
  

Using remote sensing to estimate the impacts of wattle species on native grass vegetation 

Thulile S. Vundla 

209503285 

A thesis submitted in the fulfilment for the degree of Master of Science in Environmental 

Sciences, in the School of Agricultural, Earth and Environmental Sciences, University of 

KwaZulu-Natal. 

Supervisor: Professor Onisimo Mutanga 

Academic Advisor: Dr. Mbulisi Sibanda 

Pietermaritzburg, South Africa 

November 2018 

School of Earth, Environmental and Agricultural Sciences, University of KwaZulu-Natal, 

Private Bag X01, Scottsville, 3209 South Africa. 



II  

ABSTRACT  

This study was stimulated by the long standing challenge of the lack of suitable satellite 

data with optimal temporal, spectral, and spatial resolutions to monitor rangelands. The study, 

therefore, sought to evaluate the utility of remotely sensed data in estimating the impact of wattle 

infestation and clearance on native grass species productivity and diversity. The first objective 

of this study was to investigate the utility of Sentinel 2 Multispectral Imager (MSI) remotely 

sensed data and Partial Least Squares regression as a cost-effective and quick assessment 

technique to map above ground biomass (AGB) of native grass growing under different levels 

of Acacia baileyana, A. dealbata & A. mearnsii, invasion in Matatiele, South Africa. The second 

objective focused on assessing the impact of wattle invasion on grass species diversity. This 

was achieved by investigating the utility of Sentinel-2 MSI data in optimally estimating grass  

Species richness, Shannon Wiener and Simpson’s diversity indices at different levels of wattle 

invasion. In relation to the first objective, the findings of this study showed that Sentinel 2 MSI 

data derived vegetation indices optimally estimated biomass in relation to standard wavebands. 

Results also showed that Sentinel 2 MSI data (combination of raw spectral bands and vegetation 

indices) predicts grass AGB levels of wattle invasion at reasonable accuracies (RMSE = 

19.117g/m2 and R2 = 0.8268). The most influential variables in estimating biomass across 

different levels of wattle invasion were red edge based vegetation indices (VIs) and bands 5,6 

and 7. With regards to the second objective, this study showed that following restoration, there 

were no significant difference (p > 0.05) between cleared and uninvaded grassland areas. 

Results also showed that diversity indices were optimally modelled when compared to species 

richness. However, for all three diversity variables, individual raw spectral bands yielded lower 

accuracies when compared to vegetation indices. Overall, the most influential spectral variables 
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were, bands 5 and 6, NDVI computed from bands 6 and Band 3. Results of this study also 

showed that Shannon Wiener’s index better predicted grass species diversity across different 

levels of wattle invasion in an alpine grassland (RMSE = 0.2145, R2 = 0.6392) in relation to the 

other diversity indices. This study was able to demonstrate that Sentinel-2 MSI spectral 

variables have a potential of offering reliable and accurate estimates of grass species diversity 

in a wattle infested grassland. The study therefore advocates for the utility of remotely sensed 

data in monitoring grassland degradation and restoration.  

 .     
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1.1. Introduction  

Invasive alien plants species (IAPs) are one of the major threats to native vegetation species. 

This is because they alter the native community ecosystem structure and functioning (Andreu 

and Vilà 2011, Niphadkar and Nagendra 2016). IAPs result in the loss of native species 

diversity, they reduce productivity and above ground biomass (AGB), while promoting bush 

encroachment in grazing land and in some cases they excessively consume surface and ground 

water resources (Stohlgren et al. 1999, Bradley et al. 2006, Cavaleri and Sack 2010, O'Connor 

et al. 2014). The negative impacts of IAPs on the natural vegetation are further compounded by 

1.   GENERAL INTRODUCTION   
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their rapid spread rates (Le Maitre et. al 1996). Of greater concern is the grassland biome, which 

has less than 1% of its spatial extent under formal protection in South Africa (Reyers et al. 

2005). Egoh et al. (2011) further outlined that grasslands are one of the most threatened principal 

biomes in South Africa. About 35% of grasslands are lost annually to cultivation, urbanisation 

and mining in South Africa. Meanwhile, the loss of grasslands through IAPs remains largely 

unknown and initiatives of accounting these losses are still rudimentary (Egoh et al. 2007, Firn 

et al. 2013). Therefore, the alarming rate of grassland transformation and loss especially through 

IAPs urgently requires a thorough investigation on methods that could be used in their 

sustainable management and monitoring. This will offer essential understanding of the impact 

of IAPs on grasslands.  

Numerous programmes have been implemented globally and locally in an attempt to reduce the 

spread of IAPs (Egoh et al. 2011). These control methods include mechanical, biological and 

chemical clearing. Mechanical control involves the removal of the IAPs by either cutting and/or 

burning of the target plant. Biological control makes use of other biological organisms, which 

are ‘natural enemies’ to those species, while chemical control involves the use of herbicides, 

such as picloram (Ahmadi et al. 1980). Indirect control, on the other hand, involves a 

combination of methods, such as grazing and over-sowing the target area with beneficial plant 

species (Andreu and Vilà 2011). However, there is a critical need to understand the effectiveness 

of these control methods. This can be achieved through efficient vegetation monitoring and 

assessment techniques, which have the ability to periodically access and detect vegetation 

response after controlling IAPs (Kremen 2005).   

In South Africa, conflict of interest species such as Pine, Wattle and Eucalyptus are of particular 

concern in grassland transformation and loss. These species have derivable value added 
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products, which are of financial benefit (De Wit et al. 2001, Shackleton et al. 2007). However, 

they are a threat to the provision of ecosystem goods and services. Even more so in grasslands, 

where they outcompete the native grass species and alter ecosystem functioning, thus further 

deteriorating the already compromised and vulnerable biome. Specifically, Wattle species 

(comprised of Acacia mearnsii, A. baileyana and A. dealbata) are conflict of interest species 

that were initially introduced in the Eastern Cape province and other areas in South Africa as a 

commercial plant from Australia so as to derive value added products (De Wit et al. 2001). This 

is particularly true for rural communities that rely on the resources derived in the form of wood, 

charcoal and shade (De Wit et al. 2001, Shackleton et al. 2007). Wattle has since spread beyond 

commercial plantations, invading surrounding vegetation communities, resulting in detrimental 

effects on biodiversity and water resources (De Wit et al. 2001, Van Wilgen et al. 2001). Several 

costs and benefit studies have found that the economic cost of invasion by IAPs (including 

wattle) far outweigh the benefits of its propagation (Van Wilgen et al. 2001, Wise et al. 2012,  

Vundla et al. 2016). However, none of these studies has been able to give a detailed account on species 

biodiversity response after clearing IAPs. Additionally, these studies severely relied on the benefits 

transfer method, which is based on data drawn from other locations and applied in their areas of interest.    

Direct ecological methods used to assess the impacts of biological invasions have long been 

instrumental to conservationist and rangeland managers (Parker et al. 1999, Kumschick et al. 

2015). These include technical field survey. For instance Badano and Pugnaire (2004) estimated 

the impact of Agave ornamental invasive plant species on the diversity of native plant species 

in Spain based on field surveys. They found that the assemblages of native species growing 

within Agave stands had lower diversity than non-invaded sites, however restored sites had the 

highest biodiversity. Furthermore, several studies have made use of species diversity indices 
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such as Shannon Wiener’s and Simpson’s diversity indices in assessing the impacts of IAPS on 

native plant species diversity (Parker et al. 1999, Badano and Pugnaire 2004, McGeoch et al. 

2010, Pyšek et al. 2011).   

In this context, grass species diversity and biomass were previously quantified using traditional 

methods such as field surveys. However, field surveys are spatially limited to local scales and 

require a lot of time as well as expertise (Lillesand et al. 2014). Consequently, earth observation 

data is increasingly being applied for vegetation assessments such as grass AGB and species 

diversity (Pettorelli et al. 2005). Specifically, hyperspectral information has emerged as the most 

accurate and reliable remotely sensed data, due to its narrow spectral channels that have the 

ability to detect subtle vegetation changes induced by the variations in the environment. This in 

turn leads to the alteration of spectral signatures of native vegetation communities (Mutanga 

and Skidmore 2004). Although the accuracy of hyperspectral data is commendable in vegetation 

mapping, it is often associated with high acquisition costs while they have high collinearity 

issues thus making it a challenge to acquire and process. This has led the earth observation 

community to rely on broad band sensors that are cheap and readily available. Few studies have 

investigated the application of broad band sensors in monitoring native vegetation restoration 

success. For instance, Honnay et al. (2003) in an exploratory study found that plant species 

diversity can be monitored and predicted using Landsat Imagery using the strength of the co 

efficient of determinant variable. A separate study on invasive alien grass species found out that 

the thinning of alien plants and changing fire regimes significantly increases grassland 

productivity through measuring grass AGB (Brooks 2000). However, Brooks et al. (2004) did 

not spatially represent the findings and no accuracy assessment was conducted. These studies 

have been successful in outlining the impacts of IAPs. Additionally, these studies were more 
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concerned with the strength of the relationship between remotely sensed data and measured 

variables. However, there is still need to identify efficient and accurate methods that can be used 

to assess the quality and quantity of grasslands after restoration initiatives using remotely sensed 

data.  

Broadband sensors such as Landsat and SPOT have proven to be invaluable in estimating and 

modelling vegetation traits, such as biomass and species diversity (Ghebremicael et al. 2004, 

Asner et al. 2008, Darvishzadeh et al. 2008, Mutanga et al. 2012, Grant et al. 2013). However, 

limitations of broadband multispectral sensors, such as Landsat, is that their broad wavebands 

do not cover the critical regions such as the red edge, which are instrumental and therefore 

required in mapping vegetation characteristics such as those induced by different levels of wattle 

infestations (Thenkabail et al. 2002, Adam et al. 2010). The response of vegetation particularly 

in the red edge and near infrared wavebands has made these regions of the electromagnetic 

spectrum to be important in vegetation mapping studies as shown by Mutanga and Skidmore 

(2004), Cho et al. (2007), Cho and Skidmore (2009) and Sibanda et al. (2015). Of particular 

interest, is that the red edge spectrum is associated with plant accurate estimations of changes 

in the structural and biochemical traits such as biomass, leaf angle distribution (LAD) 

chlorophyll and foliar nitrogen that directly influence the reflectance of vegetation (Broge and  

Leblanc 2001, Ustin et al. 2004, Cho and Skidmore 2006, Cho et al. 2007, Clevers and Gitelson 

2013). This has shifted the focus in vegetation mapping studies to sensors such as Sentinel 2 

multi spectral imager (MSI) that cover this region of the electromagnetic spectrum.  

