090 ∗ (0.031, 0.148) 0.052 (−0.010, 0.11)

Postnatal Vitamin A - - −0.064 ∗ (−0.110, −0.018) 0.096 ∗ (0.048, 0.14)

No antenatal (ref.) 0 0

Antenatal - - −0.025 (−0.079, 0.028) 0.016 (−0.041, 0.07)

Poorest(ref.)

Quintile 1 (poor) - - −0.010 (−0.103, 0.084) −0.026 (−0.123, 0.07)

Quintile 2 (middle) - - −0.057 (−0.138, 0.024) 0.037 (−0.047, 0.12)

Quintile 3 (rich) - - 0.022 (−0.061, 0.106) 0.048 (−0.039, 0.13)

Quintile 4 (richest) - - 0.053 (−0.050, 0.156) 0.074 (−0.039, 0.19)

No disease (ref.) 0 0

diarrhea - - −0.052 (−0.121, 0.017) 0.029 (−0.042, 0.10)

fever - - −0.004 (−0.068, 0.060) −0.046 (−0.111, 0.02)

cough - - −0.007 (−0.075, 0.060) 0.019 (−0.051, 0.088)

Not smoking (ref.) 0 0

Mother smoke - - −0.087 (−0.581, 0.407) - -

Not literate (ref.)

literate - - 0.0112 (−0.038, 0.0609) 0.083 ∗ (0.030, 0.140)

−= indicates the corresponding variable was not included in the model;

CI = confidence interval; ∗ significant at 5% significance level.

Remarks: It is interesting to note that two models gave compelling opposite effects
in Table 3.7. For instance, factors (NW,SE, multiple birth, postnatal vitamin A, an-
tenatal etc) had the signs of the coefficient opposing between the linear model (B.2)
and multinomial ordinal model (B.3) for the same data set. Theoretically, it should
not be surprising when different types of models (binary, ordinal and multinomial
logistic regression for categorical outcomes) can be fitted on a common data set,
however the linear models can not fit well when the outcome variable is categorical.
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From equations (3.3) through (3.5), that the very important minus signs are included
before the linear predictor, ηj . This flips the estimate of all the coefficients other
than the intercept. We therefore propose a new model and provide a brief theoreti-
cal framework at the end of this chapter as addendum and derivation of probability
distribution of a binary logit model is provided in the Appendix A 7.1.

3.3.2 Non-Linear Effects of mother’s age and mass index

The non-linear components of the model investigate the effects of metrical (contin-
uous) covariates using the binary logit model A.3(corresponds to Table 3.6) are dis-
played in Figure 3.2, while for model B.3 in Figure 3.3. Each figure is made up of
5 trend lines with the center line being the smooth estimate of the posterior mean
bounded by the two inner lines which are the 95 % credible intervals and outer lines
which give the 80% credible intervals.
Figure 3.2(a) depicts that there is an inverse linear relationship between between
mother’s weight (kg) at birth and the low birth weight, while Figure 3.2 b shows a
linear relationship between the mother‘s body mass index (weight/height2) and the
child birth weight as estimated from the binary logit model. The graph depicts that
an increase in mother‘s weight would reduce the chance of the woman giving birth
to a low weight child. We noticed also a consistent linear association between the
smooth effect of the mother weight increases as shown in the Figure 3.2 (a). That is
the heavier mother the lower the possibility of giving birth to a baby with low birth
weight. A critical point was observed at about 58 kg, it seems that the majority of
women in study population had averaging weight at birth of 58 kg.
Further results from the binary logistic analysis, Figure 3.2b showed the effect of
mother‘s body mass index (mbmi)= weight(kg)/height2(m) on the child low birth
weight. The graph depicts a discernible relationship between ’mbmi’ and her baby
birth weight as linear relationship. A critical point was noticed at around value 24
(which is normal body mass index). A threshold points can be invoked accord-
ing to the World health Organization (WHO). The graph can be factored into 3
parts: below 18.5, (as underweight mother) would increase the odds of low birth
size(underweight child) and mbmi above 24.5, overweight mother would increase
the likelihood of large size babies, their babies are at the risk of obesity. Figure 3.2c
illustrates the plot of the effects mother‘s age on the low birth weight. The plot de-
picts a U− shape function. The graph can be segmented into 3 parts (thresholds) as
the effect of mother‘s age below 20 years,(teenage mother) would increase the like-
lihood of low birth child weight(downward trend), mother age between 20-40 years
(matured mothers) with no significant effect on poor birth outcomes, and mother
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age above 40 years(older mothers) would raise the likelihood of giving birth to ba-
bies with low weight.

Figure 3.2: Binary logit model results: non-linear effects of (a) Mother‘s weight, (b)mother‘s
body mass index, and (c)mother‘s age at birth Model A.3

The non-linear effects of (a) mother‘s weight, (b)mother‘s body mass index, and (c)
mother‘s age at birth (years) of multinomial model B.3 are shown in Figure 3.3. Fig-
ure 3.3a show the non-linear effect of mother‘s weight showing inverted U-shape.
This implies mother‘s weight on her that for birth size outcome can be described as
an inverted U− shape . Figure 3.3b depicts an S− shape function, known as sigmoid
function. This represents the impact of mother’s nutritional status on her child birth
weight. Figure 3.3 (c) shows the effect of mother‘s age at birth on her child birth
weight. The resulting trend lines possess a discernible non-linear relationship. In
other words, one can deduce that a teenage mother (< 20 years) resulting in a down-

40



3.3. Statistical Analysis and Results

Figure 3.3: Cumulative multinomial model results: non-linear effects of (a) mother‘s weight,
(b)mother‘s body mass index, and (c) mother‘s age at birth for Model B.3

ward trend on her baby’s birth weight, mother‘s age between 20-40 years would lead
to an upward concave curve and mother above 40 years would result into a down-
ward concave on her baby’s birth weight. Thus, the optimal mother’s age could be
obtained on the curve minimal turning point of the graph, say, 31 years, to achieve
the lowest risk of poor birth outcome.
The spatial effects from the analysis of two geoadditive binary logistic models are
presented in Figures 3.4 (a-d) and two(2)cumulative multinomial model 3.5(e-h).
The maps represent the posterior means (left panel) and the maps showing the 95%
credible intervals (right panel) are used to determining the significance level. Us-
ing 95% credible intervals, regions(states) with white (black) colours are associated
with significantly high (low) prevalence corresponding to regions lie in the posi-
tive(negative) sides, while the grey colour depicts the estimates are not significant
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among states.

Figure 3.4: Binary logit model results: the posterior mean (a) and corresponding 95% cred-
ible intervals (b) of spatial effects for Model A.1 and the posterior mean (c) and
corresponding 95% credible intervals (d) of spatial effects for Model A.3

The posterior mean from model A.1 and model A.3 are shown in Figure Figure 3.4 a
& c respectively. The geographical variation of low birth prevalence in Nigeria varies
from −2.155× 10−4 to 1.963× 104 for the model A.1 (no covariate factors except the
geographical component) and from −0.980 to 1.363 for the model A.3 (Geo-additive
logistic model). Figure 3.4 b is the corresponding 95% credible intervals to Figure
3.4 a, with all the regions(states) showing “grey” colour depicts that there were no
significant difference in the low birth prevalence across the states. For model A.3,
Figure 3.4 c is the corresponding 95% credible intervals to Figure 3.4 c, there were
evidence of spatial variations in the low birth outcomes across the states/regions
in Nigeria after adjusting for some confounding factors. In Figure 3.4(d), districts
(states) with black colour are strictly negative, indication of a low birth prevalence
in those states. The states include Lagos, Oyo, Sokoto, Kaduna, Plateau, Taraba
and Yobe. The ‘white coloured’ regions are strictly positive, this means that the dis-
tricts (states) are associated with high prevalence of low birth weight. The states
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are; Rivers, Abia, Enugu, Kogi, Kwara, Kebbi, Zamfara and Borno. The high preva-
lence of low birth weight can be found states(districts), where child bearing women
engaged in manual labour and farming activities and arid environment, river com-
munities (areas) with pollution (water or air). Figure 3.5 represents the spatial com-

Figure 3.5: Cumulative multinomial models results, the posterior mean(e) and correspond-
ing 95% credible intervals (f) of spatial effects for Model B.1 and the posterior
mean (g) and the corresponding 95% credible intervals (h) of spatial effects B.3

ponents of the multinomial models ( B.1 and B.3). The left panels (e & f) are the
posterior means of residual spatial effects showing evidence of spatial variation. Us-
ing Figures (f) & (h) to determine the significance level, Figure 3.5(f) shows that Oyo
state with black colour had a relative low probability of low birth weight. Other
states with grey coloured had no significant variation. As displayed in Figure 3.5(h)
(Full model), the black coloured regions are associated with relative low probabil-
ity (strictly negative)of low birth weight. The states are: Ondo, Oyo, Kwara, Niger,
Kaduna, Plateau and Gombe. The white coloured regions are associated with high
likelihood of low birth size (low birth sizes). These records are observed at states:
Lagos, Ogun, FCT-Abuja, Rivers, Ebonyi, Kebbi, Sokoto, kano, Jigawa and Yobe.
Perhaps, this trend might be attributed to growing population in cities coupled with
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over stretched facilities. Other regions with grey coloured are not significant.

3.4 Discussion

This study investigates the social and demographic (environmental, maternal and
child characteristics) impacts on the child birth weight. The study simultaneously
estimated small area geographical disparities and underlying determinant factors
of child birth outcomes in the context of a developing country, Nigeria. Our fixed
effect estimates of regression models look reasonable after controlling for contextual
factors. The descriptive analysis showed that the percentage of low birth outcomes
decreases with increase in birth orders. The percentage of low birth weight was in-
versely related to the household wealth index. The summary statistics showed that
a large proportion of women had not attended antenatal check ups and they had not
given postnatal vitamin A supplements to their children.
From the binary logit analysis, the findings revealed that maternal literacy and pre-
natal iron syrup supplementation had significant association with a lower probabil-
ity for a low birth weight. Other variables include urban residence and antenatal
attendance, which also had a strong influence on low chances of low birth weight,
but they were not significant in our case.
The findings also revealed that later childhood undernutrition and morbidity had
significant association with the low birth weight. Studies have shown that the ge-
netics are inherent, as well as environmental factors has significant influence on child
birth defects. A recent study reported by Kodzi & Kravdal (2013). Our findings cor-
roborates this study. A meta-analysis study by Grunau et al. (2004) gives further
evidence that the children born of underweight mothers tend, in later life, to have
cognitive disabilities and a lower intelligence quotient. Levitt et al. (2000) have also
reported that those children who survived the misfortune of low birth weight had a
higher risk of high blood pressure, diabetes and heart diseases at adulthood.
The finding of our study revealed that cooking with firewood or dung or agricul-
tural crop residues is a critical risk factor of low birth weight. This result comple-
ments earlier work conducted in other sub-Saharan Africa countries. In a study
conducted in Zimbabwe, Mishra et al. (2004) found that low birth weight was not
only associated with lack of socioeconomic resources but also with by the use of in-
ferior energy sources for indoor cooking and by with air pollution. Studies in other
countries reported in Skokić et al. (2011) and Chen et al. (2007) had enunciated that
early childbearing (teenage pregnancies), inadequate access to prenatal health ser-
vices and economic disadvantage led to a higher prevalence of low birth weight. In
addition, poverty and low maternal education contribute significantly to poor birth
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outcomes. Our findings corroborate the those byHan et al. (2011) and Shahnawaz
et al. (2015) concerning the effect of poor maternal socio-economic factors on increas-
ing incidence of low birth weight in India and sub-Saharan Africa.
The results in this study gave a strong indication that iron syrup supplementation
during pregnancy yields improvement in child birth weight, while postnatal vita-
min A intervention would boost growth among those children born with low birth
weight. This parallels the wealth of evidence of that zinc supplementation reduces
diarrhea morbidity and respiratory infections among children. For instance, see
reports from Peru and Bangladesh, which show that zinc supplementation during
antenatal resulted in an improvement in foetal growth and birth weight (Caulfield
et al., 1999; Osendarp et al., 2003) and other similar studies by Osendarp et al. (2001)
and Haider & Bhutta (2006). Similarly, a study conducted in Tanzania by y Kawai
et al. (2011) found a strong association between multiple micro-nutrient supplemen-
tation and reduction in the risk of perinatal mortality. Mixed results are given in a
report from China by Zeng et al. (2008) on multiple micro-nutrient supplementation
during pregnancy, which indicates that it improved birth weight, but had no effect
on neonatal mortality. A contrary result was reported from Nepal by Christian et al.
(2003) and Hambidge (2000) that multiple supplementation by the addition of zinc
to iron and folic acid formulations nullified the beneficial effect of iron and folic acid
on birth weight.
It was more obvious that the continuous covariates of mother’s weight, mother’s
age, and her body mass index showed discernible associations with the child birth
weight. Our findings are consistent with established theory and even strengthen
the empirical results from similar studies. Our result revealed that an underweight
mother with body mass index (mbmi < 18.5kg/m2), mother) possesses a higher risk
of a low birth weight child, an correspondingly, an obese mother (mbmi≥ 26kg/m2)

had a higher probability of giving birth to an overweight baby, with the child also
being at risk for obesity later in life. This result is consistent with that from a recent
study by McDonald et al. (2010). Previous studies have identified that the mother’s
nutritional status or body mass index has a strong relation to reproductive health
outcome.
Epidemiological studies reported in Vangen et al. (2002) and Johnston et al. (2002)
have also estimated that environmental impacts contribute about 25% of birth weight
variance and genetic influences accounted for between 38 to 80% birth weight vari-
ance. In our analysis of the 2008 Nigeria DHS data, we have established substantial
evidence of geographical variations in the birth weight of babies across states. This
output on regional variation has corroborated the finding in similar research studies.
Recent studies by Wardlaw (2004) and Ngwira & Stanley (2015) have shown remark-
able variations in the prevalence of low birth weight according to geographical pat-
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terns. Wardlaw (2004) had reported that over 20 million infants, constituting 15.5 per
cent of all global births, are born with low birth weight. Of these, 95.6% were born
in developing countries, which was attributed to high poverty levels in developing
countries (16.5%) that are more than double the level in developed regions (7%). In
addition half of all babies of low birth weight are born in South Central Asia, where
about a quarter (27%) of the infants weigh less than 2,500 grams at birth (Ngwira
& Stanley, 2015). The low birth weight levels in sub-Saharan Africa are found to be
around 15% which is only slightly more than the 14% occurring in the Caribbean,
while in Central and South America low birth weights comprise about 10% (Ho-
sain et al., 2006; Esimai & Ojofeitimi, 2014). A significant geographical variation that
characterized the prevalence of low birth weight in Europe, with lower rates in the
more northerly countries is reported in recent study by Skokić et al. (2011).

3.5 Limitations and Concluding remarks

Birth weight is an important health parameter for obstetricians and gynecologists. It
is a good health indicator of a child-bearing mother and a strong predictor of infant
morbidity and mortality. For simple epidemiological convenience, the newborn’s
weight can be considered intuitively as being categorical in nature, and the thresh-
olds can be put on a continuous scale. In survey reporting, the mothers frequently
estimate their infant’s birth weight and make a classification in ordinal categories
(low, normal, large) instead of citing actual birth weight.
The study fits a multinomial regression model to analyze the relationships between
the polytomous response and different kind of covariates in a unified manner. The
fixed effects of bio-social covariates were estimated in a parametric way and the non-
linear effect modeled using P−splines. The spatial component was modeled using a
conditional auto-regressive prior. A penalized maximum likelihood estimation was
performed to estimate the model parameters.
The cross sectional data on 28,647 children born between 2003 and 2008 were ex-
tracted from the 2008 Nigeria Demographic and Health Survey. The results iden-
tified risk factors that were significantly associated with low birth weight, which
include multiple birth, short interval between births, death of a sibling, disease mor-
bidity, mother’s smoking, firewood or dung for cooking and household poverty. The
findings further showed spatial patterns, which are not captured by the underlying
determinants, and produced probability predictive maps of the spatial residual ef-
fects. In addition to the statistical relevance of our method, the generated spatial
maps identified areas where low birth weight was highly endemic, which can assist
government agencies in channeling scarce health resources. A comprehensive ap-
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proach which institutes a combination of interventions to improve the overall health
care of the women is needed.
This is cross-sectional data and is self-reported, as is the case for much survey data.
Thus, the causal relationship may be difficult to establish with non-response cases.
In addition, the self-reported nature of the data means that there is tendency of
recall-bias, especially with issues relating to age, birth size or actual birth weight
of the children. The birth weight of new baby is a good indicator of health status of
the child at birth but many babies in sub-Saharan Africa are not weighed at birth.
Thus, the mother’s report on the size of the baby at birth is used as a proxy. Fur-
thermore, the analyzed sample is not representative of the populations considered,
as birth weights were recorded for a relatively small fraction of births in these pop-
ulations. Our attempts to understand the implications of the selective nature of the
birth weight data on our estimates suggest that we may have overestimated the ad-
verse effects of very high parities and underestimated the advantage of something?
at more moderate levels. In spite of these limitations, it is our belief that the findings
from this study will facilitate targeted interventions and strategic policies.
The present study explored a robust and flexible methodological approach to an-
alyze the birth weights of under-five children in 2008 Nigeria Demographic and
Health Survey data. The multivariate analysis takes into account the influence of un-
observed factors related to individual households on child birth weight . Such health
outcomes can facilitate effective policy for maternal and child health care. Having
controlled the confounding factors in the analysis, the method produced predictive
spatial maps of the residual effects that could not been captured by the underlying
factors in a classical regression setting, which would have been neglected. The sta-
tistical significance of the variables discussed in the fixed effect table can be used
to formulate appropriate policy concerning intervention programmes. The spatial
plots highlight hot-spots that can assist government to channel resources in an effi-
cient manner.

3.6 Addendum

In the ordinal regression analysis carried out in this chapter, the estimates of the re-
gression coefficients were not stable, this violates the independent assumption (par-
allelism of separate binary logistic regression). This addendum is necessary to aug-
ment the gap noticed.
In the ordinal logistic regression analysis above, the outcome variable is ordered,
and has more than two levels. For example, a child birth weight is ordered from
very low to large birth size; maternal highest educational level attained is scored

47



3.6. Addendum

from level 1 to 4; and a response scale of a survey instrument is ordered from no
formal education to graduate level. One appealing way of creating the ordinal vari-
able is via categorization of an underlying continuous variable, see Hosmer (2000);
Archer et al. (2007) and O’Connell (2006) for further readings.
The present study used the child birth size as an ordinal outcome variable, which
is coded 1 = very low; 2 =low, 3=normal and 4 = large) , which is based on catego-
rization according to World Health Organization and DHS report. The child birth
weight are categorized in the very low birth size if the birth weight is less 1.5 kg,
those with between 1.5 and 2.49 kg are categorized in the low birth size; between 2.5
kg and 3.19 are categorized as normal (average) birth size and child’s birth weight
of 3.2 kg or more are categorized in the large size. The distribution of child birth
weight is highly positively skewed. The violation of the assumption of normality
makes the use of ordinary multiple regression analysis inappropriate. Therefore, the
ordinal logistic regression is the most appropriate model for analyzing the ordinal
outcome variable in this case.
The ordinal logistic regression model can be expressed as a latent variable model
discussed in the literature such as Agresti (2003); Wooldridge (2010) and Ananth &
Kleinbaum (1997). Assuming a latent variable structure, by creating an auxiliary
variable, Z such that

Z = Xβ + ε (3.6)

where X is a row vector (k× 1) containing no constant, β is a column vector k× 1 of
structural coefficients, and ε is random error with standard normal distribution i.e.
ε ∼ N(0, 1).
Let Z be divided by some cut points (thresholds) such that θ1, θ2, . . . θk , and θ1 <

θ2 < . . . < θk. Considering the observed child birth size is the ordinal outcome, y,
ranging from 1 to 4, where 1= very low, 2 = low , 3-normal and 4 = large (combining
large and very large from DHS data),

Y =



1 if z ≤ θ1

2 if θ1 < Z ≤ θ2

3 if θ2 < Z ≤ θ3

4 if θ3 < Z ≤ +∞
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Therefore, the probability of a woman giving birth to a child falling in j birth size
category, can be computed by

P (y = 1) = P (z ≤ θ1)

= P (xβ + ε ≤ θ1)

= F (θ1 − xβ)

P (y = 2) = P (θ1 < Z ≤ θ2)

= F (θ2 − xβ)− F (θ1 − xβ)

P (y = 3) = P (θ2 < Z ≤ θ3)

= F (θ3 − xβ)− F (θ2 − xβ)

P (y = 4) = P (θ3 < Z ≤ +∞)

= 1− F (θ3 −Xβ)

The cumulative probabilities can also be computed using the form:

P (Y ≤ j) = F (θj −Xβ),where j = 1, 2, . . . J − 1 (3.7)

In a binary logistic regression model, the response variable has two levels, with 1 =
low birth weight < 2.5kg, and 0 = cbw ≥ 2.5kg. The probability of a woman giving
birth to a child with low birth weight is predicted on a set of predictors. The logistic
regression model can be expressed as:

ln(Y ′) =
logit[π(x)]

1− logit[π(x)]

= ln

(
π(x)

1− π(x)

)
= θ +

p∑
j=1

x′β

Therefore, the probability of low birth category (i.e success) can be defined by πi =

F(x′iβ).

Similar to logistic regression, in the proportional odds model, it is easier to work
with the logit, or the natural log of the odds. To estimate the ln (odds) of being at or
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below the jth category, the PO model can be rewritten as

logit(π(Y ≤ j|X)) (3.8)

= ln

(
π(Y ≤ j|x1, x2, . . . , xp)

π(Y > j|x1, x2, . . . , xp)

)
= θj + (−β1X1 − β2X2, . . . ,−βpXp)

Thus, this model predicts cumulative logits across J − 1 response categories. By
transforming the cumulative logits, we can obtain the estimated cumulative odds as
well as the cumulative probabilities being at or below the jth category. The propor-
tional odds (PO) model, also known as cumulative odds model, see Agresti (2003);
Lee (1992) and O’Connell (2006) for further readings.
From the analysis above, the independent assumption of covariate factors could not
be sustained in our cumulative logit model above. The study then propose a model,
which would allow the marginal utilities to vary at the individual level:

Zij = X ′ijβi + εij (3.9)

where the εij are again independent of everything else, and of each other, either
extreme value, or normal. We can also write this as

Zij = X ′ij β̄ + ϑij (3.10)

where
ϑij = ε+Xij � (βj − β̄) (3.11)

The expression in equation (3.11) is no longer independent across categories. The
key ingredient is the vector of individual specific risk factor parameters βi, for ex-
ample, preceeding birth intervals, severity of household poverty or multiple birth
could vary for each category in each binomial logit model and the situation is now
been represented by the random term, ϑij introduced in equation (3.10) to salvage
the situation noted in the results above. The is a formulation of a random multino-
mial logit (probit) model. For a general discussion of such models and their prop-
erties in approximating general choice patterns, see McFadden & Train (2000) and
Heckman & Singer (1984).
One possibility assume the existence of a finite number of types of individuals, sim-
ilar to the mixture models suggested by Heckman & Singer (1984) in duration set-
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tings: βi ∈ {β1, β2, . . . , βk}with

Pr(βi = bk|Xi) = πi (3.12)

Or equivalently

Pr(Yi = j|Xi) =
exp(Xijβ)

1 +
∑J

i=0 exp(X′ijβ)
(3.13)

co-variables, X are not fixed effect covariates as applicable in the analysis above
and they can include unobserved heterogeneity random effect factors. To estimate
the parameters in the equation (3.12), one can appeal to the Gibbs sampling with
the unobserved βi as additional unobserved random variables may be an effective
way of doing inference. Alternatively, one can use EM algorithm due to Dempster
et al. (1977). See Heckman & Singer (1984) and Boxall & Adamowicz (2002) for more
discussions on random utility models.
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Chapter 4

A Hierarchical Bayesian Modeling

of Geographical Pattern of

Childhood Mortality in Nigeria

Despite remarkable growth recorded by many economies in the last two decades,
many developing countries have failed to attain the target Millennium Develop-
ment Goals (MDGs 1) four(4), the (reduction of under-five mortality by two-thirds
between 1990 and 2015) and seven (7), the targets for water and sanitation in urban.
Five countries accounted for half of the global infant mortality with Nigeria being
the third largest contributor to the under- five mortality rate among children in sub-
Saharan Africa (Black et al., 2003; Ayoola et al., 2005). In 2013, the mortality rates for
the five countries were: India (24%), Pakistan (10%) , Nigeria (9%), the Democratic
Republic of Congo (4%) and Ethiopia (3%) as reported in You et al. (2013). According
to a World Bank report, the prevalence of high child mortality in Africa is concen-
trated in the four sub-Saharan countries of Malawi, Nigeria, Tanzania and Zambia.
In 2003, the mortality rates among children less than five years old were estimated
at 187 per 1000 live births for Malawi, 183 for Nigeria, 165 for Tanzania, and 202 for
Zambia, which are among the highest in the world (Bryce et al., 2003).
Globally, about a billion people still lack access to improved drinking water and ap-
proximately 2.5 billion lack improved toilet facilities, which are major causes of diar-
rhoea infections(Montgomery & Elimelech, 2007; Bartram & Cairncross, 2010). The
unimproved hygiene during food preparation, contaminated water, open defecation

52



and improper faeces disposal could also result in diarrhoea among children, which
globally accounts for approximately 1.4 million child deaths each year (Bartram &
Cairncross, 2010; Oloruntoba et al., 2014). In a study recently conducted by Black et
al [8], it was reported that an estimated 8.8 million children died worldwide from
infectious diseases and about 68% (5.970 million) death was caused by diarrhoea.
However, Aiello et al. (2008) previously reported that access to improved water and
sanitation can lead to a reduction in cases of child diarrhoea and childhood mortal-
ity rates.
The major contributory cause of child mortality is attributed to individual family
poverty levels or poor household’s environments, highly concentrated in rural areas
or slums in big cities (Wagstaff, 2002; Fotso, 2006; Isunju et al., 2011). The household
poverty and poor environments could exacerbate the problems of poor health and
disease prevalence among children, and hence, the high mortality risks. It has been
suggested that health inequalities not only reflect the poor health of the most dis-
advantaged people, but also the apparently limitless health benefits associated with
rising socioeconomic status (Oloruntoba et al., 2014; Pearce et al., 2010).
A good number of studies have investigated the health inequality of sub- popula-
tions from the perspective of geography, epidemiology, and public health showing
that where people live significantly affects their health outcomes are well detailed in
the literature (Pearce et al., 2016; Pearce & Dorling, 2006; Curtis, 2004). Some studies
commonly employ disease mapping models and applications. A wide range of these
studies include sudden infant death syndrome by Lawson et al. (2000), lip cancer in
Scotland by Clayton & Kaldor (1987), child mortality by Marshall (1991), and stom-
ach and bladder cancers in Missouri by Tsutakawa et al. (1985). Other studies have
found significant associations between proximity to industrial sites and leukemia
and lymphoma as reported in Ramis et al. (2009). Recently, a study conducted by
Martuzzi et al. (2010) on congenital anomalies and total cancer mortality has shown
that the diseases were found to be associated with waste-related environmental pol-
lution.
The challenge of the geographical analysis of health is that it has to deal with method-
ological uncertainties as well as social and political issues. Methodological uncer-
tainties are caused by issues of ecological fallacy, scale, modifiable areal unit prob-
lems (MAUP) and spatial autocorrelation (Shaw et al., 2001; Wong, 2009). The sta-
tistical challenge may arise while making inference about a sub-population or area
characteristics regarding an individual within the population. These statistical is-
sues are commonly evolved during analyzing the small area estimation of aggre-
gated data, which also require taking local spatial correlation into account (Cressie,
1993; Bernardo et al., 2003). For example, Beale et al. (2008) also recognized another
challenge of data sparseness, which is a major problem in small area analysis, es-
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pecially when it involves rare diseases. A small number of observed and expected
disease occurrences at health unit, district or regional level can lead to unstable risk
estimates or unusual relative risk estimates Ancelet et al. (2012). To handle the prob-
lem of over-dispersion and sparsity, random effect models are commonly formu-
lated to deal with the problems arising from high varying population sizes for count
data within a hierarchical framework as suggested in the literature (Wakefield, 2006;
Lee & Durbán, 2009; Fong et al., 2010).
This study therefore used an exploratory method to estimate the SMR of each state
(district) in Nigeria and mapped it onto the geographical regions to highlight un-
usual clusters of low (high) child mortality in the country. The study then pro-
posed Bayesian hierarchical models to capture the unmeasured random heterogene-
ity effects in child mortality data and estimated the geographical inequalities of the
under-five mortality prevalence across the districts (states). The statistical inference
was performed within a full Bayesian framework.

The paper is structured in the following order. In Section 2, the study describe
the study design, data exploration, and the disease mapping models, including ex-
ploratory data analysis. Section 3 described the Bayesian hierarchical models within
generalized linear mixed models. In Section 4, the proposed models are applied to
under-five mortality rates from the 2013 Nigeria DHS. Section 5 presents the discus-
sion and the concluding remarks of the present study.

4.1 The Data Exploration

The common sources of data for cause-specific mortality include vital registration
systems, sample registration systems, nationally representative household surveys
and sentinel Demographic Surveillance Sites for epidemiological studies. With an
exception of a few countries, such as South Africa, reliable and functioning vital
registration systems have been presented a challenge in supporting attribution of
causes of child death in many low-middle income countries, particularly in sub- Sa-
haran Africa (Osterbauer et al., 2012; Rudan et al., 2005).
The main source of data for researchers to guide policy makers in a developing coun-
try such as Nigeria is the National DHS conducted by the Data Measure program.
The United States Agency for International Development (USAID) has provided the
technical assistance and funding to conduct surveys in several developing coun-
tries, thereby promoting global understanding of public health. The DHS program
collects survey data nationally on a variety of socio-demographic and health related
issues. The survey collected information about the background of the respondents,

54



4.1. The Data Exploration

specifically collected information on fertility levels, marriage, fertility preference,
awareness and use of family planning methods, child mortality and child nutrition.
Detailed information and procedures about the data collection, and questionnaires
have been published elsewhere by Nigeria Demographic and Health Survey (2014).
The 2013 NDHS survey conducted by the DHS measure used a multi-stage cluster
design consisting of 40 320 households in 904 clusters with 372 in urban areas and
532 in rural areas. The survey successfully interviewed 38,948 women occupied in
38 520 households nested in 886 clusters. This yielded a household response rate
for women of 99 %. Data extracted from the 2013 NDHS for the present study are:
the number of children born between 2008 and 2013, the number of children alive
and counts of child deaths at the time of the survey, the proportion of poorest and
poor households, the number of cases (children) experiencing diarrhoea two weeks
prior to the survey, the number of households using solid cooking fuels such as, coal,
charcoal, fire wood, cow dung and agricultural crop residues.
For the purpose of the present study, Figure 4.2 shows the geographical map of Nige-
ria showing 36 states (districts) and the Federal Capital Territory, Abuja. Nigeria
comprises of six geopolitical regions; North-East, North-West, North-Central, South-
East, South-South, and South-West which are sub-divided into 36 administrative
states and the Federal Capital Territory (FCT). The population groupings within the
geopolitical regions and states are relatively homogeneous. Also, the people’s cul-
tural beliefs such as the demographic characteristics, arid environment factors and
socio-cultural structures are considered similar within the geopolitical zones and
states.

Figure 4.1: Map of Nigeria showing 37 districts(36 states and Federal Capital Territory
(FCT), Abuja)

In disease mapping, the first step is the removal of the effect of the confounding
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factors on the risk estimate in the study population through distribution standard-
ization. Standardization of mortality rates(SMR) or disease incidence is a basic tool
in both demography (Rothman et al., 2008) and epidemiology (Rothman et al., 2008;
Woodward, 2013). The most frequently used method in epidemiology is the tradi-
tional method for estimating the relative risk is the internal standardization method,
which calculates the expected disease counts as functions of the observed numbers
of cases. Lawson et al. (2003) had earlier detailed the Bayesian methodology for es-
timating SMR, its inherent challenge and procedure for the application. Recently,
Wang et al. (2019) has investigated that mathematical expressions such as SMR are
regarded as incoherent and not generative in probability theory, because the ob-
served count appears on both sides of the equation.
For the purpose of present study, we first applied the internal standardized method
to the Nigeria DHS data. Consider the death counts, Yk aggregated data over a state
(district), say, 37 (k = 1, . . . , 37) states , where the mother, k resides in Nigeria. The
SMR is calculated as

SMRk =
Yk
Ek

(4.1)

where, Ek is computed by

Ek = nk

(∑37
i=1 Yk∑37
k=1 nk

)
.

In equation (4.1), Yk is a random variable representing the number of observed cases
(under-five deaths) in each kth state (district) and nk represents the number of chil-
dren at risk( the number of under-five children in each state, k). In addition, SMRk

is calculated as the ratio of observed number of child death cases to the expected
number of cases in the kth state, representing the risk of each kth small area . When-
ever the value of SMR is greater (lower) than one (1), it indicates that the area (state)
k has a higher (lower) than the average disease risk of the whole region. For exam-
ple, for SMRk = 1.25, it can be said that the area k has a 25% higher risk of the
disease (childhood morbidity). These quantities, SMRk are plotted as a crude map.
This estimator is unbiased, and is frequently used by epidemiologists. However, this
estimate is based only on a sample size of one and hence it is not really statistically
useful because it is a saturated model. Some of the advantages and disadvantages
of a crude map of SMR have been highlighted in Lawson et al. (2000).
In recent years, the attempts to map incidence and mortality from diseases such as
cancer have been explored. Such maps usually display either relative rates in each
district or province, as measured by a SMR or similar index. The standard models
are detailed in the literature on the empirical methods and its applications can be
found in Lawson et al. (2003) and Lesaffre & Lawson (2012). According to Wakefield
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(2006), the mean of the estimator,θ̂k and its variance, which will be large if the ex-
pected number of incidence cases is small. This is one of the disadvantages of using
the SMR. Other disadvantages are discussed by Lawson (2013), showing that the
SMR is based on a ratio estimator.
Figure 4.2(a) displays the map of observed mortality counts across the 37 states (dis-
tricts) in Nigeria, Figure 4.2 (b) is the map of SMRs of the child mortality. Table
4.1 presents the summary statistics of observed death counts and SMR estimates,
with SMRs having their mean value of 0.920 (standard deviation: 0.306). Although,
the evidence of observed lower SMRs were recorded in the southern regions of the
country, the geographic variation in child mortality with clustering of high mortality
observed in the northern states with a relatively low mortality prevalence (isolated
area) of Borno state is apparent. No clear spatial pattern emerges from the map.
Figure 4.2 (a) displayed the crude mortality counts, and clusters of child mortality

(a) observed death counts (b) crude standardized mortality ratio
SMR

(c) proportion of poor households (d) smoothed relative risk RR map
from independent Poisson-Gamma
distribution

Figure 4.2: Descriptive summary maps: (a) observed death counts (b) crude standardized
mortality ratio, SMR (c) proportion of poor households (d) smoothed relative
risk RR map from independent Poisson-Gamma model based on 2013 Nigeria
DHS

could be observed on the black regions and concentrated in the northern part of the
country. Figure 4.2 (c) shows that most northern states are darker, while the south-
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ern regions are lighter signifying the severity of household poverty from light (least
materially deprived) to darkest (most materially deprived). This indicates that there
are more economically deprived households in northern Nigeria than in the south-
ern regions. Figure 4.2 (b) represents the map of SMR, showing that some states
were observed with an unusual low (high) mortality prevalence, while such districts
(states) are bordered /surrounded by relatively high mortality states. For instance,
a case of isolated low prevalence could be seen at state, like Borno State, which is
surrounded by states with relatively high child mortality. There was also evident of
geographical disparities with no clear patterns. Another scenario can be seen in a
state like Zamfara (with a high mortality rate (130)), which shares boundaries with
states in the north -western region with other relatively high mortality states such
as Kebbi (109.55) and Sokoto (124.77). These scenarios may better be handled by a
spatial random effect model or the BYM model, which exhibit borrowing strength
that the close neighbours to each other share similarities in their spatial prevalence.
The summary statistics, standardized mortality ratios (SMR), model parameters es-

Table 4.1: Descriptive Statistics of the death counts, the expected counts and standardized
mortality ratios(smr) on under-five deaths by State for 5-year period(2009-2013)
in Nigeria DHS 2013

Min. 1st Qu. Median Mean 3rd Qu. Max.
Observed counts (y) 21 39 51 78 104 229
Expected Counts (E) 43.73 51.15 61.42 78.00 98.64 197.80
SMR 0.4105 0.7251 0.8303 0.9097 1.0770 1.7570

timates and predictive probability maps of under five mortality are presented in this
section. The first step of the analysis is to compute SMRs and plots of SMR maps
to examine the geographical patterns of child mortality. Figure 4.2(a) displayed the
map of observed mortality counts across the 37 states(districts) in Nigeria, while Fig-
ure 4.2(b) is the map of standardized mortality ratios (SMR) of the child mortality
and corresponding Table 4.1 with SMRs vary widely around their mean, 0.920, (stan-
dard deviation: 0.306). Although, the evidence of observed lower mortality risk(
SMRs) occurred in the South- Western states of Nigeria and some parts of the South-
East and South-South regions of Nigeria, it is apparent to notice the geographic vari-
ation in under-five mortality with clustering of high mortality observed in the north-
ern states with a relatively low mortality prevalence (isolated area) of Borno state.
No clear spatial pattern emerges from the map Figure 4.2a on the observed counts.

