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ABSTRACT  

Cancer is a multifaceted disease considered as the most serious health burden all over the world. Due 

to existing of limited anticancer drugs and detrimental side effects, the anticancer research has been 

challenging. An investigation on identifying novel potential drugs is highly required to treat this serious 

abnormal cell growth. Advanced potential anticancer drug entrants are crucially required to combat the 

drawbacks linked with current drugs or line of therapies. Extensive investigations are being carried out 

on synthetic manipulations of heterocyclic aromatic compounds (purines) for developing efficient and 

potent anticancer drugs. Besides, these manipulations also offer effective leads for further optimization. 

Therefore, this project is an effort in detecting a novel and potent anticancer leads based on bioisostere 

of purines called pyrazolopyrimidines. 

In this research project we have performed an comprehensive literature survey of structural isomers of 

pyrazolopyrimidines (pyrazolo[1,5-a]pyrimidine and pyrazolo[4,3-d]pyrimidine) for their synthetic 

approaches and biological activities with special emphasis on structure-activity relationship (SAR) 

studies. These SAR studies prompted us to implement the observed studies on one of the structural 

isomer of pyrazolopyrimidine called pyrazolo[3,4-d]pyrimidine. And further, we have synthesized 

some novel series of pyrazolo[3,4-d]pyrimidine derivatives with various substituents at C-4 and C-6 

positions of the scaffold. A total 71 compounds comprising of phenethyl and pentane hybrids (7-43, 

Chapter 4), benzoyl hybrids (5a-5h, 6a-6d and 7a-7c, Chapter 5) and lastly phenylcarbamoyl acetamide 

hybrids (9a-9s, Chapter 6) have been synthesized by molecular hybridization approach as outlined in 

schemes of respective chapters. The completion of reaction and the purity of novel synthesized 

compounds were confirmed by chromatographic analysis. All the newly synthesized compounds 

displayed acceptable analysis for their anticipated structures, which were established based on 

physicochemical and spectral data (IR, 1H NMR, 13C NMR and HRMS). 

All synthesized compounds were primarily evaluated for their in vitro anticancer activities at 

Laboratory of Growth Regulators, Centre of the Region Hana for Biotechnological and Agricultural 

Research, Palacky University & Institute of Experimental Botany ASCR, Slechtitelu 27, 78371 

Olomouc, Czech Republic. 

From the systematic analysis of anticancer activity, results obtained following key observations were 

made. 

i. Structural isomers of fused pyrimidines have been looked upon for molecular changes in 

emerging drug like candidates. Pyrazolopyrimidine is a bioisostere of purines has acquired 

considerable importance due to its diverse, facile and general synthetic methodologies with 

great medicinal importance. Several analogs of this scaffold have emerged as a promising 

leads in the design of some novel pharmacologically active compounds with enhanced 
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metabolic, pharmacokinetic and pharmacological profiles, representing that there is plenty 

scope for considering pyrazolopyrimidine as a structural framework for evolving effective 

leads. 

ii. Chapter 4: From the 37 novel phenethyl and alkyl pentane pyrazolo[3,4-d]pyrimidine 

derivatives synthesized and evaluated for CDK2/Cyclin E, Abl kinase inhibitory activity 

and anti-proliferative activity against K-562 (chronic myelogeneous leukemia)  and MCF-

7 (breast adenocarcinoma) cell lines. From the tested results, compounds 11 (CDK: IC50 = 

5.1 µM; Abl: ˃12.5 µM), 8 (CDK: IC50 = 7.8 µM; Abl: ˃25 µM) and 36 (CDK: IC50 = 8.8 

µM; Abl: >25 µM) exhibited significant inhibitory activity. Further from this series, most 

of the synthesized compounds indicated prominent anti-proliferative effects with IC50 value 

ranging from 19.2 µM to 27.4 µM. Incorporation of monosubstituted phenyl groups at C-4 

of the pyrazolo[3,4-d]pyrimidine nucleus had favored for most prominent anticancer 

activity. 

iii. Chapter 5: Among the 15 novel benzoyl hybrids synthesized and evaluated, compounds 5a 

and 6c displayed (CDK2: IC50 = 8.8 µM, 6.8 µM) commendable inhibitory activity and 

notable anti-proliferative activity ranging from 18.9 µM to 89.3 µM). Presence of 

heteroatom containing bicyclic moieties at C-4 of the nucleus enhanced both inhibitory and 

anti-proliferative activity. 

iv. Chapter 6: Of the 19 novel phenylcarbamoyl acetamide hybrids synthesized and tested, 

compounds 9a, 9c, 9g, 9m and 9p showed moderate enzymatic inhibitory activity with an 

IC50 value ˃12.5 µM against both CDK2 and Abl kinases while, remaining compounds of 

this series could not generate IC50 values due to solubility limit (IC50 = ˃25 µM to ˃100 

µM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

DECLARATION 1: PLAGIARISM 
 

I, Srinivasulu Cherukupalli, declare that 

 

i. The research reported in this dissertation, except where otherwise indicated, is my original 

work. 

ii. This dissertation has not been submitted for any degree or examination at any other 

university. 

iii. This dissertation does not contain other persons’ data, pictures, graphs or other information, 

unless specifically acknowledged as being sourced from other persons. 

iv. This dissertation does not contain other persons’ writing, unless specifically acknowledged 

as being sourced from other researchers. Where other written sources have been quoted, 

then: 

a.   their words have been re-written but the general information attributed to them                    

has been referenced; 

b.  Where their exact words have been used, their writing has been placed inside    

quotation marks, and referenced. 

v. Where I have reproduced a publication of which I am an author, co-author or editor, I have 

indicated in detail which part of the publication was actually written by myself alone and 

have fully referenced such publications. 

vi. This dissertation does not contain text, graphics or tables copied and pasted from the 

Internet, unless specifically acknowledged, and the source being detailed in the dissertation 

and in the References sections. 

 

 

 

 

 

 

 

 

 

 

 

Signed: ___________________                                                   Date: ___________________ 

 

user
Stamp

user
Stamp



v 
 

DECLARATION 2: PUBLICATIONS 
 

 

DETAILS OF CONTRIBUTION TO PUBLICATIONS that form part and/or include research 

presented in this thesis (include publications in preparation, submitted, in press and published and give 

details of the contributions of each author to the experimental work and writing of each publication). 

Publications 

1. S. Cherukupalli, R. Karpoormath, B. Chandrasekaran, G. A. Hampannavar, N. Thapliyal, V. N. 

Palakollu, An insight on synthetic and medicinal aspects of pyrazolo[1,5-a]pyrimidine scaffold, 

European Journal of Medicinal Chemistry, 2017, 126, 298-352, 

https://doi.org/10.1016/j.ejmech.2016.11.019. 

     Contributions: I did the literature review and wrote the entire manuscript under the            

supervision of Dr. Rajshekhar Karpoormath. Rest all the co-authors assisted me in 

improvisation, writing up and summarizing the literature review (conclusion). 

2. S. Cherukupalli, G. A. Hampannavar, C. Sampath, B. Chandrasekaran, N. Sayyad, F. Kayamba, 

R. R. Aleti, R. Karpoormath, An appraisal on synthetic and pharmaceutical perspectives of 

pyrazolo[4,3-d]pyrimidine scaffold. Bioorganic and Medicinal Chemistry, 2017, 

https://doi.org/10.1016/j.bmc.2017.10.012. 

Contributions: I did the literature review and wrote the entire manuscript under the            

supervision of Dr. Rajshekhar Karpoormath. Rest all the co-authors assisted me in 

improvisation, writing up and summarizing the literature review (conclusion). 

3. S. Cherukupalli, B. Chandrasekaran, N. Sayyad, R. R. Aleti, S. R. Merugu, R. Karpoormath, 

Synthesis, anticancer evaluation, and molecular docking studies of some novel 4,6-

disubstituted pyrazolo[3,4-d]pyrimidines as potential cyclin dependent kinase 2 (CDK2) 

inhibitors. Bioorganic Chemistry, 2018, https://doi.org/10.1016/j.bioorg.2018.02.030. 

Contributions: I generated the rationale and did all the experimental and characterization as 

well as writing up of manuscript under the guidance of Dr. Rajshekhar Karpoormath 

(Supervisor). The co-authors assisted me in writing up of results and discussion and designing 

of the target molecules. 

4. S. Cherukupalli, B. Chandrasekaran, N. Sayyad, R. R. Aleti, S. R. Merugu, R. Karpoormath, 

Synthesis of 4,6-disubstituted pyrazolo[3,4-d]pyrimidine analogues: molecular docking, 

anticancer evaluation as potential cyclin dependent kinase 2 (CDK2) inhibitors. Submitted to 

Chemical Biology and Drug Design (CBDD). 