Specifically, Sentinel 2 MSI as a free new generation sensor covering the critical red edge 

spectrum of the electromagnetic spectrum is invaluable in assessing the impact of invasive alien 

plant species. Sentinel 2 MSI has a spatial resolution ranging from of 10-60m. and a spectral 
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resolution of 13 spectral wavebands with three bands in the red edge region of the 

electromagnetic spectrum. The higher spatial and spectral resolution of Sentinel 2 MSI make it 

invaluable to vegetation restoration success monitoring. Additionally, as a freely available 

broadband sensor, Sentinel 2 MSI is the practical option.  

Literature further illustrates that the integration of data from new generation of sensors such as 

Sentinel 2 MSI and Worldview that cover the red edge region with robust machine learning 

algorithms improves the prediction accuracy of vegetation traits such as biomass and species 

diversity in invaded, and restored grassland sites (Mountrakis et al. 2011, Verrelst et al. 2012). 

For instance, partial least squares regression (PLSR) is a bilinear method that reduces 

collinearity of spectral variables. PLSR has been shown to not only reduce the number of 

spectral variables for analysis but, also increases accuracy of the developed prediction model 

by up to 23 % (Hansen and Schjoerring 2003). The integration of PLSR with remotely sensed 

data has proven to be useful in characterising vegetation traits based on remotely sensed data 

(Hansen and Schjoerring 2003, Sibanda et al. 2018). For instance Sibanda et al. (2018) 

illustrated that the combination of Sentinel and PLSR was instrumental in characterising canopy 

storage capacity for hydrological applications in wattle infested ecosystems using Sentinel-2 

MSI derived red edge bands. The above-mentioned advantages of PLSR derived models make 

it a useful tool in predicting grassland vegetation. Therefore, this study sought to use partial 

least squares regression (PLSR) and sentinel 2 MSI remotely sensed data in mapping grass 

above ground biomass and species diversity in areas under different levels of wattle invasion.   
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1.1.1. Research objectives  

The aim of this study was to evaluate the use of remotely sensed (sentinel 2 MSI) data in 

determining the impacts of wattle on above ground biomass and diversity of native grass 

species.  

The overarching hypothesis was that wattle invasion and density negatively affects species diversity 

and productivity of native grass species. The specific objectives were as follows:   

• To investigate the utility of Sentinel 2 MSI remotely sensed data as a cost-effective and 

quick assessment technique for mapping AGB of native grasses under different levels of 

Acacia baileyana, A. dealbata & A. mearnsii, invasion.  

• To investigate the applicability of Sentinel-2 MSI derived data to detecting grass species 

diversity across different levels of wattle invasion in an alpine grassland.   

1.1.2. Research questions  

1. Can Sentinel 2 MSI derived spectral variables offer reliable and accurate estimates of grass  

AGB and grass species diversity in a wattle invaded and wattle cleared grassland system?  

  

2. Does the extent of wattle invasion alter grassland vegetation structure through changing 

biodiversity and dominance in grasslands and whether wattle invasion density and cover, alter grass 

AGB?  

1.1.3. Thesis outline  

This dissertation is comprised four chapters. An introductory chapter, two results chapters and 

a synthesis chapter. The second chapter investigates the applicability of remote sensing data as 

a cost-effective and quick assessment technique of the ecological response of native grasses to 

invasion by Acacia baileyana, A. dealbata & A. mearnsii. The third chapter investigates the 
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application of Sentinel 2 MSI in assessing the biodiversity impacts of wattle invasion on native 

grass species   
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2. QUANTIFYING GRASS PRODUCTIVITY USING  

REMOTELY SENSED DATA: AN ASSESSMENT OF 

GRASSLAND RESTORATION BENEFITS.  

 

2.1 .Abstract  

This study sought to evaluate the utility of remotely sensed data in estimating the impact of wattle 

invasion and clearance on native grass species productivity using Sentinel 2 multispectral 

instrument (MSI) and partial least squares regression (PLSR). To accomplish this, the study 

  
  

  



10  

  

assessed aboveground biomass (AGB) at various levels of wattle invasion. The levels of wattle 

invasion investigated were cleared, uninvaded, moderately invaded and heavily invaded. In 

assessing the impacts of wattle invasion on grass AGB the study found that, wattle invasion 

significantly reduces grass AGB when compared to uninvaded and cleared plots.  Specifically 

mean grass AGB was 89.636g/m2, 43.869g/m2 and 83.363g/m2 for the cleared, moderately invaded 

and uninvaded, respectively. The study further found no significant differences between cleared 

and uninvaded plots. However, significant differences were observed across the other plots. In 

assessing the applicability of remotely sensed data, the findings of this study showed that 

vegetation indices optimally estimate biomass compared to standard wavebands. The most 

influential variables in estimating biomass were red-edge based vegetation indices (VIs). 

Specifically, the simple ratio VI (band5/band2) was the most optimal variable for predicting grass  

AGB across various levels of wattle invasion yielding high accuracies (RMSEP=191.1g/10m2 and 

R2=0.8268). This study also showed that following restoration, grass biomass in cleared areas is 

not significantly different from areas with no wattle invasion, indicating that restoration in the area 

was successful. Overall, the results underscore the utility of remotely sensed data in monitoring 

grassland degradation and restoration.  

Keywords: Acacia, wattle, biological invasion, productivity loss, above ground  

 biomass, Sentinel-2 MSI    

2.2 .Introduction  

Invasive alien plant species (IAPs) have long been a threat to various ecosystem types globally. 

Specifically, invasion of grasslands by woody IAPs results in water loss through higher 

evapotranspiration rates in invasive plants as compared to native plants (Le Maitre et al. 2000, 

Cavaleri and Sack 2010). Also, woody IAPs, alter the carbon balance through the transfer of soil 

carbon into invading plants, leading to the displacement of native vegetation and this can directly 
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translate into lowered productivity particularly in grassland systems (Gordon 1998, Jackson et al. 

2002, Didham et al. 2007, Hejda et al. 2009). Ultimately, this causes malfunctioning of the 

ecosystem and its associated services, thus further degrading the environment. In grassland 

systems, ecological restoration is increasingly becoming the preferred approach for promoting the 

re-introduction of native grass and forbs species, thus restoring the functioning of the grassland 

ecosystem and services it provides (Martin et al. 2005, Joyce 2014, Baasch et al. 2016). Grassland 

restoration includes the removal of invading species (physical, mechanical and chemical clearing) 

and active reintroduction of native species. However, these restoration initiatives can be costly. 

For instance in the United States of America, Pimentel et al. (2005) estimated that more than US$3 

billion per annum is spent on herbicides alone for the controlling of IAPs. In South Africa more 

than 3.2 billion rands (US$457 million or US$30 million per annum) had been invested into the 

control of alien invasive plants by the year 2012 since 1994(van Wilgen et al. (2012). Such large 

expenditure needs to be sufficiently supported by extensive quantitative research to inform 

costbenefit analyses, particularly in the public sector as the principal funder of clearing initiatives. 

However, quantification of the costs and benefits of restoration (to motivate the large expenditure) 

is hampered by the unavailability of rapid regional quantitative data (particularly the ecological 

response to disturbance) (Wainger et al. 2010). In this regard, there is a need for more studies to 

backup investment into the clearing of invasive alien plants and inform cost benefit analysis. The 

monitoring of various biophysical and ecological parameters of grasslands, provides essential 

information on their health, productivity and response to disturbances such as grazing and fire. 

Furthermore, this information can provide crucial information in the estimation of restoration 

success or the lack thereof (Malmstrom et al. 2009). In addition, information is essential for land 

managers, especially with the increasing need for quantitative estimates of socio-economic 

benefits from restoration initiatives (Malmstrom et al. 2009). Studies by Van Wilgen et al. (1996) 
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and Crookes (2012) made use of ecological data to conduct cost-benefit analyses of restoration 

initiatives for policy. Such studies highlight the lack of sufficient sights specific data required to 

complete cost benefit studies. The ecological and economic importance of grasslands is recognised 

nationally and globally. This warrants the need to quantify the gains and losses in grassland 

productivity due to invasion and restoration in a cost effective manner.  

Grass above ground biomass (AGB) has been identified as an important parameter for grass 

productivity in grassland and rangeland assessments (Breckenridge et al. 1995, Joyce 2014, 

Baasch et al. 2016). Specifically, grass AGB is an important indicator applied for regional and  

global modelling of ecosystem processes, both biophysical and ecological (Song 2013). In vast 

grasslands, biomass can provide key insights into forage production for livestock grazing as well 

as monitoring grassland recovery following restoration initiatives (Purevdorj et al. 1998). In this 

regard, there is a need for regular and accurate measurement of grass AGB in these grassland areas. 

Ground based methods are widely used to measure biomass in southern Africa due to their higher 

accuracy in estimating grass AGB. However, ground-based (traditional) methods can be 

destructive, laborious and are limited to local scales (Tucker. 1980). Thus, there is a growing need 

of regional scale assessment of biomass that overcome the limitation of ground-based methods of 

estimation.  

To combat this, earth observation (EO) data from space borne sensors, offers broad scale reliable 

and cost-effective detection and estimation of biomass. Specifically, Mutanga et al. (2012), 

Sibanda et al. (2017) and Ramoelo et al. (2015) were successfully able to predict grass AGB using 

remotely sensed data. Mutanga et al. (2012), using WorldView-2 imagery, was able to predict 

grass biomass at high accuracies with root mean square error of prediction (RMSEP) of 0.441 

kg/m2 based on the random forest algorithm and Worldview red-edge and NIR bands. Also using 
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WorldView-2 imagery, Sibanda et al. (2017) when comparing grass biomass under different 

fertilizer treatments, noted that the combination of texture models and red-edge wavebands 

improved AGB prediction with a RMSEP 0.2 kg/m2 across all grassland fertilizer treatments. 