Figure 4.2 displays the map of (a) the observed child death counts, (b) crude stan-
dardized relative risk and (c) Poverty index(d) smoothed relative risk RR map from
independent Poisson- Gamma distribution. From Figure 4.2 a, (the raw death counts
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map), the cluster of child mortality is found to be concentrated in the north part of
Nigeria. With reference to Figure 4.2c, most northern states are more darker than the
southern regions. This indicates that there were more economically deprived house-
holds living in the northern Nigeria than the southern regions.
Figure 4.2 b displayed the map of crude SMR, showing few districts (states) were
observed with an elevated usual(low or high) mortality incidence, while such dis-
tricts(states) are bordered /surrounded with relatively high counts. For instance, the
observed (isolated) low incidence of mortality in Borno State, which was surrounded
by states with relatively high death counts was an evidence of geographical dispar-
ities with no clear patterns. Another scenario ocan be seen in a state like Zamfara
(with high mortality count (130)), which shares boundaries with states in the North -
West region with relative high mortality risk states such as Kebbi (109.55) and Sokoto
(124.77) (refer to Table 4.2. These scenarios may be better handled by spatial random
effect model or the BYM model, which exhibit borrowing strength i.e. regions close
to each other share similarity .
Table 4.2 presented in the appendix. The Table displayed the number of child deaths,
total births, expected deaths, and relative frequency distribution. The study in-
volved 31482 children born between 2009 and 2013. Out of which 2886 children died
before reaching age five years. Zamfara recorded the highest child mortality and
relative frequency of 229(7.96) and the second highest occurred at Kano 221(7.66)
both states are found in the north-west regions of Nigeria. The lowest under-five
mortality was recorded in Osun state of 21(0.73).

Figure 4.2 (b) also depicts the empirical estimation of SMR of child mortality. The ge-
ographical patterns of child mortality distribution are similar for both Figures (a)raw
mortality count map and the crude SMR (b). The clusters of high mortality or con-
centrated mortality found in the northern regions could be attributed to partly un-
observed heterogeneity and environmental factors. The smooth SMR map (d) shows
evidence of localized spatial smoothness and neighbouring states exhibited similar
patterns of mortality risk, while other neighbouring regions far apart showed differ-
ent series of risks. From Figures 4.2 (b) & (d) , the SMR with RR greater than one
indicates significantly excess(higher) mortality and they are regions coloured black.
The light coloured regions are states signifies low prevalence(RR less than one) of
child mortality, while the grey coloured regions are not significant.
Furthermore, the smooth maps (d) was obtained from the independent Poisson
model and relative risk (RR mean) was shown in Figure 4.2 (d). The map depicts
that such model could not capture the geographical variation in the spatial pattern
of the actual mortality count data. For instance, discontinuities can be seen in some
states with clustering of high mortality rates in the north when compared with the
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Table 4.2: Descriptive distribution of observed counts, total births, expected counts, relative
frequency of under-five deaths by state in 2013 NDHS

State Observed Expected Relative SMR Total
Deaths deaths frequency child birth

Abia 39 46.57 1.35 0.43 508
Adamawa 100 91.76 3.47 1.89 1001
Akwa ibom 43 52.80 1.49 0.87 576
Anambra 46 49.23 1.59 0.35 537
Bauchi 180 131.92 6.24 2.39 1439
Bayelsa 58 75.26 2.01 0.96 821
Benue 61 60.50 2.11 1.11 660
Borno 28 55.00 0.97 0.58 600
Cross river 36 48.22 1.25 0.57 526
Delta 46 63.44 1.59 0.70 692
Ebonyi 92 66.00 3.19 1.69 720
Edo 27 54.55 0.94 0.56 595
Ekiti 33 48.59 1.14 0.63 530
Enugu 46 52.62 1.59 1.00 574
FCT-Abuja 28 45.93 0.97 0.26 501
Gombe 126 105.88 4.37 2.88 1155
Imo 40 43.73 1.39 0.30 477
Jigawa 194 131.64 6.72 2.41 1436
Kaduna 51 80.40 1.77 0.26 877
Kano 221 197.83 7.66 1.65 2158
Katsina 136 133.57 4.71 1.24 1457
Kebbi 152 109.55 5.27 3.39 1195
Kogi 27 44.83 0.94 0.43 489
Kwara 46 62.61 1.59 0.53 683
Lagos 64 87.00 2.22 1.07 949
Nasarawa 58 60.05 2.01 0.66 655
Niger 57 87.64 1.98 1.16 956
Ogun 37 49.14 1.28 0.62 536
Ondo 48 59.40 1.66 0.94 648
Osun 21 51.15 0.73 0.35 558
Oyo 36 60.60 1.25 0.59 661
Plateau 51 61.42 1.77 1.04 670
Rivers 39 49.23 1.35 0.31 537
Sokoto 163 124.77 5.65 1.43 1361
Taraba 123 114.22 4.26 1.25 1246
Yobe 104 98.64 3.60 0.80 1076
Zamfara 229 130.36 7.93 0.08 1422
Total 2886 2886 100 37.4 31482

SMR= standardized mortality ratios=Y
E

; relative frequency= yi∑
ni

∗ 100

observed counts map. Katsina State recorded the highest expected counts and pos-
terior mean RR, but the Poisson model (no random effect) would classify Katsina
lower than the actual mortality level. Another scenario in the spatial disparities was
also observed in Ekiti State in south-west Nigeria with small expected counts, but
the state was an elevated high risk. This dispersion can be attributed to small popu-
lation size. The independent Poisson sometimes under-estimates the mortality risk
such as Balyesa and Lagos, perhaps these could result from a high expected value
(denominator).
A careful inspection of the expected counts in Figure 4.2 reveals that higher child
mortality risk were detected in some states of the north regions resulting from em-
pirical computation of SMR i.e. Kano, due to large expected count of 197.827 (divi-
sor)(see Table 4.2). Four other states were considered with expected counts of 46.569,
51.153, 61.420 and 131.64 corresponding to approximate percentile values of 0th , 25th

, 50th and 90th of the expected counts respectively. It is worth mentioning that the
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choice of unusually low relative risk values (SMR) (10th percentile of the expected
counts) would establish an epidemiological importance. Interestingly, some districts
(states) had unusual low death rates surrounded by neighbouring states with a fairly
high mortality risk. The expected mortality rates of the four states correspond to the
percentiles (10th - 90th percentile): Abia (46.57), Osun (51.12), Plateau Sate (61.42)
and Jigawa (131.64). For example, Plateau state (61.42) had relative low prevalence
but is surrounded by states had relatively high mortality. In such cases, the mortality
rates in those neighbouring states may have a substantial influence on the smooth-
ing effects on states that share borders. This scenario can be handled by the spatial
conditional auto-regressive (CAR) model.
To conclude this section, in comparing the smooth maps of the SMR map and the
PG map, it shows that there was no clear difference in the smooth risk maps from
both estimates. The empirical approach makes epidemiological sense and provides
better understanding of mortality prevalence across the regions in Nigeria. These
maps are primarily used as a tool for identifying regions with unusually (low) high
risk area, so that further attention can be given to these priority districts (states).

4.2 The Statistical Models

The mapping of mortality rates or disease incidence could provide important in-
formation in many epidemiological studies for resource allocation and disease man-
agement. To estimate and map crude mortality rates, particularly rare disease aggre-
gated at the administrative unit or regional level can be statistically challenging if the
high variability of population sizes over a small area is not taken into account. To
mitigate the problem, an exploratory data analysis was carried out by mapping the
SMR as suggested by Leroux et al. (2000). The following four models are explored
to capture the effects of spatial dependence and overdispersion in the data.

Model 1: Poisson-Gamma Model

The Poisson-Gamma model is sometimes used to model the relative risk of the num-
ber of child mortality in a district (state). The relative risk combines with the Poisson
likelihood function for the death counts and Gamma prior distribution to yield a
Gamma posterior distribution for the relative risk (Clayton & Kaldor, 1987; Lawson
et al., 2003).
Let yi and Ei; i = 1, . . . , n, denote the observed and expected number of death cases
in district (state). We also assume the death count that yi ∼ Pois(EiΨ) , where Ψ is
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the unknown relative risk and Poisson mean, µ is modeled as

Model 1: µ = EiΨ. (4.2)

where i = 1 . . . 37 in our study n=37 districts (states). Hence, the Likelihood function
for yi is given as

P (y|EiΨ) =
n∏
i=1

(ΨiEi)
yi

yi!
exp(−ΨiEi). (4.3)

The prior distribution of the relative risk Ψi denoted by p(Ψi), which takes a gamma
distribution with parameters a and b > 0 i.e. Ψi v Γ(a, b) with mean is E(Ψ̂i) = a

b =

µ and the variance is var(Ψi) = a
b2

= σ2. Thus, the prior distribution is denoted by

P (Ψi|a, b) =
ba

Γ(a)
Ψa−1
i exp(−bΨi) (4.4)

Using the equation (4.4), the resulting posterior distribution is given by

P (a, b,Ψ|y) ∝
n∏
i=1

(ΨiEi)
yi

yi!
exp(−ΨiEi)

n∏
i=1

ba

Γ(a)
Ψa−1
i exp(−bΨi) (4.5)

The parameters a, b and Ψ are estimated using MCMC via Gibbs Sampling. The
Poisson-gamma posterior conjugate can be derived sinceP (Ψi|a, b, yi) = Gamma(a+

yi, b+ Ei). Thus, the posterior mean of Ψi is equal to Ψ

E(Ψi|yi, a, b) =
a+ yi
b+ Ei

= wiSMRi + (1− wi)
yi
Ei

(4.6)

where wi = b
(b+Ei)

, represnts a weighted average that indicates on how much the ob-
served SMRi is shrunk towards the individial expecation, Ei of the posterior mean
as explained in Lesaffre & Lawson (2012).
One advantage of the Poisson-gamma model is that it provides a simplified way to
accommodate over-dispersion in the model as shown in 4.6, especially since a closed
form can be derived to express the relationship between the mean and the variance
structures in a simplied version. A drawback is that Poisson-gamma model does not
permit the inclusion of covariate(s) in the model according to Best et al. (2005) and
Lawson et al. (2003).
Other approach of modeling mortality counts is based on the Poisson cluster model
that incorporated the spatial random effects via generalized linear mixed models
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suggested in literature, see Lawson (2013) and Mariella & Tarantino (2016) among
others. The following spatial random effect models (Poisson-Log-normal, condi-
tional auto-regressive and the BYM models) are also explored below.

Model 2: Poisson Log-Normal model

Clayton & Kaldor (1987) first proposed a Poisson log normal model that combines
the relative risk and a normally distributed random variable. The model includes
the area-specific random effects or spatially unstructured random effects, vi and the
overall relative risk, Ψ. The model was based on assumptions that the logarithm of
relative risk follows a multivariate log-normal distribution with normal prior hyper-
parameters µ and σ2

v . The spatially unstructured random effects were modeled as
using the normal prior with a zero mean Gaussian prior distribution and its vari-
ance, σ2

v , such that vi v N(0, σ2
v).

From equation (4.2) above, µi = EiΨ, the log normal model for the relative risk
becomes

Model 2: log(µ) = log(E) + log(Ψ) = log(E) + η. (4.7)

where the linear link function η = log(Ψ)−X ′β + vi.
where vi is the spatially unstructured random effects that were modeled as using the
Gaussian prior distribution with a zero mean and the variance, i.e. vi ∼ N(0, σ2

i ),
where σ2

i represents specific area variance. X is a vector of covariates ( such as pro-
portion of poor households, unimproved source of drinking water, unprotected toi-
let, children having diarrhoea, the proportion of mothers using solid fuels (coal,
wood, agricultural residues cow dung etc ) as cooking method. Thus, the relative
risk provides a more flexible alternative to the independent Poisson model, as stated
in Lawson (2013).

Model 3: Conditional Autoregressive (CAR) Model

The conditional autoregressive (CAR) model has been widely used for the analysis
of spatial data in different areas, such as demography, geography and epidemiol-
ogy. This model was introduced by Besag et al. (1991) as a spatial methodology
to estimate disease risk, which assumed a region shares spatial similarity with its
neighboring regions. In general, the CAR model is a class of Gaussian Markov ran-
dom fields characterized by a conditional probability density function and is used
to capture areas or regions that are highly related in spatial associations to a specific
area as discussed in Cressie (1993) and Besag (1974).
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Here, ui is used to represent the spatially structured (correlated) random effects,
which is been modeled using the conditional autoregressive prior distribution as
proposed by Besag et al. (1991).
Using equation (4.2) above, µi = EiΨ, the CAR model for the relative risk becomes

Model 3: log(µ) = log(E) + log(Ψ) = log(E) + η. (4.8)

and the linear link function becomes η = log(Ψ) = X ′β + ui.
where ui is modeled by conditional autoregressive prior distribution due to Besag
et al. (1991) defined as

(
ui|uj , j 6= i, σu

2
)
v N

(∑
j 6=i

wiuj
wij

, σu
2

wij

)
, where area i ∼ j are

adjacent (neighbours), wij = 1 and zero if they are not. X is a vector of covariates as
defined above.

Model 4: Baseg, York and Mollie (BYM) Model

BYM model was introduced firstly by Clayton & Kaldor (1987) and later extended
by Besag et al. (1991). BYM model facilitates the splitting of the spatial random
effects into two components: spatial random and heterogeneity components. One
component represents the spatial structured random effects, denoted by ui, which
accounts for the effects that vary in space (clustering or correlated heterogeneity)
and the spatially unstructured effects vi that takes model the effect of area specific
area level.

yi v Poisson(ΨiEi) (4.9)

The log relative risk are modeled through

Ψ̂i = exp(α+ ui + vi) (4.10)

thus, by taking logarithm, we obtain

η = α+ ui + vi (4.11)

where α is the overall relative risk (intercept). Besag et al. (1991) assumed that the
two random effects are independent and requires a specification of independent pri-
ors. The prior distribution model for the spatially unstructured vi are assumed to
follow a normal distribution and it is given as vi v N(0, σ2

v) and the prior distri-
bution for the CAR model as defined above. The variance component parameters
σu

2 and σv2 control the variability of ui and vi respectively as stated in Lawson et al.
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(2003). In a full Bayesian analysis, prior distributions are specified for those pa-
rameters. We considered gamma distributions for both parameters, as suggested by
Bernardinelli & Montomoli (1992).
With the observed death count, yi ∼ Poisson(Ei exp(ηi)) and µi = Ei exp(ηi) is the
mean of the Poisson distribution, then the BYM model for the relative risk becomes

Model 4: log(µ) = log(E) + log(Ψ) = log(E) + η. (4.12)

with the linear link function becomes η = log(Ψ) = X ′β+ui+vi. and the log relative
risk log(Ψi) = ηi.
Fitting a generalized linear mixed model with the log link function, we have

log(µi) = log(Ei) +X ′β + ui + vi (4.13)

where y,X, β, E and µ are observed cases, X, the vector of covariates, the associated
parameters, the expected number of cases, and the relative risks of child mortality
prevalence respectively.

4.3 Parameter Estimation

Defined the likelihood function as

l(β, u, v =

n∏
i=1

(Ei exp(ηi))
yi exp(−Ei exp(ηi))

y!
= P (y, E,Ψ|β, u, v) (4.14)

The prior distribution for β with inverse variance(precision, τβ = 1/σ2
β)

p(β) =

(
1

2π

)p/2( 1

τβ

)p
exp

−1

2

p∑
p=0

β2
p

τ2
β

 (4.15)

prior distribution for the area -specific random effect vi is defined by

p(v) =

(
1

2π

)n/2( 1

τv

)n
exp

(
−1

2

n∑
i=1

v2
i

τ2
v

)
(4.16)
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and prior distribution for the CAR structure ui is defined by

p(u) = ui|uj, j 6= i, τ 2
u ∼ N

(∑
j 6=i

wijuj
wij

,
τ 2
u

wij

)
∼ CAR(0, τ 2

u) (4.17)

Putting (4.14) through (4.17) together, the posterior distribution is obtained as

p(β, u, v, τ2
β , τ

2
u , τ

2
v |y, E,Ψ) ∝ p(y, E,Ψ|β, u, v, τ2

β , τ
2
u , τ

2
v )p(β, pu, pv) (4.18)

Therefore yields

p(β, u, v, τ2
β , τ

2
u , τ

2
v |y, E,Ψ) =

n∏
i=1

(Ei exp(ηi))
yi exp(−Ei exp(ηi))

y!

×
(

1

2π

)p/2( 1

τβ

)p
exp

−1

2

p∑
p=0

β2
p

τ2
β


×
(

1

2π

)n/2( 1

τv

)n
exp

(
−1

2

n∑
i=1

v2
i

τ2
v

)

×

∑
j 6=i

wijuj
wij

,
τ2
u

wij



(4.19)

The hyperprior distribution for the precision parameters τ2
u , τ2

v and τ2
β are τ2

u ∼
Gamma(0.5, 0.005) , τ2

v ∼ Gamma(0.5, 0.005) and τ2
β ∼ Gamma(0.5, 0.01) respec-

tively. A noninformative normal disribution is assumed on the fixed effect, i.e.
β ∼ N

(
0, σ2

β

)
. The τ2

v reflects the amount of extra Poisson variation in the data
according to Lawson (2013). The precision parameters τ2

u and τ2
v control the vari-

ability of u and v respectively. The parameter estimation was executed via Bayesian
Markov Chain Monte Carlo (See Section 2.3.1). Convergence of the MCMC was
reached at 15000 iteration after a burn-in period of 5,000 sample and thinning of
every 90th element of the chain. Posterior statistics of the UH, CAR and the BYM
model are presented in Table 4.4
The model performance was investigated via deviance information criterion (DIC)
which is due to Spiegelhalter et al. (2002b) given as DIC = D̄ + pD, where D̄ is
the posterior mean of the deviance by D̄ = Eθ|y(D), which measures the good-
ness of fit defined as D(θ̄)− 2 logL(data|θ) , where L(data|θ) is the likelihood func-
tion for the observed data and θ is the vector of model parameters. The pD is
the effective number of model parameters and it is computed as the difference be-
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tween the deviance posterior mean and the parameters posterior mean evaluated by
pD = Eθ|y(D)−D(Eθ|y(θ), which represents a measure of model complexity and pe-
nalizes over-fitting. The model with lower Deviance, D̄ indicates good fit and lower
value of pD indicates a parsimonious model. Therefore, the model having smaller
value of DIC is the most preferred model as it has achieved a more optimal combi-
nation of fit and parsimony.
The parameter estimation was done using Bayesian Markov Chain Monte Carlo via
Gibbs Sampling. The convergence of the MCMC was achieved at 15,000 iteration af-
ter a burn-in period of 5,000 sample and thinning of every 90th element of the chain.
The hyper-prior distributions assumed for the precision parameters τ2

u , τ
2
v , andτ2

β are
τ2
u ∼ Γ(0.05, 0.005), τ2

v ∼ Γ(0.05, 0.005) and τ2
β ∼ Γ(0.05, 0.01) respectively. The co-

efficients of the covariates of the regression model are assumed to be normally dis-
tributed given as , β ∼ N (0, τ2

β). All model analyses were carried out in WinBUGS
after Spiegelhalter et al. (2002a).

4.4 Data Analysis and Results

Table 4.3 presents the estimates of the parameters and goodness of fit for the hierar-
chical models discussed in the previous section. The non-spatial methods (P-Gamma
model) does not account for autocorrelation in the residuals, although they appear
to perform reasonably well overall. Although the CAR model and BYM model each
provides important information about clustering of the childhood mortality relative
risk pattern, one would recommend that the BYM is the best fitted model for Nige-
rian child mortality data, since it yielded the lowest value of the DIC = 285:310 and
with a lower pD = 25.04. The CAR model had DIC = 286.40 and pD=(24.16) as the
goodness of measure, as the CAR model competes closely with the BYM model.
However, the BYM model is the most preferred one due to its robustness and at the
same time one can evaluate the proportional of variation that can be attributed to
spatial dependence (clustering) and the variation due to random heterogeneity ef-
fect structure of the mortality prevalence.

Table 4.4 presents the posterior statistics of the fitted hierarchical models. It can

Table 4.3: Deviance information criteria (DIC) and the model goodness of fit based on 2013
Nigeria DHS

Model D(θ̄) pD DIC
PG 256.885 31.217 288.101
UH 261.426 25.278 286.704
CAR 262.233 24.163 286.396
BYM 260.267 25.043 285.310
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be observed that the posterior mean of P-G model is 0.923: 95% CI (0.826, 1.030 ),
which is approximately the same as the mean of the SMR of 0.920 and standard de-
viation, 0.306. The overall population parameters, a = 10.310, (6.232, 15.970) and
b = 11.20 (6.680, 17.350) from the Poisson Gamma model. The Poisson-log normal
model yielded a precision variance, τ2

v of 41.76 with a standard deviation of 0.168.
This indicates that the relative risk of child mortality at any given state is similar
(less heterogeneous) to that of its neighbours. The CAR model’s precision variance,
τ2
u = 14 : 34; (5, 006to35.47) and standard deviation of 0.291, which indicates that

the geographic patterns of under five mortality exhibits more of clustering across
the selected administrative units (states)in Nigeria. The precision variance param-
eter of the BYM model has CAR precision variance, τ2

u is equal to 56.98; 95% CI
(6.104, 339.0) and stadard deviation of 0.291, which indicates that the geographic
patterns of under-five mortality in the country exhibits more of clustering across the
selected administrative units (states) in Nigeria. The variance parameter from the
BYM model with CAR precision variance, τ2

u = 56.98; 95% CI (6.104, 339.0) and
σu = 0.291. The spatial heterogeneity component of variation in BYM model are
precision variance, τ2

v = 330.60; 95%(23.84 − 2101) and σv = 0.0991. From BYM
model, one can deduce the proportion of the variation that is due to clustering as
α = σu

σu+σv
= 69.06% and the proportion of variability attributed to the heterogene-

ity random effect is 1− α = 30.93%.
The results revealed that the geographic pattern of under-five mortality at the ad-
ministrative unit(states) level across the country exhibits more clustering than the
spatial heterogeneity variation, as evidenced from the estimates. The geographic
pattern of variation of the under-five mortality can be attributed to clustering from
the exposure to local environmental factors, underlying ecological indices or sever-
ity of poverty index at local- community level.

Further more, the risk factors were presented along with posterior statistics in Ta-
ble 4.4. The results revealed that the estimated overall(intercept) relative risk effect
of the models are: PLN β0 = −0.137, (−0.209,−0.075), CAR β0 = −0.137, 95% CI (-
0.182 , -0.092), and BYM model β0 = −0.138, 95% CI (−0.200,−0.080). The risk effect
of these models were significantly different from zero and negative. These models
(CAR and BYM) consolidate the result of UH model that overall child mortality risk.
A negative coefficient overall indicates that a decreasing relative risk of childhood
mortality by keeping the (fixed covariates) determinant factors of under-five mor-
tality constant. The household poverty variables were significant and positive for
all the models (UH,CAR and the BYM ) with parameter estimates UH: 1.653, 95%CI
(0.773 to 2.491), CAR : 2.088 95%CI (1.088, 3.165), BYM: 2.003, 95%CI (1.101, 3.006).
The results showed that the the household poverty would increase the relative risks
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Table 4.4: Posterior estimates of the model parameters and ecological covariates

PG UH CAR BYM
Pars. Est. 95%CI Est. 95%CI Est. 95%CI Est. 95%CI
β0 − −0.136 ( −0.209,−0.065) −0.137 ( −0.182,−0.093 ) −0.138 ( −0.196,−0.080)
a 10.310 ( 6.232, 15.970 ) − −
b 11.200 ( 6.680, 17.350 ) − −
µ 0.923 (0.826, 1.030 ) − −
σ2 0.088 (0.052, 0.142 ) − −
β1 0.052 ( -0.460, 0.614) 0.130 (-0.452, 0.698 ) 0.173 (-0.372, 0.730)
β2 0.350 ( -0.149, 0.875 ) 0.362 ( -0.100, 0.857 ) 0.353 ( -0.190, 0.851 )
β3 -0.095 ( -0.650, 0.427 ) -0.247 ( -0.762 − 0.291 ) -0.226 ( -0.771, 0.333 )
β4 1.653 ( 0.773, 2.491 ) 2.088 ( 1.088 − 3.165 ) 2.003 ( 1.101, 3.006 )
β5 -0.306 ( -1.066, 0.520 ) -0.491 ( -1.383, 0.350 ) -0.516 ( -1.591, 0.430 )
τ2u 14.34 (5.006, 35.47) 56.98 (6.104, 339.0 )
σu 0.291 (0.168, 0.447) 0.221 ( 0.054, 0.405)
τ2v 41.760 ( 16.75, 100.5) 330.6 (23.84, 2101)
σv 0.168 (0.100, 0.244 ) 0.099 (0.022, 0.205)

The covariate parameters in Table 4.4 are designated as follows:
β1 =the proportion of children, who had diarrhoea two weeks prior to the survey,
β2= proportion of children, whose households used unprotected
latrine and open defecation (unhygienic toilet /poor sanitary facility),
β3= proportion of households, who did not have access to improved
drinking source or water pipe borne, β4= proportion of poor household and
β5= proportion of households, who used solid fuels cooking sources
(coal, charcoal, crop residues) based on 2013 Nigeria DHS.

of under five mortality among the children of (less endowed households) most eco-
nomically deprived households. Other covariates in the model were not significant
for the childhood mortality. However, the childhood diarrhea and unhygienic toi-
let/ sanitation showed positive association with the under five child mortality, al-
though they were not significant in this case. The household cooking with solid fuels
(charcoal, crops residues etc.) and drinking from unprotected water were negatively
associated with child mortality, and the effects were not significant.

4.4.1 Geographic variation and Classification of relative risk

Figure 4.3 presents the maps for posterior mean and the relative risk (RR) value
for the UH model, which is used for the classification of the states according to the
relative risk (RR) value and significance probability (RR > 1) for UH model. The ge-
ographical variation in the relative risk values range from 0.421 to 1.928 correspond-
ing to Osun (minimum) and Zamfara (maximum) state respectively. The relative
risk above 1, (RR > 1) indicates that the under-five mortality prevalence are higher
in those states than the overall relative risk .
Table 4.5 presents the results of the Poisson log-normal model with districts (states),
which classified states according to the relative risk values. The results showed that
6 states had a high significant relative risk above 1. The higher prevalence of under-
five mortality risk detected in the five northern states and one isolation case, Ebonyi
state found in of south east region of the country. The relative risk probability map
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displayed in Figure 4.3 for the UH model, classifying from the lowest risk value to
high relative risk areas. The geographic variation could be accounted for the unob-
served heterogeneity factors, that could not be captured by the measurable covari-
ates (underlying risk factors).

Table 4.6 presents the posterior risk estimates and 95% CI for results of the CAR

Figure 4.3: Relative Risk of childhood mortality prevalence and significance probability (RR
> 1 ) for UH model based on 2013 Nigeria DHS.

Table 4.5: Relative risk estimates and corresponding 95% credible intervals (CI) for the UH
model and states grouped by RR from low to high risk of under-five mortality
based on 2013 Nigeria DHS

RR : < 0.05 RR : 0.500− 0.999 RR > 1
significant Low risk not significant significant high

Osun 0.574 ( 0.421 , 0.747 ) Imo 0.786 ( 0.604 , 1.014 ) Ebonyi 1.275 ( 1.049 , 1.539 )
Edo 0.578 ( 0.435 , 0.731 ) Anambra 0.795 ( 0.619 , 1.018 ) Sokoto 1.289 ( 1.114 , 1.476 )
FCT-Abuja 0.642 ( 0.484 , 0.822 ) Enugu 0.807 ( 0.633 , 1.016 ) Kebbi 1.351 ( 1.158 , 1.561 )
Kogi 0.672 ( 0.512 , 0.854 ) Ondo 0.814 ( 0.648 , 1.003 ) Bauchi 1.360 ( 1.177 , 1.548 )
Ekiti 0.683 ( 0.522 , 0.865 ) Nasarawa 0.893 ( 0.717 , 1.110 ) Jigawa 1.441 ( 1.259 , 1.640 )
Kaduna 0.696 ( 0.546 , 0.853 ) Plateau 0.938 ( 0.736 , 1.148 ) Zamfara 1.710 ( 1.502 , 1.928 )
Lagos 0.698 ( 0.544 , 0.870 ) Benue 1.023 ( 0.831 , 1.246 )
Borno 0.706 ( 0.524 , 0.900 ) Adamawa 1.057 ( 0.881 , 1.252 )
Kwara 0.710 ( 0.559 , 0.892 ) Katsina 1.057 ( 0.900 , 1.221 )
Delta 0.720 ( 0.575 , 0.891 ) Yobe 1.097 ( 0.910 , 1.292 )
Niger 0.721 ( 0.578 , 0.876 ) Kano 1.098 ( 0.963 , 1.243 )
Oyo 0.721 ( 0.559 , 0.904 ) Taraba 1.105 ( 0.932 , 1.287 )
Ogun 0.751 ( 0.579 , 0.943 ) Gombe 1.174 ( 0.992 , 1.376 )
Cross river 0.757 ( 0.589 , 0.949 )
Bayelsa 0.758 ( 0.606 , 0.927 )
Abia 0.759 ( 0.592 , 0.966 )
Rivers 0.774 ( 0.608 , 0.969 )
Akwa ibom 0.778 ( 0.617 0.969 )

model. The states are classified by the credible intervals from significant low, not
significant and significantly high. The geographical variation in the relative risk val-
ues range from 0.438 to 1.910. Six (6) states are found to have a significantly higher
prevalence with relative risk above 1(RR >1.000). This indicates that a higher mor-
tality prevalence occurred in those states than the overall relative risk. The lowest
estimated risk value occurred at Osun state: 0.0.572 (0.438, 0.714) and highest risk
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recorded at Zamfara state with risk value of 1.680 (1.479 to 1.910). The probability
map corresponding to the Table 4.6 was displayed in Figure 4.4, showing relative
low risk of under-five mortality detected on the map in the south west states and the
high prevalence found in the north regions of Nigeria.
Table 4.7 presents the results of the BYM model with districts(states) categorized ac-

Figure 4.4: Relative Risk of childhood mortality prevalence and significance probability (RR
> 1 ) for for CAR model

Table 4.6: Relative risk estimates and corresponding 95% credible intervals (CI) for CAR
model and states grouped by RR from low to high risk of under-five mortality
based on 2013 Nigeria DHS

RR : < 0.05 RR : 0.500− 0.999 RR > 1
significant low Not significant significant high

Osun 0.572 (0.438, 0.714) Akwa ibom 0.807 (0.640, 1.006) Sokoto 1.316 ( 1.133 , 1.515 )
Edo 0.591 (0.454, 0.736 ) Enugu 0.813 (0.646, 1.013) Ebonyi 1.326 ( 1.101 , 1.586 )
FCT-Abuja 0.625 (0.469, 0.806 ) Imo 0.842 (0.646, 1.076 ) Bauchi 1.352 ( 1.178 , 1.548 )
Kwara 0.635 (0.506 , 0.791 ) Rivers 0.846 (0.681, 1.033 ) Kebbi 1.362 (1.160, 1.594 )
Ekiti 0.645 (0.501 , 0.815 ) Plateau 0.939 (0.752, 1.142 ) Jigawa 1.439 (1.252, 1.645 )
Borno 0.680 (0.511 , 0.860) Adamawa 1.018 (0.843, 1.218) Zamfara 1.680 (1.479, 1.910)
Kogi 0.680 (0.557 , 0.820) Benue 1.063 (0.876 , 1.264 )
Oyo 0.699 (0.531 , 0.876 ) Katsina 1.083 (0.926, 1.249 )
Kaduna 0.708 (0.576, 0.850 ) Kano 1.088 (0.951, 1.231 )
Ogun 0.708 (0.554, 0.885 ) Yobe 1.105 (0.926, 1.300 )
Lagos 0.711 (0.552, 0.881) Taraba 1.125 (0.964, 1.294 )
Delta 0.726 (0.591, 0.881 ) Gombe 1.139 (0.969, 1.327 )
Niger 0.736 (0.606 , 0.875 )
Bayelsa 0.762 (0.596 , 0.960 )
Ondo 0.773 (0.631 , 0.936 )
Anambra 0.781 (0.633 , 0.964 )
Abia 0.793 (0.651 , 0.964 )
Nasarawa 0.801 (0.647 , 0.984 )
Cross river 0.801 (0.635 , 0.994 )

cording to their range of relative risk. The geographical variation ranges from 0.420
to 1.922. Out of the 37 districts(states), six (6) states had significantly higher rela-
tive risk (RR >1.000) than the overall risk. The relative risk estimates for under-five
mortality ranges from lowest Osun state: 0.566(0.42, 0.73) to the highest prevalence
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at Zamfara: 1.696 (1.491, 1.992). . The corresponding probability risk map is dis-
played in Figure 4.5 representing the smooth map for the BYM model. The relative
risk value greater than 1, is an indication of high prevalence of under-five mortality
prevalence.