Contributions: I generated the rationale and did all the experimental and characterization as 

well as writing up of manuscript under the guidance of Dr. Rajshekhar Karpoormath 

https://doi.org/10.1016/j.ejmech.2016.11.019
https://doi.org/10.1016/j.bmc.2017.10.012
https://doi.org/10.1016/j.bioorg.2018.02.030


vi 
 

(Supervisor). The co-authors assisted me in writing up of results and discussion and designing 

of the target molecules. 

 

Conference contributions 

1. Oral presentation: Synthesis and anticancer evaluation of some novel 4,6-disubstituted 

pyrazolo[3,4-d] pyrimidines as potential cyclin dependent kinase 2 (CDK2) inhibitors. College 

of Health Sciences Research Symposium, held at Nelson R Mandela School of Medicine 

Campus, Durban, South Africa, from 5th to 6th October 2017. 

 

 

Other publications 

1. B. Chandrasekaran, R. Muthusamy, T. L. Chuin, K. P. Samukelisiwe, S. Cherukupalli, G. A. 

Hampannavar, N. Sayyad, E. S. Soliman, R. Karpoormath,  Ligand and structure based in 

silico studies to identify kinesin spindle protein (KSP) inhibitors as potential anticancer 

agents, Journal of Biomolecular Structure and Dynamics, 2017, 

http://dx.doi.org/10.1080/07391102.2017.1396255. 

2. V. N. Palakollu,  N. Thapliyal, T. Chiwunze, R. Karpoormath, S. Karunanidhi, S. 

Cherukupalli, Electrochemically reduced graphene oxide/Poly-Glycine composite modified 

electrode for sensitive determination of L-dopa, Material Science and Engineering: C, 2017, 

77, 394-404. 

3. N. Thapliyal, T. Chiwunze, R. Karpoormath, S. Cherukupalli, Fabrication of gold nanourchins 

based electrochemical sensor for nanomolar determination of primaquine, Material Science and 

Engineering: C, 2017, 74, 27-35. 

4. N. Thapliyal, T. Chiwunze, R. Karpoormath, S. Cherukupalli, Research progress in 

electroanalytical techniques for determination of antimalarial drugs in pharmaceutical and 

biological samples, RSC Advances, 2016, 6, 57580-57602. 

 

 

 

 

 

 

 

Signed: ___________________                                                    Date: ___________________ 

http://dx.doi.org/10.1080/07391102.2017.1396255
user
Stamp

user
Stamp



vii 
 

Dedicated 

 

To 

 

My Mother, a strong and gentle soul, who have raised me to be the 

person I am today 

 

My Father for his unconditional care, unceasing support and 

Encouragement 

 

My Sisters for their solace and love all the way of my life 

 

My brother-in-law for his gentleness and affection without whom 

none of my success would be possible 

 

 

 

 

 

 



viii 
 

ACKNOWLEDGEMENT 
 

I bow to almighty and my parents, to whom I owe the successful completion of my thesis. I would also 

like to express my deepest gratitude and heartfelt thanks to all those who helped me directly or indirectly 

in the completion of my research work. 

I am deeply indebted to my supervisor Dr. Rajshekhar Karpoormath, for his valuable guidance, 

patience and stimulating suggestions in all the times of research and writing of this thesis. Your 

kindness, enthusiasm, and faith in me energized me all throughout. Thank you, Dr. for your generosity 

and commitment to excellence. 

Special thanks to Prof. Neil Koorbanally, School of Chemistry, my previous supervisor for his 

cooperation and assistance in joining and carrying out my doctoral studies. 

I honestly thank Prof. Vladimir Krystof, Laboratory of Growth Regulators, Centre of the Region Hana 

for Biotechnological and Agricultural Research, Palacky University & Institute of Experimental Botany 

ASCR, Slechtitelu, Olomouc, Czech Republic for his cooperation and assistance in carrying out 

anticancer screening studies. 

Special thanks to Dr. Balakumar Chandrasekaran, Girish. A. Hampannavar for their precious scientific 

contributions all throughout the research. I am beholden for your constant encouragement and moral 

support in tough times.  

I would like to thank the technical staff Mr. Dilip Jagjivan, School of Physics and Chemistry and Ms. 

Caryl Janse van Rensburg, Mass Spectrometry Laboratory, School of Chemistry, UKZN 

Pietermaritzburg for their assistance in spectroscopic experiments.  

My special thanks to all the past and present group members of Synthetic and Medicinal Chemistry 

Research Group, for their support and contributions.  The blissful days spent with you all will be 

cherished forever. 

My humble gratitude to University of KwaZulu-Natal, South Africa, for granting approval for my 

research proposal and providing all the necessary facilities to carrying it out successfully. My sincere 

thanks and appreciations for all the supporting staff at Discipline of Pharmaceutical Sciences College 

of Health Sciences. 

I am also thankful to my teachers at Sri Venkateswara University, Tirupati helping me to keep my spirits 

high in my profession. 

Words aren’t enough to express how lucky I’m to have Subbareddy as my dearest brother-in-law, for 

his gentleness, love and financial support all throughout the academics. I’m blessed to have you. I am 

beholden for your constant encouragement and moral support in tough times. I feel short of words to 

thank you. 

I owe deep honor and love to my Parents Shri. Venkata SubbaReddy and Smt. Seethamma, for my 

existence and I am indebted to you both for inculcating in me the dedication and discipline to do 



ix 
 

whatever I undertake well. Thank you both for pushing me to reach for the stars there by raising my 

spirits to achieve the same, which could never be accomplished without the support of this wonderful 

family. I have to specially mention my deep gratitude and love to my sisters Lakshmi and Malleswari 

for being with me all the times with their constant encouragement and co-operation. I have to mention 

special thanks and love to Supriya Reddy, whose lovable words always brightens up my day. Cheers, 

warm blessings and love to my nephews Sumanth Reddy, Shashank Reddy, and niece Pranavi. 

 

Finally, I would like to take the opportunity to thank all my relatives and teachers. I ask for forgiveness 

for any inadvertent exclusions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF ABBREVIATIONS 
 

 A. alternate            :        Alternaria alternate 

       A. flavus                 :        Aspergillus flavus 

A. niger                   :        Aspergillus niger 

A. terreus                :        Aspergillus terreus 

ARB                        :        Non-peptide angiotensin II receptor antagonists  

B. fabae                   :        Botrytis fabae 

B. subtilis                :        Bacillus subtilis 

B. thuringiensis       :        Bacillus thuringiensis 

B. cereus                 :        Bacillus cereus 

BMP                        :        Bone morphogenetic protein 

B-Raf                       :        Rapidly accelerated fibrosarcoma 

BZR                         :        Benzodiazepine receptor 

 C. albicans             :        Candida albicans 

cAMP                      :        Cyclic Adenosine Monophosphate 

CB2                                        :         Cannabinoid receptor type-2 

CBZR                      :         Central benzodiazepine receptor  

CCR1                      :         C-C chemokine receptor type-1  

CDK                        :         Cyclin-dependent kinase 

CHK                        :         Checkpoint kinase  

CK2                         :         Casein kinase-2 

CNS                         :         Central nervous system 

COX                        :         Cyclooxygenase  

  CRF                       :         Corticotropin-releasing factor 

CRK                        :         Cdc2-related kinase 

c-Src                        :         Proto-oncogene tyrosine-protein kinase Src 

     CYC6                        :         Cyclin 6 

DNA                        :         Deoxyribonucleic acid 

DPP-IV                    :         Dipeptidyl peptidase-4 

E. coli                      :         Escherichia coli 

EAC                         :         Ehrlich ascites carcinoma 

EC50                                       :         Half maximal effective concentration 

http://medical-dictionary.thefreedictionary.com/Aspergillus+flavus
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjjt83T1-nRAhWNHsAKHcQdDzcQFggbMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCyclic_adenosine_monophosphate&usg=AFQjCNFW6FrL8yDHEhKslcu99G7JMfmqlg&sig2=xCRYFDBLI93OIRvcvk9Mig
https://en.wikipedia.org/wiki/Casein_kinase_2
https://en.wikipedia.org/wiki/Dipeptidyl_peptidase_4


xi 
 

ECMA                     :         Endothelial cell mitogenesis assay 

ED50                                       :          Median effective dose 

ER                            :         Estrogen receptor 

ERK                         :         Extracellular signal-regulated kinase 

F. oxysporum           :         Fusarium oxysporum 

G. candidum            :         Geotrichum candidum 

GABAA                              :          Gamma-aminobutyric acid 

GI50                                        :          Ealf maximal growth inhibition 

GSK-3β                    :         Glycogen synthase kinase 3 beta 

hA                            :          Human adenosine 

HCV                         :     Hepatitis C virus 

HIV                          :         Human immunodeficiency virus 

HLM                        :         Human liver mocrosome 

HMG-CoA               :         3-hydroxy-3-methylglutaryl-coenzyme-A  

HSV-1                      :         Herpes simplex virus type-1 

5-HT6R                     :         5-hydroxytryptamine subtype 6 receptor  

IC50                                           :         Half maximal inhibitory concentration 