Although there are several studies, which have used remotely sensed data to estimate AGB, very 

few of them have been conducted to assess grassland restoration using remotely sensed data. 

Malmstrom et al. (2009) used Landsat imagery to assess restoration successes in previously weed 

infested forage areas. The study investigated four management options for private landowners, 

specifically simple burn, native grass seeding, pasture mix seeding and native grass seeding mixed 

with additional intervention over a period of five years. The study found that there were significant 

gains in biomass amounting to 100kg/ha following restoration. Although the above-mentioned 

studies showed a strong correlation of grass AGB with various remotely sensed variables and 

derived vegetation indices, they utilised data that is either expensive and limited to local scales 

such as Worldview or they used sensors that do not cover the strategic sections of the 

electromagnetic spectrum crucial for vegetation mapping such as Landsat. However, the new 

generation sensors such as Sentinel-2 MSI imagery, with three red-edge bands and NIR band as 

well as optimal spatial resolutions (i.e. 10, 20m) could offer more reliable and accurate estimates 

of grass AGB compared to Landsat 8 OLI (Mutanga and Skidmore 2004, Mutanga et al. 2012, 

Sibanda et al. 2015). Specifically, Sentinel 2 MSI boasts a wide swath width of 290 km, high 

spectral (13 bands) and spatial resolution of up to 10m. These wavebands, further improve the 

accuracy of mapping biomass when combined with robust algorithms such as PLSR.  

Furthermore literature shows that VIs derived from bands that cover the red-edge and near-infrared  

(NIR) regions of the electromagnetic spectrum are important for the estimation of grass AGB 

(Mutanga and Skidmore 2004, Sibanda et al. 2017). The red-edge portion of the electromagnetic 
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spectrum improves the accuracy in the estimation of grass variables including grass AGB, because 

of its sensitivity to slight changes in the reflectance of vegetation due to plant characteristics and 

physiology (Cho et al. (2007), Mutanga and Skidmore 2007, Cho and Skidmore (2009), Mutanga 

et al. 2012, Schumacher et al. 2016).  

Vegetation indices are renowned for their heightened sensitivity to detecting AGB (Asrar et al. 

1984). The plight of broadband vegetation indices is that critical information can be lost thus 

affecting the accuracy of remote sensing findings (Hansen and Schjoerring 2003). Thus, there is a 

constant need to improve the performance of vegetation indices, using new information provided 

by recent sensors. The Sentinel-2 MSI image data with three red edge bands promises a cost 

effective technique for the detection of grass AGB.   

The integration of optimal remotely sensed data and derived vegetation indices with robust 

machine algorithms such as PLSR increases the AGB estimation accuracies. For instance Cho et 

al. (2007) illustrated that the incorporation of PLSR improved the estimation accuracies from 

331g/m2 to 149 g/m2  . In that regard, we hypothesized that the freely available Sentinel 2 MSI 

remotely sensed data combined with derived VIs could provide sufficient information required to 

evaluate the success of grassland restoration from wattle removal using the PLSR model. This 

study therefore, sought to investigate the utility of Sentinel 2 MSI remotely sensed data as a 

costeffective and quick assessment technique of the ecological response of native grasses to 

invasion by Acacia baileyana, A. dealbata & A. mearnsii, herein referred to as wattle species. 

Specifically, PLSR models derived from Sentinel 2 MSI spectral bands and derived VIs (NDVI 

and SR) were used in estimating grass AGB as an indicator of grassland productivity following 

restoration  

activities.  
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2.3 .Materials and Methods  

2.3.1 Site description  

The study was conducted in two rural villages within the Matatiele local municipality in the  

Eastern Cape Province of South Africa (Figure 1). These villages were Mabheleni (-30.563 611S, 

29.089 626E) and Msukeni (-30.552597S, 29.018790E). These sites were selected because they 

were located in predominately wattle-invaded grasslands that have had intensive investment into 

the clearing of wattle. The studied areas fall within communal lands that are intensively grazed by  

cattle.   
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Mabheleni  

Msukeni  

  

Figure 2.1. Study area in relation to the Eastern Cape Province and South Africa (a) and the detailed 

study area overlain by municipal boundary (b)  
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 2.3.2  Field data collection and processing  

Field data collection was conducted during the peak productivity stage of grasses in April 2017. A 

stratified random sampling approach was adopted for this study. Prior to the field survey, the study 

area was split into four different strata, namely wattle heavily invaded, moderately invaded, 

uninvaded and cleared sites using the Google earth platform and maps provided by Conservation 

South Africa for verification. Heavily invaded sites were those characterised by a full coverage of 

the ground by wattle canopies, while moderately invaded sites were wattle infested but not fully 

covered by wattle canopies. Uninvaded sites had no history of wattle invasion while cleared sites 

had been cleared by Conservation South Africa of wattle in the past 5 years. However, on-site, the 

heavily invaded treatment had little to no grass hence it was excluded from the analysis. Random 

points were generated within each of the stratum using the hawths analysis tool in ArcGIS®, with 

a condition to generate high density and representative samples. Within each stratum, 120 samples 

were generated, yielding a total of 480 sample points. The random points were located using a 

handheld Garmin etrex 10 (GPS) with an estimated accuracy of ±5 m during the field survey. 

These points were then used as centres of the 0.5m by 0.5m sampling quadrats. Within each 

quadrat the wet above ground biomass of grasses was measured and recorded. To get wet grass 

biomass in each quadrat, dry material was removed from the cut plant and the wet biomass was 

measured using a digital scale in the field. The data was stored in table format and appended to the 

point map in a GIS environment. To account for Sentinel-2 MSI’s spatial resolution, the sampling 

points were then overlaid with a 10m by 10m grid. Biomass samples from the sub plots that fell 

within the same 10m by 10m grid were averaged and the grid centre co-ordinates were then used 

for extracting the spectral signatures for the analysis. On average, 3 samples fell within the 10m 

by 10m grid. The final sample size used for analysis was 182. Following the resampling procedure, 

the mean biomass within each 10m grid was then expressed as g/m2. The 10m plots were then 
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tested for spatial autocorrelation based on the Moran’s I index, and were proven not to be affected 

by autocorrelation.  

  

2.3.3 Remotely sensed data extraction and pre-processing    

A Sentinel-2 MSI image covering the study area was acquired for the period that coincided with field 

data collection. Specifically, a cloud free image was selected and downloaded from United  

States Geological Survey (USGS) Earth Resources Observation Science centre archive 

(http://earthexplorer.usgs.gov/). Sentinel-2 MSI image data consists of 13 spectral bands with a 

spatial resolution ranging from 10m to 60m.. The acquired Sentinel-2 MSI image was 

atmospherically corrected in QGIS using the Semi-Automatic Classification Plugin (SCP). The 

bands that were considered in this study were those with a spatial resolution of 10 and 20. Bands 

1, 9 and 10 are not suitable for vegetation related studies thus they were not considered in this 

study. The Sentinel-2 MSI wavebands considered in this study (B5, B6, B7, B8a, B11 and B12) 

were resampled using the constant ground Sampling Distance of 10m derived from the visible 

bands (B2 B3 B4 and B8). Using the Sentinel-2 MSI satellite images, NDVI and SR vegetation 

indices were computed from all possible band combinations. The point map created using centre 

locations of the 10m plots were overlaid with the corrected Sentinel-2 MSI image to derive spectral 

signatures in ArcGIS 10.3.   

  

2.3.4 Statistical analysis  

To quantify the impacts of wattle invasion on grassland productivity, exploratory data analyses were 

conducted in SPSS. The Kolmogorov-Smirnov normality test was conducted to test whether the data 

met the requirements for a parametric statistical assessment. Upon normality confirmation of the data, 

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/


19  

  

a one-way Analysis of Variance (ANOVA) was used to test whether there were significant differences 

in biomass across cleared, uninvaded, moderately invaded and heavily invaded treatments at (α =0.05) 

significance level. This was followed by a post-hoc Tukey test to determine where differences between 

the treatments were. Partial least square regression (PLSR) analysis was then used in this study to predict 

grass AGB. PLSR is an algorithm with the ability to examine variables with high collinearity (Fan et al. 

2011). Estimation of biomass using remotely sensed data was only conducted for the three treatments 

i.e. cleared, uninvaded and moderately invaded. The heavily invaded site was excluded as the canopy 

cover restricted grass reflectance, additionally, most of the sampled quadrats had little to no grass in 

them.   

The leave one out cross validation (LOOCV) procedure was conducted in estimating grass biomass 

using remotely sensed data. Full explanation on the LOOCV method can be found in Chauchard 

et al. (2004). The accuracy and performance of the PLSR model derived from LOOCV were 

evaluated using the root mean square error of prediction (RMSEP) and the coefficient of 

determination (R2). The full sequence of the statistical analysis conducted in this study is illustrated 

in Table 1. Variable importance (VIP) scores for each treatment were then generated and used to 

determine which variables optimally contributed to the best PLSR models for estimating grass 

biomass. The variables with VIP scores above one were selected and used in the following stage 

of the analysis while those that were less than one were discarded. This was conducted for all 

treatments. The PLSR algorithm was repeated using the variable with VIP scores above one for at 

least two of the three treatments. The models with the lowest RMSEP and highest R2 were used 

for the final prediction of biomass.   

  

Table 2.1. Sentinel-2 MSI spectral bands and vegetation indices used at the different stages of the 

analysis.   
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Stage Analysis  
Variable  List of variables  

I  Raw Bands  Visible (band 1, 2, 3, 4,),   

Red-edge (band 5,6,7,8,8a)  

Shortwave infrared (band 9 and 12)  

II  Vegetation indices  Normalised Difference Vegetation  

Index: NDVIs   

Simple Ratio: SRs   

III  Spectral Bands and 

Vegetation indices  

Combination of best performing 

spectral bands and vegetation indices  

  

2.4 Results  

2.4.1. Statistical analysis  

  

In this study, prior to any confirmatory statistical analysis, exploratory data analysis was conducted 

as detailed in the following section.  