Figure 4.5: Relative Risk of childhood mortality prevalence and significance probability (RR
> 1 ) for for BYM model, 2013 Nigeria DHS

Table 4.7: Relative risk estimates and corresponding 95% credible intervals (CI) for BYM
model and states grouped by RR from low to high risk of under-five mortality
based on 2013 Nigeria DHS

RR : < 0.05 RR : 0.500− 0.999 RR > 1
significant low Not significant significant high

Osun 0.566 ( 0.42 , 0.73 ) Anambra 0.801 ( 0.637 , 1.008 ) Sokoto 1.310 ( 1.127 , 1.511 )
Edo 0.580 ( 0.44 , 0.73 ) Akwa ibom 0.802 ( 0.628 , 1.001 ) Ebonyi 1.321 ( 1.092 , 1.590 )
FCT-Abuja 0.633 ( 0.47 , 0.82 ) Enugu 0.817 ( 0.641 , 1.015 ) Bauchi 1.358 ( 1.181 , 1.547 )
Ekiti 0.659 ( 0.51 , 0.84 ) Rivers 0.826 ( 0.648 , 1.024 ) Kebbi 1.362 ( 1.166 , 1.576 )
Kwara 0.662 ( 0.52 , 0.83 ) Imo 0.832 ( 0.636 , 1.068 ) Jigawa 1.443 ( 1.257 , 1.640 )
Kogi 0.669 ( 0.53 , 0.83 ) Nasarawa 0.835 ( 0.666 , 1.042 ) Zamfara 1.696 ( 1.491 , 1.922 )
Borno 0.672 ( 0.50 , 0.86 ) Plateau 0.926 ( 0.738 , 1.135 )
Kaduna 0.697 ( 0.56 , 0.85 ) Adamawa 1.030 ( 0.854 , 1.224 )
Oyo 0.703 ( 0.54 , 0.88 ) Benue 1.042 ( 0.839 , 1.252 )
Lagos 0.709 ( 0.55 , 0.88 ) Katsina 1.067 ( 0.910 , 1.234 )
Niger 0.718 ( 0.58 , 0.87 ) Kano 1.091 ( 0.960 , 1.231 )
Delta 0.724 ( 0.58 , 0.89 ) Yobe 1.102 ( 0.918 , 1.302 )
Ogun 0.724 ( 0.56 , 0.92 ) Taraba 1.112 ( 0.948 , 1.284 )
Bayelsa 0.762 ( 0.60 , 0.95 ) Gombe 1.151 ( 0.982 , 1.339 )
Ondo 0.785 ( 0.63 , 0.97 )
Abia 0.786 ( 0.63 , 0.97 )
Cross river 0.787 ( 0.62 , 0.98 )

4.5 Discussion

In this study, a Bayesian hierarchical model was employed to assess the child mor-
tality risk and potential risk factors such as socio-cultural and environmental factors
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for under-five mortality in Nigeria. The strength of the approach is the ability to
incorporate high over-dispersion, spatial structure and covariates into the models.
The result shows that household poverty is significantly associated with under-
five mortality in Nigeria. In other words, an economically deprived household has
higher likelihood of childhood mortality. This finding corroborates what has been
established in previous studies. These have shown that people’s living conditions
and household poverty influences virtually the totality of the demographic structure
and health indices, including life facilities, and even human capital development as
reported in Adeyemi et al. (2009); González et al. (2010) and Gwatkin et al. (2007). A
similar study conducted in Nigeria by Akinyemi et al. (2013) using data from 1990-
2008 found that household wealth had a strong association with not only under-five
mortality, but also with the other house members life expectancy, maternal mortality
and morbidity, fertility, contraceptive use and the use of health-care.
The results also reveal that poor toilet sanitary conditions and unimproved sources
of drinking water are positively associated with childhood mortality, although these
factors are not significant. In contrasts, a previous study conducted by de Sherbinin
(2011), who introduced similar biophysical/geographical variables into their model
of child malnutrition, found that these factors are significantly correlated with child
malnutrition: drought prevalence, the percentage of households with piped water,
and diarrhoea disease prevalence.
Furthermore, the probability risk maps reveal that there are clusters of high mor-
tality risk concentrated in the northern regions of Nigeria. These outcomes can be
attributed to the complexities such as cultural factors, socio-demographics, severity
of household poverty, climate and drought, lack of access to portable water, open
toilets, house structure and individual household environments. The findings are
in complete agreement with the study conducted in Mozambique by Macassa et al.
(2006).
The results in Table 4 showed further that there are no significant relationships be-
tween drinking water sources and under-five mortality. However, the separate find-
ings from other studies conducted by Omariba et al. (2007) and Masangwi et al.
(2009) have demonstrated the positive impact of access to clean water as signifi-
cant for under-five mortality, while the problem of unsafe drinking water, inad-
equate water for food and personal hygiene, and insufficient access to sanitation
have been identified as partly responsible for about 88 % of child deaths from in-
fectious diseases, and mostly repeated diarrhoea in children globally, as reported in
Organization et al. (2009) and Lanata et al. (2013). Other studies have established
that a high proportion of children deaths in low-middle income countries can be at-
tributed to diseases resulting from poor housing conditions, unsafe water supply, in-
adequate sanitary facilities, unhygienic behaviour and household air pollution from
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solid cooking fuels - wood, charcoal, and agricultural residues (Cheng et al., 2012;
Lim et al., 2012).
The probability risk maps presented in this study highlight geographic disparities
and relative high mortality risk among young children in Nigeria, mostly found in
the northern parts of the country. The results corroborate the findings from previous
studies conducted in Nigeria by Adegboye (2010), who used a scan statistic method
and by Uthman (2008a), who used an exploratory spatial analysis. The persistent
high risk of child mortality found in the northern regions can be related to environ-
mental factors, neighbourhood structure, education and economic deprivation. Our
findings are in tandem with a study conducted by Van Bodegom et al. (2012) in other
West African country, Ghana, where the method detected non-random patterns or
clusters of high child mortality at village level with a large concentration of polyga-
mous population or nuclear family settings.
The statistical issues relating to disease mapping and modeling of aggregated data of
rare disease have been extensively discussed in Lawson (2013), while Dedefo et al.
(2016) had earlier investigated the small area clustering of under-five mortality in
Ethiopia. Previous studies have explored mixture models, for example, the study
conducted by Neyens et al. (2012), where researchers combined a convolution model
and Poisson-Gamma model to account for both over-dispersion and spatial correla-
tion in the modeling of kidney and prostate cancer data. A wide range of distribu-
tions have been derived with Poisson distribution because of its positive parameter
value, see (Congdon, 2005; Kang et al., 2009) for more discussion.
This present study consolidates the existing literature such as (Curtis, 2004; Smith,
2010), reported that the health impacts of climate change, geography and the local
environment where people live had significant association with their health out-
comes. Furthermore, health inequalities are partly a reflection of social inequalities,
which are more widely defined among sub-populations even in developed coun-
tries, according to the studies by Marshall (1991) and Martuzzi et al. (2010). A com-
prehensive assessment of the health impacts of climate change and geography scale
was discussed in Smith (2010); Curtis & Oven (2012) and Simandan (2010). In their
study, they emphasized that complex processes operating at various geographical
scales linking global health with the local and individual characteristics made a sig-
nificant contribution to health determinants. The findings from the present study
can assist health-care givers and government agencies to address the geographic
disparities in the mortality prevalence and design needed interventions.
In recent decades, the disease-mapping methods provide ways to extend the Pois-
son model for count data to deal with the spatial structure in the data and the oc-
currence of overdispersion. Overdispersion means that the variability in the data
is not equal to the mean as prescribed by the Poisson distribution. For example,
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Neyens et al. (2017) observed that the non-inclusion of important covariates, and
often referred to as non-spatial variability can result into overdispersion. Another
prominent problem is the spatial dependency, which means that areas that are close
in distance are more similar than in areas further apart, and this is referred to as spa-
tially structured variability. An overview of the different forms of extra-variability
in disease-mapping models is documented (Lawson, 2013), while the Bayesian tech-
niques discussed in Besag et al. (1991) and Clayton & Kaldor (1987) that facilitates
the incorporation for both spatially structured and non-spatial variability.

4.6 Summary and Concluding remarks

The proposed models and the results reveal that there are apparently geographi-
cal inequalities of child mortality prevalence across the states in Nigeria. The maps
highlight clusters of high under-five mortality prevalence in the northern states and
in an isolated case of Ebonyi state for the study period. Therefore, these states
(regions) are in need of urgent attention and interventions. However, a relatively
low prevalence of childhood mortality was observed in the south-western parts of
Nigeria. The findings can guide in evidence-based allocations of scarce health re-
sources in the sub-region with the aim of improving the chance of child survival.
Our methodology was motivated by two specifications, the first of which assessed
spatial dependence by borrowing strength from neighbouring states (districts) to
identity clusters of child mortality in Nigeria. Secondly, the model investigated the
impact of spatial heterogeneity, as a way of evaluating geographical disparities in
child mortality prevalence across the regions in Nigeria.
In epidemiological study, disease mapping models are commonly used to estimate
the spatial (or temporal) pattern in disease risk and identify high-risk clusters, allow-
ing health interventions and allocation of resource. The study aimed was to present
and implement a Bayesian disease mapping approach to estimate child mortality
risks and detection of regions with unusual (low) high child mortality incidence.
The study proposed the hierarchical Bayesian modeling approach to simultaneously
handle the over-dispersion and spatial auto-correlation in the presence of hetero-
geneity among the population sizes across the country.
The generalized Poisson regression model with random effects were formulated
to estimate the mortality risk and explored the relationships between child death
counts and the regional risk factors. The random effects are formulated to cap-
tured the potential tendency of neighboring regions that share similar risk patterns
and/or specific area-level heterogeneity. By applying tradition approach, standard-
ized mortality ratio (SMR) was used to estimate the relative risk of child mortality
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and mapped to highlight the unusual patterns in the prevalence at the district (state)
level. A full Bayesian inference was implemented in WinBUGS via Markov chain
Monte Carlos (McMC) simulation techniques. The results showed that economically
deprived households, 2.088: 95% CI(1.088, 3.165) were significantly associated with
childhood mortality, while unhygienic sanitary and unimproved water source were
not significant. The geographical patterns of under-five mortality exhibited cluster-
ing prevalence of about 70% and spatial heterogeneity of 30% among the under-five
children in Nigeria. The predicted probability maps identified clusters of high mor-
tality prevalence majorly in the northern states and a relative low prevalence oc-
curred in southern state of the country. The result demonstrates the flexibility in the
approach by exploring the regional characteristics as potential risk factors of child
mortality and provide a better understanding of the regional variations of mortality
risks. Nonetheless, both representations can help provide information for initiating
public health interventions.
In this study, an elevated low(high) child mortality prevalence could be attributed
to geographical variation in the states with big cities than in states/regions that are
made up semi-urban and rural areas, majorly found in the northern region of Nige-
ria. However, a geographical analysis of the incidence of childhood mortality may
be hindered by the large variability in the cases between areas, as well as the exces-
sive number of areas with zero childhood mortality or low mortality cases (less than
5). Yaya et al. (2017) used the same Nigeria DHS data and studied the prevalence
of childhood mortality in Nigeria using Zero-inflated negative binomial (ZINB) re-
gression and found a higher incidence of childhood mortality, which was associ-
ated with age of the female partners and the partner’s location, who resided in the
rural areas. Recently, specific studies about temporal trends in childhood mortal-
ity in other developing countries have been documented, Anyamele et al. (2015);
Morakinyo & Fagbamigbe (2017) had investigated child mortality trends in Nigeria,
in South Africa (Argeseanu, 2004) and in Bangladesh(Mondal et al., 2009), while a
scenario- based projection of childhood mortality for 2030 in sub-Saharan Africa was
undertaken by Alkema et al. (2016).
In the modeling of rare disease cases, previous studies have suggested further ex-
tension of the Poisson model to allow for accommodation of the occurrence of extra
zeros and other variability caused by an excessive number of zeros. For example,
in the work of Lambert (1992) and Greene (1994), they investigated the zero-inflated
models for studying univariate count data and other extensions that accommodates
overdispersion in the hierarchical setting. A good theory and application on mix-
ture of distributions for count data analysis can be found in the literature (Kassahun
et al., 2014; Neyens et al., 2012). On a good understanding of the theory, which facil-
itates the incorporation of clustering and overdispersion through two separate sets
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of normal and gamma random effects, we therefore provide the addendum below to
address the shortcoming realized in the analysis of under-five mortality from Nige-
ria DHS data.

4.7 Addendum

In this chapter, child death count was modeled at aggregated district (state) level in
Nigeria using generalized Poisson gamma mixture models commonly used in dis-
ease mapping context. This addendum is required; perhaps it would provide better
alternative distributions due to clustering patterns observed from our analysis.

4.7.1 Negative Binomial distribution

From the analysis of the Nigeria DHS data, it is not uncommon that a single fam-
ily may record several child deaths; that is, the death counts are clustered within
a single family or a certain family structure, such as the nuclear or extended fam-
ily system typically found in northern Nigeria. If the number of deaths per family
follows a logarithmic distribution, and the number of child deaths over the time in-
terval (i.e. non-overlapping area e.g. a state as a defined administrative unit in our
case ) follows a Poisson distribution, then the total number of deaths for the time
interval or administrative unit can be modeled with the negative binomial distribu-
tion.
The basic property of negative binomial distribution is now investigated below.
Let the number of death children per household be a sequence of independently
and identically distributed Bernoulli trials before a specific (and fixed) numbers of
failures (surviving children) occurs be k. We also denote the fixed number of those
alive as r > 0, and the probability of a child died is given on each Bernoulli trial as
p ∈ [0, 1] , which is a random variable, say, Y . A random variable, Y, thus follows a
negative binomial distribution and is denoted by Y ∼ NegBin (r, p). The probability
mass function is then given by

f(k) =

(
k + r− 1

k

)
· (1− p)rpk, k ∈ (0, 1, 2, 3, . . .). (4.20)

Case 1: A negative binomial can be constructed directly from the Poisson and

the Gamma distributions. Let the Poisson mean, µ follows a gamma distribution
with shape parameter, r and rate parameter, β =

1−p
p (so Pois(µ) mixed with

Gamma(r, β)), then the resulting distribution is the negative binomial distribution
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with the pmf is then given by

f(Y = k) =

(
k + r− 1

k

)
· (1− p)rpk, k ∈ (0, 1, 2, 3, . . .). (4.21)

Equation (4.21)is an important extension as it allows for r to be any positive real
number.

f(k, r,p) =

∫ +∞

0
fPois(µ) · fGamma

(
p,

(1− p)
p

)
dµ (4.22)

=

∫ +∞

0

µke−µ

k!
· µr−1 e

−µ(1−p)/p

( p
1−p)rΓ(r)

dµ (4.23)

=
(1− p)rp−r

k!Γ(r)

∫ +∞

0
µr+k−1e−µ/pdµ (4.24)

=
(1− p)rp−r

k!Γ(r)
pr+kΓ(r+ k) (4.25)

=
Γ(r + k)

k!Γ(r)
(1− p)rpk. (4.26)

To prove the basic property, let Y ∼ NegBinom(r, p), then expectation is given by

E(Y ) =
pr

1− p
≡ µ. (4.27)

and its variance is
V(Y ) =

pr

(1− p)2
= µ+

1

r
µ2. (4.28)

Hence, this makes it possible for the variance to account for over-dispersion. Note
that as r→∞, we get the Poisson distribution, E(Y ) = V(Y ) = µ.

Case 2: The negative binomial distribution can be constructed by adding a hier-
archical level to the Poisson distribution through a random effect, ε, specifically

Yj |(εj , µj , Ej) ∼ Pois(εj , µj), εj |Ψ ∼ Gamma(Ψ,Ψ) (4.29)
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for yj = 0, 1, 2, 3, . . ., where Ψ > 0. The resulting probability distribution function
marginal to εj is given by

Yj = yj |(εj , µj , Ej) =
Γ(y + Ψ)

Γ(yj + 1)Γ(Ψ

(
µj

µj + Ψ

)yj ( Ψ

µj + Ψ

)Ψ

(4.30)

for yj = 0, 1, 2, 3, . . ., with E(Yj) = µj and V(Yj) = µj + µ2

Ψ .
The negative binomial model also maintains the property of the variance always
being greater than the mean and Ψ, the parameter for the extra-Poisson variation,
being larger than the variance of the corresponding Poisson distribution. As Ψ ap-
proaches zero the distribution of Yj converges to a Poisson random variable. For
more readings, see Wang & Famoye (1997); Famoye et al. (2004); Shmueli et al. (2005)
and Denuit et al. (2007).
More recently, the presence of over dispersion in discrete data has led researchers
to consider alternative approaches to generalize or extend the Poisson model. For
instance, Gupta & Ong (2005) extended the method of mixtures, where the Poisson
parameter was allowed to vary as a random variable resulting in a mixed Poisson
distribution that accommodates over-dispersion.

4.7.2 Poisson-Inverse Gaussian Distribution

In this chapter, we have adopted gamma distribution to model counts in a spatial
context as commonly used in other studies, see Neyens et al. (2012) among others.
There is no reason to restrict ourselves to the gamma distribution for modeling the
relative risk, Ψ, except perhaps for mathematical convenience. In fact, any distri-
bution with support in the half positive real number is a candidate to model the
stochastic behaviour of Ψ. Several authors, (Karlis & Ntzoufras, 2006; Wakefield,
2006; Ngesa et al., 2014) have suggested replacing the normality assumption of the
spatially unstructured random effects with other choices such as the Laplace distri-
bution, or student t− distribution. For instance, Ngesa et al. (2014) recently used the
generalized Gaussian distribution. The inverse Gaussian distribution can also be an
ideal candidate for modeling positive, right-skewed data.
Definition : A random variable, Y, is distributed according to the inverse Gaussian
distribution, and denoted as Y ∼ IGau(µ, β), then its probability density function is
given by

p(y) =
µ√

2πβy3
exp

(
− 1

2βy
(y − µ)2

)
, y > 0 (4.31)
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if Y ∼ IGau(µ, β) then its mean, E(Y ) = µ and variance , V(Y ) = µβ. The moment
generating function is given by

M(t) =

∫ +∞

0

µ√
2πβy3

exp

(
− 1

2βy
(y − µ)2 + ty

)
dy (4.32)

= exp

(
µ

β

)∫ +∞

0

µ√
2πβy3

exp

(
− 1

2βy
(y − µ)2 + ty

)
dy (4.33)

= exp

(
µ

β

)∫ +∞

0

µ√
2πβy3

exp

(
− 1

2βy
(y2(1− 2βt)2 + µ2)

)
dy (4.34)

Making the change of variable and replace ξ = x
√

1− 2βt, it yields

M(t) = exp

(
µ

β
(1−

√
1− 2βt)

)
(4.35)

Recently, the inverse Gaussian distribution has gained popularity in describing and
analyzing right-skewed data. Its most appealing property is its being able to ac-
commodate a variety of shapes. The details of mixed Poisson regressions, such as
the Poisson-inverse Gaussian and negative binomial regressions, can be found in
Denuit et al. (2007), where they were applied to accommodate over-dispersion in in-
surance claim data. As well as Rampaso et al. (2016); Lawless (1987) and Cheruiyot
et al. (2018). These distributions have elegant property like normal distribution.
Hence, in a Poisson mixed regression model with extra-variability parameter, Θ ∼
Igau(1, ν), that is

fΘ(θ) =
1√

2πνθ
exp

(
− 1

2πν
(θ − 1)2

)
, Θ > 0 (4.36)

The probability mass function is then given by

P (N = k) =

∫ +∞

0
exp(−λdθ)(λdθ)k

k!

1√
2πνθ

exp

(
− 1

2νθ
(θ − 1)2

)
dθ (4.37)

with mean and variance respectively given as

E(N) = λ and V(N) = λ+ λ2ν. (4.38)

The probability mass function can be expressed using modified Bessel functions of
the second kind. Bessel functions have some properties, which are useful in com-
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puting the Poisson inverse- Gaussian probabilities and the maximum likelihood es-
timators. See Hougaard et al. (1997); Gupta & Ong (2005) and Shoukri et al. (2004)
for further readings.
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Chapter 5

Spatial Analysis of the Risk of

Anaemia among Under five

Children in Tanzania

5.1 Introduction

Childhood anaemia is a global public health problem, with serious consequences in
adulthood. It is a major cause of health problems in children and, as reported in
Denny et al. (2006), it adversely affects their cognitive and physical development. It
compromises immunity and increases the risk of infections and infant mortality, as
contained in the World Health Organization (WHO) (2008) report. According to the
WHO, recent reports showed that, globally, prevalence of anaemia among children
was 24.8%, with the highest prevalence being in sub-Saharan Africa (67%), followed
by south east Asia (65.5%).
Several studies have identified genetic determinants; socio-economic, cultural and
dietary factors related to anaemia, using linear and binary logistic regression models
(Hadler et al., 2004; Meinzen-Derr et al., 2006; Zimmermann & Hurrell, 2007). A few
of these studies have focused on investigating the determinant factors using purely
linear effect models for anaemia. For example, Osorio et al. (2004) recently used
multiple linear regression model to investigate the determinant factors on Hb con-
centration among preschool children in Brazil. However, little work has been done
to jointly investigate the geographical variations and the underlying determinants
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of childhood anaemia. The motivation of this work is to provide a flexible approach
that simultaneously estimates linear and non-linear covariate effects, as well as small
area geographic patterns across regions (districts) in Tanzania.
Other studies have established that genetic factors, social and demographic deter-
minants, such as a mother’s education, wealth index and family size, can affect the
asymptomatic prevalence of anaemia in children (Tesfaye et al., 2015; Foote et al.,
2013). The studies that examine the prevalence and determinants of anaemia, at a
national level in eastern Africa, especially Tanzania, have not been adequately un-
dertaken. Moreover, little attempt has been made to unravel the spatial pattern of
hemoglobin (Hb) concentration and anaemic status in children, after taking into ac-
count other possible determinants.
Much research work on mapping the distribution of risk of anaemia among children
has been conducted in West African countries. There are, however, some limitations
to these studies. Magalhaes & Clements (2011) adjusted for nutritional status, para-
sitic infections and other co-variables among pre- school children, in Burkina Faso,
Ghana and Mali. Gayawan et al. (2014) used a structured geo-additive model to
map the prevalence of anaemia among under-five children in Nigeria. Other stud-
ies have documented a high prevalence of anaemia in children of school age across
some regions in Nigeria (Adudu et al., 2011; Ughasoro et al., 2015). Therefore, the
current work aims to examine the possible relationship between Hb concentration
and severity of anaemia, together with individual and household characteristics of
children aged 0-59 months; and the possible geographical variations of the Hb con-
centration and severity of anaemia at a highly dis-aggregated district level in Tanza-
nia. This study applies a flexible Bayesian geo-additive modeling approach, which
allows for joint modeling of fixed effects, nonlinear effects of continuous covariate
and spatial effects, while at the same time controlling for the hierarchical nature of
the data via random effects.
This study is structured into sections. Section 2 explained model formulation. In
section, we applied the models on data from 2010 Tanzania DHS and presents the
results and discussion. The conclusion was give in Section 5.

5.2 Model Formulation

In the 2010 Tanzania Demography Health Survey (TDHS) data, a child’s anaemia
is defined by a measure of hemoglobin (Hb) concentration and such data can be
extracted with the aim of assessing the influence of some covariates on childhood
anaemia. The TDHS data set contains several other variables, but only those that
are related to anaemia and those similar to the ones identified in the literature were
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selected. The children involved in the survey have an age range of 0- 59 months and
the respondents (mothers) are in their reproductive years 15- 49. Three models are
proposed, according to different criteria for the Hb concentration.
Model A: (Gaussian) anaemia is a product of low level of functional hemoglobin(Hb)
in the blood. Hence, the concentration of Hb in the blood was considered as a con-
tinuous variable, yi1 and modeled by assuming a Gaussian distribution.
Model B: (Binary logit) According to WHO, children whose ages range 6-59 months
are considered anemic if their Hb concentration levels are below 11.0 g/dl. Thus, a
binary response variable ,(yi2) can be created as

yi2 =

{
1 : if Hb concentration level of a child is ≤ 11.0 g/dl
0 : otherwise

Model C: (Cumulative logit) The severity level of anaemia in child can vary based
on the concentration of Hb level. The WHO further classified Hb level as severe,
moderate, mild or normal resulting in a four-ordered category and the response
variable, yi3 constructed as

yi3 =


1 : non-anaemia, if Hb ≥ 11.0 g/dL
2 : mild anaemia, if 10.0 g/dL ≥ Hb ≤ 10.9 g/dL
3 : moderate anaemia, if 7.0 g/dL ≤ Hb ≤ 9.9 g/dL
4 : severe anaemia, if Hb < 7.0 g/dL

where yi1 and yi2 are univariate responses (continuous, binary response outcome)
and yi3 is an ordered categorical response outcome.
The present study intends to apply a flexible geo-additive regression model to quan-
tify the fixed and non-linear effects, as well as geographical variations on anaemia
level in children as the response variables yi1, yi2 and yi3 as defined above.
In recent decades, there has been growing interest in the application of an ordinal lo-
gistic regression model and its structural tranformation into a latent variable model
as contained in (Agresti, 2003) and Tutz (2003). Such regression models based on
multi-categorical outcomes are sometimes called cumulative regression models, and
its distributional form had been previously investigated in the literature by McCul-
lagh et al. (1973) and Fahrmeir & Lang (2001). The models can be motivated from
latent variables such that the response variable y, here, Hb concentration a continu-
ous latent (utility) variable defined by

U = η + ε (5.1)
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where η is a predictor depending on covariates and parameters and ε is the error
term. The two variables Y and U are linked by Y = r if and only if

θr−1 < U ≤ θr, r = 1, 2, . . . c (5.2)

with thresholds −∞ < θ0 < θ1 < . . . < θc = ∞, where c = 4. In a multinomial logit
model setting, the error variables ε in (5.1) are independent across the categories
and assumed to be standard extreme value distributed with function Φ. Hence, Y
follows a cumulative logit model.The predictor is then defined as

Pr(yi ≤ r|η) = Φ(θr − η) (5.3)

Given a set of observations (yi, xi, si, vi), i = 1, 2, . . . , n,(in this case, n=7889, number
of children less than five years in 2010 Tanzania survey) where yi is a continuous,
binary or categorical response variable, a vector xi is the of metrical covariate effects
of the mother’s age at birth and body mass index, the spatial covariate si ∈ [1, . . . , S],
index of the district(region) where mother i lives in Tanzania and a further vector
v = (vi1, . . . , viq) of categorical covariates.
According to Tutz (2003), the geoadditive predictor for our model C is then defined
as

ηi = θri − (f(xi) + fspat(si) + v′iγ) (5.4)

where, f(xi) ,fspat(si) and γ respectively represent the estimates of the unknown
non-linear smoothing effects of the metrical covariates xi such as mother’s age at
birth, the spatial effect and a vector of the fixed effect parameters respectively. The
spatial component, fspat(si) in the model captures the spatial correlation of area
si, s ∈ {1, . . . , S}, where woman i resides. The spatial component, fspat(si) is fur-
ther split into two components:fstr(si) and funstr(si) as structured (correlated) and
unstructured(uncorrelated) random effects respectively.
All model parameters were estimated in Bayes X version 2.1, a non-commercial soft-
ware developed by Brezger et al. (2003). We proposed the following models:
Linear: η = v′γ

Random : η = v′γ + φrandom(si)

Spatial: η = v′γ + θspat(si)

Full : η = v′γ + f1(xi1) . . .+ fp(xip) + θspat(si) + φrandom(si)

The model selection is performed via Deviance Information Criteria (DIC) proposed
by Spiegelhalter et al. (2002b), as a measure of fit and model complexity. The choice
among competing models can be done with the least DIC value. The DIC is de-
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fined as DIC = D̄ + pD, where D̄ is the posterior mean deviance. The pD is the
difference between the posterior mean deviance and the evaluated deviance at the
posterior mean of Y . In fact, pD plays the role of a measure for the effective number
of parameters in the model.

5.3 Bayesian estimation and inference

Within a Bayesian framework, all model parameters and non-linear functions are
usually taken as random variables and an appropriate prior is needed to be speci-
fied for each. For the fixed effects, γ’ s, a suitable choice is the independent diffuse
prior, i.e. p(γ) ∝ constant.
According to Eilers & Marx (1996), the unknown smooth function f of the contin-
uous covariate x can be approximated by a polynomial spline of degree l on equal
intervals k with equally spaced knots xminj = ξj0, ξj1, . . . , ξjk = xmaxj , which lies
within the domain of covariate xj . The study adopted Bayesian P−splines, as sug-
gested in the work of Brezger & Lang (2006). These authors used this approach as a
flexible alternative to the model of an unknown function of continuous covariate in
preference that had been offered by Eilers & Marx (1996). The proposed spline can
be constructed as a linear combination of the basis function of d = l + k B− spline
basis function:

fj(xj) =
d∑
j=1

βkjBj(xj).

where β = (β1, . . . , βd)′ corresponds to the vector of the unknown regression coef-
ficients. The smoothness of function f is achieved by penalizing the differences of
coefficients of the adjacent B− splines as proposed by Marx & Eilers (1998). They
suggest a moderate number of knots between 20 to 40 knots and by introducing a
roughness penalty on the adjacent regression coefficients that regularize the smooth-
ness to avoid overffiting. The coefficients were later replaced by a flexible first and
second order random walk as suggested by Fahrmeir & Lang (2001), defined by

ξj = ξj−1 + uj ; ξj = 2ξj−1 − ξj−2 + uj (5.5)

with zero mean Gaussian distributed noise uj ∼ N(0, σ2).
Here,the variance parameter σ2

j is equivalent to the inverse smoothing parameter in
a frequentist approach and controls the smoothness of j.
Spatial Components
We model the structured spatial effects fstr using a Markov random field prior as
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proposed by Besag et al. (1991) in spatial statistics . It is given as

fstr(s)|fstr(t), t 6= s, θ2 ∼ N

∑
t∈δs

fstr(t)

Ns
,
θ2

Ns

 (5.6)

where Ns is the number of adjacent regions and t ∈ δs denotes that the region t is
a neighbour to region s. Thus, the conditional mean of fstr(s) is an unweighed av-
erage of function evaluations of neighbouring regions t. In the similar manner, θ2

controls the amount of spatial smoothness. The unstructured spatial effect assumed
a normal distribution prior, modeled as funstr ∼ N(0, φ2

unstr).
Furthermore, the smoothing parameters τ2, θ2 and φ2 , the smooth functions, and the
variance components described above are over-dispersed, but were assigned proper
hyperpriors. The variance parameters are assumed inverse gamma distribution with
hyper-parameters i.e τ2

j ∼ IG(aj , bj), with a and b chosen as described below. By as-
signing a large (small) variance, this leads to less smoothing (smoother) on the curve.
The common choices for hyper-parameters are a=1 and b=0.005 or a=b=0.005. For
varying choices of a and b, the sensitivity analysis was performed and checked the
parameter estimates. The parameters did not change substantially, thus sensitivity
analysis was not reported in this work.

5.4 Results and Discussions

The results are presented in terms of tables of fixed effects of categorical covari-
ates, the nonlinear plots of continuous covariates and the residual plots of spatial
effects. The model diagnostics and DIC values of the four model specifications each
of model A, B and C are presented in Table 5.1. For each of the covariates combina-
tion specifications, we realized that the specification IV model had the least DIC val-
ues, and are judged the best models with values DIC =6678.05 (Gaussian), 7005.63
(binary) and 8492.22 (cumulative). In addition the pD value, which measures the
goodness of fit and model complexity is sometimes used to evaluate the model per-
formance. Thus, the model which consists the linear, non-linear and spatial com-
ponents with specification IV is the best for prediction purpose and more complex
model with a pD value of 56.42.
The posterior estimates of the three models: A(Gaussian model), B(binary logit) and
C(cumulative logit) for the fixed effects covariate factors are presented in Table 5.2.
Also presented are the 95% confidence intervals, which are used to determine the
significance levels.
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Table 5.1: Deviance Information Criteria (DIC) and goodness of fit measures for Model se-
lection based on 2010 Tanzania DHS

Specification
Model Diagnostic Linear Random Spatial Full

parameters
A (Gaussian) Deviance 27389.01 27364.72 6637.15 6602.57

pD 21.97 26.35 27.68 37.77
DIC 27432.95 27417.43 6694.51 6678.05

B (Binary) Deviance 7028.3 7006.06 7004.86 6929.55
pD 21 24.87 25.45 38.04
DIC 7070.3 7055.8 7055.77 7005.63

C (Cumulative) Deviance 8860.22 9394.83 8725.16 8432
pD 0.647 27.41 49.1 56.42
DIC 8858.94 9649.41 8823.38 8492.22

For model A (Gaussian model)with regard to the wealth index, the mean Hb was
slightly higher in children, who belong to poor and middle class households com-
pared to the poorest(ref.) household, although the effect was not significant for
those of the poor, middle and richer households. Mean Hb was higher among the
male children than in female children, while also higher among the rural children
than those of urban, although not significant. Moreso, the mean Hb concentration
is higher in children of mothers, who attained high education compared with not
educated mothers. With varying child’s age, the mean Hb concentration was signifi-
cantly higher (better) in the infant of age 6- 11 months, but lower among neonates(1-
5 months), 12-23 months old children than in over 24 months (2 years and above)
children. The significant impact of maternal wealth having reverse effects on iron
deficiency anaemia (IDA) are evidenced among under- five children over the first
three years of their life. In early years in life, the children need enough hemoglobin
for rapid neural development, biochemical and even for cognitive functioning as re-
ported in Chang et al. (2011) and Grantham-McGregor & Ani (2001).
For the model B and C in Table 5.2, a positive coefficient indicates the factor in-
creases the probability (odds) of anaemia prevalence. In other words, the variable
with positive coefficient increases the risk of anaemia, while a variable with negative
coefficient reduces the risk of anaemia, while in the the case of model A specifica-
tion (Gaussian response), a positive coefficient indicates that the factor contributes
to increase(improve) the hemoglobin concentration level in the child. For instance,
Model A (Gaussian), multiple birth reduces the hemoglobin concentration in a child
from a multiple birth compared to a child from single birth. This result agreed with
the binary or cumulative ordinal analysis that there would be higher likelihood of
anaemia among children from multiple birth than single birth. More so, children of
highly educated mothers had better hemoglobin concentration in their blood, agree-
ing with models B and C that the children of high educated mothers would have
reduced risk of anaemia. In summary, model C model would saves computation
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time of running 3-4 separate binomial models for each category of anaemia, the re-
sults in cumulative model(column) yielded lower standard deviation(error) for each
covariate factor signifying better precision. In addition, model model C included
cut-off points along with the covariate estimates, as θ1, θ2 and θ3. These values rep-
resent the shifting values from non-anaemia to category one(mild anaemia) to cate-
gory two(moderate anaemia) and category three(severe anaemia).

Table 5.2: Posterior estimates for Gaussian, Binary logit and Cumulative Probit model
based on 2010 Tanzania DHS

A:Gaussian model B:Binary logit model C:Cumulative logit model
Variable Est. STD 95% CI Est. STD 95% CI Est. STD. 95%CI
constant 11.891 0.199 (11.501, 12.279) -1.268 0.298 (-1.882, -0.712) − − −
Female ref. 0 0 0 0 0 0 0
Male 0.032 0.023 (-0.011, 0.078) -0.030 0.029 (-0.030, 0.029) -0.032 0.030 (-0.091, 0.026)
Sleeping under bednets. 0 0 0
No bednet 0 0 0
Bed nets -0.132 0.029 (-0.186, -0.072) 0.123 0.039 (0.047, 0.198) 0.129 0.038 (0.055, 0.204)
Child’s age > 2 yrs ref. 0 0 0
1− 5 -0.017 0.047 (-0.106, 0.071) 0.096 0.057 (-0.011, 0.215) (0.098 0.058) (-0.016, 0.210)
6− 11 0.135 0.046 (0.042, 0.223) -0.141 0.062 (-0.262, -0.018) -0.163 0.059 ( -0.280, -0.048)
12− 23 -0.195 0.059 (-0.311,-0.081) 0.133 0.075 (-0.012, 0.275) 0.158 0.071 ( 0.018, 0.297)
Type of birth
Singleton ref. 0 0 0
Multiple birth -0.148 0.077 (-0.299, -0.004) 0.130 0.096 (-0.063, 0.316) 0.133 0.092 -0.048, 0.313
Place of residence
Rural ref. 0 0 0
Urban -0.044 0.041 ( -0.123, 0.032) -0.009 0.050 (-0.109, 0.083) 0.004 0.050 -0.093, 0.101
Mother’s education
No Prim. ref. 0 0 0
prim 0.156 0.123 (-0.084, 0.389) -0.028 0.210 (-0.406, 0.447) -0.056 0.200 ( -0.448, 0.336)
sec -0.405 0.133 (-0.654, -0.138) 0.521 0.216 (0.140, 0.977) 0.466 0.205 (0.064, 0.868)
high 0.543 0.360 (-0.164, 1.256) -0.963 0.619 (-2.407, 0.118) -0.858 0.586 (-2.007, 0.291)
Wealth index
Poorest ref. 0 0 0
poor 0.037 0.049 (-0.066, 0.132) -0.055 0.064 (-0.180, 0.070) -0.075 0.062 (-0.196, 0.046)
middle 0.076 0.048 (-0.014, 0.171) -0.016 0.063 (-0.144, 0.102) -0.017 0.061 (-0.136, 0.103)
richer -0.052 0.048 (-0.146, 0.040) -0.007 0.060 (-0.129, 0.101) 0.006 0.059 (-0.110, 0.121)
richest -0.156 0.071 (-0.287, -0.017) 0.192 0.090 (0.015, 0.379) 0.212 0.090 (0.036, 0.388)
Stunting
No ref. 0 0 0
severe 0.034 0.050 (-0.065, 0.129) 0.038 0.063 (-0.079, 0.162) 0.041 0.063 (-0.083, 0.164)
moderate -0.016 0.041 (-0.095, 0.065) -0.049 0.054 (-0.158, 0.060) -0.049 0.053 (-0.153, 0.055)
Wasting
Not ref. 0 0 0 0 0
severe -0.094 0.156 (-0.389, 0.206) 0.130 0.199 (-0.288, 0.510) 0.173 0.184 (-0.187, 0.534)
moderate -0.083 0.105 (-0.289, 0.119) 0.032 0.305 (0.133, -0.227) 0.008 0.125 (-0.235, 0.252)
No disease (2 weeks) ref. 0 0 0
fever -0.067 0.056 (-0.179, 0.040) 0.084 0.072 (-0.063 , 0.222) 0.077 0.071 (-0.063, 0.217)
diarrhea 0.105 0.068 (-0.024, 0.237) -0.132 0.090 (-0.311, 0.050) -0.124 0.089 (-0.280, 0.050)
Threshold 0 0 0
θ1:Severe anemic − − − − − − 4.319 0.323 (3.685, 4.953)
θ2:moderate anemic − − − − − − 2.110 0.307 (1.509, 2.712)
θ3:mild anemic − − − − − − 1.148 0.306 (0.549, 1.747)

HAZ: Height-for-age score, WHZ: Weight-for-height score

Figure 5.1 presents the estimates of non-linear smooth function of mother’s age(in
months) and mother’s body mass index for for models A, B and C. Each non-linear
graph consists of a center line representing the posterior mean estimate bounded by
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95% credible intervals (outer lines) and 80% credible intervals (inner lines). The non-
linear effects of mother’s age (left panel) and mother’s body mass index (right panel
). Top panel: From model A, the plot depicts an inverted U− shape relationship be-
tween mother’s age and childhood hemoglobin concentration level). This depicts
that the Hb concentration would be rise among children of under-aged mothers
(teenage mothers: age < 20 years)that with an upward trend in Hb concentration
and soon after it stabilizes (no substantial change trend line) Hb concentration for
mother’s age ranges 22- 38 years and later downward trend for mother’s ages above
38. Figure 5.1b describes the effect of mother body mass index( which measures nu-
tritional status of mothers)on the child Hb concentration, which produced similar
trend line on Hb concentration value of their children.
It shows that mbmi below 19 (underweight mother) produced an upward child Hb

Figure 5.1: Models A, B, and C results : non-linear effects of mother’s age (years) (left panel)
and mother’s body mass index (right panel
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concentration, then little rise (stabilizes) in between 19 - 24, and decline the Hb con-
centration in children of mbmi above 26 (overweight or obese mothers).
The plots for models B and C showed reversed trend line (U− shape graph)to the
model A, but with similar implications. For instance, model B (middle panel), Fig-
ure 5.1 which depicts that the smooth curve effect of mother’s age on the odds of
childhood anaemia in Tanzania, indicating that the there were decreasing odds(risk)
of anaemia among the children from the teen mothers (20 year), then it rises slightly
and fluctuates among children of mother age from 22 to 40 years and later rises (in-
creased risk). The trend patterns were similar for both models B and C and even for
the mother mass index.