IRAK-4                    :          Interleukin-1 receptor associated kinase-4 

JNK-1                       :         c-Jun N-terminal kinase-1 

K. pneumonia           :          Klebsiella pneumonia 

KDR                         :          Kinase insert domain receptor 

Ki                                               :          Inhibition constant 

kNN-MFA                :         k-nearest neighbor molecular field analysis 

Lck                           :          Lymphocyte-specific protein tyrosine kinase  

MAPKAP K-2          :         Mitogen-activated protein kinase-activated protein kinase-2 

MIC                          :          Minimum inhibitory concentration 

MLC                         :         Minimum lethal concentration 

MMP-13                   :         Matrix metalloproteinase-13  

mTOR                       :         Mammalian target of rapamycin 

NPY1R                     :         Neuropeptide Y receptor type-1 

OMF                         :         Mass of fabric 

P. aeruginosa           :          Pseudomonas aeruginosa 

PAH                          :         Pulmonary arterial hypertension  

P. chrysogenum        :         Penicillium chrysogenum 

https://en.wikipedia.org/wiki/Extracellular_signal-regulated_kinases
https://en.wikipedia.org/wiki/Hepatitis_C_virus
https://en.wikipedia.org/wiki/Kinase_insert_domain_receptor
https://en.wikipedia.org/wiki/MTOR


xii 
 

PBZR                        :         Peripheral benzodiazepine receptor  

PDE                          :          Phosphodiesterase 

PDK1                        :          Pyruvate dehydrogenase lipoamide kinase isozyme-1 

PET                           :          Positron emission tomography 

Pim                            :          Proviral integrations of moloney  

PKB                          :           Protein kinase B 

RNA                          :          Ribonucleic acid   

ROCK-II                   :          Rho associated coiled-coil containing protein kinase-2 

RSV                           :          Human respiratory syncytial virus 

S. racemosum            :         Syncephalastrum racemosum 

S. aureus                    :         Staphylococcus aureus 

S. marcescens            :         Serratia marcescens 

SI                               :         Selectivity index 

T. cruzi                      :         Trypanosama cruzi 

Thym                         :         Thymus 

TSPO                         :         Translocator protein 

TTK                           :         Threonine tyrosine kinase 

VEGFR-2                  :         Vascular endothelial growth factor receptor-2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

TABLE OF CONTENTS 
 

 

Abstract …………………………………………………………………………………………...........ii 

Declaration 1: Plagiarism ………………………………………………………………………...........iv 

Declaration 2: Publications ……………………………………………………………………………..v 

Dedication …………………………………………………………………………………….............vii  

Acknowledgement …………………………………………………………………………………...viii  

List of abbreviations ……………………………………………………………………………………x 

Table of contents ……………………………………………………………………….…………….xiii 

List of figures ………………………………………………………………………………………..xvii 

List of tables …………………………………………………………………………………...........xxiii 

Chapter 1:  

1       General introduction ………………………………………………………………………………1 

     1.1      Background …………………………………………………………………………….…….1 

      1.2      Types of cancer ………………………………………………………………………............1 

      1.3      Causes of cancer …………………………………………………………………………… 3 

         1.3.1   Tobacco ……………………………………………………………………………………3 

         1.3.2   Physical inactivity/obesity …………………………………………………………...........4 

         1.3.3   Infectious agents …………………………………………………………………………..5 

         1.3.4   Radiation …………………………………………………………………………………..6 

         1.3.5   Heredity ……………………………………………………………………………………6 

         1.3.6   Hormones ………………………………………………………………………………….7 

         1.3.7   Physical/environmental agents …………………………………………………………….7 

     1.4      Types of cancer treatments ……………………………………………………………………7 

        1.4.1   Surgery ……………………………………………………………………………………..8 

        1.4.2   Chemotherapy ……………………………………………………………………………...8 

        1.4.3   Radiation therapy …………………………………………………………………………..8 

        1.4.4   Targeted therapy …………………………………………………………………………...9 

        1.4.5   Immunotherapy …………………………………………………………………….............9 

        1.4.6   Hormonal therapy …………………………………………………………………..............9 

     1.5      Cyclin dependent kinase inhibitors (CDKs) …………………………………………………..9  

     1.6      Marketed drugs containing pyrimidine/fused pyrimidine scaffold …………………………..12 



xiv 
 

2       Rationale of our research ………………………………………………………………………..17 

3       Objectives of the present research work …………………………………………………………19 

Chapter 2:    

1       Introduction ………………………………………………………………………………............26 

2       Synthetic approaches for pyrazolo[1,5-a]pyrimidine scaffold ……………………….................28 

3       Pharmacology ……………………………………………………………………………............34 

  3.1    Anti-cancer agents………………………………………………………………………………35 

     3.1.1   Anti-proliferatives …………………………………………………………………………..35 

     3.1.2   CDK inhibitors ………………………………………………………………………...........40 

     3.1.3   c-Src, lck and chk inhibitors …………………………………………………………...........45 

     3.1.4   B-raf kinase inhibitors ………………………………………………………………………49 

     3.1.5   Pim kinase inhibitors ………………………………………………………………………..52 

     3.1.6   KDR kinase inhibitors ………………………………………………………………………55 

 3.2    Central nervous system (CNS) agents …………………………………………………………..58 

    3.2.1   Benzodiazepine receptor modulators …………………………………………………..........58 

    3.2.2   5-HT6 receptor antagonists …………………………………………………………………..62 

 3.3     Anti-infectious agents …………………………………………………………………………..64 

 3.4     Anti-inflammatory agents ………………………………………………………………............75 

 3.5     CRF-1 receptor antagonists …………………………………………………………………….82 

 3.6     Radiopharmaceuticals ………………………………………………………………………….85 

 3.7     Organic dyes ……………………………………………………………………………………87 

 3.8     Miscellaneous agents ……………………………………………………………………..........89 

 3.9     Patents covering pyrazolo[1,5-a]pyrimidine nucleus and their target activity …………...........96 

4       Conclusion ……………………………………………………………………………………….99 

5       Conflicts of interest ………………………………………………………………………............99 

6       Acknowledgements ………………………………………………………………………............99 

Chapter 3: 

1       Introduction ……………………………………………………………………………………..116 

2       Synthetic methodologies for pyrazolo[4,3-d]pyrimidine scaffold ………………………..........117 

3       Biological activities …………………………………………………………………………….133 

 3.1     Anti-cancer agents …………………………………………………………………………….133 

 3.2     Anti-infectious agents …………………………………………………………………...........139 

 3.3     CNS agents ……………………………………………………………………………………144 



xv 
 

    3.3.1   Phosphodiesterase-5 inhibitor activity ……………………………………………………..144 

    3.3.2   Adenosine receptor antagonists activity ……………………………………………………150 

 3.4     Cytokinin activity ………………………………………………………………………..........156 

 3.5     Miscellaneous agents ………………………………………………………………………….158 

 3.6     Patents covering pyrazolo[4,3-d]pyrimidine scaffold with diverse biological activities………160 

4       Conclusion ……………………………………………………………………………………...162 

5       Conflicts of interest …………………………………………………………………………….163 

6       Acknowledgements …………………………………………………………………………….163 

Chapter 4: 

1       Introduction ……………………………………………………………………………………171 

2       Results and discussion ………………………………………………………………………….173 

 2.1     Chemistry ……………………………………………………………………………………..173 

 2.2     In vitro evaluation for CDK2 and Abl kinase inhibitors …………………………………..…..176 

 2.3     Anti-proliferative activity against K-562 and MCF-7 cell lines ………………………………178 

 2.4     Structure-activity relationship (SAR) studies …………………………………………............178 

 2.5     Molecular docking study ………………………………………………………………………179 

3       Conclusion ……………………………………………………………………………………...181 

4       Experimental section ……………………………………………………………………………182 

5       Biological activity ………..…………………………………………………………………….192 

 5.1    CDK2 and Abl kinase inhibition assays……………………………………………………….192 

 5.2     Anti-proliferation evaluation for K-562 and MCF-7 cell lines ……………………….............193 

6       Molecular docking simulation ………………………………………………………………….193 

 6.1     Protein preparation …………………………………………………………………………….193 

 6.2     Grid file generation ……………………………………………………………………...........194 

 6.3     Ligand preparation …………………………………………………………………………….194 

 6.4     Docking simulation ……………………………………………………………………...........194 

 6.5     Binding mode analysis ………………………………………………………………………..194 

Chapter 5: 