2.4.2. Exploratory analysis   

  

Descriptive statistical analysis showed that data did not significantly (α > 0.05) deviate from the 

normal distribution curve hence it met the basic assumptions for parametric statistical analysis. 

An ANOVA test was subsequently conducted to compare means across treatments. Based on 

the ANOVA, significant differences across the three treatments with α <0.05 were observed (F=  

10.33; F crit= 3.06) (Figure 2.2).  

The Tukey post hoc analysis established no statistical significant differences between cleared 

and uninvaded plots only (Figure 2.2 & Table 2.2). However, the grass biomass in the heavily 

and moderately invaded plots were significantly lower than the cleared and uninvaded plots.  

Table 2.2 shows results of the post hoc analysis.  

  
100 
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Figure 2.2. Mean AGB grass biomass, with standard error bars at 95% confidence intervals across 

various levels of wattle invasion.  

  

Mean grass biomass was 89.636g/10m2, 43.869g/10m2 and 83.363g/10m2 for the cleared, moderately 

invaded, and uninvaded respectively. Wattle invasion reduces grass AGB (Figure  

2.2 & Table 2.2).   

  

Table 2.2. Level of significance (α = 0.05) of grass AGB between treatments with insignificant 

differences in bold  

   Moderately invaded  Cleared  

Moderately invaded     >0.0001  

Cleared  >0.0001    

Uninvaded  0.001  0,826  
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2.4.3. Estimation of grass AGB biomass using wavebands and vegetation indices  

  

The raw spectral bands derived PLSR model had a RMSEP of 22.92g/m2 21.02g/m2, and 27.9g/m2 for 

the moderately invaded, uninvaded and cleared plots, respectively (Figure 2a-c).  

While for the SR derived PLSR model, the RMSEP was 19.38 g/m2 ,18.63 g/m2 and 19.18 g/m2 

for the moderately invaded, uninvaded and cleared plots, respectively (Figure 3d-f). For the 

NDVI derived PLSR model, the RMSEP was 13.06g/m2, 14.93g/m2 and 15.03g/m2 for the 

moderately invaded, uninvaded and cleared plots, respectively (Figure 3g-i). The performance 

of the developed model varied across treatments, with the moderately invaded treatment based 

on NDVI yielding the lowest RMSEP (13.06g/m2) as shown in figure 3g. Specifically, the 

developed model was able to predict AGB across all treatments at reasonably low RMSEP.   

 

Figure 2.3. Grass AGB estimation performance for the different treatment and Sentinel-2 MSI 

variables showing both the correlation coefficient and the RMSEP. Grass estimates at different 

levels of wattle invasion, namely, moderately invaded (a, d, g) uninvaded (b, e, h) and cleared 

(c, f, i) predicted from raw band (a-c), simple ratio (d-f) and NDVI (g-i).   

Moderately invaded   Cleared   Uninvaded   
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The highest coefficient of determination R2 was for the cleared simple ratio derived PLSR model 

(Figure 2.3i) while the lowest was the spectral bands derived PLSR model for the uninvaded 

treatment with a coefficient of determination of 0.55 (Figure 2.3b). The predicted versus 

measured coefficient of determination from the SR variables is 0.77, 0.64, and 0.92 for the 

moderately invaded, uninvaded and cleared plots, respectively. For the NDVI variables, the 

coefficients of determination were 0.83, 0.78, and 0.81for the moderately invaded, uninvaded 

and cleared plots, respectively. The coefficients of determination for the raw bands are 0.67, 

0.55 and 0.83for the moderately invaded, cleared and uninvaded sites respectively.   

Figure 2.4 shows the waveband frequencies of Sentinel-2 MSI spectral bands, derived NDVI 

and SR vegetation indices in optimally estimating grass AGB across the three treatments. 

Sentinel 2 MSI spectral variables that have frequency scores above 1 were regarded as the most 

optimal variables for estimating grass AGB. It can be observed that the red-edge bands (B5, B6 

&B7) had the highest frequencies scores across the three treatments. From the NDVI based 

models, the band combination with high frequencies, were B5.B3, B6.B2, B6.B3, B7.B2, 

B7.B3, B7.B4, B8.B2, B4.B7. Meanwhile, from the SR derived models B2.B5, B2.B6, B2.B7, 

B2.B8, B5.B4, B6.B8a, B7.B12, B8a.B4, B8.B5, B8a.B3 and  B8a.B5. band combinations were 

the most frequent variables in predicting grass AGB across the treatments. These bands are 

indicated as the bands with a frequency above the dotted line in Figure 4 showing the VIP score 

across the treatments.   
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Figure 2.4. VIP scores for the Sentinel-2 MSI derived data variables obtained from estimating 

biomass using (a) raw spectral bands (b) Normalized vegetation index (c) and the simple ratio 

vegetation index (c).   

    

2.4.4. Estimation of grass AGB biomass using selected wavebands combined with selected 

vegetation indices  

  

Figure 2.5a illustrates the VIP scores for all the variables derived using the PLSR algorithm and 

combined dataset of Sentinel 2 MSI selected vegetation indices and wavebands. When the 
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optimal variables derived from the preceding analysis stages were combined to estimate grass 

biomass across the invasion levels, the estimation accuracy decreased from 13.06g/m2 (for the 

moderately invaded strata) in the proceeding stage of analysis to a RMSEP of 27.9 g/m2 as 

shown in Figure 2.5b. The most influential variables were SR B5/B2 and SR B8/B5, and B5 in 

order of importance. In addition, a higher coefficient of determination of R2 = 0.8268 was 

obtained from the combined data across all three treatments (figure 2.5b).   

  

Figure 2.5. VIP scores for the Sentinel-2 MSI derived biomass across all treatments (a) and (b) 

showing measured versus predicted relationship of grass biomass across different levels of 

wattle invasion   

  

Figure 2.6 illustrates the spatial distribution of biomass across the three treatments based 

on the most optimal variables in predicting grass AGB. The derived model predicts the highest 

biomass at 301.652g/m-2 and the lowest at 1.378g/m-2. The uninvaded plots (figure 6c & f) have 

predicted biomass in the higher regions i.e. more productive, with the lower ranges of biomass 

predicted in the moderately invaded and cleared plots. Biomass is much more reduced for the 

moderately invaded plot.  
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Figure 2.6. Spatial distribution of grass AGB across different levels of wattle invasion, using 

the most optimal PLSR model in Mabheleni and Msukeni villages. Grass AGB is derived from 

applying the PLSR model to the Sentinel-2 MSI image data.  

  

2.5. Discussion  

The growing need for the quantification of the costs of alien invasive species and the benefits 

relating to their control requires efficient and accurate measures of their impact on natural 

resources. Thus, this study investigated the applicability of remotely sensed data as a cost-effective 

and quick assessment technique of the ecological response of native grasses from wattle species 

invasion and clearing. This study also sought to establish the optimal variables for the estimation 

of grass AGB across various levels of wattle invasion, thus ultimately applying remote sensing to 

restoration ecology.   

  

Msukeni   

Mabheleni   
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The findings of this study showed that combining the red-edge bands with vegetation indices 

amplifies the accuracy of the results by up to 50% (from a RMSEP of 27.9 g/10m2 for raw bands 

to RMSEP of 13.06g/10m2 from SR). Vegetation indices enhance the accuracy of information 

derived from remotely sensed imagery (Baret and Guyot 1991). Combining vegetation indices 

with red edge bands further enhances the accuracy and reliability of the predicted variables. For 

instance, Chen et al. (2009) found that vegetation indices combining red-edge and visible bands 

increased the accuracies of the estimated biomass in grassland areas with low grass AGB. Using 

Sentinel 2 MSI image data, we found that the simple ratio derived vegetation index (red edge and 

blue regions) and raw band in the red edge region were the most important variable to grass AGB 

prediction and detection in grasslands. The chlorophyll in green vegetation absorbs visible energy 

(particularly in the blue and red wavelengths) for use during photosynthesis. The importance of 

the red edge and blue band based simple ratio index is attributed to the abrupt changes in vegetation 

reflectance characteristics in the red edge region, which are primarily driven, by the chlorophyll 

absorption and leaf internal scattering in the NIR. This makes the red edge particularly unique in 

vegetation detection studies. Additionally, the blue band which is sensitive to atmospheric effects 

has been used by Kaufman and Tanre (1992) to overcome the short comings of the traditional 

NDVI vegetation index by incorporating the blue band to auto correct for atmospheric effects. 

These factors could be used to explain the changes in reflectance properties of the estimated 

biomass.   

Grass AGB prediction across different levels of wattle invasion at high accuracies can also be 

attributed to the suppression of grass productivity by the shade of invading wattle species. The 

varying effects of wattle on grass productivity can be detected through remote sensing through the 

different reflectance characteristics associated with physiological impacts of plant stress. 
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Specifically, the health, leaf area and leaf density tends to vary between grasses that are shaded 

when compared to those that are not shaded (Knipling 1970). This consequently changes the 

photosynthetic potential of the grasses across the various levels of wattle invasion, ultimately 

affecting the reflectance of these grasses in the red edge.  

  

2.5.1 The impact of wattle on AGB of grasses  

High grass productivity is essential, particularly in rural rangelands where the communities 

extensively use the land for livestock grazing. Forage production for livestock in rangelands is the 

main ecosystem service jeopardised by the invasion of wattle. This study found that both 

moderately and heavily invaded sites had reduced grass AGB and subsequent grazing land. 

Treegrass interactions are driven by competition and facilitation as described by Scholes and 

Archer (1997). At low densities, isolated tree species can have a facilitative role on grass biomass. 

However, the competitive and nature of wattle and its invasion intensity has resulted in the 

reduction of grass productivity. The allelopathic interaction coupled with the competitive 

advantage for light that wattle exhibits is the main factor resulting in the reduced grass AGB in 

wattle invaded areas (Fatunbi et al. 2009). The leaves of wattle through allopathy interactions 

supress herbaceous grass growth. Additionally, by shading out understorey grass species and 

placing the grass species under stress, native grass species become easily outcompeted by wattle.  