Figure 5.2 presents the plots of spatial residual of geographical prevalence of anaemia
across Tanzania for models A, B and C displayed in top, middle and bottom panel re-
spectively. Figure 5.2 shows the posterior means (left panel) and 80% credible interval
(right panel), which is used to determining the significance level. The interpretation
of the colour classification from the posterior mean (left), as shown in Figures 5.2
for models A (top), B (middle), and C (bottom) respectively. The green colour indi-
cates better outcome (high Hb concentration status) for model A, while green would
signify regions a low Hb concentration level for the model B and C. The red colour
indicate low mean of Hb concentration level for model A, while red in model B &
would mean lower risk of anaemia in those regions.

Using the 95% CI, black colour indicates low prevalence of childhood anaemia,
white indicates “colour depicts high prevalence of anaemia, and grey colour means
not significant. On the posterior mean plots, the geographical variation in the preva-
lence for Model A ranges from -0.81 to 0.159, Model B (-0.269 to 0.101) and model C
: (-0.265, 0.116).
For moodel A), Figure 5.2 (top panel) represents the posterior mean map, which
showed an evidence of spatial variation in anaemia prevalence across the regions
(Green colour on the posterior means indicates better outcome (high mean heamoglobin
(HB)concentration level i.e. from equation (5.6), value of ūs =

∑
t∈δs

fstr(t)
Ns

). Using
the 80% credible intervals, the white colour indicates regions are associated with
better Hb concentration level among children in those regions like Kilimanjaro and
Tanga (i.e.strictly positive). The remaining regions with grey coloured are not sig-
nificantly associated with anaemic children.
Figure 5.2 (d) and Figure 5.2 are obtained from the binary or cumulative ordinal
model respectively. The black coloured regions indicate strictly negative values from
the binary or cumulative logit analysis respectively. The black regions depict low
prevalence (risk) of anaemia among under five children in those cities. These re-
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Figure 5.2: Models A, B, and C results: spatial effects with posterior means (a, c, e) Left panel
and its corresponding 80% credible intervals map (b,d, f) respectively

gions associated with low prevalence of anaemia are Dar Es Salaam, Kilimanjaro and
Tanga, while white coloured region (Dodoma) was significantly positive indicating
high risk of anaemia in children. The grey coloured are not significantly associated
with anaemic children.
In addition to the underlying risk factors presented the table, the significance of the
probability predictive maps can be used to assist government agencies for quick in-
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terventions. The maps depict that there were relatively high anaemia prevalence
among the children population in most regions with similarity patterns (clustering).
The findinngs corroborated other previous studies. A study conducted by Hotez &
Kamath (2009) reported that neglected tropical diseases, such as hookworm infec-
tions were highly prevalent in about a half of poorest people in sub-Saharan African
children, which occurred in about 50 million school-aged children and 7 million
pregnant women constituted a leading cause of anaemia.

5.5 Conclusion and Summary

Using 2010 Tanzania Demographic and Health (TDHS) data, three different semi-
parametric models were fitted to the measurements of anaemia status among under-
five children. The measured outcomes belong to three forms of responses (Gaus-
sian, bino- mial, and multinomial response variable) and are assumed belonging
to exponen- tial family distributions. On each response outcome, we simultane-
ously investigate the geographical variation and the risk factor of child anaemia.
The spatial com- ponent was modeled using a Markov random field prior. Bayesian
inference was performed through Markov chain Monte Carlo (MCMC)simulation
techniques to estimate the model parameters and the measures for goodness of fit
using Deviance information criterion (DIC). The risk factors found to be significantly
associated with anaemia included place of residence, household poverty, childhood
malnutrition, and disease morbidity. The non-linear function showed discernible
relationships with hemoglobin status among children and continuous covariates
(mother’s age and mother’s body mass index ). The results showed that the esti-
mate outputs were similar for binary logit and multinomial ordinal models, but the
ordinal model later had smaller standard deviation for corresponding factors. Our
method detects spatial effects that may not have been captured by the underlying
factors and produce predictive probability maps. The pattern of anaemia preva-
lence were similar across the regions in Tanzania indicating autocorrelation in the
anaemia prevalence among regions and a relative low prevalent found in major cities
of the Eastern regions (Kilimanjaro, and Dar es Salaam) of Tanzania. The model out-
put highlights high risk regions that can assist government agency to allocate scarce
health resource and effective policy direction.
In conclusion, this chapter presented three models for data on childhood anaemia
belonging to a family of exponential models (Gaussian, binary and cumulative ordi-
nal models). Although, the direction (signs) of the statistical inference for the coeffi-
cients of covariate (categorical factors) are similar from the three models presented,
the cumulative (probit) ordinal model produced better estimate than the ordinary
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probit model. As seen from Table 5.2, ( posterior estimates), the covariate factors
indicated lower standard errors under cumulative (probit) multinomial model than
the corresponding ordinary probit model, an indication of better precision under the
cumulative model. Moreso, by over-collapsing a response variable from its natural
classification into a single binary response variable, perhaps, it might have led to
loss of information.
The present study had shown that our the method is flexible and robust, and es-
timate several effects simultaneously. In addition to the statistical relevance of the
output, we produce spatial residual effects which may be neglected in classical re-
gression settings. The spatial residual maps can assist development partners and
government agencies to channel the scarce health resource in a more effective man-
ner.
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Chapter 6

Multivariate Spatial Joint

Modeling of Childhood Anaemia

and Malnutrition in sub-Saharan

Africa

Children’s nutritional status has improved as indicated by the prevalence of stunt-
ing and wasting among children having declined significantly in recent decades.
According to UNICEF et al. (2014), in 1990 40% (257 million) of the world;s children
suffered from stunting whereas in 2013, the proportion had decreased to 25% (161
million). The incidence of wasting also declined over the same period, from 19%
(122 million) to 8% (51 million). There has been also a significant reduction in the
numbers of underweight (but not wasted) children from 25% (160 million) 15% (99
million). A recent report by WHO (2015) indicates that aenemia is found among a
quarter of the global population, including 293 million (47%) children younger than
5 years, women of reproductive age, 42% of pregnant women and 468 million (30%)
non-pregnant women, which further indicated that Africa and Asia accounted for
more than 85% of the absolute anaemia burden among the high-risk groups.
Anthropometric indicators are frequently used to measure malnutrition in children
under the age of five (WHO, 1995) and to classify individual as malnourished or
of normal nutritional status. Childhood stunting (short height-for-age) is an indica-
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tor of linear growth retardation and cumulative growth deficits in children (chronic
malnutrition), while wasting (low weight-for-height) measures body mass in rela-
tion to height and describes a child’s current nutritional status (acute malnutrition).
Both anthropometric indices are important public health indicators and they remain
global public health problems, with considerable consequences at adulthood.
Research evidence has established that childhood malnutrition in form of stunting
or wasting or both constitutes a distinct public health problem. For example, Black
et al. (2013) reported that approximately 800,000 global deaths are attributed an-
nually to wasting and over one million are caused by stunting. It has also been
estimated that wasting and stunting, respectively, are responsible for the loss of 64.6
and 54.9 million disability adjustment life years (DALY) respectively, accounting for
14.8% and 12.6% of the global DALYs for children (Black et al., 2008). Childhood
wasting and stunting are both associated with increased mortality, especially when
both are present in the same child (De Onis et al., 2006; Victora et al., 2008). The two
forms of malnutrition often share a common cause, which suggests that to decrease
malnutrition-related mortality; interventions should aim at preventing both wasting
and stunting (Victora, 1992; Martorell & Young, 2012; Black et al., 2013). Childhood
malnutrition is reflected in the manifestation in terms of micronutrient deficiencies,
anaemia and anthropometric measurements. Consequently, there is a need to iden-
tify the risk factors of malnutrition and anaemia in the sub-populations in order to
provide a baseline for future public health interventions and to plan an effective in-
tervention and nutritional supplementation programme.
In epidemiology and demography, disease mapping models have long been used in
analysing geographical variation of disease rates in order to produce a contiguous
map of disease risk and highlight areas of unusual high risk (Richardson et al., 2004;
Dreassi, 2007). The spatial mapping models provide decision makers the guide for
better allocation of public health resources.
More recently, the research in spatial epidemiology is increasingly growing in area
of joint modeling. Besuase the joint disease modeling provides additional informa-
tion that is useful to identify the common risk factors(similarity) in the case of a
variety of diseases. Moreso, the joint modeling approach is more appealing than
univariate response analysis. The potential benefits of a multivariate disease map-
ping include the ease of interpretation, improved precision of the underlying disease
pattern estimation, ability to identify shared and specific patterns of risk among
different disease prevalence, and improvement in the model precision (Dabney &
Wakefield, 2005; Dreassi, 2007; Held et al., 2005). A good review of multiple dis-
ease mapping and techniques can be found in existing literature such as Best et al.
(2005); Manda et al. (2012) and Downing et al. (2008). The most common approach to
analyze multiple disease outcome is done through a shared component model first
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proposed by (Knorr-Held & Best, 2001) and the multivariate conditional autoregre-
sive(MCAR)model theory developed by Mardia (1988). Other extensions have been
developed, such as the generalized MCAR (GMCAR) for lung and esophagus can-
cer in Minnesota(Jin et al., 2005), the so-called coregionalized MCAR for multivari-
ate geostatistics(Wackernagel, 2013) and adaptive smoothed ANOVA (SANOVA) for
areal data (Zhang et al., 2009). Accordingly, these above mentioned studies have
motivated the present study, where we extend the existing conditional autoregres-
sive prior into a multivariate setting. This study therefore explores a multivariate
conditional autoreggressive approach to simultaneously model three malnutrition
indicators among children less than five years of age.
This study is structured into sections. Section 6.1 explains the procedure to be used,
and the sources of data. Section 6.2 outlines model formulation and detail the Bayesian
spatial estimation method. Sections 6.3 and 6.4 show the implementation of the
method on cross-sectional data obtained from DHS and presents the results. Then
Section 6.5 discusses the results, and this is followed by the final section with con-
cluding remarks on the findings.

6.1 The Data Exploration

The data used in this study are extracted from the Demographic and Health Surveys
database and in collaboration with Bureau of Statistics of the respective countries.
Over the years, the DHS program has provided technical supports and funding to
surveys conducted in many developing countries. This thereby promotes global un-
derstanding of health and population trends. They developed standard procedures,
methodologies and manuals to guide the sampling survey planning, design and data
collection processes to obtain quality data to reflect the health and demographic rep-
resentation of the population comparable among countries. The data used in this
study are extracted from the surveys in Burkina Faso INSD (2012), Ghana Statistical
Service(GSS) (2008) and Mozambique National Statistics Institute (2011).
Figure 6.1(a)-(c) respectively shows the geographical map of regions(provinces) of
the three selected countries: Burkina Faso, Ghana and Mozambique. Burkina Faso
is a landlocked country in West Africa. It covers an area of around 274,200 km2 and
it has 13 regions and subdivided into 45 administrative provinces and the nation has
a population of about 18.1 million acoording to DeSA et al. (2017). Ghana is situated
on the West Africa’s Gulf of Guinea with a total land mass of 238 540 km2. The
country is divided into 10 administrative regions. Mozambique is a country in the
South-eastern Africa bordered by six countries and the Indian Ocean. According to
the 2017 revision of the World Population Prospects, it has a total population of 28.8
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million in 2016 according toDeSA et al. (2017) and a total fertility rate of 5.9 accord-
ing to the Mozambique National Statistics Institute (2011). Mozambique is made of
10 administrative provinces and a total landmass of 799,380 km2.

Figure 6.1: Map of (a) Burkina Faso (b) Ghana and (c) Mozambique showing regions /
provinces within each country

Data information was assessed and extracted from the Demographic and Health
Surveys of the three countries. Anaemia(used as a response variable) is described as
a product of low level concentration of functional hemoglobin(Hb) in the blood. Ac-
cording to World Health Organization (WHO), children whose age range from 0-59
months are considered anemic if their Hb concentration levels are below 11.0 g/dl
as reported in Stoltzfus (1997). The study adopted the World Health Organization
(2006) standard for characterization of child malnutrition: weight-for-height (wast-
ing) and height-for-age (stunting) z-scores as when the child Z− score falls below
minus 2 SD, the child is considered as wasting or stunting respectively.
The following variables are also chosen and used in existing empirical studies of
childhood malnutrition as suggested in Kazembe (2013) and Smith-Greenaway &
Trinitapoli (2014). The factors included in the model are presented in Table 6.1.

The number of malnourished children in the sampled population were tabulated by
country and presented in Table 6.2. The overall prevalence of childhood anaemia
among the three countries ranges between 30.9− 39.4%, with lowest prevalence
recorded in Mozambique and highest recorded in Ghana. The overall prevalence of
childhood stunting among the countries ranges between 28.2 − 42.8%, with lowest
prevalence in Ghana and maximum in Mozambique. Furthermore, for the preva-
lence of child wasting, the lowest prevalence of 5.9% was recorded in Mozambique
and the highest prevalence of 13.8% in Burkina Faso. In the survey population, there
were many missing values, may be the respondent (mother) declined to provide in-
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Table 6.1: Variables used in the analysis: variable indicator, Levels and Variable types

Variable indicator Levels Variable type
Response variable
Stunting stunting =1, 0 otherwise binary
Wasting wasting =1, 0 otherwise binary
Aneamia anaemic =1, 0 otherwise binary
Explanatory variable
child use bed nets yes= (1), no=0(ref.) binary
Child age 1-5 months, 6-11 months, categorical

12-23 months, 2 years and above (ref.)
Birth order 1st, 2-3, 4-5, 6 and more categorical
Gender of child Female=0(ref.), male=1 binary
birth type singleton , multiple (twin) binary
birth order 1st=0(ref.), 2nd , 3rd, 4th or more categorical
Birth in 3 years 0-1 child, 2 or more children categorical
diarrhea Yes, no(ref.) binary
fever Yes, no(ref.) binary
measles vaccination yes=1, no=0 (ref.) binary
mother’s literacy read and write =1, not literate=0(ref.) binary
Mother’s age age at birth (years) continuous
mother body mass index mbmi continuous
antenatal attendance zero visit, 1-3 visits, 4 and more (ref) categorical
place of residence rural=1, urban=0 binary
mother’s wealth index poorest(ref.), poor, middle, richer, richest categorical
mother’s educational level primary(ref.), secondary, higher categorical
electricity yes=1, no=0(ref.) binary

Table 6.2: Percentage distribution of child’s health condition(anaemia, stunting, and wast-
ing by country in total sampled population from the Demographic and Health
Surveys

Country Years of DHS Population No of children No. of stunted No. of wasted No. of anaemic
sample(N) response (n) children n(%) children n(%) children n(%)

Burkina Faso 2010 15044 6994 2420(34.8) 1084(15.5) 2343(30.9)
Ghana 2008 2992 2083 558(28.2) 176(8.3) 1149(39.4)
Mozambique 2011 11102 10313 4393(42.6) 609(5.9) 3394(30.9)

% = ratio of number of cases children divided by sample population at risk (response)

formation about her child, or the child was not available (not at home) when the
interview was been conducted, or the child was sick , or the child was living with a
family relation.

Here, we present a brief summary statistics about the survey population of children
under -five age involved in the study (Table not available).
From the extracted data, there was a total of 19 390 children aged 0-59 months from
the three country surveys, with overall prevalence of stunting in the sample pop-
ulation of 30.0% and 12.4% wasting, and 30.0% of the children were affected by
anaemia, with more anemic in infants and younger children than older children.
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Majority (81%) of these children were from rural areas, of which there were higher
prevalence of stunting among the children, of 30%, but lesser prevalence of anaemia
of 22.7% and wasting of 4.7% among rural children than urban. About one-half of
the children (54%) were either first-born or at second and third order. While the
percentage prevalence of anaemia had a linear association with birth order of birth.
Childhood stunting and wasting did not indicate any consistent linear association
with the birth order. Majority of these children (97%) were born of single birth,
with higher prevalence of anaemia and stunting of 25.9% and 39.1% respectively
among children of multiple birth (twin) than the single birth (22.9% and 28.2%) re-
spectively, but lower prevalence of child wasting. About a quarter of these children
were born to mothers who attained no formal education(25.5%), some formal edu-
cation (63.3%), while 11.3% achieved secondary or higher).
Generally, the prevalence of anaemia did not differ significantly among the maternal
wealth strata(groups), but the prevalence of childhood malnutrition( stunting and
wasting) decline consistently as the maternal wealth move upward the economic
strata. Furthermore, it was observed that the prevalence of both childhood anaemia
and wasting are linearly related to maternal household wealth strata, but the wealth
index was inversely linear associated with child stunting, except for the extreme
poor. The higher prevalence of the three malnutrition indicators were found among
the children born of mothers with short birth intervals, and those mothers who did
not attend antenatal clinic at all or less than 3 visitations.

6.2 The Statistical Models

The joint modeling method known as the shared component model was introduced
by Knorr-Held & Best (2001), with subsequent extension of their work to joint dis-
ease clusters detection, as described in Lawson (2006). The shared component mod-
els have been successfully applied to model jointly the risk of oral and oesophageal
cancers by Knorr-Held & Best (2001), of chronic obstructive pulmonary disease (COPD)
and lung cancer by Best & Hansell (2009), of infant mortality and causes of death in
Austria by Waldhoer et al. (2008), of infant mortality from four cancers by Held et al.
(2005) and of gender inequalities in hospital admission for chronic diseases in the
work of Ibáñez-Beroiz et al. (2011). Ecological co-morbidity of childhood diseases in
Somalia was also carried out by Kinyoki et al. (2017).
Although, as stated in Best & Hansell (2009) and Downing et al. (2008), analysts
could use a multivariate normal model approach to assess co-variances and cor-
relation within and between diseases of underlying spatial risk, multivariate spatial
models permit the estimation of conditional correlation between two diseases, while
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at the same time estimating their spatial dependence with the region. By perform-
ing joint modeling analysis on multiple diseases, it has been demonstrated that such
models yield better detection and estimates of the underlying risk patterns and so
they showed superiority over a separate univariate model analysis of any single
disease response (Poletta et al., 2007; Boyd et al., 2004; Green & Richardson, 2002).
Details concerning recent developments in the theory and applications of multivari-
ate joint modeling techniques can be found in Assunção & Castro (2004); Dobra et al.
(2011) and MacNab (2011). A scale mixture approach was recently proposed by Con-
gdon (2017) as a contribution to the field of multivariate disease mapping models.
The shared component model in the work of Knorr-Held & Best (2001) can be briefly
summarized as follows. The case of two diseases is most commonly applied in
the literature for a two-component case, where one describes the association in the
prevalence of the two diseases and the second component introduced is specific to
one of the diseases. The two components are formulated to incorporate the un-
observed spatial factors that affect the risk of the disease(s). Let yi1 be the ob-
served cases of diseases 1 in region i and Ei1 be the corresponding expected num-
ber of cases for the same disease. Similarly, yi2 and Ei2 are the observed and ex-
pected number of cases for the disease 2 in region i. The counts (incidence of can-
cer) assumed that, yi1 ∼ Poisson(Ei1 exp(ηi1), yi2 ∼ Poisson(Ei2 exp(ηi2)), and
the log of the relative risks were modeled using normal random effects such that
ηi1 ∼ N (α1 + u1iδ + u2i, τ1), and ηi2 ∼ N(α2 + u1i/δ, τ2). The parameter u1 is the
shared component while u2 is the component specific to the first disease only. They
were assumed to follow Gaussian Markov random fields (GMRF) with precision pa-
rameters, τ1) and τ2) respectively. The non-negative parameter, δ should be included
in the model to allow the two diseases to have different risk gradients in the shared
components. They assumed that log δ ∼ N(0, σ2), with the value of σ2 is set to 0.17
as suggested in Knorr-Held & Best (2001).
The joint models in the work of Knorr-Held & Best (2001) was modified to suit the
Bernoulli data (i.e. malnourished/nourished outcome) in the present study. Let yijk
be the disease (nutritional status) coded (0/1) of a disease k, where k = 1 for stunt-
ing, k = 2 for wasting, and k = 3 for anaemia for individual child i, i = 1, 2, . . . , nj ,
in regions j (provinces as the case may be). We further assume that the observed
outcomes arise from a trivariate distribution, with pijk as the probability of disease
k occurring in individual in area j. The data generation model is defined as

yijk ∼ Bernoulli(pijk). (6.1)
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and for each model, the covariates are introduced as stated below.
In the separate analysis, the covariates and random effects are introduced as follows:

logit(pij1) = α1 + X′β1 + u1i + v1i

logit(pij2) = α2 + X′β2 + u2i + v2i

logit(pij3) = α3 + X′β3 + u3i + v3i

where u1, u2 and u3 are modeled using the independent conditional auto-regressive
prior, while v1, v2 and v3 are modeled using the independent normal distributions.
In a shared component model approach, the covariates and random effects are in-
troduced as follows

logit(pij1) = α1 + XTβ1 + u1δ + u2i

logit(pij2) = α2 + XTβ2 +
u1i

δ

u1 is the shared component while u2 is the component specific to the first disease
only. These two components are modeled using conditional autoregressive priors
with precision, τ1 and τ2 respectively.
The multivariate joint modeling approach can be easily generalized to more than
two outcomes. In the multivariate setting , the covariates and random effects are
introduced as follows

ηij2 = logit(pij1) = α1 + XTβ1 + φi (6.2a)

ηij3 = logit(pij2) = α2 + XTβ2 + φi (6.2b)

ηij1 = logit(pij3) = α3 + XTβ3 + φi (6.2c)

where φ = (φ1, φ2, φ3)T is modeled using a multivariate conditional autoregressive
prior that is Φ ∼ MCAR(1,Σ), where Σ is the covariance matrix including correla-
tions.
In order to induce spatial correlation structure between the set of binary logistic
models, equations (6.2) can be fused together into a multivariate version, and the
matrix form explicitly expressed as

η =

logit(pij1)

logit(pij2)

logit(pij3)

 =

α1

α2

α3

+ X

β1

β2

β3

+

φiφi
φi

 (6.3)
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We then model y1ij , y2ij and y3ij via the following tri-variate normal distribution

y
∗
1ij

y∗2ij
y∗3ij

 |φi ∼ N3


η1ij

η2ij

η3ij

 ,R

 = N3


η1ij

η2ij

η3ij

 ,

 1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1


 (6.4)

where αk, k = 1, 2, 3 in equation (6.3) represents individual specific disease intercept,
and the terms β = (β1, β2, β3)T are p × 1 vectors of regression parameters to the set
of covariates (fixed effects) (presented in Table 6.4, Table 6.5, Table 6.6) for Burkina
Faso , Ghana and Mozambique respectively. R is a within -subject correlation matrix
with diagonal elements set to 1 for identifiability and off diagonal ρ denoting the
conditional correlation between y1ij , y2ij , andy3ij given φi and φi = (φ1, φ2, φ3)′ is
a 3 × 1 vector of spatial dependent random effects for the ith region or province as
presented in Table 6.7, Table 6.8 & 6.9) for respective countries: Burkina Faso, Ghana
and Mozambique.
Model estimation was carried in a full Bayesian approach by assigning appropriate
prior distributions to all the parameters of the models. In addition, the prior dis-
tribution was also assigned to the random effects discussed in the models above,
non-information priors were assigned to the fixed coefficients. For the intercepts,
diffuse priors were assumed, that is, p(αk), while the fixed effect covariate was as-
signed a highly dispersed normal prior distribution, that is, p(β) ∼ N(0, 104).
In a shared component model, the analyst needs to specify an extra parameter δ by
allocating a prior as log δ ∼ (0, σ2), while in the case of multivariate setting, the
covariance matrix was assigned an inverse Wishart prior as Σ ∼ IW (r,R) with R
considered to be an identity matrix. All models were fitted using WinBUGS soft-
ware due to Spiegelhalter et al. (2002b).
There are two ways of proceeding, via the covariance matrix or its reciprocal. One
way is to specify the joint distribution (??) and assume specific forms for Σ. For
further readings, see Gelfand & Vounatsou (2003) and Assunção & Castro (2004).

6.2.1 Univariate Conditional Autoregressive (CAR) Prior

Consider a vector φ = (φ1, φ2, . . . , φn)T of p components that follow a multivariate
Gaussian distribution with mean zero and variance -covariance matrix Q−1, where
Q is p× p symmetric and positive definite matrix. It follows that the joint pdf of φ is
given by

p(φ) = (2π)
p
2 |Q|

1
2 exp

{
1

2
φTQφ

}
(6.5)
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The conditional distribution of one of the components given the remaining ones, in
term of the elements of the matrixQ, is given by

p(φi|φ−i) ∝ exp

−bii2
φ−∑

j 6=i

−bij
bii

φ

2 (6.6)

Equation (6.6) can be written in short form as φ|φ ∼ N(−
∑

j 6=i
bij
bii
φj ,

1
bii

).
Besag (1974) showed the conditions under which the full conditional distributions
specified above uniquely defined a full joint distribution, which allows −bijbii

= cij , cii =

0 and 1
bii

= σ2
i . Then, the elements of the matrix C equal to cij and cii, while the ma-

trix M defined in
Q = M−1(I− C). (6.7)

Then the joint distribution of φ is MVN(0,M−1(I − C)). It is worth to note that C
and M must be properly specified so as to ensure symmetry in B. The condition
cijσ

2
j = cjiσ

2
i guarantees the matrix to be symmetric. The matrix C is also specified

to show its relationship between neighbours.
A commonly used adjacency matrix for lattice data was due to Besag (1974). He
defined the element of matrix C as cii = 0 and cij = 1

mi
if j is adjacent to i and zero

otherwise. Here, mj is the number of neighbours of region i. We define another
matrix W to hold the adjacency and structure, wii = 1 if region i and region j are
neighbours and zero otherwise. It then follows that C=Ws where Ws = diag( 1

mi
).

The notation implies the following specification to the matrix B; bii = λmi and bij =

−λ if region j is adjacent to region i and zero otherwise. Two regions are defined to
be neighbours if they share a common boundary. It then follows that

Q = λ(diag(mi)− C). (6.8)

From the equation (6.7), M−1(I − C) has to be positive definite for the conditional
distributions to give rise to a valid joint probability density function(pdf). Besag
(1974) gave the definition of the adjacency matrix leads to an improper joint pdf.
This can be overcome by introducing a parameter α into the precision matrix Q and
it then yields

Q = M−1(I− αC). (6.9)

If |α| < 1, then the matrix M−1(I − αC) is a diagonally dominant and symmetric
matrix. Bernardo et al. (2003) showed that the matrix expressed in equation (6.9) is
a symmetric and diagonally dominant matrix, which is positive-definite. The auto-
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regressive term in this study is used in the context of space(place) or region. Exten-
sions and variants to these models have led to different approaches such as stated in
Gelfand & Vounatsou (2003) and Jin et al. (2005).
Ma et al. (2007) used multivariate approach to model areal wombling for multiple
disease boundary analysis

6.2.2 Multivariate Conditional Auto-regressive(MCAR) Prior

The development of the multivariate model is credited to Mardia (1988); as such it
is an extension of Besag (1974) results into a multivariate setting. The work, of Mar-
dia (1988) showed the conditions under which the conditional multivariate distribu-
tion uniquely determines the corresponding multivariate joint probability density
function. Under the same condition, Carlin et al. (2003) extended the MCAR model
of Jin et al. (2005) into a generalized MCAR model in the following manner. Let
Φ = (φT1 , φ

T
2 , . . . , φ

T
n ), where each φi is n× 1 vector. Then Φ is an np× 1 vector. Also

let Φ have a multivariate Gaussian distribution with mean, 0 and precision matrix
Q, it can then be defined by

p(Φ) = (2π)
np
2 |Q|

1
2 exp

{
−1

2
ΦTQΦ

}
(6.10)

Q is an np × np symmetric and positive definite matrix. It is informative to look at
Q as a p×p block matrix with n×n block Qij , hence the full conditional distributions
are given by

p(φi|φj) ∝ exp

−1

2

φi −Q−1
ii

∑
j 6=i

(−Qij)φi

T

Qii

φi −Q−1
ii

∑
j 6=i

(−Qij)φi




(6.11)
This implies that φi|φj ∼ Nii

(
Q−1
ii

∑
j 6=i (−Qij)φj ,Q

−1
ii

)
and the full conditional

probability density function is given by

p(φi|φj) = Nii

∑
j 6=i

Cijφj ,Σi

 , i = 1, 2, . . . , p (6.12)

where Σi and Cij are n × n are matrices that are analogue to σij and cij as defined
for the univariate case above (6.6). The matrix Σi is also symmetric and positive
definite. The relationship between the matrices Σi and Cij can also be written in
terms of Q, and the precision matrix of the joint distribution as Cij = −Q−1

ii Qij and
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Σi = Q−1
ii . If we set Σ to be a block diagonal matrix with Σi blocks and C as a

partitioned matrix with blocks Cij and Cij = 0n×n, then

Q = Σ−1(I− C) (6.13)

A parameter, α can be added into the precision matrix into equation (6.12) to yield

Q = Σ−1(I− αC) (6.14)

For a symmetric matrix Q and smoothing parameter α satisfying the condition such
that CijΣj = ΣiCT

j , the distribution is denoted by MCAR(C,Σ) according to Baner-
jee et al. (2014). To carry out the inference, α and Σ are assigned appropriate priors,
such as uniform distribution for α and Wishart (ρ,Σ0) for Σ.

6.2.3 Posterior Distribution

Bayesian inference is based on the posterior distribution and it is carried out using
the Markov chain Monte Carlo (McMC) simulation technique. The posterior distri-
bution is obtained by updating the prior distribution with the data likelihood and
hence it the distribution of the parameter after the data has been observed. Due
to the high dimensionality involved in drawing the samples, McMC method per-
mits direct sampling from the posterior distribution repeatedly and summary statis-
tics such as mean and median are computed from samples drawn. Under of the
assumptions of conditional independence between the response variable and the
hyper-parameters, the joint posterior distribution for the a spatial bilogit model, is
given by
π(β1, β2, α1, α2, ρ,Φ,Σ) ∝

n∏
i=1

ni∏
j=1

[
Pr
(
y∗1ij < 0, y∗2ij < 0|ηij , ρ

)(1−y1ij)(1−y2ij) Pr
(
y∗1ij > 0, y∗2ij < 0|ηij , ρ

)y1ij(1−y2ij)

× Pr
(
y∗1ij < 0, y∗2ij > 0|ηij , ρ

)(1−y1ij)y2ij Pr
(
y1ij∗ > 0, y∗2ij > 0|ηij , ρ

)y1ijy2ij]
× exp

(
−1

2
Φ′
[
(M −A)⊗ Σ−1

]
π(β1)π(β2)π(α1)π(α2)π(ρ)π(Σ)

)
(6.15)

where ηij = (η1ij , η2ij)′ as given in equation (6.4) and the π(.) represent the prior
distributions for their respective parameters as defined in section 6.2.1 above.
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For a case of k = 3, let θ be the vector of all the parameters in the model, L(yi|ηi)
is the likelihood of the trivariate model and τ2

j is the variance parameter, then the
posterior distribution is given by

p(θ|y) ∝ L(y|α, β, ρ, φ, τ2)× p(α, β, ρ, φ, τ2) (6.16)

=

n∏
i=1

L(yi, ηi)

p∏
j=1

[
p(βj |τ2

j )p(τ2
j )p(φu|τ2

u)p(φv|τ2
v )p(τ2

v )
]

(6.17)

×
r∏
j=1

p(γj)p(σ
2
j )

where βj , j = 1, . . . , p are the vectors of regression coefficients and all are full con-
ditionals. For the variance components, τ2

j , j = 1, 2 . . . , p, τ2
u , τ

2
v and and σ2 the full

conditionals are inverse gamma distributions. All the model analyses were carried
out using WINBUGS 14 (Spiegelhalter et al., 2002a). In order to estimate the model
parameters, 15000 McMC iterations were performed for each model run with the
initial 5 000 iterations were discarded to take care of the burn in period. The McMC
convergence was assessed using the remaining 15 000 iterations.
We performed separate independent CAR analysis for each malnutrition indicator to
assess demographic risk factors associated with the child malnutrition status. Data
cleaning and re-coding was done using the R software (Team, 2014), and the analy-
sis was carried out via a Bayesian approach using the Integrated Nested Laplace
Appropriation(INLA) due to Rue & Held (2005). The Shapefile data of the geo-
reference coordinates of countries was downloaded at Global Administrative Ar-
eas (2012) and the maps of the posterior estimates of the models was done using
R-INLA environments. The following model specifications are used to combine the
socio-demographic factors.

• M1: ηi = x′β

• M2: ηi = x′β + f1(zi) + vi

• M3: η=x
′β + f1(zi) + φi

• M4: η=x
′β + f1(zi) + vi + φi

where, the set of observations (xi, zi, si) represents categorical covariates, metrical
variable, and index of geographical location for unobserved (unstructured) spatial
and structured factors.

• Model (M1), which we denote as the baseline model estimated as fixed effect
regression model ,
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• model (M2) adds the non-linear terms of mother’s age, (xi) and the unstruc-
tured (uncorrelated) spatial random effects.

• Model M3, includes both structured random spatial effects, and categorical
variables and the non-linear terms.

• Model M4 includes linear and non-linear covariates, unstructured and struc-
tured (correlated) effects.

In order to account for the variability or ‘noise’,in the data, which are not measur-
able by the categorical and continuous covariate factors, many different approaches
to spatial smoothing have been developed. But the one that has gained wide accep-
tance and applicability is that of Besag, York and Mollie (the BYM model), which
allows for both unstructured heterogeneity and spatially structured random effects
according to Besag et al. (1991). For the structured spatial effect, a first-order intrin-
sic Gaussian Markov Random Field prior as suggested by Rue & Held (2005) and
two-dimensional P-spline prior according to Lang & Brezger (2004).
For all functions and parameters, the appropriate prior functions were assigned.
To estimate smooth effect functions and model parameters,we used the empirical
Bayesian approach, as in Fahrmeir et al. (2013)). For fixed effect parameters, β, a
non-informative diffuse prior was assumed such thatp(βk) ∼ constant
In order to estimate non-linear smooth functions of continous covariates (mother’s
age ( in years), we adopt a Bayesian P-splines prior as suggested in the work of
Fahrmeir & Lang (2001), as an extension of polynomial regression splines proposed
by Eilers & Marx (1996). The basic assumption behind the P-splines approach is that
the unknown smooth function f can be approximated by a spline of degree l de-
fined on a set of equally spaced knots within the domain of x. The spline can then be
written as a linear combination of basis function (B-spline), i.e.f(x) =

∑
j=1 βjBj(x)

where Bj(x) are B−splines. Smoothness of the basis function is achieved by a first-
or second-order random walk model. We adopted the second-order random walk in
this study i.e. βj = 2bj−1 + bj−2 with Gaussian error β ∼ N(0, τ2).
The model performances were compared via deviance information criterion (DIC)
defined in Spiegelhalter et al. (2002b) as DIC = D(θ) + pD is a model selection
criterion according to which the model performance is evaluated as the sum of a
measure of fit, the posterior mean of the deviance, D = E[−2log(f(y|parameters))],
and a measure of complexity, the effective number of parameters, pD is obtained as
the difference between the deviance posterior mean and the deviance evaluated at
the parameters posterior mean. Thus, a model is preferred if it shows a lower DIC
value.
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6.3 Results of independent univariate and multivariate anal-

ysis

In this section the results are presented as follows. The section starts with DIC fits
into univariate analysis. It then presents the multivariate analyses. The univari-
ate analysis produced three sets of output: tables of posterior estimates of fixed ef-
fects covariates, non-linear graphs and maps of spatial structured residual effects
based on the outputs from the application of the univariate conditional autoregres-
sive prior model (Model M3). The results of the multivariate analysis are presented
after implementing the Multivariate CAR model, which was discussed in Section
6.2.2

6.3.1 DIC Model fits

Table 6.3 presents the deviance information criteria(DIC) of the univariate indepen-
dent analyses of the malnutrition indicators among under-five children in Burkina
Faso, Ghana and Mozambique. Model M2 showed a substantial difference (∆ DIC)
over model M1 with in range between 0.5 and 150. For each country, we provide the
goodness of fit values for each type of child malnutrition. The best model selected
has the lowest DIC. BYM model (M4) and CAR (M3) model are competing models
and they are considered the best models overall because they yielded the smallest
DIC values. The inference revealed that the spatial random effects were significant
determinant factors for the high prevalent of childhood malnutrition .