1       Introduction …………………………………………………………………………………….201 

2       Results and discussion …………………………………………………………………………..204 

 2.1     Chemistry ……………………………………………………………………………………..204 

 2.2     In vitro evaluation for CDK2 and Abl kinase inhibitors ……………………………………..207 

 2.3     Anti-proliferative activity against K-562 and MCF-7 cell lines ………………………………208 



xvi 
 

 2.4     Structure-activity relationship (SAR) studies …………………………………………………209 

 2.5     Molecular docking study ………………………………………………………………………209 

3       Conclusion ……………………………………………………………………………………...211 

4       Experimental section ……………………………………………………………………………212 

5       Biological activity protocol …………………………………………………………………….218 

 5.1     CDK2 and Abl kinase inhibition assays ………………………………………………..…….218 

 5.2     Anti-proliferation (K-562 and MCF-7) activity assays ……………………………………….218 

6       Molecular docking simulation …………………………………………………………………219 

 6.1     Protein preparation ……………………………………………………………………............219 

 6.2     Grid file generation ……………………………………………………………………..…….219 

 6.3     Ligand preparation …………………………………………………………………………….219 

 6.4     Docking simulation ……………………………………………………………………………220 

 6.5     Binding mode analysis ………………………………………………………………………..220 

Chapter 6: 

1       Introduction …………………………………………………………………………………….226 

2       Results and discussion ………………………………………………………………………….228 

 2.1     Chemistry ……………………………………………………………………………………..229 

 2.2     In vitro evaluation for anti-cancer (CDK2 & Abl) and anti-proliferative (K-562 and MCF- 

           7) activity ……………………………………………………………………………………..231 

3       Conclusion ……………………………………………………………………………………..232 

4       Experimental section ……………………………………………………………………………233 

5       Biological activity protocol …………………………………………………………….............238 

 5.1     CDK2 and Abl kinase inhibition assays ……………………………………………………….238 

 5.2     Anti-proliferative activity for K-562 and MCF-7 cell lines ………………………….............239 

Chapter 7: 

1       Summary and conclusion ………………………………………………………………………242 

2       Future work …………………………………………………………………………….............245 

 

APPENDIX – I (Supplementary information- chapter 4) …………………………………………...246 

APPENDIX – II (Supplementary information- chapter 5) ………………………………….............314 

APPENDIX – III (Supplementary information- chapter 6) …………………………………………345 

 

 



xvii 
 

 

LIST OF FIGURES 

Chapter 1: 
Figure 1: Estimated number of new cancer cases by area ……………………………………………….2 

Figure 2: Cancer Incidence and mortality by region ……………………………………………………2 

Figure 3: a) top 10 most common cancers; b) causes of cancer death ………………………………….3 

Figure 4. International Variation in Lung Cancer Incidence Rates, 2012 ………………………………4 

Figure 5. Association of body fat with increased risks of a number of cancers ………………...............5 

 

Chapter 2: 
Figure 1: The General structure of pyrazolo[1,5-a]pyrimidine……………………………………….26 

Figure 2: Marketed drugs containing pyrazolo[1,5-a]pyrimidine nucleus……………………………28 

Figure 3: Synthetic approaches for pyrazolo[1,5-a]pyrimidines………………………………………30 

Figure 3: (continued). Synthetic approaches for pyrazolo[1,5-a]pyrimidines…………………………31 

Figure 3: (continued). Synthetic approaches for pyrazolo[1,5-a]pyrimidines…………………………33 

Figure 3: (continued). Synthetic approaches for pyrazolo[1,5-a]pyrimidines…………………………34 

Figure 4: SAR of p21 chemoselective pyrazolo[1,5-a]pyrimidin-7-yl-phenyl amides and the anti-
proliferative activity of the representative compound 1………………………………………………..35 

Figure 5: SAR of amino alkoxy moiety containing pyrazolo[1,5-a]pyrimidines and anti-tumor activities 
of the representative compound 2……………………………………………………………………..36 

Figure 6: SAR and anti-proliferative activity of pyrazolo[1,5-a]pyrimidine derivatives……………...37 

Figure 7: Pyrazolo[1,5-a]pyrimidin-7-ylphenyl amides and their effect on colon cell lines…………..37 

Figure 8: Anti-tumor activity of N-(4-chlorophenyl)-2-(methylthio)-5-(naphthalene-2-yl) pyrazolo[1,5-
a]pyrimidine-3-carboxamide……………………………………………………………………….....38 

Figure 9: SAR and anti-tumor properties of thiazolo[3,2-a]benzimidazole linked pyrazolo[1,5-
a]pyrimidines………………………………………………………………………………………….39 

Figure 10: SAR of pyrazolo[1,5-a]pyrimidine-3-carbonitriles as anti-tumor agents………………….39 

Figure 11: SAR of pyrazolo[1,5-a]pyrimidine derivative as anti-tumor agent…………………………40 

Figure 12: SAR of pyrazolo[1,5-a]pyrimidines as CDK2 inhibitors………………………………….41 

Figure 13: SAR studies and pharmacokinetic properties of pyrazolo[1,5-a]pyrimidine derivatives as 
orally available CDK2 inhibitors………………………………………………………………………42 

Figure 14: SAR studies of (2S,3S)-3-((7-(benzylamino)-3-isopropylpyrazolo[1,5-a]pyrimidine-5-
yl)amino)butane-1,2,4-triol as CDK inhibitors………………………………………………………..42 

Figure 15: SAR and effect of 2-aminobenzothiazole linked pyrimidines on human cancer cell 
lines……………………………………………………………………………………………………43 



xviii 
 

Figure 16: SAR of pyrazolo[1,5-a]pyrimidine type CDK2 inhibitors…………………………………45 

Figure 17: SAR and pharmacological activities of compound 26 as CDK9 inhibitor………………….45 

Figure 18: SAR and pharmacokinetic properties of (7-((S)-1-benzyl-2-hydroxyethylamino)-5-
cyclopropyl-2-(3,5-dimethoxyphenylamino)pyrazolo[1,5-a]pyrimidine-3-carboxamide…………….47 

Figure 19: SAR and selectivity values of Isobutyl(4-(7-amino-3-(3-(piperzin-1-yl)pyrazolo[1,5-
a]pyrimidin-6-yl)phenylcarbamate……………………………………………………………………47 

Figure 20: SAR and molecular interactions of 3-methyl-N-(3-(1-methyl-1H-pyrazol-4-yl)-5-(piperidin-
3-yl)pyrazolo[1,5-a]pyrimidin-7-yl)isothiazol-5-amine………………………………………………48 

Figure 21: SAR studies of 5-(3-aminocyclohexyl)-6-bromo-3-(1-methyl-1H-pyrazol-4-
yl)pyrazolo[1,5-a]pyrimidin-7-amines derivatives……………………………………………………49 

Figure 22: SAR study of pyrazolo[1,5-a]pyrimidine-3-carboxylates as potent B-Raf kinase 
inhibitors………………………………………………………………………………………………50 

Figure 23: SAR and B-Raf kinase activity of 3-substituted N-(3-(pyrazolo[1,5-a]pyrimidin-7-
yl)phenyl)-3-(trifluoromethyl)benzamides……………………………………………………………50 

Figure 24: B-Raf kinase activity and SAR studies of disubstituted pyrazolo[1,5-a]pyrimidines……..51 

Figure 25: SAR and B-Raf kinase activity of lead compound consisting pyrazolo[1,5-
a]pyrimidine………………………………………………………………………………………...…52 

Figure 26: Pin-pam inhibitory activities and SAR of N-(5-(2-fluorophenyl)-1H-pyrrolo[2,3-b]pyridin-
3-yl)-5-(((3-fluoropiperidin-4-yl)methyl)amino)pyrazolo[1,5-a]pyrimidine-3-
carboxamide………………………………………………………………………………………...…53 

Figure 27: SAR, Pim and kinase activity of 3,5-disubstituted pyrazolo[1,5-a]pyrimidine……………54 

Figure 28: SAR and pim activities of disubstituted pyrazolo[1,5-a]pyrimidine derivatives…………..55 

Figure 29: SAR and KDR kinase and KDR selectivity values of 3,6-diaryl pyrazolo[1,5-
a]pyrimidines………………………………………………………………………………………….56 

Figure 30: KDR kinase and ECMA activities…………………………………………………………57 

Figure 31: Structural activity studies, KDR and UE results of 7-aminopyrazolo[1,5-
a]pyrimidines………………………………………………………………………………………….58 

Figure 32: SAR and activity values of thienyl and methoxyphenyl substituted pyrazolo[1,5-
a]pyrimidines………………………………………………………………………………………….59 

Figure 33: SAR and PBBR, CBZR studies of N,N-diethyl-(2-arylpyrazolo[1,5-a]pyrimidin-3-yl 
acetamides……………………………………………………………………………………………..60 

Figure 34: SAR and activity data of 3-aryl-6-(3-thienyl)pyrazolo[1,5-a]pyrimidin-7-ones against 
recombinant BZRs……………………………………………………………………………………..60 

Figure 35: SAR and activity studies of 2-phenyl pyrazolo[1,5-a]pyrimidin-3-yl acetamides…………61 

Figure 36: Recombinant BZRs affinity values of N,N-dimethyl-2-(5-methyl-2-(p-tolyl)pyrazolo[1,5-
a]pyrimidin-3-yl)acetamide…………………………………………………………………………...61 

Figure 37: TSPO and CBZR binding and selectivity studies of pyrazolo[1,5-a]pyrimidines…………62 