This is, however, in contrary to the findings of Belsky (1994), who showed that understorey productivity 

was enhanced by the shading. The differences noted in the findings by Belsky (1994) and those of this 

study could be explained by the fact that their study was based on indigenous trees species that have less 

negative allopathic consequences, whereas this study focused on grass. This suggests that the impacts of 

native woody species invasion may not be as deleterious as that of invasive alien woody species.   
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Additionally, in assessing whether clearing restores grass AGB, this study investigated changes in 

grass AGB in restored grasslands compared to invaded plots. Initial clearing of wattle was 

conducted in 2013, making it possible to show the gains in grass biomass following the clearance. 

Results of this study showed that grass AGB in the cleared treatment was higher than the 

moderately invaded treatment. This indicates that there are productivity benefits of clearing wattle 

species on indigenous grass species. The results of this study concur with several studies 

investigating the changes in grass productivity. For instance, Laxson et al. (1997) estimated gains 

of up to 45 % following the removal Prosopis. This study was conducted on a communal land 

tenure, where livestock production is an important source of livelihoods. In that regard, grazing is 

one of the most critical factors which affects several aspects of grasslands including productivity 

in this area (Watkinson and Ormerod 2001). The potential benefits from restoring invaded sites 

could be limited by the poorly managed grazing in the communal areas. Communal grazing areas 

are largely impacted by overgrazing, which is ultimately a result of the tragedy of the commons.  

  

 2.6.  Conclusions and recommendations.   

Results of this study suggest that Sentinel-2 MSI 2 derived vegetation indices can optimally 

characterise grass AGB at various levels of wattle invasion. The monitoring of the impacts of 

wattle invasion on invaded and restored sites is vital for conservation biology and rangeland 

management. Understanding how invasive species invasion and clearing affects rangeland 

productivity will inform stocking rate, the grazing management systems implemented and 

conservation plans of the area. The findings of this study are crucial in informing natural resource 

management through providing effective methods for the quantification of restoration success or 

failures ecologically. Future research in the area should investigate the more important drivers in 
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grassland degradation in the area, between grazing and invasion by wattle species. Additionally, 

future research should investigate the biodiversity impacts of clearing to get both the economic 

and ecological impacts of wattle invasion on native grasses.  
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3. REMOTE SENSING THE IMPACTS OF WATTLE 

INFESTATION ON GRASS BIODIVERSITY IN AN  

INTENSIVELY UTILISED COMMUNAL GRASSLAND SYSTEM.  

 

Biodiversity monitoring is increasingly becoming crucial for achieving conservation goals and 

targets. In that regard, this study sought to investigate the utility of remotely sensed data in 

assessing the impacts of wattle invasion and clearing on native grass species diversity. 

Specifically, this study evaluated the potential of Sentinel-2 multispectral instrument (MSI) 

  
  

  

3.1.   Abstract   
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spectral data and partial least squares regression (PLSR) to predict grass species diversity across 

uninvaded,  
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moderately invaded, and heavily invaded alpine grasslands. To achieve this objective, the study 1 

compared the performance of spectral bands; derived ratio (SR) and normalised difference 2 

vegetation (NDVI) indices computed using all possible band combinations in predicting grass 3 

species diversity. Furthermore, the study sought to assess which ecological diversity index was 4 

better-characterised using remotely sensed data across different levels of wattle invasion. Results 5 

of this study showed that Sentinel-2 MS derived data optimally predicted Shannon Wiener’s 6 

diversity index to an rRMSE of 22.06, 24.37, and 22.189 for the cleared, moderately invaded and 7 

uninvaded treatments, respectively and sub-optimally predicted the Simpson diversity to a rRMSE 8 

of 23.64, 27.25, and 18.96 for the cleared, moderately invaded and uninvaded treatments, 9 

respectively. While species richness was predicted with rRMSE of 22.17, 28.14 and 19.10 for 10 

cleared, moderately invaded and uninvaded treatments. Subsequently, the Shannon Wiener’s index 11 

was then used to predict grass species diversity across wattle cleared, uninvaded and moderately 12 

invaded alpine grasslands to a RMSE of 0.2145 and R2 of 0.6392. The most influential spectral 13 

variables were, bands 5 and 6, NDVI, computed from bands 6 and Band 3. The findings of this 14 

study show that Sentinel-2 MSI spectral variables offer reliable and accurate estimates of grass 15 

species diversity.   16 

Keywords: Acacia, wattle, biological invasion, Simpson diversity, Shannon Wiener, Sentinel2 17 

MS  18 

    19 

3.2.  Introduction  20 

Biological invasion is globally the second biggest threat to biodiversity after habitat loss (Sala et 21 

al. 2000). At a global scale, invasive alien species are major drivers of ecological change (Vilà et 22 

al. 2011). For instance, in a meta-analysis, Vilà et al. (2011) found that the impacts of invasive 23 
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alien plant species (IAPs) on native plant species community structure were more substantial 24 

compared to ecosystem functioning. Essentially highlighting the direct impacts of IAPs on native 25 

plant diversity. The spread of IAPs is of paramount concern to plant species diversity, thus 26 

advocating the need for effective control measures to be implemented to curb their spread.  27 

In South Africa, commercial forestry and agroforestry have played a major role in the introduction 28 

and spread of particularly woody invasive alien plant species. According to van Wilgen et al 29 

(2001), the majority of invasive species are woody. Most of these species are economically viable, 30 

but ecologically notorious. These include Pinus spp (Pinus patula, P. elliottii, P. radiata, P. taeda, 31 

and P. pinaster) Eucalyptus grandis spp. and Wattle spp (Acacia baileyana, A. dealbata & A. 32 

mearnsii ) that have spread beyond the boundaries of commercial forestry (De Wit et al. 2001, 33 

Richardson et al. 2015). The financial gains realised from these species make them a conflict of 34 

interest species in South Africa. Particularly, the Australian Acacia (wattle) species have long been 35 

a major invading species in South Africa, shortly following their introduction. According to 36 

Richardson et al. (2011), there are about 70 different wattle species which have been introduced 37 

into South Africa, mostly during the mid-19th century. By 1996, Le Maitre et al. (2000) estimated  38 

Australian Acacia to have invaded approximately 630 000 condensed ha, thus listing it as one of  39 

South Africa’s worst invaders. The latest estimates from Kotzé et al. (2010), show that A. mearnsii, 40 

A. dealbata and A. decurrens, (Wattle) stands have increased by an estimated 92% (Van Wilgen 41 

et al. 2011).  Additionally, Kotzé et al. (2010) noted that wattle predominately invades the fynbos 42 

and grassland regions in South Africa. Due to the ecological significance of Fynbos 43 

internationally, there has been a strong research focus on the impacts of wattle invasion in this 44 

biome as compared to other biomes such as the grassland biome. This calls for further investigation 45 

into the possible restoration efforts as well as increased investment into the control of wattle 46 
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invasion, particularity in grasslands. As a result, in an effort to curb the spread of invasive species, 47 

by 2008 the South African government had invested over R3.2 billion (van Wilgen et al. 2012). A 48 

large portion of these funds were invested into wattle species (van Wilgen et al. 2012). The high 49 

investment into the control of wattle species warrants the need for the quantification of the impacts 50 

of wattle, and the effectiveness of their control efforts.   51 

Traditionally, research on invasive alien species has focused on the characteristics of invasion by 52 

the alien invasive species (Levine et al. 2003, Gaertner et al. 2009, Vilà et al. 2010). These include 53 

mode of dispersal, drivers of spread, and other characteristics determining the invasiveness of the 54 

invading species (Rejmánek and Richardson 1996, Mack et al. 2003, Pyšek et al. 2011). Less focus 55 

has been directed towards the quantification of the ecological benefits of restoration, which is 56 

critical at both community and at regional scales. An understanding of the impacts of wattle 57 

invasion on native plant diversity as well as a quantification of the gains accrued, following 58 

successful restoration are critical for sustainable natural resource management. However, there is 59 

a limited number of studies that investigate the costs and benefits of IAPs (Le Maitre et al. 2002, 60 

Pejchar and Mooney 2009).   61 

Meanwhile, Gordon (1998) and Hejda et al. (2009), attest to the importance of comparative studies 62 

that investigate the impacts of IAPs across invaded and uninvaded plots, so as to identify their 63 

impact on native species. In a landscape assessment of the impacts of 13 different invasive species,  64 

Hejda et al. (2009) notes that at a community level, the different invasive alien species have 65 

different impacts on native diversity. This implies that focusing on species-specific impacts is 66 

critical in fully assessing the impacts of IAPs specifically at a landscape scale. Thus, investigation 67 

into species-specific impacts will result in better-informed decision-making, improved land 68 

management and draw major contribution into conservation ecology.  69 



36  

  

Various approaches have been adopted to assess the impact invading species have on biodiversity 70 

at various spatial scales. Specifically, ground based surveys are the most accurate method of 71 

gathering data on the spatial pattern of diversity and how its impacted by invasive species 72 

(Gillespie et al. 2008). However, such research approaches require specialised skills and can be 73 

time consuming. Particularly at a regional scale, the exhaustive nature of traditional ecological 74 

methods make them near impossible to apply (Carlson et al. 1990, Heywood and Watson 1995, 75 

Nagendra 2001, Gillespie et al. 2008). In addressing the scale and time constraints of traditional 76 

methods, remote sensing has made significant contributions into the biodiversity assessment 77 

globally, although it still remains underutilised (Pettorelli et al. 2014). Thus, it remains an area for 78 

further investigation. Remote sensing of species diversity follows two main approaches, direct and 79 

indirect approaches. Direct measurement of diversity involves the identification of species, and 80 

land cover types (Gillespie et al. 2008). Alternatively, indirect methods measure species diversity 81 

using diversity proxies. Both techniques provide significant contribution to conservation planning. 82 

Direct approach however requires high resolution image data, which can be costly. On the other 83 

hand, the use of diversity proxies equally as valuable can be estimated with the use of cheaper 84 

satellite imagery at a lower resolution (Rocchini et al. 2010). However, few studies have applied 85 

remote sensing to investigate the implications of landscape resource management on biodiversity 86 

to inform conservation ecology using diversity proxies.   87 

Remotely sensed data derivatives, such as vegetation indices allow for improved mapping of 88 

species diversity. NDVI and SR are some of the more commonly used vegetation indices in 89 

characterising various vegetation components including species diversity (Rondeaux et al. 1996, 90 