Table 6.3: Deviance Information Criterion(DIC) of the goodness of fitness for univariate
independent analysis

Model Burkina Faso Ghana Mozambique
D(θ) pD DIC D(θ) pD DIC D(θ) pD DIC

anaemia
M1 9237.85 23.96 9261.81 3891.12 23.89 3915.01 13461.00 24.00 13485.00
M2 9087.20 36.20 9123.40 3875.64 30.81 3906.45 13335.97 34.66 13370.63
M3 9087.19 35.99 9123.18 3879.00 29.11 3908.11 13336.18 34.74 13370.92
M4 9087.00 36.20 9123.20 3875.25 30.71 3905.96 13334.39 34.67 13369.06
stunting
M1 7368.49 23.94 7392.43 2384.72 23.75 2408.47 11047.37 23.98 11071.35
M2 7330.61 34 7364.61 2383.76 24.52 2408.28 10891.12 35.29 10926.41
M3 7330.89 33.29 7364.18 2383.80 24.51 2408.31 10891.10 35.14 10926.24
M4 7330.59 33.98 7364.57 2383.08 25.00 2408.08 10891.00 35.30 10926.30
Wasting
M1 4909.40 23.86 4933.26 1325.71 23.40 1349.11 3176.17 23.69 3199.86
M2 4845.11 34.55 4879.66 1316.32 25.70 1342.02 3113.29 32.58 3145.87
M3 4846.58 34.00 4880.58 1323.96 25.75 1349.71 3113.31 32.70 3146.01
M4 4845.18 34.47 4879.65 1312.43 29.05 1341.48 3113.24 32.59 3145.83
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6.3.2 Geographical mapping of childhood anaemia, stunting and wasting

Figures 6.2, 6.3 and 6.4 present the maps of the estimated smooth geographical ef-
fects on the childhood malnutrition indicators, anaemia, stunting and wasting, for
the respective countries, after controlling for other covariates. The posterior means
of the structured residual effects were plotted for the indicators from each country.
From the graphics, it is apparent that there were geographical variations aggregated
at regional or provincial level. The spatial residual estimates are grouped into five
categories with black coloured regions signifying the lowest prevalence and a yellow
coloured region denoting the highest prevalence. Individual discussions are given
for each country’s results below.
Burkina Faso: From the spatial plots shown in Figure 6.2, a high prevalence of
anaemia was found in about 15% of the geographical areas of Burkina Faso, whereas
high prevalence of stunting and wasting were found in 23% and 46% of the geo-
graphical areas, respectively. A visual inspection of the maps indicates that only
Sahel region was simultaneously afflicted by high prevalence of all three malnutri-
tion indicators (anaemia, stunted and wasted). The Est region was the only region
that experienced high risk of both stunting and wasting. Cascades region had a
high prevalence of both anaemia and stunting. Sahel and Cascades both recorded a
high likelihood of anaemia among young children; three regions (Sahel, Est and Cas-
cades) had high prevalence of childhood stunting, while two regions (Centre-Nord
and Centre-Sud), constituted 30% of regions with higher prevalence of wasting. Two
regions (Hauts-Bassins and Sud-Ouest) had the lowest likelihood of children being
anaemic and wasted, while Centre-Ouest and Boucle du Mounhoun regions had
the lowest prevalence of childhood stunting only while the Sud-Oest and Hauslts-
Bassins regions recorded low prevalence anaemia nor wasting.
Ghana : Figure 6.3 shows evidence of geographical variations in the prevalence of
the child malnutrition across Ghanaian regions, with high probability detected in
many regions. The geographical areas implicated in high prevalence of anaemia,
stunting and wasting were 30%, 50% and 50%, respectively. Generally, the maps
show that the northern parts of the country experienced a higher prevalence of all
the malnutrition indicators than did the southern parts. One can infer from the
patterns for anaemia and stunting that the country has a north-south delineation,
with the southern regions having lower likelihood of the indicators. The highest
prevalence of both anaemia and stunting was detected in the Upper West region. In
other words, Northern and Upper West regions experienced high prevalence of all
(co-occurrence) three child malnutrition indicators (anaemia, stunting and wasting).
The high prevalence and co-existence of both stunting and wasting (child growth
failure) were detected in about 50% of the geographical areas, with Greater Accra
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and Upper East regions having lower prevalence of childhood wasting. For instance,
Brong Ahafo and Volta regions experience at higher prevalence of both stunting and
wasting, while Ashanti, Central and Western regions had low prevalence of child-
hood stunting.
Mozambique: The spatial residual effects on the child malnutrition status for Mozam-
bique are plotted and displayed in Figure 6.4. It can be seen that about 65% of the ar-
eas provinces in Mozambique (the seven provinces of Niassa, Nampula, Tete, Man-
iza, Gaza, Sofala and Zambezia) were found to have high prevalence of anaemia
in young children living there. Furthermore, three provinces (Cabo, Delgado, and
Gaza) recorded high prevalence of childhood stunting, and four other provinces had
high prevalence of childhood wasting. There were evidence of co-occurrence of two
or three of the malnutrition indicators in some provinces. For instance, anaemia and
wasting prevalence was found to co-exist in the two provinces of Manica and Nam-
pula, but only Gaza province recorded high prevalence in anaemia and stunting,
while Maputo had a high prevalence of both stunting and wasting. The maps gener-
ally revealed that higher prevalence of stunting and wasting occurred in about 35%
and 37%, respectively, of the provinces.
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Figure 6.2: Mapping of posterior mean of structured spatial residual effect of childhood
(a)anaemia, (b)stunting and (c) wasting showing posterior mean of prevalence
in Burkina Faso, DHS2010

6.3.3 Non-linear effects of mother’s age on childhood anaemia and mal-

nutrition

In this section, we present the relationship between the effect of mother’s age (mage)
on the three child malnutrition indicators( anaemia, stunting and wasting.) These
are shown in Figures 6.5.6.5 and 6.5 for Burkina Faso, Ghana, and Mozambique re-
spectively. It is notable that all three relationships for all three countries can be de-
picted as non-linear functions. Each graph highlights critical points, or contours on
the curve, that are important to the health professionals. The first graph is each set
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Figure 6.3: Mapping of posterior mean of spatial structured effect of childhood (a)anaemia,
(b)stunting and (c) wasting showing posterior mean of prevalence in
Ghana,DHS2008.
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Figure 6.4: Mapping of posterior mean of structured spatial residual effect of childhood
(a)anaemia, (b)stunting and (c) wasting showing posterior mean of prevalence
in Mozambique DHS 2011.

(left hand panel) represents data from Burkina Faso. The middle panel represents
from Ghna and the right hand panel shows the relationship for Mozambique.
Burkina Faso:Figure 6.5 (a) represents the effect of mother’s age on her child’s anaemia
status. The non-linear relationship is represented as a flip S-shape curve, or reversed
sigmoid curve. The graph can be segmented into three phases: (under-age (teenage,
≤ 20 years) mothers, young mother (20-32 years) represented by a ‘plateau’ showing
that it stabilizes, and older mother (≥ 32 years). This indicates that among underage
mothers the prevalence of anaemia in children declines slowly with the mother’s
increasing age and flexes at age between 20−30 years, and soon after 30 years the
anaemia prevalence then declines faster among older mothers. Furthermore Figure
6.6 (a) shows the relationship of mother’s age with stunting prevalence in Burkina
Faso. We can describe the relationship between mother’s age and children risk of
stunting as a reverse sigmoid-curve, which resembles that for anaemia risk (Figure
6.5 (a) but the but declines at a slower rate. By contrast, Figure 6.7 (a) shows that
the relationship between the mother’s age and childhood wasting was a power law
curve or downward-concave curve, indicating that in Burkina Faso the risk of child-
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hood wasting decreases faster among the children of older mothers ( ≥ 30 years )
than it does for younger and teenage mothers.
Ghana: As displayed in Figure 6.5 (b), the graph depicting the relationship between
the mother’s age (in years) and the child’s anaemia can be described as a U-shape
curve or J-shape function. This indicates that a reduced prevalence of anaemia was
found among children whose mother’s age was less than 28 years, and for older
mothers it rose exponentially. The lowest predicted of anaemia prevalence among
Ghanaian children was found among mothers of age 28 -30 years. As shown in Fig-
ure 6.6 (b), a concave upward curve represents the function of the mother’s age with
stunting among children. The decreasing slope is an indication of slow decline in
stunting prevalence with increased maternal age among children of older mothers.
However, as shown in Figure 6.7 (b), a power function, or a concave downward
curve with an increasing slope relationship is found for the relationship between
mother’s age and wasting prevalence. There is an indication of increasing preva-
lence of wasting found among children of older mothers.
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Figure 6.5: Non-linear plot of the effect of mother‘s age(years) on childhood anaemia, show-
ing posterior mean and 95% credible interval for (a) Burkina Faso, (b)Ghana and
(c) Mozambique. In all tests, the mother’s age (in years) along the horizontal axis,
and relative posterior risk estimate of anaemia on the vertical axis.
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Figure 6.6: Non-linear plot of the effect of mother‘s age(years) on childhood stunting show-
ing posterior mean and 95% credible interval for (a) Burkina Faso, (b)Ghana, and
(c) Mozambique. In all tests, the mother’s age (in years) along the horizontal axis,
and relative posterior risk estimate of stunting on the vertical axis.
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Figure 6.7: Non-linear plot of the effect of mother‘s age(years) on childhood wasting, show-
ing posterior mean and 95% credible interval for (a) Burkina Faso, (b) Ghana,
and (c) Mozambique. In all tests, the mother’s age (in years) along the horizontal
axis, and relative posterior risk estimate of wasting on the vertical axis.

Mozambique: The relationship between mother’s age and anaemia prevalence can
be described by a non-linear relation such like a flipped S− shape curve, as shown
in Figure 6.5 (c), which is an indication of a small rise of anaemia prevalence with
increasing age of the mother in children of teenage mothers (less than 20 years) and
the childhood anaemia prevalence decreases until mother’s age of 40 and then rises
again. The lowest prediction of the anaemia prevalence among the Mozambican
children is found among mother’s of age 40 years. Furthermore, the relationship
between mother’s age and the child’s stunting status could be described by a trun-
cated exponential function (simply an inverse J-shape) as shown in Figure 6.6 (c),
while the relationship with wasting could be described by a power-law function
with a constant exponent scaling factor or concave down curve as shown in Figure
6.7 (c).

6.3.4 Fixed effects estimates of risk factors

The relative contribution of each risk factor to anaemia was estimated and presented
as prevalence odd ratios derived from geoadditive binomial regression models with
anaemia as the outcome. In this section, the fixed effect estimates of the covari-
ates considered to be categorical in the models and the corresponding 95% credible
intervals (CI) are presented for the three childhood malnutrition indicators. The in-
terpretation of the binomial response models was done using its odd ratios and cor-
responding 95% credible intervals. Generally, whenever the odds ratio confidence
interval includes one, it indicates that the factor effect is statistically not significant
at 95% CI.

Risk factors associated with anaemia Tables 6.4, 6.5 and 6.6 present the results
of the fixed-effects parameter estimates for child’s anaemia based on Model 3 uni-
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variate analysis . Table 6.4 included the odds ratios and 95% credible intervals for
the categorical covariate factors such as age of the child, mother attended antenatal
clinic , maternal literacy, households SES, iron syrup, birth spacing, breast feeding,
morbidity, sleeping under bed-net. Among the Burkina Faso children, eight factors
were found to be significantly associated with anaemia prevalence. The children
aged 12-24 months had strongest prevalence of anaemia than the reference group
(above 2 years old), with higher odds ratio of (OR= 1.19; CI 95%; 1.01, 1.40), but
young infants, aged 1-5 months old had lower odds ratio of anaemia, OR=0.836;
CI 95% (0.74 to 0.94). Similar result with higher odds ratio of anaemia was found
among infants age less than 6 months and 12-23 months for Mozambique. However,
older children in Ghana were less anaemic
Furthermore, it was found that children whose mothers attended antenatal clinic
session had lower odds ratios with anaemia. That is, children whose mothers did
not attend antenatal clinic at all were 3.75 times higher odds ratio of anaemia, how-
ever children whose mothers attended at least one antenatal clinic session had lower
odds ratio of anaemia (OR=0.544, CI 95%; 0.37 to 0.79).
In addition, children living in families that belonged to a higher wealth index quar-
tile were at lower prevalence for anaemia (unadjusted 0.90; 95% CI, 0.81 – 1.00) for
richer household, and lowest anaemia prevalence among children of richest house-
hold (OR=0.87, CI 95% ; 0.72. to 1.03), but not significant. Children who suf-
fered from disease morbidity (2 weeks prior to the survey) increased odds ratio
of anaemia, particularly diarrhea has contributed to a higher anaemia prevalence
among children in Ghana: OR=1.230 (1.047, 1.443), but diarrhea was not significant;
Burkina Faso: OR= 1.141 (0.888, 1.46),and Mozambique: OR= 1.084 (0.931, 1.260) and
Mozambique : OR= although they were not statistically significant. Also, morbid-
ity such as fever had raised the odds ratios of anaemia prevalence in Mozambique
:OR=1.170;95%CI(1.014, 1.348), but not significant in Ghana: OR=1.048 (0.796, 1.377).
Also, children whose mother were literate (ability to read and write) had signif-
icant lower odds of being anemic compared with children of non-literate, except
Ghana which indicates not significant, 0.954 (0.863, 1.055); Burkina Faso (OR=0.84,
CI 95% ; 0.77 to 0.91); and Mozambique(OR=0.91, CI 95% ; 0.85 to 0.95) . In Table
6.6 for Mozambique data, more factors were significant associated with the preva-
lence of anaemia. The direction of the effects of covariates were similar to that
of Burkina Faso, child spacing, breastfeeding, antenatal attendance, use bed-nets,
mother’s literacy and children age 5-11 months were associated with lower likeli-
hood of anaemia. However, young children age 12-23 months and younger, whose
mothers took iron syrup during pregnancy and did not attend antenatal sessions
at all were found to raise odds ratio of anaemia. Other factors such as morbidity,
measles vaccination and urban residence would increase the odds ratio of anaemia,
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but the were not statistically significant. Generally, lower prevalence of anaemia was
found among male children than the female counterparts and the children living in
urban cities, although they were not statistically significant.

Table 6.4: Posterior odd ratios and 95% credible intervals of fixed effect risk factors for
anaemia, stunting and wasting among under-five children in Burkina Faso
(BDHS2010)

stunting wasting anaemia
variables odds ratio 95% CI odds ratio 95% CI odds ratio 95% CI
(Intercept) 0.227 ( 0.177 , 0.289 ) 0.068 ( 0.049 , 0.094 ) 0.330 ( 0.272 , 0.400 )
Sleeping under bednet
No(ref.) 1.000 1.000 1.000
bednet 1.044 ( 0.963 , 1.133 ) 0.924 ( 0.832 , 1.026 ) 0.963 ( 0.896 , 1.036 )
Child age(months)
1− 5 1.872 ( 1.622 , 2.166 ) 1.163 ( 0.990 , 1.365 ) 1.064 ( 0.957 , 1.184 )
6− 11 1.991 ( 1.719 , 2.308 ) 1.770 ( 1.508 , 2.077 ) 0.836 ( 0.742 , 0.941 )
12− 24 0.171 ( 0.125 , 0.230 ) 0.626 ( 0.483 , 0.806 ) 1.193 ( 1.014 , 1.403 )
> 24 months (ref.) 1.000 1.000 1.000
Antenatal visits
No 0.618 ( 0.267 , 1.422 ) 1.646 ( 0.448 , 5.954 ) 3.578 ( 1.714 , 7.449)
1− 3 1.256 ( 0.820 , 1.926 ) 0.872 ( 0.454 , 1.686 ) 0.544 ( 0.374 , 0.793 )
≥ 4 (ref.) 1.000 1.000 1.000
Place of residence
Rural (ref.) 1.000 1.000 1.000
Urban 0.953 ( 0.869 , 1.046 ) 1.077 ( 0.957 , 1.210 ) 0.921 ( 0.846 , 1.002)
Child’s sex
Female (ref.) 1.000 1.000 1.000
Male 0.906 ( 0.857 , 0.958 ) 0.912 ( 0.847 , 0.981 ) 0.994 ( 0.945 , 1.045 )
Maternal literacy)
No (ref.) 1.000 1.000 1.000
literate 0.936 ( 0.851 , 1.027 ) 0.981 ( 0.869 , 1.104 ) 0.838 ( 0.769 , 0.912 )
Mother wealth index)
Poorest (ref.) 1.000 1.000 1.000
poor 1.093 ( 0.971 , 1.230 ) 1.011 ( 0.863 , 1.183 ) 1.089 ( 0.980 , 1.210 )
middle 1.177 ( 1.050 , 1.319 ) 0.993 ( 0.853 , 1.154 ) 1.088 ( 0.981 , 1.206 )
richer 0.985 ( 0.879 , 1.103 ) 1.043 ( 0.899 , 1.208 ) 0.901 ( 0.812 , 0.999 )
richest 0.658 ( 0.536 , 0.805 ) 0.888 ( 0.683 , 1.146 ) 0.865 ( 0.724 , 1.032 )
Mother supplement
No (ref.) 1.000 1.000 1.000
Iron 0.610 ( 0.327 , 1.133 ) 1.265 ( 0.479 , 3.301 ) 2.446 ( 1.418 , 4.210 )
Vitamin A 0.955 ( 0.805 , 1.136 ) 1.262 ( 1.014 , 1.585 ) 0.988 ( 0.849 , 1.152 )
spacing( birth in3 years
≤ 1 child(ref.) 1.000 1.000 1.000
≥ 2 children ) 1.039 ( 0.934 , 1.154 ) 1.057 ( 0.926 , 1.203) 0.968 ( 0.888 , 1.054 )
Breast feeding
No (ref.) 1.000 1.000 1.000
Breastfed 1.058 ( 0.886 , 1.265 ) 1.727 ( 1.376 , 2.177 ) 0.697 ( 0.613 , 0.792 )
Disease morbidity
No 1.000 1.000 1.000
diarrhea 1.230 ( 1.047 , 1.443 ) 1.327 ( 1.095 , 1.605 ) 0.949 ( 0.811 , 1.110 )
Cough 0.012 ( 0.000 , 48.790 ) 2.472 ( 0.380 , 12.52 ) 0.931 ( 0.160 , 4.106 )
fever 0.916 ( 0.790 , 1.062 ) 1.210 ( 1.006 , 1.453 ) 1.108 ( 0.962 , 1.274 )
Vaccination
No 1.000 1.000 1.000
Measles vacc. 1.038 ( 0.958 , 1.126) 0.940 ( 0.847 , 1.045 ) 0.982 ( 0.913 , 1.057 )
Access to electricity
No 1.000 1.000 1.000
Yes 0.846 ( 0.719 , 0.993 ) 0.907 ( 0.745 , 1.101 ) 1.065 ( 0.934 , 1.213 )

Risk factors associated with stunting and wasting Generally, in all the countries
under study, male children showed lower prevalence of malnutrition than the female
counterpart. This was an indication of significant differentials in the prevalence of
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6.3. Results of independent univariate and multivariate analysis

Table 6.5: Posterior odds ratios and 95% credible intervals of fixed effect risk factors for
anaemia, stunting and wasting among under-five children in Ghana (GDHS
2008)

stunting wasting anaemia
Variables odds ratio 95% CI odds ratio 95% CI odds ratio 95% conf. int.
(Intercept) 0.104 ( 0.060, 0.173 ) 0.037 ( 0.016 , 0.077 ) 0.781 ( 0.613 , 0.995 )
Use bednet
No 1.000 1.000 1.000
Bednet 1.018 ( 0.898, 1.154 ) 0.876 ( 0.731 , 1.052 ) 0.916 ( 0.833 , 1.008 )
Child‘s age)
1−5 2.296 ( 1.612, 3.389 ) 0.829 ( 0.586 , 1.157 ) 1.216 ( 1.034 , 1.430 )
6−11 months 3.104 ( 2.220, 4.498 ) 2.424 ( 1.847 , 3.184 ) 0.916 ( 0.780 , 1.075 )
12−23 months 0.047 ( 0.017 0.116 ) 0.737 ( 0.458 , 1.166 ) 0.917 ( 0.718 , 1.171 )
≥ 24 months (ref) 1.000 1.000 1.000
Antenatal visits
No 0.428 ( 0.102, 1.761 ) 11.68 ( 1.115 , 126.4 ) 1.453 ( 0.487 , 4.327
1−3 1.520 ( 0.758, 3.072 ) 0.286 ( 0.087 , 0.921 ) 0.864 ( 0.504 , 1.482 )
≥ 4 (ref.) 1.000 1.000 1.000
Place of residence
Rural(ref.) 1.000 1.000 1.000
Urban 0.967 ( 0.826, 1.132 ) 0.987 ( 0.782 , 1.243 ) 0.961 ( 0.859 , 1.076 )
Child’s sex
Female (ref.) 1.000 1.000 1.000
Male 0.954 ( 0.863, 1.055 ) 0.995 ( 0.858 , 1.154 ) 0.960 ( 0.890 , 1.036 )
Mother literacy
No (ref.) 1.000 1.000 1.000
literate 0.971 ( 0.849, 1.110 ) 0.945 (0.771 , 1.152 ) 1.025 ( 0.931 , 1.129)
Wealth group
Poorest (ref.) 1.000 1.000 1.000
poor 1.429 ( 1.123, 1.818 ) 1.136 ( 0.788 , 1.629 ) 1.162 ( 0.967 , 1.397 )
middle 1.046 ( 0.831, 1.311 ) 0.805 ( 0.560 , 1.136 ) 0.993 ( 0.841 , 1.171 )
richer 0.810 ( 0.609, 1.071 ) 0.819 ( 0.531 , 1.241 ) 1.039 ( 0.855 , 1.262 )
richest 0.651 (0.439, 0.954 ) 1.050 ( 0.602 , 1.797 ) 0.784 ( 0.604 , 1.015 )
Mother Supplement
No (ref.) 1.000 1.000 1.000
Iron 0.490 ( 0.181, 1.31 ) 6.328 ( 1.169 , 35.51 ) 1.258 ( 0.590 , 2.680 )
Vitamin A 1.015 ( 0.850, 1.217 ) 0.877 ( 0.706 , 1.099 ) 0.959 ( 0.841 , 1.094 )
Spacing (birth in 3 yrs)
≤ 1 child (ref.) 1.000 1.000 1.000
≥ 2 children 0.954 ( 0.791, 1.145 ) 1.236 ( 0.978 , 1.552 ) 1.104 ( 0.978 , 1.246 )
Breast feeding
Not breastfed (ref.) 1.000 1.000 1.000
Breasted 1.175 ( 0.814, 1.751 ) 1.270 ( 0.704 , 2.591 ) 0.899 ( 0.762 , 1.062 )
Disease morbidity
No (ref.) 1.000 1.000 1.000
Diarrhea 1.141 ( 0.888, 1.461) 1.526 ( 1.090 , 2.126 ) 1.125 ( 0.916 , 1.380 )
Cough 0.886 ( 0.675, 1.159) 1.656 ( 1.149 , 2.372) 0.017 (0.001 , 115.4 )
Fever 1.048 ( 0.796, 1.377 ) 0.703 ( 0.463 , 1.053 ) 1.235 ( 0.988 , 1.542 )
Measles vaccination.
Not (ref.) 1.000 1.000 1.000
Vaccinated 0.936 ( 0.802, 1.094 ) 0.683 ( 0.563 , 0.831 ) 0.998 ( 0.889 , 1.121 )
Access to electricity
No access 1.000 1.000 1.000
Access 1.010 ( 0.865, 1.180 ) 1.119 ( 0.878 , 1.423 ) 1.161 ( 1.031 , 1.307 )

malnutrition among the under-five children of both sexes. Children belonging to
upper socio-economic status(SES) had a lower likelihood of being undernourished
(stunting and wasting) compared to the most economically deprived household .
Children, age below 12 months (infants) were at higher odds of child malnutrition
(adjusted height-for-age and weight-for-height) than the older children (over 2 years
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6.3. Results of independent univariate and multivariate analysis

Table 6.6: Posterior odds ratios and 95% credible intervals of fixed effect risk factors
for anaemia, stunted and wasting among under-five children in Mozambique
(MDHS2011)

stunting wasting anaemia
Variables odds ratio 95% CI odds ratio 95% CI odds ratio 95% CI
(Intercept) 0.318 ( 0.270 , 0.374 ) 0.020 ( 0.014 , 0.029 ) 0.369 ( 0.322 , 0.422 )
Sleeping under bednet
No(ref.) 1.000 1.000 1.000
bednet 0.994 ( 0.934 , 1.058 ) 1.154 ( 1.003 , 1.331 ) 0.930 ( 0.879 , 0.985 )
Child age(months)
1− 5 1.351 ( 1.211 , 1.508 ) 0.997 ( 0.790 , 1.254 ) 1.000 ( 0.914 , 1.093 )
6− 11 1.866 ( 1.682 , 2.070 ) 2.030 ( 1.669 , 2.467 ) 0.892 ( 0.816 , 0.974 )
11− 24 0.298 ( 0.244 , 0.362 ) 0.936 ( 0.654 , 1.324 ) 1.200 ( 1.048 , 1.373 )
> 24 months (ref.) 1.000 1.000 1.000
Antenatal visits
No 1.241 ( 0.656 , 2.344 ) 0.983 ( 0.183 , 5.153 ) 2.564 ( 1.460 , 4.496 )
1− 3 0.926 ( 0.672 , 1.275 ) 0.996 ( 0.433 , 2.313 ) 0.644 ( 0.485 , 0.855 )
≥ 4 (ref.) 1.000 1.000 1.000
Place of residence
Rural (ref.) 1.000 1.000 1.000
urban 0.994 ( 0.929 , 1.063 ) 0.855 ( 0.727 , 1.000 ) 1.055 ( 0.993 , 1.120 )
Child’s sex
Female (ref.) 1.000 1.000 1.000
Male 0.922 ( 0.881 , 0.965 ) 0.902 ( 0.815 , 0.998 ) 0.996 ( 0.956 , 1.038 )
Mother literacy
No (ref.) 1.000 1.000 1.000
literate 0.895 ( 0.843 , 0.950 ) 0.819 ( 0.711 , 0.941 ) 0.905 ( 0.857 , 0.954 )
Mother wealth index)
Poorest (ref.) 1.000 1.000 1.000
poor 1.133 ( 1.015 , 1.263 ) 0.913 ( 0.710 , 1.171 ) 0.926 ( 0.837 , 1.026 )
middle 0.993 ( 0.896 , 1.099 ) 0.958 ( 0.755 , 1.210 ) 0.973 ( 0.886 , 1.069 )
richer 0.978 ( 0.887 , 1.078 ) 0.867 ( 0.684 , 1.090 ) 0.957 ( 0.877 , 1.044 )
richest 0.705 ( 0.581 , 0.855 ) 0.897 ( 0.566 , 1.410 ) 1.033 ( 0.877 , 1.217 )
Mother supplement
No (ref.) 1.000 1.000 1.000
Iron 1.179 ( 0.748 , 1.857 ) 1.417 ( 0.425 , 4.657 ) 2.030 ( 1.357 , 3.035 )
Vitamin A 0.917 ( 0.842 , 0.999 ) 0.896 ( 0.760 , 1.061 ) 0.997 ( 0.922 , 1.079 )
Spacing(birth in 3 yrs
≤ 1 child(ref.) 1.000 1.000 1.000
≥ 2 children ) 0.977 ( 0.905 , 1.056 ) 0.998 ( 0.842 , 1.174 ) 0.917 ( 0.857 , 0.980 )
Breast feeding
No(ref.) 1.000 1.000 1.000
Breastfed 0.894 ( 0.789 , 1.014 ) 1.110 ( 0.869 , 1.431 ) 0.725 ( 0.660 , 0.797 )
Disease morbidity
No 1.000 1.000 1.000
Diarrhea 1.084 ( 0.931 , 1.260) 0.914 ( 0.664 , 1.242 ) 0.941 ( 0.811 , 1.091 )
Cough 0.258 ( 0.022 , 1.765 ) 6.709 ( 0.961 , 36.64 ) 1.200 ( 0.328 , 3.937 )
fever 1.170 ( 1.014 , 1.348) 1.152 ( 0.851 , 1.544 ) 1.088 ( 0.947 , 1.249 )
Vaccination
No 1.000 1.000 1.000
Measles vacc. 0.983 ( 0.920 , 1.050 ) 1.042 ( 0.909 , 1.200) 1.021 ( 0.961 , 1.085 )
Access to electricity
No 1.000 1.000 1.000
electricity 0.901 ( 0.817 , 0.994 ) 1.127 ( 0.895 , 1.412 ) 0.958 ( 0.881 , 1.042 )

of age).
The present data demonstrated a peculiar case, where children whose mothers took
iron syrup supplementation during pregnancy had higher odds ratios for the preva-
lence of one or both stunting and wasting in all the three countries. For instance,
the iron supplementation had respectively higher odds ratios for stunting and wast-
ing in Burkina Faso as: OR= 1.265 (0.479, 3.301) and 2.446 (1.418, 4.210); Ghana :
OR=6.328 ( 1.169, 35.51)and OR=1.258 (0.590, 2.680) , and Mozambique OR= 1.417;(0.425,
4.657 ) and OR=2.030 (1.357, 3.035)
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6.4. Results of Multivariate Conditional Autoregressive (MCAR) Analysis

There were consistent association in the influence of childhood morbidity with child-
hood stunting and wasting. Children, who had experienced one disease morbidity
or the other (two weeks before the survey) had higher probability of being either
stunting, wasting or both. For instance, in Burkina Faso (see Table 6.4 )children who
suffered diarrhea: OR= 1.327 (1.096, 1.605) and cough 1.210 (1.01, 1.453) contributed
to higher odds ratios for wasting, and diarrhea OR=1.23 (1.017, 1.443) raised the odds
ratio of stunting , but in Ghana (Table 6.5)diarrhea OR=1.53(1.09, 2.13) and cough
OR=1.66 (1.15, 2.37) had raised the odds ratios of childhood wasting. In Mozam-
bique (see Table 6.6), children who suffered disease morbidity such as fever:OR=1.17
(1.014, 1.348) was found to have raised the prevalence of stunting but not wasting.

6.4 Results of Multivariate Conditional Autoregressive (MCAR)

Analysis

The results presented in this section include the estimation of parameters from the
equation 6.4 via multivariate conditional auto-regressive (MCAR) prior model dis-
cussed in section 6.2.2 and implemented in WinBUGS version 14. After adjusting
for the e factors, the covariates such as child’s age(categorical), maternal wealth
index(soio-economic deprivation) and birth intervals found to be significant un-
der univariate analysis. The Table 6.7, Table 6.8 and Table 6.9 contain the poste-
rior estimates for the fixed effect risk factors, structured spatial effects and variance-
component parameters.
Burkina Faso: Table 6.7 presents the posterior estimates from the multivariate con-
ditional autoregressive (MCAR) model analysis, which included estimates of some
fixed effects, the regional ( spatial random effects), and conditional correlations be-
tween childhood malnutrition prevalence with the regions in Burkina Faso. The pos-
terior estimates showed that there were significantly strong associations between the
child malnutrition prevalence with the regions in Burkina Faso. Out of 13 regions
in Burkina Faso, six regions were estimated with high prevalence of stunting and
seven regions recorded significant low prevalence. Regions with high prevalence of
stunting are:Boucle de Mouhoun, Cascades, Centre, Nord and Plateau Central. In
contrast, childhood wasting and anaemia prevalence were significantly low in those
regions, but high prevalence of stunting. Surprisingly, the results revealed that wast-
ing and anaemia recorded significantly high prevalence in those regions with low
stunting prevalence. Seven regions were found with high childhood wasting and
anaemia prevalence are :Centre-Est,Centre-Ouest, Centre-Sud,Est,Hauts Basins, Sa-
hel and Sud-Ouest. There were strong negative correlation between stunting and
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6.4. Results of Multivariate Conditional Autoregressive (MCAR) Analysis

wasting;ρ12 = −0.998; 95% CI (-1.000, -0.984), and a perfect negative correlation
(ρ13 = −1) between stunting and anaemia, but a significant positive correlation be-
tween wasting and anaemia i.e. ρ23 = 0.997; 95% CI (0.9778 to 1.0000) (refer to Table
6.7).
Ghana: Table 6.8 presents the posterior estimates of the conditional correlation be-
tween the malnutrition status and regions in Ghana. There was significantly low
prevalence of wasting among under-five children in the Upper east with posterior
estimate; -0.499; 95% CI(-1.016, -0.018), but a significantly high prevalence of wast-
ing was detected in the Upper West 0.441; 95% CI(0.100 to 0.778). Six regions were
predicted with high anaemia prevalence, although they were insignificant. There
was a significantly low prevalence anaemia in Volta region of the country with value
-0.369; 95% CI( -0.671 to -0.090). The results further revealed that there were weak
and insignificant correlation between stunting and wasting: ρ12 = 0.184; 95% CI (-
0.475,0.728), stunting and anaemia ρ13 = −0.038 ; 95%CI (-0.621, 0.582), and a
weak negative correlation between wasting and anaemia, ρ23 = −0.037; 95%CI (-
0.65, 0.595). The geographical variations were significant for stunting:σ2

u1=0.7549
(0.4693, 1.264); wasting σ2

u2=0.9197; (0.535, 1.591) and anaemia: σ2
u3=0.7335, (0.4606, 1.214)

for the prevalence among under five children in Ghana.
Mozambique: The multivariate analysis results presented in Table 6.9 for Mozam-
bique children data. Three provinces were associated with high stunting preva-
lence. Children living in Niassa, Tete, and Sofala showed significantly higher preva-
lence for stunting, while five other provinces( Cabo delgado, Nampula, Zambezia,
Gaza and Maputo provincia) were found with significantly low stunting preva-
lence. A significantly high prevalence of childhood wasting was detected in Niassa,
Tete, Manica, and Sofala. Five other provinces were associated with significantly
high prevalence of anaemia: Niassa, Cabo Delgado, Zambezia, Maputo provincia
and Maputo cidade. Table 6.9 also presents the estimates of random effects for
the provinces, and the regional variances (geographical variation) of each malnu-
trition. There was a strong positive correlation between stunting and wasting; 0.986;
(0.899, 1.000), which was significant at 95% CI. There were significantly negative
correlation between stunting and anaemia:-0.720, (-0.934, -0.308) and between wast-
ing and anaemia :-0.640; (-0.903 -0.174). The results further indicated that the geo-
graphical variations in the prevalence pattern of stunting: 1.427 (0.914, 2.268), wast-
ing: 1.751 (1.117, 2.803) and anaemia 0.556 (0.280, 0.979) were significant across the
provinces in Mozambique.
In summary, multivariate mapping modeling provides the epidemiologists and health
practitioners a tool to study the disease etiology and jointly quantify the conditional
spatial correlation and geographical variations of each outcome across regions and
association among the indicators within the region (area).
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6.5. Discussion

Table 6.7: Posterior estimates and 95% credible intervals of multivariate conditional associ-
ation between childhood malnutrition indicators and regions parameters among
under-five children in Burkina Faso

stunting wasting anaemia
variables parameters mean 2.50% 97.50% mean 2.50% 97.50% mean 2.50% 97.50%
intercept α -2.074 -199.5 199.8 2.159 -208.6 197.3 0.437 -197.6 192.3
1− 5 months β1 1.471 -195.2 196.0 1.301 -196.4 175.0 2.529 -192.4 196.6
6− 11 β2 -0.047 -194.9 191.3 -7.222 -199.5 187.8 0.006 -198.4 192.8
12− 24 β3 1.543 -194.8 198.3 -3.824 -208.3 203.0 2.372 -194.4 200.5
24− 36 β4 -0.168 -191.6 189.6 0.428 -214.6 200.1 -0.396 -194.0 193.3
poorest β5 -0.913 -191.4 193.9 2.334 -186.1 205.7 -1.088 -193.0 190.5
poor β6 1.762 -200.0 197.1 -2.205 -196.2 191.1 1.328 -190.6 198.1
middle β7 -1.513 -187.4 194.4 2.248 -197.0 199.7 -1.094 -195.7 197.5
richer β8 -0.835 -194.6 190.8 -0.774 -191.6 198.2 1.257 -193.2 200.0
≥ 2 children β9 0.417 -195.9 199.4 0.733 -185.1 191.9 -0.551 -195.0 190.8
Regions Random effects
Boucle de Mouhoun φ1 2179 2150 2199 -367.1 -373.6 -363.6 -790.9 -875.6 -502.0
Cascades φ2 3953 3898 3969 -661.8 -670.2 -657.5 -1444.0 -1569.0 -909.2
Centre φ3 5686 5666 5720 -949.1 -957.3 -938.9 -2213.0 -2393.0 -2070.0
Centre-Est φ4 -2621 -2662 -2609 441.3 437.8 454.9 953.2 618.9 1037.0
Centre-Nord φ5 4362 4346 4378 -731.5 -748.0 -727.8 -1643.0 -1727.0 -1426.0
Centre-Ouest φ6 -564.4 -597.3 -494.2 91.44 86.71 97.93 210.0 -111.0 307.8
Centre-Sud φ7 -870.5 -883.5 -828.3 144.1 134.0 160.1 362.1 75.10 698.7
Est φ8 -5412 -5464 -5396 910.9 906.3 924.4 2005.0 1626.0 2088.0
Hauts Basins φ9 -3748 -3786 -3722 629.5 624.3 631.8 1415.0 1153.0 1544.0
Nord φ10 3046 3027 3096 -511.6 -524.7 -506.3 -1132.0 -1195.0 -920.7
Plateau Central φ11 2988 2961 2999 -503.4 -505.1 -499.7 -1107.0 -1184.0 -880.6
Sahel φ12 -4080 -4097 -4059 685.8 683.1 692.4 1506.0 1055.0 1588.0
Sud-Ouest φ13 -4917 -4987 -4905 821.5 813.5 838.0 1879.0 1505.0 2017.0
spatial variances σ2

u1 8151 (5573 12320)
σ2
u2 − − − 1428 (933.3 2196)
σ2
u3 - - - - - - 3126 (2119 4747)