Figure 38: SAR and 5-HT6 receptor studies of pyrazolo[1,5-a]pyrimidines…………………………..63 

Figure 39: SAR, 5-HT6R activity profiles of substituted 5,N2-dimethyl-3-phenylsulfonyl-pyrazolo[1,5-
a]pyrimidine-2-amines………………………………………………………………………………...64 



xix 
 

Figure 40: SAR of multi substituted pyrazolo[1,5-a]pyrimidines as antitrichomonal agents………….64 

Figure 41: SAR and antitrypanosomal activity studies of compound 83…………………………….…65 

Figure 42: SAR of 7-alkylamino substituted pyrazolo[l,5-a]pyrimidines antifungal compounds……..66 

Figure 43: SAR and active antibacterial pyrazolo[1,5-a]pyrimidines…………………………………67 

Figure 44: Structures and results of the antimicrobial (inhibition zone) potency of pyrazolo[1,5-
a]pyrimidines………………………………………………………………………………………….67 

Figure 45: SAR and antiviral properties of active compounds………………………………………..68 

Figure 46: Structures and MIC values of pyrazolo[1,5-a]pyrimidines against different bacterial and 
fungal strains…………………………………………………………………………………………..69 

Figure 47: SAR and antimicrobial results of pyrazolo[1,5-a]pyrimidines…………………………….70 

Figure 48: Structures and antimicrobial results of pyrazolo[1,5-a]pyrimidines……………………….71 

Figure 49: SAR, antibacterial activity of pyrazolo[1,5-a]pyrimidines…………………………………71 

Figure 50: SAR and antimicrobial studies of pyrazolo[1,5-a]pyrimidines……………………………73 

Figure 51: SAR and activity data of active compounds………………………………………………..73 

Figure 52a: SAR and biological studies of a lead compound………………………………………….74 

Figure 52b: Pharmacokinetic properties of potent derivative 116……………………………………..75 

Figure 53: 3,5-cyclic-AMP phosphodiesterase inhibitory abilities of active compounds……………..75 

Figure 54: SAR and 3',5'-phosphate phosphodiesterase inhibitor studies of substituted pyrazolo[1,5-
a]pyrimidines……………………………………………………………………………………….…76 

Figure 55:  SAR and anti-inflammatory properties of 2-phenylpyrazolo[1,5-a]pyrimidin-7-ones……77 

Figure 56: SAR and the data of potent molecule………………………………………………………77 

Figure 57: Pharmacological evaluation results of active compounds………………………………….78 

Figure 58: Selectivity and potency of compound 128 towards MMP-13………………………………79 

Figure 59: SAR, MAPKAP-K2 kinase and CDK2 selectivity values of 5,6,7-trisubstituted 
pyrimidines……………………………………………………………………………………………80 

Figure 60: SAR and IRAK4 inhibitory, pharmacokinetic activities of pyrazolo[1,5-a]pyrimidine-3-
carboxamide derivatives……………………………………………………………………………….81 

Figure 61: SAR and PDE4 inhibitory studies………………………………………………………….82 

Figure 62: CRF binding affinity studies of pyrazolo[1,5-a]pyrimidine derivative……………………82 

Figure 63: SAR and single dose pharmacokinetic data of pyrazolo[1,5-a]pyrimidines……………….83 

Figure 64: SAR and CRF1 affinity studies of pyrazolo[1,5-a]pyrimidines……………………………84 

Figure 65: CRF1 and antagonist studies of pyrazolo[1,5-a]pyrimidines……………………………….85 

Figure 66: Structure and bio-distribution of 99mTcN-MAG-ABCPP in mice bearing S 180 tumor (% 
ID/g)………………………………………………………………………………………………...…86 

Figure 67: Structure and bio-distribution in mice bearing S180 for [18F]1 expressed as % injected dose 
per gram………………………………………………………………………………………………..87 



xx 
 

Figure 68: Organic dye properties of synthesized compounds…………………………………………87 

Figure 69: Dye properties of bis-sulphatoethylsulphone and bis-monochlorotriazine containing 
pyrazolo[1,5-a]pyrimidines……………………………………………………………………………88 

Figure 70: Dye properties of the representative compound……………………………………………89 

Figure 71: SAR and the binding affinity of active compounds towards angiotensin II receptors……..90 

Figure 72: SAR, pharmacological and selected pharmacokinetic data of active compounds…………90 

Figure 73: SAR, binding affinity and selected pharmacokinetic data of potent inhibitors……………92 

Figure 74: Estrogen receptor ligands bearing pyrazolo[1,5-a]pyrimidine scaffold……………………92 

Figure 75: Cytotoxicity studies of pyrazolo[1,5-a]pyrimidines with reference drug doxorubicin…….93 

Figure76: SAR and cytotoxic properties of highly active compounds consisting pyrazolo[1,5-
a]pyrimidine scaffold………………………………………………………………………………….94 

Figure 77: SAR and BMP4 cell line properties of 3,6-difunctionalized pyrazolo[1,5-
a]pyrimidines………………………………………………………………………………………….95 

Figure 78: SAR and cannabinoid receptor studies of 7-oxopyrazolo[1,5-a]pyrimidine-6-
carboxamides………………………………………………………………………………………….95 

Figure 79: SAR and TTK activity studies……………………………………………………………..96 

Figure 80: Biological activities of pyrazolo[1,5-a]pyrimidines……………………………………….97 

Figure 81: Summary of structural modifications to influence the activity…………………………….98 

 

Chapter 3: 

Figure 1: General structures of purine (a) and pyrazolo[4,3-d]pyrimidine (b) …………………….…117 

Figure 2: Marketed drug Sildenafil containing pyrazolo[4,3-d]pyrimidine scaffold ………..............117 

Figure 3: Possible reaction centres of pyrazolo[4,3-d]pyrimidine scaffold ………………………….118 

Figure 4: Synthetic methodologies for pyrazolo[4,3-d]pyrimidine scaffold …………………………120 

Figure 4: (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines ……………………..…121 

Figure 4: (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines ………………………..123 

Figure 4: (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines ………………………..124 

Figure 4: (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines ………………………..126 

Figure 4: (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines . ………………………127 

Figure 4: (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines ………………………..129 

Figure 4: (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines ………………………..130 

Figure 4: (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines ………………………...132 

Figure 4: (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines …………………..……133 

Figure 5: SAR and anticancer properties of 2-(((3-isopropyl-1H-pyrazolo[4,3-d]pyrimidin7-
yl)amino)methyl)phenol ……………………………………………………………………………..134 



xxi 
 

Figure 6: Figure 6. SAR and antiproliferative activity of compound 2 on various cancer cell lines…135 

Figure 7: Anticancer activity on various cancer cell lines and kinase selectivity profile for compound 
3………………………………………………………………………………………………………136 

Figure 8: CDK kinase activity of lead compounds consisting trisubstituted pyrazolo[4,3-d]pyrimidine 
scaffold……………………………………………………………………………………………….136 

Figure 9: SAR and anti-proliferative activity of compound 6 on various human cancer cell lines…..137 

Figure 10: Anticancer activity and SAR studies of 3,5,7-trisubstituted pyrazolo[4,3-d]pyrimidines..138 

Figure 11: SAR study of 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines 
as potent CDK inhibitors……………………………………………………………………………..139 

Figure 12: Structures and anti-viral activity of 1-β-D-ribofuranosyl-3-methyl-6-substituted-7H-
pyrazolo[4,3-d]pyrimidin-7-ones against HSV-1…………………………………………………….140 

Figure 13: Anti-viral activity of 5-amino-1-methyl-3-β-D-ribofuranosyl-pyrazolo[4,3-d]pyrimidin-
7(6H)-one………………………………………………………………………………………….....141 

Figure 14: Anti-microbial values of 3-(4-bromophenyl)-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-
one against different bacterial and fungal strains…………………………………………………….142 

Figure 15: Antimicrobial and anti-cancer properties of 6-amino-3-(4-chlorophenyl)-5-methyl-1,6-
dihydro-7H-pyrazolo[4,3-d]-pyrimidin-7-one derivatives……………………………………...……144 

Figure 16: SAR and phosphodiesterase inhibitory abilities of active compounds……………………145 

Figure 17: SAR and pharmacokinetic properties of piperazine linked pyrazolo[4,3-d]pyrimidines as 
potent phosphodiesterase inhibitors…………………………………………………….....................147 

Figure 18: 3D-QSAR studies of 1-(2-ethoxyethyl)-1H-pyrazolo[4,3-d]pyrimidines as PDE5 
inhibitors…………………………………………………………………………………………......148 

Figure 19: Structures, biological results of active compounds as potent PDE5 inhibitors…………..150 

Figure 20: SAR and adenosine receptor antagonist activity of 1,3-dialkyl pyrazolo[4,3-d]pyrimidin-7-
ones…………………………………………………………………………………………………..151 