Fairbanks and McGwire 2004, Pettorelli et al. 2005). The energy species relationships drive the 91 

correlation of vegetation indices and diversity, thus allowing for vegetation studies to utilise 92 

remotely sensed data for ecological studies (Currie 1991). At local scales, the energy species 93 
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relationships are hump shaped with species richness increasing at low to moderate energy levels, 94 

which then decrease at high energy levels. The relationship between  species diversity and energy  95 

(a term used inter-changeably with net productivity) can be applied in conservation (Phillips et al. 96 

2010). However, Phillips et al. (2010) further argues that the discrepancies in the temporal 97 

application of the species energy relationships are in need for further research. Nevertheless, 98 

several studies have investigated and established this relationship, more specifically with 99 

technological advances in space borne remote sensing allowing further investigation into the 100 

energy-species relationship. For instance, Bawa et al. (2002) utilised Indian Remote Sensing (IRS) 101 

satellite imagery to characterise areas of high and low plant species diversity through modelling  102 

Shannon Wiener’s diversity index. Their study demonstrated a strong positive correlation between 103 

NDVI and species diversity in a tropical ecosystem. Other studies showing positive correlation 104 

between vegetation indices and diversity indices include (Diker et al. (2004), Feeley et al. (2005), 105 

Gillespie (2005), Cayuela et al. (2006), Dogan and Dogan (2006), Levin et al. (2007), Saatchi et 106 

al. (2008)) and (Oldeland et al. (2010)), using broad band and hyperspectral data sets  107 

Diker et al. (2004), in investigating the relationship between remotely sensed data, agricultural 108 

yield and the crop species diversity, found a positive correlation between both crop yield and crop 109 

species diversity using Shannon Wiener’s index with NDVI. Feeley et al. (2005) quantified the 110 

species composition of a dry forest using Normalized Difference Vegetation Index (NDVI), 111 

Infrared Index (IRI), and Mid-Infrared Index (MIRI) derived from Landsat ETM+. Their results 112 

suggest that satellite based remotely sensed data offers reliable estimates of the spatial distribution 113 

of plant species diversity.   114 

To date, the diversity assessments studies have been using Spot, Landsat 7 and IRS among other 115 

multispectral sensors, which, do not boast of the same spectral resolution as the new age generation 116 
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of space borne sensors. One such sensor is the recently launched freely available Sentinel-2 MSI 117 

with three red edge bands and two NIR (near infrared) bands, which has a potential of resulting in 118 

improved accuracies. The previously used sensors do not have the same spectral resolution as new 119 

sensors, specifically the red edge region that is particularly useful in vegetation mapping. Higher 120 

spectral resolution of Sentinel-2 MSI is invaluable in data retrieval. Sentinel-2 MSI offers a 121 

wideswath combined with high spectral and spatial resolution offering an invaluable contribution 122 

in the investigation and assessment of vegetation response to disturbance.   123 

This study sought to investigate the applicability of Sentinel-2 MSI derived data to assess grass 124 

species diversity across different levels of wattle invasion in an alpine grassland. Specifically, this 125 

study investigated 1) the variability in species diversity across the uninvaded, moderately invaded, 126 

and heavily invaded alpine grasslands using indices derived from Sentinel-2 bands and 2), to 127 

evaluate the spectral variables that best predict species diversity across the three invasion levels. 128 

It is perceived that this information will ultimately provide insights into the impacts of wattle 129 

invasion and clearing on grass species diversity on native grass species.   130 

  131 

3.3.  Methodology  132 

  133 
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1 This study was conducted in two rural villages located within the Matatiele local municipality,  

2 Eastern Cape Province South Africa (Figure 3.1). Subsistence farming is a common practice 

in  

3 the area, including cattle, sheep and maize farming. Both areas have extensive levels of wattle  

4 infestation, which has negative effects on the natural resources in the area and livelihoods of 

the  

5 residents. The study area was selected due to the extensive level of wattle infestation in the 

area  

6 as well as the restoration effort that has been undertaken in the area to allow for comparative  

7 analysis. The study area falls within the alpine and sub-alpine grassland regions (south of  

8 Drakensberg), and forms part of the largest biome in South Africa (grassland biome). The area  

9 is characterised by summer rainfalls and cold winters. Maximum temperatures in winter can  

10 drop to as low as 100C. As a result, frost is a common occurrence in the area.   
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  1 

Figure 3.7. Sampling points are highlighted in red in Matatiele, Eastern Cape province, South 2 

Africa,   3 

  4 

3.3.1.  Field data collection and processing  5 

A stratified random sampling approach was used in this study. The study area was split into four 6 

strata, which were wattle cleared, moderately invaded and uninvaded. Wattle invaded and 7 

uninvaded strata we onscreen digitised on the Google Earth platform, while the wattle cleared strata 8 

was based on supplied data from restoration conducted by Conservation South Africa. The 9 

different levels of wattle invasion were determined using ground canopy cover of Acacia 10 

baileyana, A. dealbata & A. mearnsii found in the study area. Heavily invaded plots had full canopy 11 

cover while moderately invaded sites had patches of wattle invasion. In the cleared sites, wattle 12 
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was removed between the periods of 2013 and 2014, while uninvaded sites are those that had no 13 

history of wattle invasion. Random sampling points were generated within each stratum using the 14 

hawths analysis tool in ArcGIS®. A hand held GPS device was then used to navigate to these 15 

points. These points were then used as the centre points of the quadrats where species richness data 16 

was collected. The size of these quadrats was 0.5m by 0.5m. Within each quadrat, all the grass 17 

species and their relative abundance were identified and recorded (forbs and sedges were 18 

excluded). The points were then overlaid with a 10m by 10m grid in relation to the 10m spatial 19 

resolution of Sentinel 2 MSI’s visible section bands. The resampling to a 10m by 10m grid size 20 

was conducted to avoid spatial autocorrelation issues. Sampling points that fell within the same 21 

10m by 10m grid were averaged and the centre co-ordinates of these grids was used for further 22 

analysis. Following the resampling procedure, a total 182 points remained. The species richness 23 

and diversity was used to estimate species richness and diversity within the 10m sampling plot.   24 

  25 

 3.3.2.  Assessing grass species diversity  26 

To assess the impact of invasion on grass species diversity, species richness, Shannon Wiener’s 27 

and Simpson ecological diversity indices were calculated for each plot. Species richness is the total 28 

number of species for the entire treatment. The ecological diversity indices were computed based 29 

on the following equations:  30 

                                  s  31 

Shannon Winer H = ∑ - (Pi * ln Pi)        Equation 1.                                  32 

i=1                            s  33 

Simpson D =1 - ∑ Pi
2            Equation 2.                           34 

i=1   35 

Where Pi is the proportion of one particular species to the total number of species and S being 36 

the total number of species. In each of the quadrats, the diversity (Simpson and Shannon Wiener) 37 

was computed across the four levels of wattle infestations.   38 
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  39 

3.3.3  Remotely sensed variables  40 

A Sentinel-2 MSI image with minimal cloud interference covering the study areas was selected 41 

from the internet (http://earthexplorer.usgs.gov/) and used in this study. The satellite image was 42 

pre-processed and atmospheric correction was conducted using the Semi-Automatic Classification 43 

Plugin in Quantum GIS version 2.18.3. Prior to the analysis, the Sentinel-2 MSI wavebands B5,  44 

B6, B7, B8a, B9, B11 and B12 were resampled using the constant ground Sampling Distance of 45 

10m derived from the visible bands (B2 B3 B4 and B8). A point map generated from the 10m 46 

sampling plots was overlaid with Sentinel 2 MSI’s wavebands, to extract spectral data used in this 47 

study. The image was then used to calculate the NDVI and simple ratio vegetation indices using 48 

all possible band combinations.   49 

  50 

3.4. Statistical analysis   51 

  52 

3.4.1. Exploratory data analysis  53 

To quantify the impacts of wattle invasion on grassland species diversity, exploratory data analysis 54 

was conducted prior to confirmatory statistical analysis in SPSS. Under the exploratory data 55 

analysis, Kolmogorov-Smirnov normality test was conducted to evaluate whether the data (species 56 

richness, Shannon Wiener’s and Simpson’s diversity indices) deviated significantly (α = 0.05) from 57 

the normal distribution. Considering the data did not significantly deviate from the normal 58 

distribution curve, the diversity variables were further subjected to a One Way Analysis of variance 59 

(ANOVA). This was conducted to establish whether there were significant differences in grass 60 

species diversity across the different levels of wattle invasion. The ANOVA test was followed by 61 

a LSD post-hoc test to assess difference within treatments.  62 

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
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  63 

3.4.2. Predicting species diversity using remotely sensed data and partial least squares 64 

regression  65 

To predict the grass species diversity, namely, species richness, Shannon Wiener and Simpson’s 66 

diversity indices, partial least squares regression with leave one out cross validation was used. The 67 

accuracy and performance of the derived PLSR model was evaluated using the relative root mean 68 

squared error (rRMSE) and the coefficient of determination (R2). All this was conducted in R 69 

statistical software.   70 

The procedure followed in identifying optimal variables for accurately predicting grass species 71 

diversity is outlined in Table 3.1. In the first stage, Sentinel-2 MSI spectral bands, were used to 72 

predict species richness, Shannon Wiener Diversity index and Simpson diversity index. In the 73 

second stage of analysis, vegetation indices, namely, NDVI and Simple ratio were used to predict 74 

grass species diversity. In the third stage of analysis, a combination of the best performing spectral 75 

variables, bands and vegetation indices were used to predict grass species diversity. The accuracies 76 

derived in characterising grass species diversity based on the three- ecological diversity indices 77 

were compared across different levels of wattle invasion.   78 

  79 

  80 

  81 

  82 

1 Table 3.3. Sentinel-2 MS spectral bands and vegetation indices used at the different stages of 2 the 83 

analysis.   84 

Stage Analysis  Variable  List of variables  

I  Raw Bands  Visible, Red Edge and Near Infrared and 

SWIR n=10   

II  Vegetation indices  Normalised Difference Vegetation Index:  