Correlation ρ12 -0.998 (-1.000 -0.984)
ρ13 -1.0
ρ23 0.997 (0.9778 1.000)

6.5 Discussion

The present study has investigated the risk factors and small-area geographical vari-
ations of child health outcomes in the three countries understudy. The present study
revealed that in the countries under study, the children who slept under treated bed
nets had lower prevalence of anaemia. In other words, the use of bed nets would
significantly reduce the odds ratios of anaemia in the young children. Conversely,
the use of treated bed net did not have a significant association with child under-
nutrition (stunting and wasting) in these countries. Although, the use of bed nets
resulted in a reduction of the odds of wasting among children in both Burkina Faso
and Ghana, but not stunting, nevertheless in Mozambique, the use of bednets led
to reduction in the prevalence of stunting, but this difference was not statistically
significant. A similar outcome has been reported in other analyses for other sub-
Saharan Africa: insecticide-treated bed nets were very efficacious in reducing the
prevalence of anaemia and boosting the mean hemoglobin concentrations in Kenyan
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6.5. Discussion

Table 6.8: Posterior estimates and 95% credible intervals of multivariate conditional associ-
ation between childhood malnutrition indicators and regions parameters among
under-five children in Ghana (GDHS 2008)

Stunting Wasting anaemia
variables parameters mean 2.50% 97.50% mean 2.50% 97.50% mean 2.50% 97.50%
intercept α -2.529 -2.859 -2.193 -1.469 -1.893 -1.099 -0.609 -0.852 -0.321
1− 5 β1 1.169 0.773 1.536 -1.668 -2.179 -1.181 0.387 0.061 0.688
6− 11 β2 1.456 1.128 1.800 -0.333 -0.710 0.058 0.100 -0.200 0.393
12− 24 β3 -1.663 -2.880 -0.292 5.276 3.822 6.629 -0.727 -1.718 0.335
25− 36 β4 -2.433 -3.630 -1.519 -1.219 -1.878 -0.626 0.105 -0.240 0.462
poorest β5 0.420 0.213 0.640 0.275 -0.046 0.571 0.072 -0.094 0.246
poor β6 0.489 0.285 0.690 0.234 -0.045 0.519 0.097 -0.068 0.266
middle β7 0.065 -0.141 0.267 -0.060 -0.426 0.285 0.000 -0.187 0.175
richer β8 -0.305 -0.544 -0.067 -0.248 -0.675 0.142 0.052 -0.127 0.239
birth interval (≥ 2) β9 0.006 -0.170 0.167 0.067 -0.161 0.281 0.092 -0.031 0.209
Regions Random effects
Ashanti φ1 -0.095 -0.382 0.198 -0.167 -0.631 0.244 0.072 -0.187 0.328
Brong Ahafo φ2 0.230 -0.064 0.523 0.329 -0.067 0.757 -0.012 -0.287 0.251
Central φ3 -0.166 -0.508 0.172 -0.262 -0.781 0.218 -0.132 -0.405 0.149
Eastern φ4 -0.160 -0.458 0.123 -0.339 -0.806 0.104 -0.104 -0.370 0.143
Greater Accra φ5 0.133 -0.168 0.438 -0.307 -0.802 0.141 0.066 -0.177 0.325
Northern φ6 0.054 -0.185 0.286 0.186 -0.158 0.536 0.202 -0.004 0.412
Upper East φ7 -0.131 -0.444 0.137 -0.499 -1.016 -0.018 0.090 -0.161 0.322
Upper West φ8 0.093 -0.177 0.349 0.441 0.100 0.778 0.145 -0.073 0.366
Volta φ9 0.251 -0.045 0.542 0.308 -0.086 0.752 -0.369 -0.671 -0.090
Western φ10 -0.208 -0.488 0.083 0.310 -0.079 0.706 0.042 -0.210 0.297
spatial variances σ2

u1 0.7549 (0.4693 1.264)
σ2
u2 − − − 0.9197 (0.535 1.591)
σ2
u3 - - - - - - 0.7335 (0.4606 1.214)

Correlation ρ12 0.184 (-0.475 0.728)
ρ13 -0.038 (-0.621 0.582)
ρ23 -0.037 (-0.650 0.595)

children, as reported in ter Kuile et al. (2003) and Desai et al. (2005).
The present study further indicates a significant association between maternal char-
acteristics and childhood malnutrition. The finding revealed that mother’s iron and,
vitamin A supplementation and antenatal attendance were found to be associated
with the prevalence of anaemia and other malnutrition indicators in children. The
children of mothers, who did not attend antenatal clinic session during pregnancy
would have an higher probability of being anaemic and malnourished than those
children whose mothers had attended four or more antenatal sessions.
Additionally, the study revealed that children from wealthy households were found
to be at reduced risk of anaemia and malnutrition than the materially deprived
households. This finding is consistent with the studies conducted in other parts
of sub-Saharan Africa. For instance, a study carried out in Rwanda by Kateera et al.
(2015) indicates that children with a lower socio-economic status (SES) (measured
by education status and occupation) were found to be associated with higher preva-
lence of anaemia, malaria infection and undernutrition. Notwithstanding the com-
plexity in our model, the findings are in accordance with previous studies in Ghana,
which indicated that malnutrition prevalence among children from the poorest SES
households was as much as twice that of their counterparts from the richest house-
holds, as reported in Van de Poel et al. (2007) and Amugsi et al. (2013). A study
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6.5. Discussion

Table 6.9: Posterior estimates and 95% credible intervals of multivariate conditional associ-
ation between childhood malnutrition indicators and provinces(regions) among
under-five children in Mozambique from equation (6.3)

Stunting Wasting anaemia
variables Parameters mean 2.50% 97.50% mean 2.50% 97.50% mean 2.50% 97.50%
intercept α -4.274 -196.4 189.8 -1.283 -203.5 188.3 0.6402 -198.6 189.0
1− 5 β1 -1.108 -271.1 222.9 1.459 -198.3 203.0 -1.142 -207.0 205.9
6− 11 β2 -1.010 -229.5 231.7 1.090 -250.5 299.2 0.560 -332.0 275.2
12− 24 β3 4.426 -208.5 217.2 -1.645 -260.0 247.9 -12.86 -301.4 271.7
25− 36 β4 8.502 -194.6 224.3 1.091 -195.6 207.6 -4.077 -206.3 216.5
poorest β5 3.988 -220.6 233.4 -4.064 -239.8 220.1 -4.907 -232.2 216.0
poor β6 -1.563 -190.2 203.9 3.453 -192.5 202.0 -2.165 -194.7 206.5
middle β7 -2.372 -196.9 193.3 1.052 -212.2 213.9 0.825 -202.7 194.1
richer β8 1.836 -189.8 198.4 3.511 -198.4 198.3 -1.236 -197.3 191.8
birth intervals ≥ 2 β9 1.514 -207.5 204.6 1.848 -191.6 204.5 1.546 -202.2 198.5
Provinces Random effects
Cabo Delgado φ1 538.1 302.0 733.5 979.6 843.2 1126.0 383.5 265.2 530.3
Gaza φ2 -1380.0 -1496.0 -1319.0 -1628.0 -1950.0 -1434.0 512.3 403.8 577.1
Inhambane φ3 -400.5 -554.0 -221.8 -676.2 -1051.0 -316.8 -122.8 -225.3 -27.72
Manica φ4 -843.1 -908.5 -799.6 -1002.0 -1202.0 -888.1 322.7 274.6 368.5
Maputo cidade φ5 962.2 820.3 1147.0 1205.0 970.2 1485.0 -289.3 -345.8 -245.5
Maputo provincia φ6 2080.0 1430.0 2204.0 2482.0 1920.0 2680.0 -788.2 -886.7 -680.4
Nampula φ7 788.2 716.6 868.5 906.2 723.8 1138.0 -336.3 -382.9 -283.1
Niassa φ8 -100.6 -290.7 252.6 -320.8 -542.4 384.0 -257.5 -372.1 -152.4
Sofala φ9 -557.3 -636.9 -480.0 -721.2 -795.5 -602.0 77.25 -2.95 153.9
Tete φ10 -975.6 -1007.0 -913.4 -1181.0 -1294.0 -995.5 295.4 172.7 412.8
Zambezia φ11 -112.3 -182.6 156.0 -45.5 -164.5 138.5 203.1 174.2 294.4
spatial variances σ2

u1 1427 (913.6 2268)
∗10−3 σ2

u2 − − − 1751 (1117 2803)
σ2
u3 - - - - - - 556 (279.5 978.9)

Correlations ρ12 0.986 (0.899 1.000)
ρ13 -0.720 (-0.934, -0.308)
ρ23 -0.640 (-0.903 -0.174)

conducted in regions of Brazil by Osório et al. (2001) similarly found that the deter-
minant factors associated with the risk of anaemia among children included poorer
households, inadequate nutritional food intake, poor sanitation, lack of portable
drinking water and infectious diseases. Our study revealed that the odds of anaemia
decreased with increasing child’s age, which conflicts with that one from Brazil, the
increasing odds of malaria observed across the same age groups in other studies in-
volving malaria-endemic settings (Ehrhardt et al., 2006; Osterbauer et al., 2012).
Furthermore, our results indicated that the child’s age group is an important deter-
mining factor for the severity of malnutrition, including anaemia. The results re-
vealed that the children of age group 6 - 11 months (young infants) were associated
with high odds of anaemia and highest odds of wasting, but lower odds of stunting.
This finding corroborated similar studies in sub-Saharan Africa, which showed that
malnutrition was also found to be more prevalent among older than younger chil-
dren (Pongou et al., 2006; Omilola et al., 2010). It is not surprising that our findings
revealed a relatively high odds of anaemia among younger infants (age 1-5 months)
and highest odds of anaemia among the age group (12-23 months). Studies, such
as reported by Chang et al. (2011), have shown that at various stages in the early
years of a child’s development there were changing heamoglobin requirements for
physical and psychomotor functioning and cognitive development. It is worth not-
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6.5. Discussion

ing childhood anaemia is seldom investigated or measured among infants below six
months of age. Where this study indicates there are high odds of anaemia in young
infants aged 1-5 months, it could suggest that child bearing mothers were them-
selves anaemic during pregnancy.
Our finding have, in addition, revealed that some factors exerted non-linear relation-
ship or curve-like association with child malnutrition status. The S-shaped growth
curve (sigmoid growth curve) reveals a pattern of growth in which, in a new envi-
ronment, the malnutrition prevalence within the sample population started increas-
ing slowly, in a positive acceleration phase; then increases rapidly and approaches
an exponential growth rate as in the J-shaped curve; but then decrease in a negative
acceleration phase until at zero growth rate as the population stabilizes. For more
discussion, see Salkind (2010) on a similar curve-linear growth in a population con-
text.
The spatial distribution of anaemia and child growth failure among young children
in the countries under study are presented as smooth maps. This demonstrated the
merit of the proposed approach. The output corroborated the findings in similar
studies conducted in other sub-Saharan Africa countries. For example, a model-
based geostatistics was used by Magalhaes & Clements (2011) to map the risk of
anaemia, malaria and helminth prevalence in three neighbouring countries (Burkina
Faso,Niger, Mali) in West Africa, where they reported that anaemia prevalence was
found among 37% of preschool children, which could have been averted by treat-
ing malnutrition and malaria related infections. Other researcher had used Bayesian
geostatistical prediction in West Africa to estimate local variations in Schistosoma
haematobium infection Clements et al. (2009), where a high risk of S. haematobium in-
fections was detected in the north-western part of the Niger River valley. The study
also found a clustered high-density of S. haematobium infection in western and cen-
tral Mali, and the north-eastern region of Burkina Faso. Kandala et al. (2009) applied
a Bayesian geoadditive model on DHS data from three sub-Saharan African coun-
tries and the method detected a high pattern of childhood malnutrition in eastern
and north-eastern Zambia, central Malawi and southern Tanzania.
The usefulness of multivariate disease mapping models has been emphasized in
previous studies. For example, Kinyoki et al. (2017) recently used the multivariate
approach for modeling the ecological co-morbidity of childhood diseases in Soma-
lia. Assunção & Castro (2004) applied a multivariate model in the study of multiple
cancer site incidence. The results from this work will consolidate the applicabil-
ity and usefulness of multivariate mapping methods for outperforming separate
independent analysis. The present study applied multivariate joint modeling and
demonstrated the strength of the method in estimating the conditional correlation
among malnutrition indicators and co-occurrence within the region. In addition
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to the computation the induced correlation between the malnutrition indicators, the
approach estimate the geographical variation of each individual malnutrition preva-
lence across the regions. The findings further identified potential socio-demographic
risk factors of childhood malnutrition, which can be used to target specific interven-
tions and even combinations of inventions. Such results could aid policy makers
in designing a combination of multiple strategies to optimize the scarce health re-
sources in a more effective manner.

6.6 Summary and Conclusion

In epidemiological studies, several diseases share common risk factors or co-exist
spatially. Disease mapping allows health practitioners and epidemiologists to prof-
fer hypotheses pertaining to their etiology and gain better understanding of the ge-
ographical pattern of the disease risks. This chapter proposed spatial analysis to
jointly investigate two child growth indicators (stunting and wasting) and anaemia
(micro-nutrient deficiency) in three Sub-Saharan African countries. Both univariate
independent CAR and multivariate analyses were carried out on the malnutrition in-
dicators. The study then explored the multivariate conditional autoregressive error
model to jointly model the small area-specific effect of the co-occurrence of malnu-
trition status across the regions.
There were 19,390 children under the age of five involved from the three coun-
tries. In the three countries, the stunting prevalence was highest in Mozambique
(42.8%), Burkina Faso had highest wasting prevalence (15.5%), while Ghana had
highest anaemia prevalence of (39.4%). While potential socio-demographic risk fac-
tors were identified by the univariate analysis, the multivariate joint analysis results
revealed that, in Burkina Faso, the spatial correlation between stunting and wast-
ing was negatively correlated ; -0.998; 95% CI (-1.000, -0.984), and a perfect negative
correlation of -1 between stunting and anaemia, but a significant positive correla-
tion between wasting and anaemia: 0.997;95% CI (0.978, 1.000). For the Ghanaian
data, the variations of the individual childhood nutritional indicators was stunt-
ing 0.7549; 95%CI (0.4693, 1.264); wasting 0.9197; (0.535, 1.591) and anemia 0.7335,
(0.4606, 1.214). These were significant across the geographical regions of the country,
but the correlations between pairs of indicators were all not significant. Among the
Mozambican children, there was significantly positive correlation between stunting
and wasting; 0.986; (0.899, 1.000); a significant negative correlation between stunting
and anaemia:-0.720,95% CI(-0.934, -0.308), and a significantly negative correlation
between wasting and anaemia:-0.640; (-0.903, -0.174. The statistical relevance of the
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6.6. Summary and Conclusion

findings and spatial maps identified hot spots or provinces that require appropriate
nutritional interventions for pregnant and lactating mothers, as well as their chil-
dren. and to assist the relevant agencies in the optimum allocation of scarce health
resources in a effective manner for child survival.

The central aim of the present study was to jointly and simultaneously analyze three
malnutrition indicators in children less than five years. The findings provide rea-
sonable patterns for the co-occurrence in geographic prevalence across regions. The
Bayesian multivariate model adopted provides a flexible and robust tool to assess
the risk factors in a unified regression model. The proposed method facilitates the
estimation of conditional correlation between the multiple disease outcomes (mal-
nutrition status) and spatial dependence within the region and across regions. The
results obtained provide a better understanding of the spatial variations in the co-
existence and etiological patterns of childhood undernutrition, which would have
been neglected with the standard spatial analysis. The findings should inspire public
health practitioners, epidemiologists, and policy makers to design a combination of
intervention strategies and to allocate more effectively their scarce health resources.
Despite the complexity of the methodology, the results are reasonable and consistent
with those from univariate analysis. The advantage of the multivariate approach is
that it yields more precise estimates and allows easy interpretation of regressions
coefficients defined in terms of odds ratios. A potential drawback, however, is the
huge computational burden involved in MCMC simulations. The researcher’s expe-
rience with the univariate models suggests that the two approaches provide similar
results with respect to the direction and strength of predictor outcome associations.

126



Chapter 7

Conclusions

The aim of this thesis was to develop and apply Bayesian model approaches for
analyzing spatial data exhibiting unusual spatial patterns and to extend the related
methodology. To achieve this aim, four specific research objectives were established:

1. To apply recently developed Bayesian structured additive regression models
for analyzing spatial data in order to gain a better understanding of the spatial
patterns of child birth weights in a developing country and investigate the risk
factors of poor birth outcomes among under-five children.

2. To extend the methodology of generalized linear mixed models to Poisson spa-
tial generalized linear mixed models (GLMM) to analyze spatial data that ex-
hibit a high over-dispersion and spatial association by accounting for extra
Poisson variation in death counts among under-five children.

3. To apply the Bayesian approach to model mis-specification and spatial cluster-
ing for the child health outcomes

4. To extend the methodology of an conditional autoregressive (CAR) model to
a multivariate conditional autoregressive (MCAR) model by analyzing the im-
pact of the spatial dependence and induced correlation of multiple health con-
ditions.

The first research objective was addressed in Chapter 3. The models presented in
that chapter could accommodate different kinds of data (categorical, metrical and
geographical data) in a unified regression model. The method was able to identify
hot-spots for poor birth outcomes. The findings provide useful insight into the ge-
ographic disparities across the states (districts) in Nigeria and the underlying risk
factors for these outcomes, which include indoor air pollution from cooking with
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solid fuels(e.g. charcoal, coal, fire wood and agricultural residues). Other significant
risks associated with low birth weight were short birth intervals, under-age mothers
and economically deprived households (poor households).
The second objective was addressed in Chapter 4 by implementing a Bayesian hier-
archical disease mapping approach to investigate over-dispersion and spatial auto-
correlation in child mortality rates in the context of a developing country. Poisson
regression models with random effects were formulated to assess the potential risk
factors and over-dispersion in the mortality data for under-five year old children.
The random effects were specified to reflect the potential tendency of neighbouring
regions to sharing unobserved similar risk factors. Through the empirical) method,
standardized mortality ratio (SMR) was explored to identify regions with unusually
elevated risk and geographical patterns for child mortality prevalence at specific
area (state) level. The development of Poisson GLMMs within the Bayesian frame-
work made it possible to identify both individual and geographic factors associated
with under-five mortality outcomes across the spatial domain. Furthermore, be-
ing able to highlight small areas with elevated risk has implications for health care
providers in the detection and management of childhood mortality.
Chapter 5 presented models for analyzing different classes of data structures. Three
semi-parametric models were fitted to data for childhood anaemia belonging to
exponential family distributions. The models demonstrated the flexibility of the
approach in accommodating different data structures as spatial generalized linear
mixed models.
The study then considered other extensions of disease mapping models for multi-
ple health outcomes in Chapter 6. In order to account for conditional correlation
among multiple diseases and the spatial association within the region, a multivari-
ate conditional autoregressive (MCAR) model was formulated and implemented to
identify the geographic patterns of co-occurrence of multiple malnutrition indica-
tors. The chapter modified the popular shared component model originally devel-
oped for Poisson count data to suit binary data. The multivariate conditional au-
toregressive model was proposed and applied to carry out joint spatial analysis to
investigate shared and divergent patterns in malnutrition prevalence among under-
five children, suggesting possible common risk factors and different patterns in their
geographical variation. Shared patterns of spatial variation in health outcomes and
different causes of mortality could also be attributed to regional differences in health
care awareness and quality of health services and provision available at the sub-
national levels.
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7.1. Future Research

7.1 Future Research

A recent development in Bayesian disease mapping models Lawson (2013) would be
the extension from purely spatial models to models for space-time, and interaction
models for disease rates. For instance, the ability to identify the spatial patterns
of disease risk that evolve systematically over a period of time and understanding
the trend patterns would be beneficial in terms of interpretation and potential for
detention of localized excesses.
In the future, it may be relevant to consider how to combine the ideas of space-
time analysis of a single disease and multivariate spatial disease mapping to explore
the formulation and application of Bayesian models for analysis of multiple health
outcomes in space and time.
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Appendix A

Appendix A includes two sections: the Derivation of Latent Utility Model and BayeX
Codes for Cumulative Multinomial models.

Supplementary Material from Chapter 3

A.1: Derivation of Latent Utility Models

The general latent model is motivated by the original work of McFadden (1974), who
stated that the conditional logit model could be extended from a single latent model
to multiple choices (categorical selection). Suppose the utility, for say an individual
child i birth size falls to child birth category j, having a random utility function of
the jth alternative has the form

Uj = η̄j + εj (7.1)

Furthermore, let individual i choose option j (so that Yi = j) if categorical j provides
the highest level of utility, or

Yi = j if Uij ≥ Uil for all l = 0, . . . , J, (7.2)

Suppose that the εij are independent across the birth category and individual child
and have type I extreme value distributions. Then the choice Yi follows the condi-
tional logit model. The type I extreme value distribution has cumulative distribution
function is defined byF (ε) = exp(− exp(−ε)), and pdf : f(ε) = exp(−) exp(− exp(−ε)).
For discussion about the assymmetry of the distribution, see Wooldridge (2010) for
prove and comparison with normal density function.
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Given the extreme value distribution the probability of choice 0 is

Pr(Yi = 0|Xi0, . . . , XiJ) = Pr(Ui0 > Ui1, . . . , Ui0 > UiJ)

= Pr(Pr(εi0 +X ′i0β −X ′i1β > εi0 . . . , εi0 +X ′i0β −X ′i1β > εiJ)

=

∫ +∞

−∞

∫ εi0+X′i0β−X′i1β

−∞
. . .

∫ εio+X′i0β−X′iJβ

−∞
f(εi0)f(εi0) . . . f(εiJ)dεiJ . . . dεi0

= exp(−εi0) exp(− exp(−εi0). exp(− exp(−εio −Xi0′β +X ′i1β)

× exp(− exp(−εio −Xi0′β +X ′iJβ)

=
exp(ηio)∑J
i=0 exp(ηio)

=
exp(ηio)∑J
i=0 exp(ηio)

. . . . . . . . . . . .

P r(Yi = J |XiJ , . . . , XiJ) =
exp(ηiJ)∑J
i=0 exp(ηiJ)

In general, the probability of a woman giving birth to a child belonging to a category
j birth size, is given by

Pr(Yi = j|η) =
exp(ηj)∑J
i=0 exp(ηj)

where η = X′β is the linear predictor. That is for a binary variable yi , the probability
of low birth category (i.e success) is given by πi = F(X ′iβ)

A.2 BayesX Code for Cumulative Multinomial Models

# Paper Cumulative l o g i t model
# BayesX a n a l y s i s
# Loading d a t a s e t
d a t a s e t d
d . i n f i l e , maxobs=100000 using c :\Users \215076528\Desktop\cum\

cngn2008 . t x t
d . descr ibe

# Loading map f i l e
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map m
# Empirecal Bayes (No c o v a r i a t e )
m. i n f i l e using c :\Users \215076528\Desktop\cum\ n i g e r i a . bnd . t x t
remlreg r

r . o u t f i l e = c :\Users \215076528\Desktop\cum\ s p a t i a l
logopen using c : \Users \215076528\Desktop\cum\ s p a t i a l . log
r . r e g r e s s c a t = s t a t e ( s p a t i a l , map=m) , family=cumlogit using d
l o g c l o s e

# Nonlinear models
r . o u t f i l e = c :\Users \215076528\Desktop\cum\monlinear
logopen using c : \Users \215076528\Desktop\cum\nonl inear . log

r . r e g r e s s c a t = mbmi( psplinerw2 ) + fbage ( psplinerw2 ) +
deadchildren ( psplinerw2 ) + hhsize ( psplinerw2 ) +
s t a t e ( s p a t i a l , map=m) , family=cumlogit using d

l o g c l o s e

# S p a t i a l Nonlinear models
r . r e g r e s s c a t = csex1 + twin1 + urban + stunted + wasted +

underwg + poor + middle + r i c h e r + r i c h e s t + diarrhea +
fever + cough + space + Iron + Ante + maldrug +
mheight ( psplinerw2 ) + mbmi( psplinerw2 ) + hhsize ( psplinerw2 )

+
s t a t e ( s p a t i a l , map=m) , family=cumlogit using d

# Mother c h a r a c t e r s model
r . o u t f i l e = c :\ Users \215076528\Desktop\ b i r t h \modacx
logopen using c : \Users \215076528\Desktop\ b i r t h \ log modacx
r . r e g r e s s c a t = urban + smoke+ l i t e r a t e + c a t h o l i c + c h r i s t a i n

+
muslim + poor + middle + r i c h e r + r i c h e s t + fbage (

psplinerw2 ) +
mbmi( psplinerw2 ) + mweight ( psplinerw2 ) + s t a t e ( s p a t i a l ,

map=m) ,
family=cumlogit using d
l o g c l o s e
end
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This section presents the probability distributions and the WinBUGS codes for the
analysis in Chpater 4.

Supplementary Material from Chapter 4

B.1 Probability Distributions

The probability distributions used in this book are summarized next:

• Bernoulli distribution The Bernoulli distribution with parameter 0 < q < 1,
denoted as Ber(q), has probability mass function mass function

p(k) = qk(1− q), k ∈ (0, 1) (7.3)

• Binomial distribution The Binomial distribution with parametersm ∈ {1, 2, 3, . . .m}
and 0 < q < 1, denoted as Bin(q), has probability

p(k) =

(
m

k

)
qk(1− q), k ∈ (0, 1, . . . ,m) (7.4)

• Poisson distribution: the Poisson distribution with parameter λ > 0, denoted
as Pois(λ), has probability mass function

p(k) = exp(−λ)
λk

k!
, k ∈ N (7.5)
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• the Negative Binomial distribution with parameters a > 0 and λ > 0, denoted
as NBin(a, λ), has probability mass function

p(k) =

(
a+ k − 1

k

)
a

(a+ λ)a
λ

(a+ λ)k
k ∈ N; (7.6)

• the Normal distribution with parameters µ ∈ R and σ2 > 0, denoted as
N(µ, σ2), has probability density function

f(x) =
1

σ
√

2π
exp

(
− 1

2σ2
(x− µ)2

)
, x ∈ R; (7.7)

• the Log Normal distribution with parameters µ ∈ R and σ2 > 0, denoted as
LN (µ, σ2), has probability density function

f(x) =
1

xσ
√

2π
exp

(
− 1

2σ2
(ln(x)− µ)2

)
, x ∈ R+; (7.8)

• Gamma distribution: A random variable X is distributed according to the
two-parameters, α > 0 and β > 0 Gamma distribution, which will henceforth
be denoted as X ∼ Gam(α, β) , if its probability density function is given by

f(x) =
xα−1βα exp(−βx)

Γ(α)
, x > 0 (7.9)

• when α = 1, the Gamma distribution reduces to the Negative Exponential
distribution (which is denoted asX ∼ exp(β) with probability density function

f(x) = β exp(−βx), x > 0 (7.10)

• the Inverse Gaussian distribution, with parameters, µ > 0 and β > 0, denoted
as IGau(µ, β), has probability density function

f(x) =
µ√

2πβx3
exp

(
− 1

2βx
(x− µ)2

)
, x > 0 (7.11)
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B.2 WinBUGS Code for Bayesian Hierarchical Models

# Appendix A
#WinBuGS Codes f o r Chapter 3
#Models
# # # # # # # * * * * * * * POISSON−GAMMA MODEL* * * * * * * *
model
{
f o r ( i in 1 :N)
{

# Poisson l i k e l i h o o d f o r observed counts
O[ i ] ˜ dpois (mu[ i ] )
mu[ i ]<−E [ i ] * t h e t a [ i ]
# R e l a t i v e Risk
t h e t a [ i ] ˜ dgamma( a , b )
SMR[ i ]<− O[ i ] / E [ i ]
prob [ i ]<−s tep ( t h e t a [ i ]−1)

}
# P r i o r d i s t r i b u t i o n s f o r ” population ” parameters
a ˜ dexp ( 0 . 1 )
b ˜ dexp ( 0 . 1 )
# Population mean and population var iance
mean<−a/b
var<−a/pow( b , 2 )
}
#Data
# I n i t i a l s
l i s t ( a =1 , b=1)
l i s t ( a =10 ,b=10)
l i s t ( a =10 ,b=10)

# # # * * * * * * * * * * * * * *LOG−NORMAL MODEL* * * * * * * #
model
{
f o r ( i in 1 : N) {

v [ i ] ˜ dnorm ( 0 . 0 , tau . v )
O[ i ] ˜ dpois (mu[ i ] )
log (mu[ i ] )<−log ( E [ i ] ) +alpha0+v [ i ]
RR[ i ] <− exp ( alpha0+v [ i ] ) # Area−s p e c i f i c r e l a t i v e r i s k (
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f o r maps )
}
# Other p r i o r s :
alpha0 ˜ d f l a t ( )
tau . v ˜ dgamma( 0 . 5 , 0 . 0 0 0 5 ) # p r i o r on p r e c i s i o n
sigma . v <− s q r t (1 / tau . v ) # standard devia t ion
}

#### Data
#Data

# I n i t i a l s
l i s t ( tau . v = 1 , alpha0 =0 , v=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 ) )

# # # * * * * * * * * * LOG NORMAL WITH COVARIATES #######
model{

f o r ( i in 1 : N) {
v [ i ] ˜ dnorm ( 0 . 0 , precv )
O[ i ] ˜ dpois (mu[ i ] )
log (mu[ i ] ) <− log ( E [ i ] ) +alpha [ 1 ] + alpha [ 2 ] * ( ( dr [ i ]−mean( dr

[ ] ) ) /sd ( dr [ ] ) / s q r t ( 3 7 ) ) +alpha [ 3 ] * ( ( sn [ i ]−mean( sn [ ] ) ) /
sd ( sn [ ] ) / s q r t ( 3 7 ) ) +alpha [ 4 ] * ( (dw[ i ]−mean(dw[ ] ) ) /sd (dw
[ ] ) / s q r t ( 3 7 ) ) + alpha [ 5 ] * ( ( pr [ i ]−mean( pr [ ] ) ) /sd ( pr [ ] ) /
s q r t ( 3 7 ) ) + alpha [ 6 ] * ( ( cc [ i ]−mean( cc [ ] ) ) /sd ( cc [ ] ) / s q r t
( 3 7 ) ) + v [ i ]

SMR[ i ]<−(O[ i ]+ eps2 ) /(E [ i ]+ eps2 )
RR[ i ]<− exp ( alpha [1 ]+ alpha [ 2 ] * ( ( dr [ i ]−mean( dr [ ] ) ) /sd ( dr

[ ] ) / s q r t ( 3 7 ) ) +alpha [ 3 ] * ( ( sn [ i ]−mean( sn [ ] ) ) /sd ( sn [ ] ) /
s q r t ( 3 7 ) ) +alpha [ 4 ] * ( (dw[ i ]−mean(dw[ ] ) ) /sd (dw[ ] ) / s q r t
( 3 7 ) ) + alpha [ 5 ] * ( ( pr [ i ]−mean( pr [ ] ) ) /sd ( pr [ ] ) / s q r t ( 3 7 ) )
+ alpha [ 6 ] * ( ( cc [ i ]−mean( cc [ ] ) ) /sd ( cc [ ] ) / s q r t ( 3 7 ) ) + v

[ i ] )

#### Excedence P r o b a b i l i t y
p r o b a b i l i t y [ i ]<−s tep (RR[ i ]−1+eps ) # p r o b a b i l t y of RR>1

136



APPENDIX Appendix B

}

# Other p r i o r s :
f o r ( j in 1 : 6 ) {

alpha [ j ] ˜ dnorm ( 0 , 0 . 0 1 )
}
eps<−1.0E−16
eps2 ˜ dnorm ( 0 , 0 . 0 5 )
precv ˜dgamma( 0 . 0 5 , 0 . 0 0 0 5 ) # p r i o r on

p r e c i s i o n of v
sigmav <− s q r t (1 / precv ) # standard devia t ion

of v

}

### DATA
### INITIAL
l i s t ( alpha=c ( 0 , 0 , 0 , 0 , 0 , 0 ) , precv =1 , eps2 =1 ,

v=c
( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )
)

# # # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

#################### CAR MODEL ####################
model {

# Likel ihood
f o r ( i in 1 : N) {

O[ i ] ˜ dpois (mu[ i ] )
log (mu[ i ] ) <− log ( E [ i ] ) + alpha0+u [ i ]
RR[ i ] <− exp ( alpha0 +u [ i ] ) # Area−s p e c i f i c r e l a t i v e r i s k

( f o r maps )
}
# CAR p r i o r d i s t r i b u t i o n f o r random e f f e c t s :
u [ 1 :N] ˜ car . normal ( adj [ ] , weights [ ] , num[ ] , tau . u )
f o r ( k in 1 :sumNumNeigh)
{

weights [ k ] <− 1
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}
# Other p r i o r s :
# Other p r i o r s :
alpha0 ˜ d f l a t ( )
tau . u ˜ dgamma( 0 . 5 , 0 . 0 0 0 5 ) # p r i o r on p r e c i s i o n
sigma . u <− s q r t (1 / tau . u ) # standard devia t ion

}

#Data
#Data

# I n i t i a l s
l i s t ( tau . u = 1 , alpha0 =0 , u=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 ) )

l i s t ( tau . u = 1 , alpha0 = 0 , u=rep ( 0 , 3 7 ) )
l i s t ( tau . u = 1 , alpha0 = 0 , u=rep ( 0 , 3 7 ) )

# # # # # # * * * * * * * * * * * * CAR COVARIATES * * * * * * * * * * * * * * * * *

model{
f o r ( i in 1 : N) {

O[ i ] ˜ dpois (mu[ i ] )
log (mu[ i ] ) <− log ( E [ i ] ) +alpha [ 1 ] + alpha [ 2 ] * ( ( dr [ i ]−mean( dr

[ ] ) ) /sd ( dr [ ] ) / s q r t ( 3 7 ) ) +alpha [ 3 ] * ( ( sn [ i ]−mean( sn [ ] ) ) /
sd ( sn [ ] ) / s q r t ( 3 7 ) ) +alpha [ 4 ] * ( (dw[ i ]−mean(dw[ ] ) ) /sd (dw
[ ] ) / s q r t ( 3 7 ) ) + alpha [ 5 ] * ( ( pr [ i ]−mean( pr [ ] ) ) /sd ( pr [ ] ) /
s q r t ( 3 7 ) ) + alpha [ 6 ] * ( ( cc [ i ]−mean( cc [ ] ) ) /sd ( cc [ ] ) / s q r t
( 3 7 ) ) + u [ i ]

SMR[ i ]<−(O[ i ]+ eps2 ) /(E [ i ]+ eps2 )
RR[ i ]<− exp ( alpha [1 ]+ alpha [ 2 ] * ( ( dr [ i ]−mean( dr [ ] ) ) /sd ( dr

[ ] ) / s q r t ( 3 7 ) ) +alpha [ 3 ] * ( ( sn [ i ]−mean( sn [ ] ) ) /sd ( sn [ ] ) /
s q r t ( 3 7 ) ) +alpha [ 4 ] * ( (dw[ i ]−mean(dw[ ] ) ) /sd (dw[ ] ) / s q r t
( 3 7 ) ) + alpha [ 5 ] * ( ( pr [ i ]−mean( pr [ ] ) ) /sd ( pr [ ] ) / s q r t ( 3 7 ) )
+ alpha [ 6 ] * ( ( cc [ i ]−mean( cc [ ] ) ) /sd ( cc [ ] ) / s q r t ( 3 7 ) ) + u

[ i ] )
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#### Excedence P r o b a b i l i t y
p r o b a b i l i t y [ i ]<−s tep (RR[ i ]−1+eps ) # p r o b a b i l t y of RR>1

}

# CAR p r i o r d i s t r i b u t i o n f o r CH random e f f e c t s :
u [ 1 :N] ˜ car . normal ( adj [ ] , weights [ ] , num[ ] , precu )
f o r ( k in 1 :sumNumNeigh) {

weights [ k ] <− 1
}

# Other p r i o r s :
f o r ( j in 1 : 6 ) {

alpha [ j ] ˜ dnorm ( 0 , 0 . 0 1 )
}

eps<−1.0E−16
eps2 ˜ dnorm ( 0 , 0 . 0 5 )
precu ˜dgamma( 0 . 0 5 , 0 . 0 0 0 5 ) # p r i o r on p r e c i s i o n

of u

sigmau <− s q r t (1 / precu ) # standard devia t ion
of u

}

### DATA

### INITIAL
l i s t ( alpha=c ( 0 , 0 , 0 , 0 , 0 , 0 ) , precu =1 , eps2 =1 ,
u=c

( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )
)