Figure 21: SAR and human A3 adenosine receptor antagonist activity of 2-(4-methoxyphenyl)-5-
methyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one……………………………………………151 

Figure 22: Structures, binding results of 7-amino-2-phenylpyrazolo[4,3-d]pyrimidines as A3 adenosine 
receptor antagonists…………………………………………………………………………………..152 

Figure 23: SAR and A1 and A2A adenosine receptor activity of pyrazolo[4,3-d]pyrimidines……….153 

Figure 24: SAR and human A3 adenosine receptor activity of lead compounds consisting pyrazolo[4,3-
d]pyrimidine………………………………………………………………………………………….154 

Figure 25: Structures and biological activity of 7-aminopyrazolo[4,3-d]pyrimidines as human A1 and 
A2A  adenosine receptors……………………………………………………………………………..156 

Figure 26: Structures of lead compounds with potent cytokinin activity…………………………….156 

Figure 27: SAR of 7-substituted 3-methylpyrazolo[4,3-d]pyrimidines as cytokinin antagonists in 
tobacco bioassay……………………………………………………………………………………...157 

Figure 28: Cytokinin activity of pyrazolo[4,3-d]pyrimidines on various tobacco cells……………...158 

Figure 29: SAR, structures and CRF-1 binding affinity studies of lead compounds…………….......159 



xxii 
 

Figure 30: Anti-leishmanial activity and SAR studies of 3,7-disubstituted pyrazolo[4,3-
d]pyrimidines………………………………………………………………………………………...160 

Figure 31: Summary of structural amendments to influence the biological activity…………………162 
 

Chapter 4: 

Figure 1. Structures of active drugs containing fused pyrimidine ……………………………………172 

Figure 2. Literature reported derivatives containing pyrazolo[3,4-d]pyrimidine scaffold and their 
anticancer activities along with the designed molecules. A: (Ki50 against Src, AblT315I = 0.056, 0.01 
µM); B: (IC50 against CDK9 = 17 nM); C: (IC50 against CDK2 = 0.5µM); D: (Ki50 against Abl = 80 nM); 
E: (Ki50 against cSrc, Abl = 0.21± 0.02, 0.15±0.02 µM); F: (IC50 against Src = 1.2 ± 0.4 µM) 
………………………………………………………………………………………………….…….173 

Figure 3. SAR study of 4,6-disubstituted pyrazolo[3,4-d]pyrimidines as potent anticancer agents 
…………………………………………………………………………………………………….....179 

Figure 4: Reported pose (wire-frame model) and Docked pose (thick tube model) into the active site 
showing similar interactions (docking validation) …………………………………………………..180 

Figure 5. Molecular interactions of a) active compound 11 b) moderately active compound 27 c) less 
active compound 30 into the binding site of CDK2/cyclin E protein. Nonpolar hydrogens were hidden 
for clarity and yellow dashed line indicate H bond ………………………………………………….181 
 

Chapter 5: 

Figure 1. Structures of the CDK2 inhibitors in clinical trials ………………………………………...203 

Figure 2. Literature reported derivatives containing pyrazolo[3,4-d]pyrimidine scaffold and their 
anticancer activities. Compound A: (Ki50 against Src, AblT315I = 0.056, 0.01 µM); B: (IC50 against 
CDK2 =0.020 µM); C: (IC50 against CDK2 = 0.5 µM); D: (Ki50 against Abl = 80 nM); E: (Ki50 against 
cSrc, Abl = 0.21± 0.02, 0.15±0.02 µM); F: (IC50 against Src = 1.2 ± 0.4 µM)………………………204 

Figure 3. SAR study around pyrazolo[3,4-d]pyrimidine scaffold towards potent activity …………..209 

Figure 4. Reported pose (wire-frame model) and Docked pose (thick tube model) into the  active-site 
showing similar interactions (docking validation) …………………………………………………..210 

Figure 5. Molecular interactions of a) 14c (most active compd) b) 15c (less active compd) in the binding 
site of CDK2. Nonpolar hydrogens were hidden for clarity and yellow dashed line indicate H bond. The 
cyano and green coloured dashed lines indicate π-π interactions and π-cation interactions, respectively 
………………………………………………………………………………….…………………….211 
 

Chapter 6: 

Figure 1. Structures of the CDK2 inhibitors in clinical trials ………………………………………..227 

Figure 2. Literature reported derivatives containing pyrazolo[3,4-d]pyrimidine scaffold and their 
anticancer activities along with the designed molecules. A: (Ki50 against Src, AblT315I = 0.056, 0.01 
µM); B: (IC50 against CDK9 = 17 nM); C: (IC50 against mTOR = 13 nM); D: (IC50 against mTOR = 9 
nM); E: (Ki50 against cSrc, Abl = 25, 41 nM); F: (IC50 against Src = 1.2 ± 0.4 µM)…..…………….....228 

 



xxiii 
 

 

LIST OF TABLES 
 

Chapter 1 

Table 1: Different types of cancers caused by virus, bacteria and parasites ……………………………..6 

Table 2. Pyrimidine/fused pyrimidine containing marketed drugs as anticancer agents ………………12 

Table 3. Structures of CDK drugs under clinical trials ………………………………………………..17 

 

Chapter 2 
Table 1: Pyrazolo[1,5-a]pyrimidine nucleus containing patents having numerous biological activities 
.…………………………………………………………………………………………………….…..97 

 

Chapter 3 
Table 1: Pyrazolo[4,3-d]pyrimidine nucleus containing patents having numerous biological activities 
………………………………………………………………………………………………………161 

 

Chapter 4 
Table 1: Anticancer evaluation of novel 4,6-disubstituted pyrazolo[3,4-d]pyrimidine derivatives…178 

 

Chapter 5 
Table 1: Anticancer evaluation of novel 4,6-disubstituted pyrazolo[3,4-d]pyrimidine derivatives…208 

 

Chapter 6 
Table 1: Anticancer evaluation of novel mono substituted pyrazolo[3,4-d]pyrimidines against 
CDK2/Abl kinases and K-562/MCF-7 cell lines………………………………………………..……232 

 

 

 

Note: Referencing styles of individual chapters are as per guidelines of communicated journals. 



Chapter 1 

 

  Srinivasulu Cherukupalli                              1                                                     UKZN-2018 
  

CHAPTER 1 

1    GENERAL INTRODUCTION   

 1.1    Background    

Cancer is a generic term for a complex disease characterized by uncontrolled growth of the abnormal 

cells beyond their usual margins that can then enter contiguous parts of the body and/or spread to other 

organs. Other common terms used are malignant tumors and neoplasms. Cancer can affect almost any 

part of the body and has many anatomic and molecular subtypes, each one requiring particular 

management approaches. Cancer has an impending mortality and morbidity rate with a staggering 14.1 

million people worldwide. The rise in the frequency of confirmed cancer cases remains a challenge, 

especially in South Africa, which ranks as one of the highest statistics in comparison to other countries 

that have been stricken by this devastating disease. In 2012, the World Health Organization (WHO) 

estimated that out of 14.1 million individuals affected with cancer, 8.8 million people (approximately 

22,000 cancer deaths a day) have succumbed to this disease. By 2030, new cancer cases are expected 

to grow to 21.7 million with a staggering 13 million deaths as a result of the rapid growth and aging of 

the population unless preventative measures are put into place.1 Some important lifestyle factors known 

to increase the cancer risk is the consumption of alcohol, poor diet, smoking, reproductive alterations 

and physical inactivity in developing nations.  It is important to take note that the actual Fig.s for 

estimated cancer cases will be considerably larger.2 Therefore, it is for this reason that cancer is 

considered as a serious public health burden worldwide as illustrated in Fig. 1 & 2.  

1.2    Types of cancer 

Cancer is a multifaceted disease, which commences when healthy cells change and grow out of control, 

resulting in the formation of a mass called a tumor. A tumor can be cancerous or benign. A cancerous 

tumor is malignant, meaning it can grow and spread to other parts of the body. A benign tumor describes 

a tumor that can grow but does not spread. There are almost 100 types of cancers existing in human 

body and these are titled according to organs or tissues in which they form. The worldwide cancer 

statistics from cancer research UK, the top five most commonly diagnosed cancers are the lung, breast, 

colorectal, prostate and stomach cancers (Fig.3a) accounting for more than half of total cancer deaths 

(Fig. 3b).3 Over the last 40 years, the common cancer profiles have slightly changed with lung, liver, 

stomach and bowel cancers accounting for most deaths.4 
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Fig. 1. Estimated number of new cancer cases by area.1 

 

Fig. 2. Cancer Incidence and mortality by region.3,4 
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Fig. 3. a) top 10 most common cancers; b) causes of cancer death.3,4 

1.3    Causes of cancer  

Most cancers are associated with environmental, lifestyle as well as economical and behavioral factors.5 

Some of the common  factors that contribute to cancer death include infections (15-20%), tobacco (25-

30%), obesity/diet/physical inactivity (30-35%), radiation (up to 10%), heredity (3-10%), hormones and 

physical/environmental agents.6 General signs and symptoms associated with cancer are prolonged 

cough, lump in the affected area, baffling weight loss, abnormal bleeding and change in bowel 

movements. 