NDVIs (n >100)  

Simple Ratio: SRs (n>100)  
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III  Spectral Bands and  

Vegetation indices  

Combination of best performing spectral 

bands and vegetation indices  

  85 

  86 

 3.5.  Results   87 

3.5.1.  Statistical analysis  88 

An Analysis of Variance (ANOVA) was conducted to compare means of grass species diversity 89 

across the different levels of wattle invasion. The ANOVA results show that there were significant 90 

differences (p < 0.05) in grass species diversity across the different levels of wattle infestation  91 

(Table 3.2) based on the species richness, Shannon Wiener and Simpson’s diversity indices. Figure  92 

3.2 illustrates significant differences in grass species diversity based on species richness, Shannon  93 

Wiener and Simpson’s diversity indices across the four levels of wattle invasion. Species richness, 94 

which is the total number of species in each treatment, is highest in the cleared plot with a mean 95 

species richness of 3.24. The moderately invaded plot had a mean of 2.76. The control treatment 96 

(uninvaded plot) had a mean of 3.14 species (Figure 3.2 (a)). Based on the Shannon Wiener 97 

diversity index, the cleared treatment had an index of 0.99 and 1 for the uninvaded treatment.  98 

While the moderately invaded treatment had an index of 0.82. When using the Simpson’s diversity 99 

index, grass species diversity was highest for the uninvaded treatment 0.66 0.56 for the cleared 100 

treatment and was 0.5 for the moderately invaded plot  (figure 3.2b).  101 
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1102 

 103 
   104 

Figure 3.8. Biodiversity variables with mean Shannon Wiener (a) Simpson’s diversity indices 105 

(b) and species richness (c)  106 

  107 

Table 3.4. Analysis of Variances across the  different levels of wattle invasion  108 

Diversity variables  df  F  Sig.  

Simpson  2  4.313  0.02  

Shannon Wiener  2  4.961  0.01  

Species Richness  2  4.111  0.02  

  109 

Subsequently, a least significant difference (LSD) Post Hoc analysis was conducted to ascertain 110 

differences between pairs of treatments. The LSD test showed that the grass species diversity in.  111 

Based on Simpson’s diversity there were no significant differences between the cleared and 112 

moderately invaded (p = 0.125) and uninvaded treatments (p = 0.644). Grass species diversity 113 

based on the Simpson diversity index in the moderately invaded site was significantly different 114 

from that of the uninvaded treatment (p = 0.013).  115 

The LSD post hoc test showed that there were significant differences in grass species diversity 116 

based on Shannon Wiener diversity index between moderately invaded and cleared (p=0.028) and 117 

moderately invaded and uninvaded (p=0.014). There were no significant between cleared and 118 

uninvaded treatment. A similar trend was observed on species richness data there were no 119 

significant difference between uninvaded and cleared treatment (p=0.841). While Moderately 120 
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invaded had a significantly lower number of species compared to the cleared treatment (p=0.019) 121 

and uninvaded (p=0.036).  122 

Table 3.5. Differences between pairs of wattle invasion treatments based on LSD Post Hoc test  123 

   Simpson    124 

Cleared  

Moderately invaded 

Uninvaded  

   

0.125  

0.644  

   

  

   

   

   0.013  

   Cleared   Moderately Invaded  Uninvaded  

        125 

        126 

   Shannon Wiener    127 

Cleared  

Moderately invaded 

Uninvaded  

       

  

   

   

   
 0.028  

 0.976  0.014  

   Cleared   Moderately Invaded  Uninvaded  

        128 

        129 

   Species Richness    130 

Cleared  

Moderately invaded 

Uninvaded  

       

  

   

   

   
 0.019  

 0.841  0.036  

   Cleared   Moderately Invaded  Uninvaded  

* Note cells highlighted in dark grey represent significant differences (α =0.05).   131 

3.5.2. Modelling grass species diversity using spectral data   132 

PLSR algorithm was used to determine which variables optimally estimated grass species diversity 133 

across the different levels of wattle invasion. Figure 4 shows a general trend where Sentinel-2 MSI 134 

raw spectral bands had a high rRMSE compared to the vegetation indices simple ratio and NDVI. 135 

The performance of the developed models varied with the treatments and with ecological diversity 136 
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index. In the cleared treatment, for Shannon Wiener’s diversity index, the model yielded a lower 137 

rRMSE of 20.16 % for vegetation indices while it yielded 25.53% for the raw spectral bands 138 

respectively. While an rRMSE of 21.25% and 31.56 % was achieved for VI and spectral bands 139 

respectively using Simpson’s diversity index. Finally grass species richness yielded an rRMSE of  140 

23.13 % for VI and 24.15 % for raw spectral bands. For the uninvaded treatment, the Shannon 141 

Wiener’s diversity index the model yielded an rRMSE of 22.15 % and 23.8 % for the vegetation 142 

indices, and raw spectral bands. While an a rRMSE of 21.25 % and 24.75 % was achieved for VI 143 

and spectral bands, respectively using Simpson’s diversity index. For grass species, diversity 144 

yielded an of 22.25 % for VI and 25.24 % for raw spectral bands. Finally, for the moderately 145 

invaded treatment the highest rRMSE was realised with spectral band than the vegetation indices 146 

for this treatment (Figure 3.3).   147 

  148 
Figure 3.9. Performance of Sentinel-2 MSI variables in charactering grass diversity variables.   149 

  150 

Figure 4 shows the variable importance (VIP) score frequencies of Sentinel-2 MSI spectral bands, 151 

derived NDVI and SR vegetation indices in optimally characterising grass species diversity across 152 
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the three treatments of wattle invasion. Sentinel-2 MSI spectral variables that have VIP scores 153 

above 1 were regarded as the most optimal variables for characterising grass species diversity. For 154 

the raw spectral bands, the red-edge bands (B3, B4, B5, B6, B7, B8a,B11) had the highest 155 

frequencies of VIP scores across the three treatments. While for the NDVI, based models, the band 156 

combination with high frequencies, includeB2.B6, B2, B7, B5.B3, B6.B2, B6.B2 and B6.B3. for 157 

detailed bands see fig4. (d-f). Lastly, for the SR derived models B5,B2, B5.B3 and B8a.B2 band 158 

combinations were some of the band combination that were considered the most frequent.  159 

  160 
Figure 3.10. VIP scores for the Sentinel-2 MSI derived data variables obtained for characterising 161 

grass species diversity using (a, d & g) Simpson’s diversity index, (b, e & h) Shannon Wiener’s 162 

diversity index and c, f, & i) and species richness from raw spectral bands, the simple ratio 163 

vegetation index and species richness.  164 

  165 

  166 

In evaluating grass species diversity, the results show that the PLSR model estimated grass species 167 

diversity indices optimally when using a combination of raw spectral bands and derived vegetation 168 

indices. The developed PLSR models for species richness had R2 values of 0.54, 0.45 and 0.45 for 169 

the moderately invaded, cleared and uninvaded treatments respectively (figure 3.5 a-c). Simpson’s 170 

diversity index model had R2 values of 0.64, 0.53 and 0.25 for the moderately invaded, cleared and 171 
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uninvaded plots respectively (figure 3.5 d-f). The Shannon Wiener’s diversity index models had 172 

R2 values of 0.76, 0.57 and 0.40 for the moderately invaded, cleared and uninvaded treatments 173 

respectively (Figure 3.5 g-h).   174 

Shannon Wiener’s diversity index was estimated using remotely sensed data with an rRMSE of  175 

18.86, 23.79 and 20.29 for the cleared, moderately invaded and uninvaded. While for Simpson’s  176 
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1 diversity index an rRMSE of 19.91, 26.98 and 17.11 was achieved. In addition, grass species  

2 richness was predicted with an rRMSE of 17.95, 24.84 and 20.1 (figure 3.5). Overall, Shannon  

3 Wiener’s diversity index was optimally characterised with the lowest mean rRMSE (figure 3.5). 4 

The variables that optimally characterised Shannon Wiener’s diversity index were then selected 5 

and used in the succeeding stage of analysis.  

6    

7 Figure 3.11. Diversity variables measured versus predicted for the different levels of wattle  

8 invasion. With rRMSE and RMSE for each of the predicted variables. Predicted grass diversity  

9 variables are Species richness for moderately invaded (a), cleared (b) uninvaded (c) Simpson 10 

diversity index for moderately invaded (d) cleared (e) and uninvaded (f). Shannon Wiener index 11 for 

moderately invaded (g) cleared (h) and uninvaded (i).  

12    

13 The most optimal variables in characterising grass species diversity using Shannon Winer’s  

14 diversity index were identified by the frequency across the different levels of wattle invasion  
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15 illustrated in Figure 3.6 (a). Specifically, Bands 5, 6 and NDVI (B8/B2), had a high frequency  
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when characterising grass species diversity across the different levels of wattle invasion. The 1 

selected remote sensed variables (Figure 3.6 (a)) were then combined and used to predict grass 2 

species diversity across the different levels of wattle invasion combined (pooled). Figure 3.6 (b) 3 

illustrates the final model for predicting grass species diversity. The developed model for 4 

predicting Shannon Wiener’s diversity index for grasses was predicted with an RMSE of 0.214  5 

and co efficient of determent value of 0.64.  6 

  7 
Figure 3.12. (a) Best performing remotely sensed variables for estimating grass species diversity 8 

based on Shannon Wiener diversity index pooled for all treatments and (b) the measured versus 9 

predicted grass species diversity based on Shannon Wiener index across all levels of wattle 10 

invasion.   11 

  12 

  13 

3.6.  Discussion  14 

  15 

The application of remote sensing to restoration ecology and rangeland management has been 16 

limited for a while. This is mainly due to the unavailability of sensors with high spectral and spatial 17 

resolution. Therefore, this study sought to investigate the applicability of Sentinel-2 MS derived 18 

data to assess grass species diversity across different levels of wattle invasion in an alpine 19 

grassland.  20 

3.6.1. Characterising grass species diversity using remotely sensed data  21 

  22 



53  

  