# # # * * * * * * *CONVOLUTION MODEL (NO COVARIATES) * * * * * * * * *

####### I n i t i a l s * * * * * * * * * * * * * * * * * * * * * * * * * * * *
l i s t ( tau . u=1 , tau . v = 1 , beta =0 , u=rep ( 0 , 3 7 ) , v=rep ( 0 , 3 7 ) )
l i s t ( tau . u = 1 , tau . v = 1 , beta =0 ,u=rep ( 0 , 3 7 ) , v =rep ( 0 , 3 7 )
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# # # * * * * * * * * CONVOLUTION MODEL DATA with c o v a r i a t e s
model{

f o r ( i in 1 : N) {
O[ i ] ˜ dpois (mu[ i ] )
log (mu[ i ] ) <− log ( E [ i ] ) +alpha [ 1 ] + alpha [ 2 ] * ( ( dr [ i ]−

mean( dr [ ] ) ) /sd ( dr [ ] ) / s q r t ( 3 7 ) ) +alpha [ 3 ] * ( ( sn [ i ]−
mean( sn [ ] ) ) /sd ( sn [ ] ) / s q r t ( 3 7 ) ) +alpha [ 4 ] * ( (dw[ i ]−
mean(dw[ ] ) ) /sd (dw[ ] ) / s q r t ( 3 7 ) ) + alpha [ 5 ] * ( ( pr [ i ]−
mean( pr [ ] ) ) /sd ( pr [ ] ) / s q r t ( 3 7 ) ) + alpha [ 6 ] * ( ( cc [ i
]−mean( cc [ ] ) ) /sd ( cc [ ] ) / s q r t ( 3 7 ) ) + u [ i ]+v [ i ]

SMR[ i ]<−(O[ i ]+ eps2 ) /(E [ i ]+ eps2 )
RR[ i ]<− exp ( alpha [1 ]+ alpha [ 2 ] * ( ( dr [ i ]−mean( dr [ ] ) ) /sd

( dr [ ] ) / s q r t ( 3 7 ) ) +alpha [ 3 ] * ( ( sn [ i ]−mean( sn [ ] ) ) /sd (
sn [ ] ) / s q r t ( 3 7 ) ) +alpha [ 4 ] * ( (dw[ i ]−mean(dw[ ] ) ) /sd (
dw[ ] ) / s q r t ( 3 7 ) ) + alpha [ 5 ] * ( ( pr [ i ]−mean( pr [ ] ) ) /sd
( pr [ ] ) / s q r t ( 3 7 ) ) + alpha [ 6 ] * ( ( cc [ i ]−mean( cc [ ] ) ) /
sd ( cc [ ] ) / s q r t ( 3 7 ) ) + u [ i ]+v [ i ] )

v [ i ] ˜ dnorm ( 0 , precv )
p r o b a b i l i t y [ i ]<−s tep (RR[ i ]−1+eps ) # p r o b a b i l t y of RR

>1
}

# CAR p r i o r d i s t r i b u t i o n f o r CH random e f f e c t s :
u [ 1 :N] ˜ car . normal ( adj [ ] , weights [ ] , num[ ] , precu )
f o r ( k in 1 :sumNumNeigh) {

weights [ k ] <− 1
}

# Other p r i o r s :
f o r ( j in 1 : 6 ) {

alpha [ j ] ˜ dnorm ( 0 , 0 . 0 1 )
}

eps<−1.0E−16
eps2 ˜ dnorm ( 0 , 0 . 0 5 )
precu ˜dgamma( 0 . 0 5 , 0 . 0 0 0 5 ) # p r i o r on

p r e c i s i o n of u
precv ˜dgamma( 0 . 0 5 , 0 . 0 0 0 5 ) #

p r i o r on p r e c i s i o n of v
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sigmau <− s q r t (1 / precu ) #
standard devia t ion of u

sigmav <− s q r t (1 / precv ) #
standard devia t ion of v

}

### DATA

### INITIAL
l i s t ( alpha=c ( 0 , 0 , 0 , 0 , 0 , 0 ) , precu =1 , precv =1 , eps2 =1 ,

u=c
( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )
,

v=c
( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )
)

# # # # # * * * * * * * * * * * * COnvolution model * * * * * * * * * * # # # # # #

#### A l t e r n a t i v e model
model {

f o r ( i in 1 : N) {
# Data d i s t r i b u t i o n
O[ i ] ˜ dpois (mu[ i ] )
log (mu[ i ] ) <− log ( E [ i ] ) + alpha + beta [ 1 ] * dr [ i ]+

beta [ 2 ] * sn [ i ]+ beta [ 3 ] *dw[ i ] + beta [ 4 ] * pr [ i ]+ +u [ i
]+v [ i ]

# Area−s p e c i f i c r e s i d u a l r e l a t i v e r i s k ( f o r maps )
RR[ i ] <− exp ( alpha + u [ i ]+v [ i ] )
## Exchangeable p r i o r on unstructured random e f f e c t s
v [ i ] ˜ dnorm ( 0 . 0 , tau . v )

}
# P r o b a b i l i t y t h a t RR >1 ( excess r i s k )
pRR[ i ] <− s tep (RR[ i ]−1)

}
# iCAR p r i o r d i s t r i b u t i o n f o r s p a t i a l random e f f e c t s u [ i

]
u [ 1 :N] ˜ car . normal ( adj [ ] , weights [ ] , num[ ] , tau . u )
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f o r ( k in 1 :sumNumNeigh) {
weights [ k ] <− 1

}
# Other p r i o r s :
alpha ˜ d f l a t ( )
f o r ( i in 1 : 4 ) {beta [ i ] ˜ dnorm ( 0 . 0 , 0 . 0 0 0 1 ) }
tau . v ˜ dgamma( 0 . 0 0 5 , 0 . 0 0 5 )
sigma . v <− s q r t (1 / tau . v )
tau . u ˜ dgamma( 0 . 0 0 5 , 0 . 0 0 5 )
sigma . u <− s q r t (1 / tau . u )
}

###### DATA

# # # # * * * * * * * * * * * * * * * * * * * * * I n i t i a l s * * * * * * * * * * * * * *
l i s t ( tau . u = 1 , tau . v = 1 , alpha =0 , beta=c ( 0 , 0 , 0 , 0 ) ,

v=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ,

u=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) )

######## ANALYSIS ENDS HERE * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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B.2 INLA CODE for Models Chapter 4

# Packages required
rm( l i s t = l s ( ) )
# i n s t a l l . packages (” faraway ”) TO MANAGE REGRESSION ANALYSIS
# i n s t a l l . packages (” dplyr ” ) f o r
l i b r a r y ( ’ faraway ’ )
l i b r a r y (”MASS”)
l i b r a r y (” l a t t i c e ” )

l i b r a r y (” ctv ”)

l i b r a r y (” sp ”)

l i b r a r y ( maptools )

l i b r a r y ( rgdal )
requi re ( RColorBrewer )

l i b r a r y (” RColorBrewer ”) # added coloured brewers

l i b r a r y ( spdep )
requi re (INLA)
l i b r a r y ( s t a r g a z e r )
l i b r a r y ( x t a b l e )
l i b r a r y ( dplyr )

# * * * * * * * * * * * * * * * * * * *LOADING DATA

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
data<−read . csv (”C:/ Users /215076528/ Desktop/surv codes/

n i g e r i a 2 0 1 3 d i r e c t . csv ” , header=T , sep =” ,”)

dim ( data )
head ( data )
a t t a c h ( data )
t a b l e ( V113 )
t a b l e ( V116 )
s t a t e <− t a b l e (SSTATE , B5 )
wri te . csv ( s t a t e , ” a l i v e b . csv ”)
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t a b l e ( B0 )
s t r ( data )
d a t a $ d i s t r . uns t ruc t = d a t a $ d i s t r i c t

# * * * * * * * * * * * * * * * * * * *LOADING GEOGRAPGHICAL MAPS

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
ngn . graph<− readRDS (”C:/ Users /215076528/ Desktop/surv codes/

NGA adm1 . rds ”) # NIGERIA admin 1

#gha . graph<− readRDS (”C:/ Users /215076528/ Desktop/ d i s t r i c t a l /
GHA adm1 . rds ”) # GHANA

#moz . graph<− readRDS (”C:/ Users /215076528/ Desktop/ d i s t r i c t a l /
MOZ adm1. rds ”) # Mozambique

# * * * * * * * * * * * * * * * * * * * STARTS TANZANIA SECTIONS HERE

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
windows ( width =7 , height =7)
png (” bukaa11 . png ”)
#png (” buk%5d . png ”) # By inc luding % you can generate mult ip le

p l o t s
#pdf (” bukal l . pdf ” )
par ( mfrow=c ( 2 , 3 ) , mai=c ( 0 . 6 , 0 . 5 , 0 . 1 , 0 . 1 ) ,mgp=c ( 2 , 0 . 7 , 0 ) )
# p l o t ( c iv3 . graph , main=”Cote d ’ I v o i r e ” ) # p l o t ( c iv2 . graph ,

main=”Cote d ’ I v o i r e ” ) # p l o t ( bkf . graph , main=”Burkina faso
”)

# p l o t ( c iv . graph , main=”Cote d ’ I v o i r e ” ) # p l o t ( gha . graph , main
=”Ghana ”) p l o t (moz . graph , main=”Mozambique ”) #Mozambique

p l o t ( ngn . graph , main=”NIGERIA”)
dev . o f f ( )

ad j tz<−poly2nb ( ngn . graph ) # Creates adjacency f o r ken
a d j t z

nb2INLA(” ngn . graph ” , a d j t z ) #INLA graph f i l e #spdep command
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NIGERIA
names ( data )
# # * * * * * * * * * * * * * * * * * * * * * * * *TANZANIA ANALYSIS

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
t a b l e ( data$anebin ) ; t a b l e ( data$stunted ) ; t a b l e ( data$wasted ) ;

t a b l e ( data$morta l i ty ) ; t a b l e ( data$undered )
t a b l e ( data$magecat )
# Secere ANEMIA 4
f1<−imm˜ no + ant + vitA + b r e a s t 1 + csex1 + twin1 + cbw1 +

cbw2 + cbw3 + c h r i s t a i n +
muslim + cath + urban + space + prim + sec + high + mage20

+ mage30 + mage40 + abbm1 + abbm3 +
abbm4 +pn2 + di2 + fe2

f2<−u5mm˜ no + ant + vitA + b r e a s t 1 + csex1 + twin1 + cbw1 +
cbw2 + cbw3 + c h r i s t a i n +

muslim + cath + urban + space + prim + sec + high + mage20
+ mage30 + mage40 + abbm1 + abbm3 +

abbm4
f3<−y5 ˜ no + ant + vitA + b r e a s t 1 + csex1 + twin1 + cbw1 +

cbw2 + cbw3 + c h r i s t a i n +
muslim + cath + urban + space + prim + sec + high + mage20

+ mage30 + mage40 + abbm1 + abbm3 +
abbm4

r1<−i n l a ( f1 , family =” binomial ” , data=data , c o n t r o l . compute= l i s t (
dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

r2<−i n l a ( f2 , family =” binomial ” , data=data , c o n t r o l . compute= l i s t (
dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

r3<−i n l a ( f3 , family =” binomial ” , data=data , c o n t r o l . compute= l i s t (
dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

# c o n t r o l . f i x e d = l i s t ( expand . f a c t o r . s t r a t e g y =” i n l a ” ) ,
summary ( r1 )
summary ( r2 )
summary ( r3 )
a<− summary ( r1 )
b<− summary ( r2 )
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c<− summary ( r3 )
ww <−exp ( r1$summary . f i x e d )

w=summary ( r e s u l t 0 )
summ <−exp ( result0$summary . f i x e d ) # Code f o r cover t ing to

odd
bb <−exp ( r1$summary . f i x e d )
bb1 <−exp ( r2$summary . f i x e d )
bb2 <−exp ( r3$summary . f i x e d )
kk<−round ( bb1 , d i g i t s =2)
kk2<−round ( bb2 , d i g i t s =2)
wri te . csv ( kk , ” LINmortali ty . csv ”)
wri te . csv ( kk , ” L c h i l d m o r t a l i t y . csv ”)
wri te . csv ( kk2 , ” Lu5mortal i ty . csv ”)

# PLOTTING THE REGRESSION COEFFICIENTS ON GRAPH
t a b l e ( d a t a $ d i s t r i c t )
l i b r a r y ( ggplot2 )
l i b r a r y ( plyr )
IID=exp ( r1$summary . f i x e d )
NBSum2DF <− data . frame ( IID )
NBSum2DF$var<− row . names (NBSum2DF)
NBSum2DF <− subset (NBSum2DF, var != ”( I n t e r c e p t ) ” )
NBSum2DF <− subset (NBSum2DF, var != ”sigma2 ”)
ggplot ( data = NBSum2DF, aes ( x = reorder ( var , X0 . 0 2 5 quant ) ,
y = mean ,
ymin = X0 . 0 2 5 quant , ymax = X0 . 9 7 5 quant ) ) +
geom pointrange ( s i z e = 1 . 4 ) +
geom hline ( aes ( i n t e r c e p t = 0) , l i n e t y p e = ” dotted ”) +
xlab (” var\n ”) + ylab (”\n P o s t e r i o r odds f o r i n f a n t m o r t a l i t y

” ) +
c o o r d f l i p ( ) + theme bw ( b a s e s i z e = 20)
dev . o f f ( )

# UNSTRUCTURED SPATIAL MODEL
f10 <−imm˜ no + ant + vitA + b r e a s t 1 + csex1 + twin1 + cbw1 +

cbw2 + cbw3 + c h r i s t a i n +
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muslim + cath + urban + space + prim + sec + high + mage20
+ mage30 + mage40 + abbm1 + abbm3 +

abbm4 + f ( d i s t r i c t , model=” i i d ”)
f20<−u5mm˜ no + ant + vitA + b r e a s t 1 + csex1 + twin1 + cbw1 +

cbw2 + cbw3 + c h r i s t a i n +
muslim + cath + urban + space + prim + sec + high + mage20

+ mage30 + mage40 + abbm1 + abbm3 +
abbm4 + f ( d i s t r i c t , model=” i i d ”)

f30<−y5 ˜ no + ant + vitA + b r e a s t 1 + csex1 + twin1 + cbw1 +
cbw2 + cbw3 + c h r i s t a i n +

muslim + cath + urban + space + prim + sec + high + mage20
+ mage30 + mage40 + abbm1 + abbm3 +

abbm4 + f ( d i s t r i c t , model=” i i d ”)

r10<−i n l a ( f10 , family =” binomial ” , data=data , c o n t r o l . compute=
l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

r20<−i n l a ( f20 , family =” binomial ” , data=data , c o n t r o l . compute=
l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

r30<−i n l a ( f30 , family =” binomial ” , data=data , c o n t r o l . compute=
l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

# c o n t r o l . f i x e d = l i s t ( expand . f a c t o r . s t r a t e g y =” i n l a ” ) ,

summary ( r10 )
summary ( r20 )
summary ( r30 )
a<− summary ( r10 )
b<− summary ( r20 )
c<− summary ( r30 )

w=summary ( r e s u l t 0 )
summ <−exp ( result0$summary . f i x e d ) # Code f o r cover t ing to

odd
bb <−exp ( r10$summary . f i x e d )
bb1 <−exp ( r20$summary . f i x e d )
bb2 <−exp ( r30$summary . f i x e d )
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kk<−round ( bb , d i g i t s =2)
kk1<−round ( bb1 , d i g i t s =2)
kk2<−round ( bb2 , d i g i t s =2)
wri te . csv ( kk , ” NSIFMortality . csv ”)
wri te . csv ( kk1 , ” NSchi ldmortal i ty . csv ”)
wri te . csv ( kk2 , ” NSU5mortality . csv ”)

rr1<−r30$summary . random$dis t r ic t # r e s i d u a l d i s t r i c t e f f e c t
morta

tza<− data . frame ( r r 1 )
rr1<−r10$summary . random$dis t r ic t # r e s i d u a l d i s t r i c t e f f e c t

morta
tza<− data . frame ( r r 1 )
t z a $ d i s t r i c t <− row . names ( tza )

N = t a b l e ( d a t a $ d i s t r i c t )
mean = r r 1 [ , 2 ] ,
row . names (N)
sd = r r 1 [ , 3 ]
## CREATING STA ERROR
length ( d a t a $ d i s t r i c t )
t t<− data . frame ( t a b l e ( d a t a $ d i s t r i c t ) )
t t a<−cbind ( sd , t t )
se = t t a [ , 1 ] / t t a [ , 3 ]
ggplot ( data = tza , aes ( x = reorder ( d i s t r i c t , X0 . 0 2 5 quant ) ,
y = mean , ymin = X0 . 0 2 5 quant , ymax = X0 . 9 7 5 quant ) ) +
geom pointrange ( s i z e = 1 . 4 ) +
geom hline ( aes ( i n t e r c e p t = 0) , l i n e t y p e = ” dotted ”) +
xlab (” s t a t e \n ”) + ylab (”\n unstructured p o s t e r i o r r e s i d u a l s ” )

+
theme bw ( b a s e s i z e = 20)
+ geom errorbar ( aes ( x , ymin=y−se , d i s t r i c t , ymax=y+se )
ggplot ( data = t t a , aes ( x = reorder ( d i s t r i c t , sd )
)
dev . o f f ( )

###### Spata i Random e f f e c t
# STRUCTURED SPATIAL MODEL
f11 <−imm˜ no + ant + vitA + b r e a s t 1 + csex1 + twin1 + cbw1 +

cbw2 + cbw3 + c h r i s t a i n +
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muslim + cath + urban + space + prim + sec + high + mage20
+ mage30 + mage40 + abbm1 + abbm3 +

abbm4 + f ( fage , model=”rw2 ”) + f ( d i s t r i c t , model=”besag ” ,
graph . f i l e =”ngn . graph ”)

f21<−u5mm˜ no + ant + vitA + b r e a s t 1 + csex1 + twin1 + cbw1 +
cbw2 + cbw3 + c h r i s t a i n +

muslim + cath + urban + space + prim + sec + high + mage20
+ mage30 + mage40 + abbm1 + abbm3 +

abbm4 + f ( fage , model=”rw2 ”) + f ( d i s t r i c t , model=”besag ” ,
graph . f i l e =”ngn . graph ”)

f31<−y5 ˜ no + ant + vitA + b r e a s t 1 + csex1 + twin1 + cbw1 +
cbw2 + cbw3 + c h r i s t a i n +

muslim + cath + urban + space + prim + sec + high + mage20
+ mage30 + mage40 + abbm1 + abbm3 +

abbm4 + f ( fage , model=”rw2 ”) + f ( d i s t r i c t , model=”besag ” ,
graph . f i l e =”ngn . graph ”)

r11<−i n l a ( f11 , family =” binomial ” , data=data , c o n t r o l . compute=
l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

r21<−i n l a ( f21 , family =” binomial ” , data=data , c o n t r o l . compute=
l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

r31<−i n l a ( f31 , family =” binomial ” , data=data , c o n t r o l . compute=
l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

# c o n t r o l . f i x e d = l i s t ( expand . f a c t o r . s t r a t e g y =” i n l a ” ) ,
p l o t ( r11 )
summary ( r11 )
summary ( r21 )
summary ( r31 )

# convert ing to odds
summ <−exp ( result0$summary . f i x e d ) # Code f o r cover t ing to

odd
bb <−exp ( r11$summary . f i x e d )
bb1 <−exp ( r21$summary . f i x e d )
bb2 <−exp ( r31$summary . f i x e d )
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kk<−round ( bb , d i g i t s =2)
kk1<−round ( bb1 , d i g i t s =2)
kk2<−round ( bb2 , d i g i t s =2)
wri te . csv ( kk , ” SSIFMorta l i ty . csv ”)
wri te . csv ( kk1 , ” S S c h i l d m o r t a l i t y . csv ”)
wri te . csv ( kk2 , ” SSU5mortality . csv ”)

## CREATING RESIDUAL ERRORs FOR SPATIAL PLOT
res0<−r11$summary . random$dis t r ic t # r e s i d u a l d i s t r i c t e f f e c t

s t r u c t u r e d model (INFANT MORTALITY)
res1<−r21$summary . random$dis t r ic t # r e s i d u a l d i s t r i c t e f f e c t

s t r u c t u r e d model (CHILD MORTALITY)
res2<−r31$summary . random$dis t r ic t # r e s i d u a l d i s t r i c t e f f e c t

s t r u c t u r e d model (U5 MORTALITY)
# y5
res01<−res0$ ” 0 . 5 quant” # median
res02<−res0$ ”0 .025 quant” # c a t 5%
res03<−res0$ ”0 .975 quant” # c a t 95%

#### CHILD MORTALITY
res11<−res1$ ” 0 . 5 quant” # median
res12<−res1$ ”0 .025 quant” # c a t 5%
res13<−res1$ ”0 .975 quant” # c a t 95%

# UNDER FIVE
res21<−res2$ ” 0 . 5 quant” # median
res22<−res2$ ”0 .025 quant” # c a t 5%
res23<−res2$ ”0 .975 quant” # c a t 95%
#

ngn . graph$STR<−res01 ### MEDIAN INFANT
ngn . graph$ABC<−res11
ngn . graph$AAA<−res21

pdf (” n i g e r i a i n f a n t 2 . pdf ” )
par ( mfrow=c ( 2 , 2 ) , mai=c ( 0 . 6 , 0 . 5 , 0 . 1 , 0 . 1 ) ,

mgp=c ( 2 , 0 . 7 , 0 ) )
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p l o t ( r11 )
spplot ( ngn . graph , ” STR”) # No colour s p e c i f y
spplot ( ngn . graph , ” STR” , cuts =4 , names . a t t r =” P o s t e r i o r mean of

i n f a n t ” ) # 4 colour s p e c i f y
spplot ( ngn . graph , ”ABC” , cuts =4) # 4 colour c l a s s f i c a t i o n
spplot ( ngn . graph , ”AAA” , cuts =4) # 4 colour s p e c i f y

dev . o f f ( )

sum( data$deadchildren )
##### SPATIAL STRUCTURED WITHout BIRTH WEIGHT
###### Spata i Random e f f e c t
# STRUCTURED SPATIAL MODEL
f101 <−imm˜ no + ant + vitA + b r e a s t 1 + csex1 + twin1 +

c h r i s t a i n +
muslim + cath + urban + space + prim + sec + high + mage20

+ mage30 + mage40 + abbm1 + abbm3 +
abbm4 + f ( d i s t r i c t , model=”besag ” , graph . f i l e =”ngn . graph ”)

f201<−u5mm˜ no + ant + vitA + b r e a s t 1 + csex1 + twin1 +
c h r i s t a i n +

muslim + cath + urban + space + prim + sec + high + mage20
+ mage30 + mage40 + abbm1 + abbm3 +

abbm4 + f ( d i s t r i c t , model=”besag ” , graph . f i l e =”ngn . graph ”)

f301<−y5 ˜ no + ant + vitA + b r e a s t 1 + csex1 + twin1 +
c h r i s t a i n + muslim + cath + urban + space +

prim + sec + high + mage20 + mage30 + mage40 + abbm1 +
abbm3 +

abbm4 + f ( d i s t r i c t , model=”besag ” , graph . f i l e =”ngn . graph ”)

r101<−i n l a ( f101 , family =” binomial ” , data=data , c o n t r o l . compute=
l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

r201<−i n l a ( f201 , family =” binomial ” , data=data , c o n t r o l . compute=
l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

r301<−i n l a ( f301 , family =” binomial ” , data=data , c o n t r o l . compute=
l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )
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# c o n t r o l . f i x e d = l i s t ( expand . f a c t o r . s t r a t e g y =” i n l a ” ) ,

summary ( r101 )
summary ( r201 )
summary ( r301 )

# convert ing to odds
bb0 <−exp ( r101$summary . f i x e d ) # Code f o r cover t ing to odd
bb10 <−exp ( r201$summary . f i x e d )
bb20 <−exp ( r301$summary . f i x e d )
kk<−round ( bb0 , d i g i t s =2)
kk1<−round ( bb10 , d i g i t s =2)
kk2<−round ( bb20 , d i g i t s =2)
wri te . csv ( kk , ” SSWIFMortality . csv ”)
wri te . csv ( kk1 , ” SSWchildmortal i ty . csv ”)
wri te . csv ( kk2 , ” SSWU5mortality . csv ”)

## CREATING RESIDUAL ERRORs FOR SPATIAL PLOT
res0<−r11$summary . random$dis t r ic t # r e s i d u a l d i s t r i c t e f f e c t

s t r u c t u r e d model (INFANT MORTALITY)
res1<−r21$summary . random$dis t r ic t # r e s i d u a l d i s t r i c t e f f e c t

s t r u c t u r e d model (CHILD MORTALITY)
res2<−r31$summary . random$dis t r ic t # r e s i d u a l d i s t r i c t e f f e c t

s t r u c t u r e d model (U5 MORTALITY)
# y5
res01<−res0$ ” 0 . 5 quant” # median
res02<−res0$ ”0 .025 quant” # c a t 5%
res03<−res0$ ”0 .975 quant” # c a t 95%

######### ENDS HERE

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

formula<−y5 ˜ cbw1 + cbw2 +cbw3 + mage20 + mage30 + mage40 +
urban + csex1 + poor + middle +

r i c h e r + r i c h e s t + no + ant + vitA + space + b r e a s t 1 +
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measles +
f ( mage , model=”rw2 ”) + f (mbmi, model=”rw2 ”) + f ( d i s t r i c t ,

model=”besag ” , graph . f i l e =”ngn . graph ”)

r e s u l t 0<−i n l a ( formula , family =” binomial ” , data=data , c o n t r o l .
compute= l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l .
p r e d i c t o r = l i s t ( compute=TRUE) )

ww=summary ( r e s u l t 0 )
summ <−exp ( result0$summary . f i x e d ) # Code f o r cover t ing to

odd
kk<−round (summ, d i g i t s =3)
bb <−exp ( result0$summary . f i x e d )
wri te . csv ( bb , ”U5MM model . csv ”)

res0<−result0$summary . random$dis t r ic t # r e s i d u a l d i s t r i c t
e f f e c t s t r u c t u r e d model anemia

res1<−result1$summary . random$dis t r ic t # r e s i d u a l d i s t r i c t
e f f e c t s t r u c t u r e d model stunted

res2<−result2$summary . random$dis t r ic t # r e s i d u a l d i s t r i c t
e f f e c t s t r u c t u r e d model wasted

res3<−result3$summary . random$dis t r ic t # r e s i d u a l d i s t r i c t
e f f e c t s t r u c t u r e d model underweight

# y5
res01<−res0$ ” 0 . 5 quant” # median
res02<−res0$ ”0 .025 quant” # c a t 5%
res03<−res0$ ”0 .975 quant” # c a t 95%

# Stunted
res11<−res1$ ” 0 . 5 quant” # median
res12<−res1$ ”0 .025 quant” # c a t 5%
res13<−res1$ ”0 .975 quant” # c a t 95%
#
res21<−res2$ ” 0 . 5 quant” # median
res22<−res2$ ”0 .025 quant” # c a t 5%
res23<−res2$ ”0 .975 quant” # c a t 95%

res33<−res3$ ” 0 . 5 quant” # median
cor1 <−data . frame ( res03 , res13 , res23 )
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cor <−cor ( cor1 )
cov<−cov ( cor1 )
wri te . csv ( cor , ” Corrtza95 . csv ”)
wri te . csv ( cov , ” covtza95 . csv ”)
#kk1 <−cbind ( res02 , res01 , res03 )

ngn . graph$STR<−res01
ngn . graph$ABC<−res11
ngn . graph$AAA<−res21
ngn . graph$ABB<−res33
#mm <−ngn . graph$STR

pdf (”NIGERIA U5MR . pdf ” )
par ( mfrow=c ( 2 , 2 ) , mai=c ( 0 . 6 , 0 . 5 , 0 . 1 , 0 . 1 ) ,
mgp=c ( 2 , 0 . 7 , 0 ) )
p l o t ( r e s u l t 0 )
spplot ( ngn . graph , ” STR”) # No colour s p e c i f y
spplot ( ngn . graph , ” STR” , cuts =4 , names . a t t r =” P o s t e r i o r mean of

Anemia ”) # 4 colour s p e c i f y
spplot ( ngn . graph , ”ABC” , cuts =4) # 4 colour c l a s s f i c a t i o n
spplot ( ngn . graph , ”AAA” , cuts =4) # 4 colour s p e c i f y
spplot ( ngn . graph , ”ABB” , cuts =4) # 4 colour s p e c i f y
dev . o f f ( )

# s t a r g a z e r ( bb , type = ” t e x t ” , t i t l e =” D e s c r i p t i v e s t a t i s t i c s ” ,
d i g i t s =2 , out=” t a b l e 1 . t x t ” )

# Secere Stunted
formula1<−stunted ˜ bednet + cage5 + cage11 + cage24 +

v i s i t n o + v i s i t 1 3 + urban + csex1 + l i t e r a t e + poor +
middle + r i c h e r +

r i c h e s t + Zinc + iron + vitA + h o s p i t a l + p r i v a t e +
space + b r e a s t 1 + diarrhea + cough + fever + pneu +
measles + e l e c t r i c i t y +

f ( mage , model=”rw2 ”) + f (mbmi, model=”rw2 ”) + f ( d i s t r i c t , model
=”besag ” , graph . f i l e =”ngn . graph ”)

r e s u l t 1<−i n l a ( formula1 , family =” binomial ” , data=data , c o n t r o l .
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compute= l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l .
p r e d i c t o r = l i s t ( compute=TRUE) )

summary ( r e s u l t 1 )
sum2 <−exp ( result1$summary . f i x e d )
kk1<−round ( sum2 , d i g i t s =3)
wri te . csv ( kk1 , ” tanstuRR . csv ”)
# Secere Wasted
formula2<−wasted ˜ bednet + cage5 + cage11 + cage24 +

v i s i t n o + v i s i t 1 3 + urban + csex1 + l i t e r a t e + poor +
middle + r i c h e r +

r i c h e s t + Zinc + iron + vitA + h o s p i t a l + p r i v a t e +
space + b r e a s t 1 + diarrhea + cough + fever + pneu +
measles + e l e c t r i c i t y +

f ( mage , model=”rw2 ”) + f (mbmi, model=”rw2 ”) + f ( d i s t r i c t , model
=”besag ” , graph . f i l e =”ngn . graph ”)

r e s u l t 2<−i n l a ( formula2 , family =” binomial ” , data=data , c o n t r o l .
compute= l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l .
p r e d i c t o r = l i s t ( compute=TRUE) )

summary ( r e s u l t 2 )
exp ( result2$summary . f i x e d )
sum3 <−exp ( result2$summary . f i x e d )
kk3<−round ( sum3 , d i g i t s =3)
wri te . csv ( kk3 , ” tawastRR2 . csv ”)

formula3<−stunted ˜ cage5 + cage11 + cage24 + v i s i t n o +
v i s i t 1 3 + urban + csex1 + l i t e r a t e + poor + middle +
r i c h e s t +

r i c h e r + Zinc + iron + vitA + acessmed + r i v e r + space +
diarrhea + cough + fever + pneu + measles + vaccine +
e l e c t r i c i t y +

f ( mage , model=”rw2 ”) + f (mbmi, model=”rw2 ”) + f ( d i s t r i c t , model
=”besag ” , graph . f i l e =”ngn . graph ”)

r e s u l t 3<−i n l a ( formula3 , family =” binomial ” , data=data , c o n t r o l .
compute= l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l .
p r e d i c t o r = l i s t ( compute=TRUE) )

summary ( r e s u l t 3 )
summ2<−exp ( result3$summary . f i x e d )
# c o n t r o l . f i x e d = l i s t ( expand . f a c t o r . s t r a t e g y =” i n l a ” ) ###
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included to handle NULL v a r i a b l e
SBB <− summary ( r e s u l t 0 )
SUMM <− summary ( r e s u l t 0 ) [ 3 ] # LAYERS of RESULT EXTRACTION
write . csv (summ2, ” tanUnder . csv ”)
r20<−r2$summary . random$dis t r ic t # r e s i d u a l d i s t r i c t e f f e c t

UNstructured model anemia
r21<−r20$ ” 0 . 5 quant” # median
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Supplementary Material from Chapter 6

C.1 INLA Code for Univariate models in Chapter 6

# Packages required
rm( l i s t = l s ( ) )
# i n s t a l l . packages (” faraway ”) TO MANAGE REGRESSION ANALYSIS
l i b r a r y ( faraway )
l i b r a r y (”MASS”)
l i b r a r y (” l a t t i c e ” )

l i b r a r y (” ctv ”)

l i b r a r y (” sp ”)

l i b r a r y ( maptools )

l i b r a r y ( rgdal )
requi re ( RColorBrewer )

l i b r a r y (” RColorBrewer ”) # added coloured brewers

l i b r a r y ( spdep )
requi re (INLA)
l i b r a r y ( s t a r g a z e r )
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l i b r a r y ( x t a b l e )

# * * * * * * * * * * * * * * * * * * *LOADING DATA

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
data<−read . csv (”C:/ Users/Adeyemi/Desktop/ r e g i o n a l /tan2010 . csv

” , header=T , sep =” ,”)

data1<−read . csv (”C:/ Users/Adeyemi/Desktop/ r e g i o n a l /moz2011 .
csv ” , header=T , sep =” ,”)

data2<−read . csv (”C:/ Users/Adeyemi/Desktop/ r e g i o n a l /bkf2010 .
csv ” , header=T , sep =” ,”)

data3<−read . csv (”C:/ Users/Adeyemi/Desktop/ r e g i o n a l /civ2011 .
csv ” , header=T , sep =” ,”)

data4<−read . csv (”C:/ Users/Adeyemi/Desktop/ r e g i o n a l /gha2008 .
csv ” , header=T , sep =” ,”)

head ( data )
a t t a c h ( data )

# d a t a $ d i s t r . uns t ruc t = data$region

head ( data1 )
a t t a c h ( data1 )

head ( data2 )
a t t a c h ( data2 )

head ( data3 )
a t t a c h ( data3 )

head ( data4 )
a t t a c h ( data4 )
summary ( data4$anegg ) ; summary ( data4$s tunt ing ) ; summary (

data4$wasting )

# * * * * * * * * * * * * * * * * * * *LOADING GEOGRAPGHICAL MAPS* * * * * * * * * * * * * * *
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bkf . graph<− readRDS (”C:/ Users/Adeyemi/Desktop/ r e g i o n a l /
BFA adm1 . rds ”) # burkina faso

gha . graph<− readRDS (”C:/ Users/Adeyemi/Desktop/ r e g i o n a l /
GHA adm1 . rds ”) # GHANA

moz . graph<− readRDS (”C:/ Users/Adeyemi/Desktop/ r e g i o n a l /
MOZ adm1. rds ”) # Mozambique

# * * * * * * * * * PLOT GEOGRAPHICAL DISTRIBUTION BY COUNTRIES

* * * * * * * * * * *
windows ( width =7 , height =7)
#png (” bukaa11 . png ”)
#png (” buk%5d . png ”) # By inc luding % you can generate mult ip le

p l o t s
pdf (”GHANAANEMIA ODDS. pdf ” )
par ( mfrow=c ( 2 , 3 ) , mai=c ( 0 . 6 , 0 . 5 , 0 . 1 , 0 . 1 ) ,

mgp=c ( 2 , 0 . 7 , 0 ) )

p l o t ( bkf . graph , main=”Burkina faso ”)
p l o t ( c iv . graph , main=”Cote d ’ I v o i r e ” )
p l o t ( gha . graph , main=”Ghana ”)
p l o t (moz . graph , main=”Mozambique ”) #Mozambique
p l o t ( tz1 . graph , main=”Tanzania ” )
dev . o f f ( )

# Creates adjacency f o r Countries
adjgha<−poly2nb ( gha . graph )
adjbkf<−poly2nb ( bkf . graph ) # Creates adjacency f o r Burkina faso
adjmoz<−poly2nb (moz . graph ) # Creates adjacency f o r ken

adjgha
adjmoz
adjbkf

# Converting f o r INLA graph f i l e #spdep

nb2INLA(” bkf . graph ” , ad jbkf ) # #spdep BURKINA FASO
nb2INLA(” gha . graph ” , adjgha ) # #spdep GHANA
nb2INLA(”moz . graph ” , adjmoz ) # #spdep mozambique
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# # * * * * * * * *BURKINA FASO ANALYSIS STARS HERE* * * * * *

# i n l a . update ( t e s t i n g =TRUE)
## Model1
f1<−anebin ˜ bednet + cage5 + cage11 + cage24 + v i s i t n o +

v i s i t 1 3 + urban +
csex1 + l i t e r a t e + poor + middle + r i c h e r + r i c h e s t +

Zinc + iron + vitA +
space + b r e a s t 1 + diarrhea + cough + fever + measles +

mage

f2<−stunted ˜ bednet + cage5 + cage11 + cage24 + v i s i t n o +
v i s i t 1 3 + urban +

csex1 + l i t e r a t e + poor + middle + r i c h e r + r i c h e s t +
Zinc + iron + vitA +

space + b r e a s t 1 + diarrhea + cough + fever + measles + f
( mage , model=”rw2 ”) +

f ( region , model=” i i d ”)

f3<−wasted ˜ bednet + cage5 + cage11 + cage24 + v i s i t n o +
v i s i t 1 3 + urban +

csex1 + l i t e r a t e + poor + middle + r i c h e r + r i c h e s t +
Zinc + iron + vitA +

space + b r e a s t 1 + diarrhea + cough + fever + measles + f
( mage , model=”rw2 ”) +

f ( region , model=”besag ” , graph . f i l e =”bkf . graph ”)

r1<−i n l a ( f1 , family =” binomial ” , data=data2 , c o n t r o l . compute= l i s t
( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

r2<−i n l a ( f2 , family =” binomial ” , data=data2 , c o n t r o l . compute= l i s t
( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

r3<−i n l a ( f3 , family =” binomial ” , data=data2 , c o n t r o l . compute= l i s t
( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