1.3.1    Tobacco 

In 2008, WHO named Nicotiana as the global single greatest preventable cause of death.7 Tobacco is a 

product obtained from the dried leaves of tobacco plant and mostly consumed in the form of cigarettes, 

cigars, pipe tobacco and other tobacco containing chewable products. Tobacco contains an alkaloid 

called nicotine, which is stimulant responsible for the addictive nature and affects many organs such as 

the heart, liver and lungs. Its use is associated with many forms of cancers resulting in 80% of lung 

cancer,8 which could be attributed to approximately fifty known carcinogens such as nitrosamines and 

polycyclic aromatic hydrocarbons.9 

Moreover, smoking non-tobacco containing electronic cigarettes is more harmful as it generates the 

chemical formaldehyde. Lung cancer is one of the most often detected cancer and the leading cause of 

the cancer related deaths worldwide. Globally, 1.8 million new cases have been reported in 2012, 

accounting for 13% total cancer detection and an estimated 1.6 million (1.1 million in men and 491,200 

deaths in women).2 In some nations, it has been shown to be the leading cause of death for women as 

opposed to breast cancer. Fig. 4 unveils the prevalence of lung cancer worldwide.1  
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Fig. 4. International Variation in Lung Cancer Incidence Rates, 2012.1 

1.3.2     Physical inactivity/obesity     

Human life has been associated with several physical activities including exercising, performing 

household chores, working, and leisure-time activities such as hiking, walking, to name but a few. 

Physical activity is crucial for the human body to maintain an equilibrium between the number of 

calories consumed and the number of calories utilized.  Using less calories than one consumes leads to 

obesity, in which a person has an unhealthy body fat, developed when the energy intake from food and 

drink exceeds energy outlay from physical activity and other metabolic processes. Obesity is a risk 

factor for cancer, as well as other chronic diseases such as type 2 diabetes and cardiovascular disease.6 

Obese people often have chronic low-level inflammation, which can cause DNA damage that  can  lead  

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000527371&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044042&version=Patient&language=English
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to cancer overtime. Overweight and obese people in comparison to normal-weight people are more 

likely to have conditions or disorders that are connected to or that cause chronic local inflammation and 

those are risk factors for certain cancers.10 Globally, 30-35% cancer deaths have been attributed to poor 

diet/obesity/physical inactivity. Data obtained from the National Health and Nutrition Examination 

Survey (NHANES) revealed that in 2011–2014, almost 70% of U.S. adults age 20 years or older were 

overweight and more than one-third (36.5%) were obese.11 An increase in body weight has been linked 

to several different types of cancers. (Fig. 5) with an estimated 14-20% cancer deaths been reported.12 

 

 

Fig. 5. Association of body fat with increased risks of a number of cancers. 

1.3.3    Infectious agents 

Several infectious agents such as viruses, parasites and bacteria can cause cancer or may increase the 

risk factor that forms cancer. In addition, some viruses can interrupt signaling that are typically 

responsible for cell growth and proliferation in both prokaryotes and eukaryotes. Therefore, some 

infections are known to weaken the immune system and the human body becomes more susceptible to 

these cancer causing agents. Generally, viruses that are associated with an augmented risk of cancer can 

be passed on from one person to another through blood and other body fluid transfusions, unprotected 

sex as well as the sharing of needles. Globally an estimated 16.1% of cancer cases are attributable to 

infectious agents,13 especially for cervical cancers, liver cancers (80%) and other cancers (15-20%).14 

This global percentage varies from one regions to the other with as high as  32.7% in Africa to 3.3% in 

New Zealand and Australia.15 A virus that could be responsible for causing cancer is called oncovirus 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045873&version=Patient&language=English
https://en.wikipedia.org/wiki/Oncovirus
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and is the most significant risk factor for several cancer growth in the humans.16  The table below briefly 

gives the various cancers causing viruses, bacteria’s and parasites. 

Virus/bacteria/parasite Name Type of cancer 

Virus 

Hepatitis B Liver cancer 

Hepatitis C Liver cancer15 

Human papilloma 
Cervical, nose, throat, anus, larynx 

and esophagus cancer16 

Epstein-barr 
Nasopharyngeal, burkitt lymphoma 

and hodgkins lymphoma cancer 

Human herpesvirus 8 
Kaposis sarcoma and B-cell 

lymphoma cancer17 

Human T cell lymphotropic Adult T cell leukemia cancer18 

Merkel cell polyoma Merkel cell carcinoma19 

Bacteria 
Helicobacter pylori Gastric cancer20 

Chlamydophila pneumoniae Lung cancer21 

Parasite 
Schistosoma haematobium Bladder cancer 

Schistosoma japonicum Colorectal cancer22 

Table 1. Different types of known cancer causing viruses, bacteria’s and parasites. 

1.3.4    Radiation 

The radiation of certain wavelengths/frequencies such as ionizing radiation has sufficient energy to 

damage DNA and cause cancer. Globally up to 10% of critical cancers are due to radiations, which 

compromises of  both ionizing and non-ionizing radiation whereas most of the non-melanoma skin 

cancers is caused by non-ionizing ultraviolet radiation.6  Radiation can cause cancer in any part of the 

human body, and at any age. Radiation influenced solid tumors generally takes 10-15 years to become 

clinically visible and radiation induced leukemias characteristically takes 2-10 years.23 The sources of 

radiation include radon, x-rays, gamma rays, medical imaging, alpha particles, neutrons, beta particles. 

In addition, various medical techniques, such as positron emission tomography (PET) scans, chest x-

rays, computed tomography (CT) scans and radiation therapy can also cause cell damage that can lead 

to cancer. However, the advantages from these medical techniques are very high while the risk posed 

is trivial. 

1.3.5    Heredity 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046218&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000304687&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000304687&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045560&version=Patient&language=English
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A genetic defect is usually passed from parents to their offspring, either by sexual or asexual 

reproduction and the progeny cells or organisms obtain the genetic information from their parents. 

Majority of cancers are non-hereditary whereas hereditary cancers are mainly caused by an inherited 

genetic defect. Globally an estimated 0.3% of people are carriers of a genetic mutation that has a great 

effect on cancer risk and cause around 3-10% of all cancers. In addition, a set of medical signs include 

inherited mutations in BRCA1 (breast cancer susceptibility gene 1)  and BRCA2 (breast cancer 

susceptibility gene 2) which is responsible for more than 75% risk for breast cancer, ovarian cancer24 

and hereditary nonpolyposis colorectal cancer, which is existing in about 3% of persons diagnosed with 

colorectal cancer.25 

1.3.6    Hormones 

Hormone is a chemical messenger that is secreted into the blood to communicate between organs and 

tissues for physiological regulation, behavioral actions including digestion, tissue function, metabolism, 

sleep, respiration, lactation, sensory perception, stress, growth and development, reproduction, 

excretion, movement, and mood.26 Apart from those listed, some hormones play a major role in the 

development of cancer by encouraging cell proliferation. Hormones are important in sex-related cancers 

include breast, prostate, testis, endometrium, ovary, as well as bone and thyroid cancer. One such 

example is estrogen a female sex hormone, known as a human carcinogen. Even though these sex 

hormones have crucial physiological roles in both females and males as well as linked with an increased 

risk of certain cancers. For example, taking combined menopausal hormone therapy (estrogen & 

progesterone) can increase a woman’s risk of breast cancer. Menopausal hormone therapy with estrogen 

alone results in an increased risk of endometrial cancer. In addition, person on hormone replacement 

therapy would have increasingly high levels of hormones, thus a greater risk of developing cancer. On 

the other hand, a person who does exercise more than average will have a lower level of hormones and 

consequently a reduced risk of cancer.27  

1.3.7     Physical/environmental agents 

Apart from chemical agents, there are certain matter/substances which on prolonged exposure could 

physically induce cancer and are called physical cancer agents.  For instance, continued exposure to 

asbestos leads to membrane cancer.  Similarly, other natural and synthetic asbestos-like fibers such as 

glass wool, wollastonite, rock wool and attapulgite are also known to cause cancer. In addition, non-

fibrous materials such as powdered metallic nickel and cobalt, crystalline silica can also induce cancer.28 

1.4     Types of cancer treatments 

Total removal of cancerous tissue without causing harm to the rest of the healthy tissue is an ideal goal 

of treatment. There are several types of cancer treatments and the choice of treatment depends on 

https://en.wikipedia.org/wiki/Tissue_%28biology%29
https://en.wikipedia.org/wiki/Metabolism
https://en.wikipedia.org/wiki/Sleep
https://en.wikipedia.org/wiki/Respiration_%28physiology%29
https://en.wikipedia.org/wiki/Lactation
https://en.wikipedia.org/wiki/Sensory_perception
https://en.wikipedia.org/wiki/Stress_%28physiology%29
https://en.wikipedia.org/wiki/Human_development_%28biology%29
https://en.wikipedia.org/wiki/Reproduction
https://en.wikipedia.org/wiki/Excretion
https://en.wikipedia.org/wiki/Motor_coordination
https://en.wikipedia.org/wiki/Mood_%28psychology%29
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location, type, grade of tumor and the phase of the disease. Most of the cancers can be treated mainly 

using chemotherapy, hormonal therapy, surgery, radiation therapy, immunotherapy as well as targeted 

therapy. 