The results of this study showed that Sentinel-2 MS bands 5 and 6 together with NDVI, based on 23 

band 8a and 2 where Band 8 is in the near infrared region of the electromagnetic spectrum (EM) 24 

and band 2 in the blue region of the EM, are important in estimating grass species diversity. Bands 25 

5 and 6 are both in the red edge region of the EM. Specifically, Bands 5 and 6 are sensitive to 26 

slight changes in reflectance, which explains their importance in the developed model. The 27 

reflectance of vegetation in the NIR (band 8) has been shown to be important in vegetation 28 

mapping, due to the higher reflectance of vegetation in this region of the electromagnetic spectrum.   29 

The red edge and NIR bands from Sentinel-2 MSI offer reliable predictors of grass species 30 

diversity in the study area. There is a strong body of literature supporting the use of spectral 31 

variable as predictors of species diversity. Specifically, Gillespie (2005) suggests that the 32 

relationship between NDVI and species diversity is based on photo synthetically active radiation 33 

(PAR) that is used in the net primary productivity. Although there is also an argument that the 34 

strength of species diversity and NDVI relationship may vary with season, vegetation type and is 35 

species-specific. The red edge band based variable combined with NDVI enhances the accuracy 36 

of the predictor variables. This is evident from the frequency of variable importance across 37 

different levels of wattle invasion. This is further supported by Baret and Guyot (1991) and (Levin 38 

et al. (2007)).  39 

  40 

3.6.2.  The impacts of wattle invasion on native grass species diversity  41 

  42 

Both Shannon’s and Simpson’s diversity indices take into consideration species evenness and 43 

richness. Simpson’s diversity index is however more sensitive to dominant species, while the 44 
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Shannon Wiener’s diversity index is more sensitive to rare species (Boyle et al. 1990). Based on 45 

the observation of this study, dominance of a single species was mainly a result of disturbance.  46 

Unpalatable species such as Eragrostis plana and E. curvula were dominant across all treatments, 47 

thus lowering the grazing capacity in the study area. These species are unfavourable in a rangeland 48 

system. However, palatable species such as Themeda triandra and Hyparrhenia Hirta were rare 49 

in the uninvaded treatment and absent in the invade treatments. This explains why in the present 50 

study, Simpson and Shannon’s diversity indices had conflicting results in terms of estimating grass 51 

species diversity in invaded plots using remotely sensed data. With Simpson’s diversity index 52 

estimating the highest value for the heavily invaded treatment, whereas the opposite is measured 53 

using Shannon’s Wiener diversity index for the same treatment (figure 2). As a result, Nagendra 54 

(2002) emphasises caution when selecting which diversity index is to be applied. In disturbed 55 

rangeland, there are rare palatable grass species that rangeland ecologists aim to conserve and 56 

promote, including Themeda triandra.   57 

Nagendra (2002) further suggests the use of Simpson’s index in treatments where conservation 58 

efforts are concentrated towards a single dominant species. This is not the case for this study area, 59 

where conservation efforts are focused on restoring grass species diversity and promoting palatable 60 

(decreaser) species, which are rare in the current study. Divergence in ranking by Shannon Wiener 61 

and Simpson’s diversity indices is uncommon, but not ruled out. As a result, few studies have 62 

emphasised the importance of electing the appropriate diversity index to meet specific diversity 63 

goals (Nagendra 2002).   64 

This study is at a small scale, however, the results were able to detect the decline of grass species 65 

diversity and richness at both moderately invaded sites and heavily invaded sites. Even with the 66 

clearing of wattle species, this study was able to show species recovery in less than three years 67 
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following restoration. There are several factors that can be attributed to the decline in species 68 

diversity, particularly competition for resources. At smaller scales, the decline in diversity as a 69 

result of invasion is even more intense (Gaertner et al. 2009).   70 

Wattle species are notorious for altering ecosystem processes, which, ultimately leads to changes 71 

in community structure, including species composition and species diversity. Wattle species are 72 

nitrogen fixing, thus they alter ecosystem function by changing nitrogen availability and nutrient 73 

cycling (Garner 2007, Gaertner et al. 2009). Tree grass interactions are predominantly guided by 74 

facilitation and competition (Scholes and Archer 1997). At dense canopies, there is strong 75 

competition for light. In the present study, it is evident that in heavily invaded plots, wattle tree 76 

stands shaded the native grass species resulting in lowered species richness and diversity. 77 

However, Levine et al. (2003) argues that there is a need for further research to determine the 78 

drivers of changes in community structure.  79 

  80 

3.7.   Conclusions and implications  81 

  82 

Results of this study showed that Sentinel-2 MS derived variables were able to estimate 83 

biodiversity variables at high accuracies. Specifically, bands 5 and 6 together with NDVI, based 84 

on bands 8 and 2. Finally, Shannon Wiener’s diversity index optimally characterises grass species 85 

diversity across the different levels of wattle invasion when compared with Simpson’s diversity 86 

index. This study was able to demonstrate the applicability of remotely sensed data in estimating 87 

species diversity in a grassland system invaded by wattle. This ultimately underscores the 88 

applicability of remote sensing in quantifying the costs of wattle invasion and the benefits of its 89 

control.  Additionally, this study was able to demonstrate that wattle invasion reduced grass species 90 
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diversity. We recommend the use of Shannon Wiener’s diversity index over Simpson’s diversity 91 

index due to the former’s sensitivity to rare species, which would be best for the conservation 92 

targets in this disturbed grassland.  93 
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4. REVIEW OF OBJECTIVES AND CONCLUSIONS 
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  1 

4.1.   Introduction  2 

This chapter is a synoptic review of the objectives and the major findings as well as a reflection of 3 

the main conclusions of this study. The prime objective of this study was to investigate the 4 

application of remotely sensed data in monitoring grassland restoration following wattle invasion 5 

in a South African Alpine grassland. This overarching objective was achieved through the 6 

following specific objectives:  7 

1. To investigate the applicability of Sentinel-2 MSI data in assessing grass species diversity 8 

across different levels of wattle invasion in an alpine grassland.  9 

2. To investigate the utility of Sentinel 2 MSI remotely sensed data as a cost-effective and quick 10 

assessment technique of the ecological response of native grasses to invasion by wattle species.  11 

  12 

4.1.1. To investigate the utility of Sentinel 2 MSI remotely sensed data as a cost-effective and 13 

quick assessment technique of the ecological response of native grasses to invasion by wattle 14 

species.   15 

  16 

Grasslands are the backbone of livestock farming. The implementation of sustainable farming 17 

practices leads to increased productivity in grasslands through increasing the grazing capacity of 18 

grasslands. These are difficult to implement in a communal grazing systems which is affected by 19 

the tragedy of the commons. Overgrazing compounded by other ecological disturbances can 20 

severely decrease stocking rates of rangelands. For instance, invasion of grasslands by IAPs may 21 

lead to decreased grass productivity. As a result, this study was concerned with assessing the use 22 

of Sentinel 2 MSI remotely sensed data as a cost-effective and quick assessment technique of the 23 

ecological response of native grasses to invasion by wattle species.  24 
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The results of this study found that in terms of biomass, there are no significant differences between 25 

cleared and uninvaded plots. Invasion significantly reduced grass AGB. The developed model 26 

found that the most influential variables in estimating biomass were the red-edge based simple 27 

ratio with band combination band 5 and band 2. Ultimately, this study found that Sentinel 2 MSI 28 

offers free reliable data for the prediction of grass AGB. This study underscores the application of 29 

remotely sensed data for the use of monitoring grassland restoration success. Although the results 30 

suggest that sentinel offers an optimal estimation of grass AGB across different levels of wattle 31 

invasion, there is still a need to assess the applicability of remote sensing in assessing grass species 32 

diversity recovery following the clearing of wattle.  33 

  34 

4.1.2 To investigate the applicability of Sentinel-2 MSI data in assessing grass species 35 

diversity across different levels of wattle invasion in an alpine grassland.   36 

  37 

Invasive alien species are the second largest threat to species diversity globally, as a result there is 38 

an increased need to invest more in the monitoring of species diversity loss following invasion and 39 

the subsequent gain following restoration. Research on monitoring species recovery has previously 40 

been limited by poor spatial representation of restoration progress. As a result, this study sort to 41 

assess the application of Sentinel 2 MSI in monitoring grass species diversity across different 42 

levels of wattle invasion in an alpine grassland.   43 

This study found that Sentinel-2 MS derived data optimally predicted native grass species using  44 

Shannon Wiener’s diversity index. Specifically, bands 5 and 6 together with NDVI, computed 45 

from bands 8 and Band 2 were most influential variables in estimating native grass species 46 

diversity using Sentinel 2 MSI.  This study demonstrates that Sentinel 2 MSI can predict grass 47 

species diversity at reasonable accuracies. Additionally, the result of the study showed that wattle 48 
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invasion reduces grasses species richness and diversity, while the clearing of wattle increases grass 49 

species diversity.    50 

  51 

4.2.   Conclusions   52 

This studying was formulated to investigate the application of remote sensing for monitoring 53 

grassland restoration following wattle invasion in a South African Alpine grassland. This chapter 54 

is interested in reviewing the objectives and highlighting the main conclusions of the research.  55 

The main findings of this study show the Sentinel MSI 2 can be used to monitor grass restoration 56 

projects with reliable accuracies. This shows Sentinel 2 MSI proves to be a cheap and reliable data 57 

source for the monitoring of restoration progress. This study found that Sentinel MSI 2 is able to 58 

predict both grass AGB and native grass species diversity following the clearing of wattle. For 59 

both AGB and grass species diversity the developed model proved that the red edge regions of the 60 

electromagnetic spectrum are crucial in predicting grass variables.   61 

  62 

4.3  Recommendations  63 

  64 

The finding of this study highlight the importance of the Sentinel 2 MSI and remote sensing in 65 

assessing and monitoring restoration success. The finding of this study present an opportunity for 66 

the application of remote sensing techniques to be applied to inform policy and decision-making. 67 

Based on the findings of this study we recommend restoration success monitoring be conducted as 68 

larger spatial scales. Additionally, future research can investigate the effects of changes in seasons 69 

specifically how this may affect the accuracy of the developed models.   70 

    71 
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