## MODEL SUMMARY
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summary ( r1 )
summary ( r2 )
summary ( r3 )

formula6<−anebin ˜ bednet + cage5 + cage11 + cage24 +
v i s i t n o + v i s i t 1 3 + urban + csex1 + l i t e r a t e + poor +
middle + r i c h e r +

r i c h e s t + Zinc + iron + vitA + space + b r e a s t 1 +
diarrhea + cough + fever + measles +

f ( mage , model=”rw2 ”) + f (mbmi, model=”rw2 ”) + f ( region , model
=”besag ” , graph . f i l e =”bkf . graph ”)

r e s u l t 6<−i n l a ( formula6 , family =” binomial ” , data=data2 , c o n t r o l .
f i x e d = l i s t ( expand . f a c t o r . s t r a t e g y =” i n l a ” ) , c o n t r o l .
compute= l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l .
p r e d i c t o r = l i s t ( compute=TRUE) )

summary ( r e s u l t 6 )

SBB11 <− exp ( result6$summary . f i x e d )
#SUMAB <− summary ( r e s u l t 1 2 0 ) [ 3 ] # LAYERS of RESULT EXTRACTION
write . csv ( SBB11 , ” bkfaneMAR . csv ”)

# Secere Stunted
formula12<−stunted ˜ bednet + cage5 + cage11 + cage24 +

v i s i t n o + v i s i t 1 3 + urban + csex1 + l i t e r a t e + poor +
middle + r i c h e r +

r i c h e s t + Zinc + iron + vitA + space + b r e a s t 1 + diarrhea
+ cough + fever + measles +

f ( mage , model=”rw2 ”) + f (mbmi, model=”rw2 ”) + f ( region , model
=”besag ” , graph . f i l e =”bkf . graph ”)

r e s u l t 1 2<−i n l a ( formula12 , family =” binomial ” , data=data2 ,
c o n t r o l . f i x e d = l i s t ( expand . f a c t o r . s t r a t e g y =” i n l a ” ) ,
c o n t r o l . compute= l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l .
p r e d i c t o r = l i s t ( compute=TRUE) )

summary ( r e s u l t 1 2 )
exp ( result12$summary . f i x e d )
SBB2 <− exp ( r3$summary . f i x e d )
wri te . csv ( SBB2 , ”MOZAM AASTUNT MAR. csv ”)
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# Secere Wasted
formula13<−wasted ˜ bednet + cage5 + cage11 + cage24 +

v i s i t n o + v i s i t 1 3 + urban + csex1 + l i t e r a t e + poor +
middle + r i c h e r +

r i c h e s t + Zinc + iron + vitA + space + b r e a s t 1 +
diarrhea + cough + fever + measles +

f ( mage , model=”rw2 ”) + f (mbmi, model=”rw2 ”) + f ( region , model
=”besag ” , graph . f i l e =”bkf . graph ”)

r e s u l t 7<−i n l a ( formula13 , family =” binomial ” , data=data2 , c o n t r o l
. f i x e d = l i s t ( expand . f a c t o r . s t r a t e g y =” i n l a ” ) , c o n t r o l .
compute= l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l .
p r e d i c t o r = l i s t ( compute=TRUE) )

summary ( r e s u l t 7 )
SBB3 <− exp ( result7$summary . f i x e d )
#SUMAB <− summary ( r e s u l t 1 2 0 ) [ 3 ] # LAYERS of RESULT EXTRACTION
write . csv ( SBB3 , ” bkfwastMAR . csv ”)

formula14<−undered ˜ cage5 + cage11 + cage24 + v i s i t n o +
v i s i t 1 3 + urban + csex1 + l i t e r a t e + poor + middle +
r i c h e s t +

r i c h e r + iron + vitA + acessmed + r i v e r + space + diarrhea
+ cough + fever + pneu + measles + vaccine +

e l e c t r i c i t y +
f ( mage , model=”rw2 ”) + f (mbmi, model=”rw2 ”) + f ( region , model

=”besag ” , graph . f i l e =”bkf . graph ”)
r e s u l t 8<−i n l a ( formula14 , family =” binomial ” , data=data2 , c o n t r o l

. f i x e d = l i s t ( expand . f a c t o r . s t r a t e g y =” i n l a ” ) , c o n t r o l .
compute= l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l .
p r e d i c t o r = l i s t ( compute=TRUE) )

summary ( r e s u l t 8 )

# E x t r a c t i n g r e s i d u a l d i s t r i c t e f f e c t s t r u c t u r e d model
res11<−result6$summary . random$region # anemia
res12<−result12$summary . random$region # stunted
res13<−result7$summary . random$region # wasted

#Anemia
res10<−res11$ ” 0 . 5 quant” # median
res101<−res11$ ”0 .025 quant” # c a t 5%
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res102<−res11$ ”0 .975 quant” # c a t 95%

# Stunted
res20<−res12$ ” 0 . 5 quant” # median
res012<−res12$ ”0 .025 quant” # c a t 5%
res013<−res12$ ”0 .975 quant” # c a t 95%
# wasted
res30<−res13$ ” 0 . 5 quant” # median
res302<−res13$ ”0 .025 quant” # c a t 5%
res303<−res13$ ”0 .975 quant” # c a t 95%

# E x t r a c t t i n g the Residuals of p o s t e r i o r e s t i m a t e s

bkf . graph$STR10<−res10
bkf . graph$ABC11<−res20
bkf . graph$AAA12<−res30
bkf . graph$ABB13<−res40

# PLOTING SPATIAL MAPS
pdf (”BFAUNDER2010 . pdf ” )
par ( mfrow=c ( 2 , 2 ) , mai=c ( 0 . 6 , 0 . 5 , 0 . 1 , 0 . 1 ) , mgp=c ( 2 , 0 . 7 , 0 ) )
p l o t ( r e s u l t 8 )
spplot ( bkf . graph , ” STR10 ”) # No colour s p e c i f y
spplot ( bkf . graph , ” STR10 ” , cuts =4) # 4 colour s p e c i f y
spplot ( bkf . graph , ” ABC11” , cuts =4) # 4 colour s p e c i f y
spplot ( bkf . graph , ”AAA12” , cuts =4) # 4 colour s p e c i f y
spplot ( bkf . graph , ” ABB13” , cuts =4) # 4 colour s p e c i f y
dev . o f f ( )

# # * * * * * * * * * * * *GHANA NALYSIS STARTS HERE * * * * * * * * *
# Anemia
formula<−anebin ˜ bednet + cage5 + cage11 + cage24 +

v i s i t n o + v i s i t 1 3 + urban + csex1 +
l i t e r a t e + poor + middle + r i c h e r + r i c h e s t + Zinc +

iron + vitA +
space + b r e a s t 1 + diarrhea + cough + fever + measles +
f ( mage , model=”rw2 ”) + f (mbmi, model=”rw2 ”) + f ( region , model

=”besag ” , graph . f i l e =”gha . graph ”)
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r e s u l t 0<−i n l a ( formula , family =” binomial ” , data=data4 , c o n t r o l .
compute= l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l .
p r e d i c t o r = l i s t ( compute=TRUE) )

# Stunt ing
formula1<−stunted ˜ bednet + cage5 + cage11 + cage24 +

v i s i t n o + v i s i t 1 3 + urban + csex1 + l i t e r a t e + poor +
middle + r i c h e r +

r i c h e s t + Zinc + iron + vitA + space + b r e a s t 1 +
diarrhea + cough + fever + measles +

f ( mage , model=”rw2 ”) + f (mbmi, model=”rw2 ”) + f ( region , model
=”besag ” , graph . f i l e =”gha . graph ”)

r e s u l t 1<−i n l a ( formula1 , family =” binomial ” , data=data4 , c o n t r o l .
compute= l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l .
p r e d i c t o r = l i s t ( compute=TRUE) )

# Wasting
formula2<−wasted ˜ bednet + cage5 + cage11 + cage24 +

v i s i t n o + v i s i t 1 3 + urban + csex1 + l i t e r a t e + poor +
middle + r i c h e r +

r i c h e s t + Zinc + iron + vitA + space + b r e a s t 1 + diarrhea
+ cough + fever + measles +

f ( mage , model=”rw2 ”) + f (mbmi, model=”rw2 ”) + f ( region , model
=”besag ” , graph . f i l e =”gha . graph ”)

r e s u l t 2<−i n l a ( formula2 , family =” binomial ” , data=data4 , c o n t r o l .
compute= l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l .
p r e d i c t o r = l i s t ( compute=TRUE) )

## E x t r a c t i n g summary s t a t i s t i c s f o r p o s t e r i o r of
c a t e g o r a i c a l var .

### orresponding Odds r a t i o s
summary ( r e s u l t 0 )
exp ( r3$summary . f i x e d )
summary ( r e s u l 1 )
summ2<−exp ( result1$summary . f i x e d )
summary ( r e s u l t 2 )
exp ( result1$summary . f i x e d )

# Residual d i s t r i c t e f f e c t s t r u c t u r e d model
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res0<−r0$summary . random$region # anemia
res1<−result1$summary . random$region# stunted
res2<−result2$summary . random$region# wasted

## Residual of P o s t e r i o r e s t i m a t e s
# Amemia
res01<−res0$ ” 0 . 5 quant” # median
res02<−res0$ ”0 .025 quant” # c a t 5%
res03<−res0$ ”0 .975 quant” # c a t 95%
# Stunted
res11<−res1$ ” 0 . 5 quant” # median
res12<−res1$ ”0 .025 quant” # c a t 5%
res13<−res1$ ”0 .975 quant” # c a t 95%
#
res21<−res2$ ” 0 . 5 quant” # median
res22<−res2$ ”0 .025 quant” # c a t 5%
res23<−res2$ ”0 .975 quant” # c a t 95%

# Creat ing vec tor f o r an the r e s i d u a l l o t t s
gha . graph$STR<−res0
gha . graph$ABC<−res0
gha . graph$AAA<−res21
gha . graph$ABB<−res33

# P l o t t i n g maps of p o s t e r i o r es t imate mean , 95\% and 5\%

pdf (”GHANAWAST2. pdf ” )
par ( mfrow=c ( 2 , 2 ) , mai=c ( 0 . 6 , 0 . 5 , 0 . 1 , 0 . 1 ) ,

mgp=c ( 2 , 0 . 7 , 0 ) )
p l o t ( r e s u l t 2 )
spplot ( gha . graph , ” STR”) # No colour s p e c i f y
spplot ( gha . graph , ” STR” , cuts =4) # 4 colour s p e c i f y
spplot ( gha . graph , ”ABC” , cuts =4) # 4 colour s p e c i f y
spplot ( gha . graph , ”AAA” , cuts =4) # 4 colour s p e c i f y
spplot ( gha . graph , ”ABB” , cuts =4) # 4 colour s p e c i f y
dev . o f f ( )
spplot ( gha . graph , ” STR” , c o l . regions=bgy . c o l o r s ( 2 0 ) ) # 4 colour

s p e c i f y
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# # * * * * * * * * * *MOZAMBIQUES ANALYSIS STARTS HERE* *

f1<−anemia ˜ bednet + cage5 + cage11 + cage24 + v i s i t n o +
v i s i t 1 3 + urban +

csex1 + l i t e r a t e + poor + middle + r i c h e r + r i c h e s t +
Zinc + iron + vitA +

space + b r e a s t 1 + diarrhea + cough + fever + measles +
mage

f2<−s tunt ing ˜ bednet + cage5 + cage11 + cage24 + v i s i t n o +
v i s i t 1 3 + urban +

csex1 + l i t e r a t e + poor + middle + r i c h e r + r i c h e s t +
Zinc + iron + vitA +

space + b r e a s t 1 + diarrhea + cough + fever + measles + f
( mage , model=”rw2 ”) +

f ( region , model=” i i d ”)

f3<−wasted ˜ bednet + cage5 + cage11 + cage24 + v i s i t n o +
v i s i t 1 3 + urban +

csex1 + l i t e r a t e + poor + middle + r i c h e r + r i c h e s t +
Zinc + iron + vitA +

space + b r e a s t 1 + diarrhea + cough + fever + measles + f
( mage , model=”rw2 ”) +

f ( region , model=”besag ” , graph . f i l e =”moz . graph ”)

r1<−i n l a ( f1 , family =” binomial ” , data=data1 , c o n t r o l . compute= l i s t
( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

r2<−i n l a ( f2 , family =” binomial ” , data=data1 , c o n t r o l . compute= l i s t
( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

r3<−i n l a ( f3 , family =” binomial ” , data=data1 , c o n t r o l . compute= l i s t
( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l . p r e d i c t o r = l i s t (
compute=TRUE) )

## MODEL SUMMARY
summary ( r1 )
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summary ( r2 )
summary ( r3 )

## P o s t e r i o r e s t i m a t e s Summary of the c a t e g o r i c a l v a r i a b l e
and odds r a t i o s

summary ( r e s u l t 5 )
exp ( result5$summary . f i x e d )

# Secere Stunted
formula6<−stunted ˜ bednet + cage5 + cage11 + cage24 +

v i s i t n o + v i s i t 1 3 + urban + csex1 + l i t e r a t e + poor +
middle + r i c h e r +

r i c h e s t + Zinc + iron + vitA + space + b r e a s t 1 + diarrhea
+ cough + fever + measles + e l e c t r i c i t y +

f ( mage , model=”rw2 ”) + f (mbmi, model=”rw2 ”) + f ( region , model
=”besag ” , graph . f i l e =”moz . graph ”)

r e s u l t 6<−i n l a ( formula6 , family =” binomial ” , data=data1 , c o n t r o l .
compute= l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l .
p r e d i c t o r = l i s t ( compute=TRUE) )

summary ( r e s u l t 6 )
SBB10 <−exp ( result6$summary . f i x e d )
wri te . csv ( SBB10 , ” mozstuntMAR . csv ”)

# Wasting
formula7<−wasted ˜ bednet + cage5 + cage11 + cage24 +

v i s i t n o + v i s i t 1 3 + urban + csex1 + l i t e r a t e + poor +
middle + r i c h e r +

r i c h e s t + Zinc + iron + vitA + space + b r e a s t 1 + diarrhea
+ cough + fever + measles + e l e c t r i c i t y +

f ( mage , model=”rw2 ”) + f (mbmi, model=”rw2 ”) + f ( region , model
=”besag ” , graph . f i l e =”moz . graph ”)

r e s u l t 7<−i n l a ( formula7 , family =” binomial ” , c o n t r o l . f i x e d = l i s t
( expand . f a c t o r . s t r a t e g y =” i n l a ” ) , data=data1 , c o n t r o l .
compute= l i s t ( dic=TRUE, mlik=TRUE, cpo=TRUE) , c o n t r o l .
p r e d i c t o r = l i s t ( compute=TRUE) )

summary ( r e s u l t 7 )
SBB15 <−exp ( result7$summary . f i x e d )
wri te . csv ( SBB15 , ” mozswastMAR . csv ”)
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# E x t r a c t r e s i d u a l d i s t r i c t e f f e c t s t r u c t u r e d model
res5<−result5$summary . random$region # r e s i d u a l d i s t r i c t

e f f e c t s t r u c t u r e d model anemia
res6<−result6$summary . random$region # r e s i d u a l d i s t r i c t

e f f e c t s t r u c t u r e d model stunted
res7<−result7$summary . random$region # r e s i d u a l d i s t r i c t

e f f e c t s t r u c t u r e d model wasted
res8<−result8$summary . random$region# r e s i d u a l d i s t r i c t e f f e c t

s t r u c t u r e d model underweight
# Amemia
res50<−res5$ ” 0 . 5 quant” # median
res02<−res5$ ”0 .025 quant” # c a t 5%
res03<−res5$ ”0 .975 quant” # c a t 95%
# Stunted
res60<−res6$ ” 0 . 5 quant” # median
res61<−res6$ ”0 .025 quant” # c a t 5%
res62<−res6$ ”0 .975 quant” # c a t 95%
# Wasting
res70<−res7$ ” 0 . 5 quant” # median
res71<−res7$ ”0 .025 quant” # c a t 5%
res72<−res7$ ”0 .975 quant” # c a t 95%

moz . graph$STR<−res50
moz . graph$ABC<−res60
moz . graph$AAA<−res70
moz . graph$ABB<−res80
#mm <−tz1 . graph$STR

# PLOTS mapping the p o s t e r i o r e s t i m a t e s
pdf (”MOZAMEN1. pdf ” )
par ( mfrow=c ( 2 , 2 ) , mai=c ( 0 . 6 , 0 . 5 , 0 . 1 , 0 . 1 ) ,

mgp=c ( 2 , 0 . 7 , 0 ) )
p l o t ( r e s u l t 5 )
spplot (moz . graph , ” STR”) # No colour s p e c i f y
spplot (moz . graph , ” STR” , cuts =4 , names . a t t r =” P o s t e r i o r mean of

Anemia ”) # 4 colour s p e c i f y
spplot (moz . graph , ”ABC” , cuts =4) # 4 colour s p e c i f y
spplot (moz . graph , ”AAA” , cuts =4) # 4 colour s p e c i f y
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spplot (moz . graph , ”ABB” , cuts =4) # 4 colour s p e c i f y
dev . o f f ( )

# # * * * * * * * * * * * * * * * * * * * ANALYSIS ENDS HERE * * * * * * * * * *

# * * * * * * * * INLA COD ENDS HERE * * * * * * * * * * * * * * * * * * * * * * * * * * *

C.2 WinBUGS Separate CAR Models

#################################
########## Separate Analyses ####
################################
model
{

# l i k e l i h o o d
f o r ( i in 1 : N)
{#N=2992

# f o r STUNTING ## beta1 [ 9 ] * vtmn [ i ] +
s tunt [ i ] ˜ dbern ( p1 [ i ] )
p1 [ i ]<−min ( 1 ,max( 0 , PSTT [ i ] ) )
l o g i t ( PSTT [ i ] )<−beta1 [1 ]+ beta1 [ 2 ] * bbno [ i ] +

beta1 [ 3 ] * bbp [ i ]+ beta1 [ 4 ] * bbf [ i ] + beta1 [ 5 ] * cage5 [ i ] +
beta1 [ 6 ] * cage11 [ i ] +

beta1 [ 7 ] * cage12 [ i ] + beta1 [ 8 ] * cage24 [ i ] + beta1 [ 9 ] * vs t
[ i ] +beta1 [ 1 0 ] * l i t e r a t e [ i ]

+ beta1 [ 1 1 ] * poorest [ i ] + beta1 [ 1 2 ] * poor [ i ] + beta1 [ 1 3 ] *
middle [ i ] +beta1 [ 1 4 ] * r i c h [ i ]

# f o r WASTING ## +beta2 [ 9 ] * vtmn [ i ]
wast [ i ] ˜ dbern ( p2 [ i ] )
p2 [ i ]<−min ( 1 ,max( 0 ,PWTT[ i ] ) )
l o g i t (PWTT[ i ] )<−beta2 [1 ]+ beta2 [ 2 ] * bbno [ i ] +

beta2 [ 3 ] * bbp [ i ]+ beta2 [ 4 ] * bbf [ i ] + beta2 [ 5 ] * cage5 [ i ] +
beta2 [ 6 ] * cage11 [ i ] +

beta2 [ 7 ] * cage12 [ i ] + beta2 [ 8 ] * cage24 [ i ] + beta2 [ 9 ] * vs t [
i ] +beta2 [ 1 0 ] * l i t e r a t e [ i ]

+ beta2 [ 1 1 ] * poorest [ i ] + beta2 [ 1 2 ] * poor [ i ] + beta2 [ 1 3 ] *
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middle [ i ] +beta2 [ 1 4 ] * r i c h [ i ]

# f o r anemia ##+ beta3 [ 9 ] * vtmn [ i ]
anebin [ i ] ˜ dbern ( p3 [ i ] )
p3 [ i ]<−min ( 1 ,max( 0 ,PAMN[ i ] ) )
l o g i t (PAMN[ i ] )<−beta3 [1 ]+ beta3 [ 2 ] * bbno [ i ] +

beta3 [ 3 ] * bbp [ i ]+ beta3 [ 4 ] * bbf [ i ] + beta3 [ 5 ] * cage5 [ i ] +
beta3 [ 6 ] * cage11 [ i ] +

beta3 [ 7 ] * cage12 [ i ] + beta3 [ 8 ] * cage24 [ i ] + beta2 [ 9 ] * vs t [
i ] +beta3 [ 1 0 ] * l i t e r a t e [ i ]

+ beta3 [ 1 1 ] * poorest [ i ] + beta3 [ 1 2 ] * poor [ i ] + beta3 [ 1 3 ] *
middle [ i ] +beta3 [ 1 4 ] * r i c h [ i ]

}

# Gett ing Odds r a t i o from logOdds , by taking exponent of the
c o e f f i c i e n t s

f o r ( i in 2 : 1 4 ) { Oddsbeta1 [ i ]<−exp ( beta1 [ i ] ) ; Oddsbeta2 [ i ]<−
exp ( beta2 [ i ] ) ;

Oddsbeta3 [ i ]<−exp ( beta3 [ i ] ) }
# p r i o r
f o r ( j in 1 : 14)
{ beta1 [ j ] ˜ dnorm ( 0 , 0 . 0 0 0 1 ) ; beta2 [ j ] ˜ dnorm ( 0 , 0 . 0 0 0 1 ) ;

beta3 [ j ] ˜ dnorm ( 0 , 0 . 0 0 0 1 ) }
f o r ( i in 1 : N)
{

f o r ( j in 1 : 10)
{ PH[ j , i ]<−(PSTT [ i ] ) * ( equals ( region [ i ] , j ) )
PHPS[ j , i ]<−(PWTT[ i ] ) * ( equals ( region [ i ] , j ) )
PAM[ j , i ]<−(PAMN[ i ] ) * ( equals ( region [ i ] , j ) )
}

}
f o r ( j in 1 : 10)
{

f o r ( i in 1 : N)
{ count [ j , i ]<−equals ( region [ i ] , j ) }
number [ j ]<−sum( count [ j , ] )
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PCHV[ j ]<−sum(PH[ j , ] ) /number [ j ]
PCHPS[ j ]<−sum(PHPS[ j , ] ) /number [ j ]
PAMS[ j ]<−sum(PAM[ j , ] ) /number [ j ]

}
}

#DATA
#INITIALS
l i s t ( beta1=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ,

beta2=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ,
beta3=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) )

C.3 WinBUGS Codes for Multivariate CAR Models

#########################################
######### M u l t i v a r i a t e CAR model##########
#########################################
model
{

# l i k e l i h o o d
f o r ( i in 1 : N)
{ #N=2992

# f o r STUNTING ## + beta1 [ 9 ] *VSN[ i ] + beta1 [ 1 0 ] * VST[ i ] +
beta1 [ 1 1 ] * LITER [ i ]

### beta1 [ 2 ] * bbno [ i ] + beta1 [ 3 ] * bbp [ i ]+ beta1 [ 4 ] * bbf [ i ] + U[
region [ i ] , 1 ]

s tunt [ i ] ˜ dbern ( p1 [ i ] )
p1 [ i ]<−min ( 1 ,max( 0 , PSTT [ i ] ) )
l o g i t ( PSTT [ i ] )<−beta1 [ 1 ] + beta1 [ 2 ] * cage5 [ i ] + beta1 [ 3 ] *

cage11 [ i ] + beta1 [ 4 ] * cage12 [ i ] + beta1 [ 5 ] * cage24 [ i ] +
beta1 [ 6 ] * poorest [ i ] + beta1 [ 7 ] * poor [ i ] + beta1 [ 8 ] * middle
[ i ] +beta1 [ 9 ] * r i c h [ i ] + beta1 [ 1 0 ] * space [ i ] +S [ 1 , region [ i
] ]

# f o r WASTING ## +beta2 [ 9 ] *VSN[ i ] + beta2 [ 1 0 ] * VST[ i ] +beta2
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[ 1 1 ] * LITER [ i ]
## beta2 [ 2 ] * bbno [ i ] + beta2 [ 3 ] * bbp [ i ]+ beta2 [ 4 ] * bbf [ i ] + U[

region [ i ] , 2 ]

wast [ i ] ˜ dbern ( p2 [ i ] )
p2 [ i ]<−min ( 1 ,max( 0 ,PWTT[ i ] ) )
l o g i t (PWTT[ i ] )<−beta2 [ 1 ] + beta2 [ 2 ] * cage5 [ i ] + beta2 [ 3 ] *

cage11 [ i ] + beta2 [ 4 ] * cage12 [ i ] + beta2 [ 5 ] * cage24 [ i ] +
beta2 [ 6 ] * poorest [ i ] + beta2 [ 7 ] * poor [ i ] + beta2 [ 8 ] * middle
[ i ] + beta2 [ 9 ] * r i c h [ i ] + beta2 [ 1 0 ] * space [ i ] + S [ 2 ,
region [ i ] ]

# f o r anemia ## +beta3 [ 9 ] *VSN[ i ] + beta2 [ 1 0 ] * VST[ i ] + beta3
[ 1 1 ] * LITER [ i ]

### beta3 [ 2 ] * bbno [ i ] + beta3 [ 3 ] * bbp [ i ] + beta3 [ 4 ] * bbf [ i ] +
U[ region [ i ] , 3 ]

anebin [ i ] ˜ dbern ( p3 [ i ] )
p3 [ i ]<−min ( 1 ,max( 0 ,PAMN[ i ] ) )
l o g i t (PAMN[ i ] )<−beta3 [ 1 ] + beta3 [ 2 ] * cage5 [ i ] + beta3 [ 3 ] *

cage11 [ i ] + beta3 [ 4 ] * cage12 [ i ] + beta3 [ 5 ] * cage24 [ i ] +
beta3 [ 6 ] * poorest [ i ] + beta3 [ 7 ] * poor [ i ] + beta3 [ 8 ] * middle
[ i ] + beta3 [ 9 ] * r i c h [ i ] + beta3 [ 1 0 ] * space [ i ] + S [ 3 , region
[ i ] ]

}

# Gett ing Odds r a t i o from logOdds , by taking exponent of the
c o e f f i c i e n t s

f o r ( i in 1 : 1 0 )
{ Oddsbeta1 [ i ]<−exp ( beta1 [ i ] )
Oddsbeta2 [ i ]<−exp ( beta2 [ i ] )
Oddsbeta3 [ i ]<−exp ( beta3 [ i ] )
}
# p r i o r
f o r ( j in 1 : 10)
{ beta1 [ j ] ˜ dnorm ( 0 , 0 . 0 0 0 1 ) ; beta2 [ j ] ˜ dnorm ( 0 , 0 . 0 0 0 1 ) ; beta3

[ j ] ˜ dnorm ( 0 , 0 . 0 0 0 1 )
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}

# MVCAR p r i o r
S [ 1 : Ndiseases , 1 : Nareas ] ˜ mv. car ( ad j [ ] , weights [ ] ,num[ ] , omega [

, ] )
f o r ( i in 1 : sumNumNeigh) { weights [ i ] <− 1 }
R[ 1 , 1 ] <− 3 ; R[ 1 , 2 ] <− 0 ; R[1 ,3]<− 0 ; R[ 2 , 1 ] <− 0 ; R[ 2 , 2 ] <−

3
R[ 3 , 1 ] <− 0 ; R[ 3 , 2 ] <− 0 ; R[ 3 , 3 ] <− 3 ; R[ 2 , 3 ] <− 0
# P r e c i s i o n matrix of MVCAR
omega [1 : Ndiseases , 1 : Ndiseases ] ˜ dwish (R[ , ] , Ndiseases )

# * * * * * * * * * * * * * * * * * Covariance matrix of MVCAR* * * * * * * * * * * * * *
sigma2 [1 : Ndiseases , 1 : Ndiseases ] <− inverse ( omega [ , ] )

# c o n d i t i o n a l SD of S [ 1 , ] ( Stunt ing )
sigma [ 1 ] <− s q r t ( sigma2 [ 1 , 1 ] )

# c o n d i t i o n a l SD of S [ 2 , ] ( Wasting )
sigma [ 2 ] <− s q r t ( sigma2 [ 2 , 2 ] )

# c o n d i t i o n a l SD of S [ 3 , ] ( Anemia )
sigma [ 3 ] <− s q r t ( sigma2 [ 3 , 3 ] )

### MCAR Ends here * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
# within−area c o n d i t i o n a l c o r r e l a t i o n
corr12 <− sigma2 [ 1 , 2 ] / ( sigma [ 1 ] * sigma [ 2 ] )
corr13 <− sigma2 [ 1 , 3 ] / ( sigma [ 1 ] * sigma [ 3 ] )
corr23 <− sigma2 [ 2 , 3 ] / ( sigma [ 2 ] * sigma [ 3 ] )

# between Stunt ing Wasting and anemia
mean1 <− mean( S [ 1 , ] ) ; mean2 <− mean( S [ 2 , ] ) ; mean3 <− mean( S

[ 3 , ] )
f o r ( j in 1 : 13) { S1 [ j ]<−S [ 1 , j ] ; S2 [ j ]<−S [ 2 , j ] ; S3 [ j ]<−S [ 3 , j

]}

# within−area c o r r e l a t i o n between unstructured component of
v a r i a t i o n in STUNTING and

# WASTING
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# corr .Usw <− sigma2 .U[ 1 , 2 ] / ( sigma .U[ 1 ] * sigma .U[ 2 ] )

# within−area c o r r e l a t i o n between unstructured component of
v a r i a t i o n in STUNTING and

# Anemia
# corr . Usa <− sigma2 .U[ 1 , 3 ] / ( sigma .U[ 1 ] * sigma .U[ 3 ] )
# within−area c o r r e l a t i o n between unstructured component of

v a r i a t i o n in # WASTING and #Anemia
# corr .Uwa <− sigma2 .U[ 2 , 3 ] / ( sigma .U[ 3 ] * sigma .U[ 2 ] )

# within−area c o n d i t i o n a l c o r r e l a t i o n between t o t a l random
e f f e c t

# ( i . e . s p a t i a l + unstructured components ) f o r STUNTING and
f o r WASTING−2

# corr . sum12 <− ( sigma2 [ 1 , 2 ] + sigma2 .U[ 1 , 2 ] ) /
# ( s q r t ( sigma2 [ 1 , 1 ] + sigma2 .U[ 1 , 1 ] ) * s q r t ( sigma2 [ 2 , 2 ] +

sigma2 .U[ 2 , 2 ] ) )

# within−area c o n d i t i o n a l c o r r e l a t i o n between t o t a l random
e f f e c t

# ( i . e . s p a t i a l + unstructured components ) f o r STUNTING and
f o r WASTING−2

# corr . sum13 <− ( sigma2 [ 1 , 3 ] + sigma2 .U[ 1 , 3 ] ) /
#( s q r t ( sigma2 [ 1 , 1 ] + sigma2 .U[ 1 , 1 ] ) * s q r t ( sigma2 [ 3 , 3 ] +

sigma2 .U[ 3 , 3 ] ) )

# # # * * * P r i o r

f o r ( i in 1 : N)
{

f o r ( j in 1 : 13)
{

PH[ j , i ]<−(PSTT [ i ] ) * ( equals ( region [ i ] , j ) )
PHPS[ j , i ]<−(PWTT[ i ] ) * ( equals ( region [ i ] , j ) )
PAM[ j , i ]<−(PAMN[ i ] ) * ( equals ( region [ i ] , j ) )

}
}
# * * * * * * * * *
f o r ( j in 1 : Nareas )
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{
f o r ( i in 1 : N) { count [ j , i ]<−equals ( region [ i ] , j ) }
number [ j ]<−sum( count [ j , ] )
PCHV[ j ]<−sum(PH[ j , ] ) /number [ j ]
PCHPS[ j ]<−sum(PHPS[ j , ] ) /number [ j ]
PAMS[ j ]<−sum(PAM[ j , ] ) /number [ j ]

}
}

#DATA
#INITIALS
l i s t ( beta1=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , beta2=c

( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ,
beta3=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , S=c

( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ,
omega= s t r u c t u r e ( . Data=c ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) , . Dim=c ( 3 , 3 ) )

)

# # # # * * * *MULTIVARIATE WINBUGS CODES ENDS HERE* * * * *
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Abstract: Background: Birth weight is an important health parameter for obstetricians and
gynaecologists. It is a good health indicator of a child-bearing mother and a strong predictor
of infant morbidity and mortality. Methods: This paper utilizes data on 28,647 children born between
2003–2008 obtained from the 2008 Nigeria Demographic and Health Survey (NDHS). For a simple
epidemiological convenience, the occurrence of a newborn weight can intuitively be considered to
be categorical in nature and the thresholds can be put on a continuous scale. In survey reporting,
the mothers frequently estimate their infant’s birth weight and make a classification in ordinal
category (low, normal, large) instead of actual birth weight. The study fits a multinomial regression
model to analyze the relationships between the polytomous response and different kind of covariates
in a unified manner. We estimate the fixed effects of bio-social covariates parametrically and the
non-linear effect modeled using P-spline. The spatial component was modeled using conditional
autoregressive error. A penalized maximum likelihood estimation was performed to estimate the
model parameters. Results: We found risk factors that are positively associated with low birth
weight, which include multiple birth, short birth interval, death of sibling, childhood diarrhea, fever,
mother’s smoking, firewood/dung cooking and poor household. Results further showed that iron
syrup supplementation, antenatal attendance, mother literacy and household wealth had significant
association with low probability of low birth weight. The finding also showed spatial patterns,
which are not captured by the underlying determinants, and we produced probability predictive
maps of the spatial residual effects. Conclusions: In addition to the statistical relevance of our
method, the generated spatial maps identify highly endemic areas of low birth weight that can assist
government agency to channel scarce health resources. A comprehensive approach which institutes a
combination of interventions to improve the overall health care of the women is needed.

Keywords: Nigeria; child birth size; cumulative multinomial model; penalized spline; spatial maps

1. Introduction

Birth weight is the result of fetal growth and a good predictor of infant morbidity and mortality.
Birth weight is a strong indicator not only of the mother’s health but also on a newborn’s chances
of survival, growth, long term health and psychological development [1]. In the last 3 decades,
there has been increasing evidence that birth weight and pregnancy complications are independently
associated with the increased risk of mortality and early morbidity in babies, as well as poor maternal
health outcomes [2–4]. In 2015, an estimated 303,000 maternal deaths occurred due to pregnancy
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Abstract:

Background:

In an epidemiological study, disease mapping models are commonly used to estimate the spatial (or temporal) patterns in disease risk and to
identify high-risk clusters, allowing for health interventions and allocation of the resources. The present study proposes a hierarchical Bayesian
modeling approach to simultaneously capture the over-dispersion due to the effect of varying population sizes across the districts (regions), and the
spatial auto-correlation inherent in the childhood mortality at districts (state) level in Nigeria.

Methods:

This cross-sectional study was based on 31842 children data extracted from the 2013 Nigeria Demographic and Health Survey (DHS). Of these
children, 2886 died before reaching the age of five years. A Standardized Mortality Ratio (SMR) was estimated for each district (state) and mapped
to highlight the risk patterns of the child mortality. Generalized Poisson regression models were formulated with random effects to estimate the
mortality risk and then explored to investigate the relationship of under-five child mortality and the regional risk factors. The random effects are
formulated to reflect the potential tendency of “neighbouring” regions to have similar risk patterns and the spatial heterogeneity effect was used to
capture geographical inequalities in the mortality outcomes. The models were implemented using a full Bayesian framework. All model parameters
were estimated in WinBUGS via Markov chain Monte Carlos (MCMC) simulation techniques.

Results:

The results showed that of the economically deprived households, 2.088: 95% CI (1.088, 3.165) were significantly associated with childhood
mortality,  while unhygienic sanitation and lack of  access to improved water  sources were positively associated with child mortality,  but  not
statistically significant at 5% probability level. The geographical variation of the under-five mortality prevalence was found to be attributed to 69%
clustering and 31% was due to spatial heterogeneity factors. The predicted probability maps identified clusters of high risk mortality in the northern
regions and low prevalence of concentrated mortality in the south-west regions of Nigeria.

Conclusion:

The results demonstrated the flexibility of the approach that explored the geographical variation in the potential risk factors of child mortality and
that  it  provides  a  better  understanding  of  the  regional  variations  of  mortality  risks.  Nonetheless,  both  representations  can  help  to  provide
information for the initiation of public health interventions.

Keywords: Child mortality, Poisson mixed model, Health geography, Spatial epidemiology, Geographical patterns, DHS.
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1. INTRODUCTION

Despite remarkable growth recorded by many economies
in the last two decades, many developing countries have failed

* Address correspondence to this author at the School of Mathematics, Statistics
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Africa; E-mail: adeyemira@yahoo.ca

to attain the target Millennium Development Goals (MDGs 1)
four(4),  the  (reduction  of  under-five  mortality  by  two-thirds
between 1990 and 2015) and seven (7),  the targets  for  water
and sanitation in urban. Five countries accounted for half of the
global  infant  mortality  with  Nigeria  being  the  third  largest
contributor to the under- five mortality rate among children in
sub-Saharan Africa [1, 2]. In 2013, the mortality rates for the

————————————————————————————
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