1.4.1    Surgery  

Cancer surgery is used to prevent, diagnose, and treat cancer. It is the oldest type (Ancient Egypt) of 

cancer treatment and normally works best for solid tumors existing in specific areas. The main objective 

of the surgery can be removal of only the tumor or whole organ. Each cancer type has specific cancer 

operations such as whipple surgery for pancreatic cancer, mastectomy for breast cancer, prostatectomy 

for prostate cancer and lung surgery for non-small cell lung cancer.29 In addition, surgery is often 

essential for cancer staging (determining the extent of the disease and whether it has metastasized to 

regional lymph nodes) and to control bowel obstruction or spinal cord compression.30 

1.4.2    Chemotherapy 

Chemotherapy (frequently abbreviated to CTX or chemo or CTx) is a type of cancer treatment with one 

or more drugs (chemotherapeutic agents) that can kill cancer cells. Combination chemotherapy is a 

combination of two or more cancer drugs is usually used for the efficient treatment of cancer. 

Chemotherapy may be specified with a curative intent (combinations of drugs), or it may aim to prolong 

life or to diminish symptoms (palliative chemotherapy). Traditional chemotherapeutic agents are 

cytotoxic as they have been seen to interfere with rapid cell division and affect the normal healthy cells 

as well, but cancer cells may vary broadly in their susceptibility to these agents.  Chemotherapeutic 

drugs in a number of ways can cause interference of cell division and these include duplication of DNA 

and separation of just formed chromosomes. Majority of leukemia and lymphoma cancers could be 

treated by chemotherapy and on the other hand, chemotherapy and combination chemotherapy have the 

potential to damage healthy tissues or organs, particularly those tissues have a great replacement rate. 

However, these cells have the capability to repair themselves after chemotherapy. 

 1.4.3     Radiation therapy  

Radiation therapy is the use of ionization radiation to kill cancer cells. This therapy can be administrated 

internally through brachytherapy or externally through external beam radiotherapy. Radiation therapy 

can kill almost every type of solid tumors, including cancers of the cervix, breast, prostate, lung, liver, 

brain, pancreas, uterus, larynx, skin, stomach, or soft tissue sarcomas. In addition, it is also useful in the 

treatment of leukemia and lymphoma. Radiation therapy harms or eliminates cells in the area being 

treated (target tissue) by harming their genetic material, thus making it difficult for these cells to 

continue to grow and divide. Although radiation harms both cancer cells and normal cells, most normal 

http://www.dana-farber.org/Adult-Care/Treatment-and-Support/Treatment-Centers-and-Clinical-Services/Surgical-Oncology.aspx
https://en.wikipedia.org/wiki/Metastasis
https://en.wikipedia.org/wiki/Lymph_node
https://en.wikipedia.org/wiki/Cure
https://en.wikipedia.org/wiki/Palliative_care
https://en.wikipedia.org/wiki/Cytotoxicity
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cells can improve from the effects of radiation and function properly. The main target of radiation 

therapy is to damage as many cancer cells as possible, while limiting harm to nearby healthy tissue.  

1.4.4    Targeted therapy  

Targeted therapy since 1990s, plays a significant role in the effective treatment of some specific cancers. 

In general, the target therapy utilizes small molecules as inhibitors of enzymatic domains on mutated 

or overexpressed target enzymes. One such example of targeted chemotherapy are the tyrosine kinase 

inhibitors such as imatinib and gefitinib. Monoclonal antibody therapy is another target therapy in 

which the therapeutic agent is antibody, which exactly binds to a protein on the surface of the cancer 

cells. Prominent examples are anti-HER2/neu antibody called trastuzumab used in the treatment of 

breast cancer, and anti-CD20 antibody called rituximab employed in the treatment of a variety of B-cell 

malignancies. Further, photodynamic therapy (PDT) is another strategy for treatment of basal cell 

carcinoma or lung cancer comprising a tissue oxygen, light and a photosensitizer. Photodynamic 

therapy can also be involved in eliminating traces of malignant tissue and later the surgical removal of 

huge tumors.31 

1.4.5    Immunotherapy 

Immunotherapy refers to a set of various therapeutic approaches aimed to induce the patient’s own 

immunity to fight the tumor. Recent approaches for producing an immune response against tumors 

include intravesical Bacillus Calmette-Guerin (BCG)  immunotherapy for bladder cancer, and use of 

interferons and other cytokines to induce an immune response in renal cell carcinoma and melanoma 

patients. Vaccines to produce particular immune responses are the topic of intensive research for many 

tumors, especially malignant melanoma and renal cell carcinoma. Sipuleucel-T is a vaccine-like 

strategy for prostate cancer in which dendritic cells from the patient are loaded with prostatic acid 

phosphatase peptides to induce a specific immune response against prostate-derived cells. 

1.4.6    Hormonal therapy  

The development of some cancers can be inhibited by providing or blocking some hormones. General 

examples of hormone-sensitive tumors include certain types of prostate and breast cancers. Eliminating 

or blocking testosterone or estrogen is often a significant additional treatment. In certain cancers, 

administration of hormone agonists, such as progestogens may be therapeutically beneficial. 

1.5     Cyclin-dependent kinase (CDK) inhibitors  

Cyclin-dependent kinases (CDKs) are a family of serine/threonine or mammalian heterodimeric 

enzymes comprising more than 13 members. These kinases are connected with regulation of cell-cycle 

progression by phosphorylating proteins in cell division. Dysregulation of the cell cycle control is a 

https://en.wikipedia.org/wiki/Imatinib
https://en.wikipedia.org/wiki/Gefitinib
https://en.wikipedia.org/wiki/Trastuzumab
https://en.wikipedia.org/wiki/Rituximab
https://en.wikipedia.org/wiki/B-cell
https://en.wikipedia.org/wiki/Bacillus_Calmette-Gu%C3%A9rin
https://en.wikipedia.org/wiki/Interferon
https://en.wikipedia.org/wiki/Cytokine
https://en.wikipedia.org/wiki/Renal_cell_carcinoma
https://en.wikipedia.org/wiki/Melanoma
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Immune_response
https://en.wikipedia.org/wiki/Malignant_melanoma
https://en.wikipedia.org/wiki/Renal_cell_carcinoma
https://en.wikipedia.org/wiki/Sipuleucel-T
https://en.wikipedia.org/wiki/Prostate_cancer
https://en.wikipedia.org/wiki/Dendritic_cell
https://en.wikipedia.org/wiki/Prostatic_acid_phosphatase
https://en.wikipedia.org/wiki/Prostatic_acid_phosphatase
https://en.wikipedia.org/wiki/Testosterone
https://en.wikipedia.org/wiki/Estrogen
https://en.wikipedia.org/wiki/Progestogen
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common cause of various human cancers and is normally associated with aberrant activation of cyclin-

dependent kinases.32,33 CDK1 and CDK2 kinases play significant role in cell division, contribute to the 

phosphorylation and inactivation of the retinoblastoma (Rb) tumor suppressor protein, which is 

produced throughout late G1, S and G2-M phases.34-36 Other members of this family such as CDK7, 

CDK8 and CDK9 etc. contribute to the regulation of RNA polymerase II and the control of cellular 

transcription.37,38 Consequently, inhibition of CDKs represents an attractive therapeutic strategy in 

oncology. The structures of these CDK molecules are quite varied and they are generally constituted or 

derived from various heterocyclic families such as purines, pyrimidines, indoles, pyrazoles, thiazoles, 

or derived from natural products such as flavones or staurosporine. Several compounds from these 

families such as roscovitine, dinaciclib, palbociclib etc. are existing under clinical evaluation. Table 2 

indicates clinical drugs with their respective structures, administration mode and clinical trial stage.  

Drug Structure 
Administration 

Mode 

Clinical 

Trial Stage 

Flavopiridol 

 

Intravenous II 

Roscovitine 

 

Oral II 

Dinaciclib 

 

Intravenous III 

SNS032 

 

Intravenous I 
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AT7519 

 

Intravenous I/II 

Palbociclib 

or 

PD0332991 

 

Oral III 

EM-1421 

 

Intravenous I/II 

RGB-286638 

 

Intravenous I 

P276-00 

 

Intravenous II 

BAY-1000394 

 

Oral I 
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TG02/SG1317 

 

Oral I 

PHA848125AC 

 

Oral II 

LEE-011 

 

Oral III 

Bemaciclib 

or 

LY2835219 

 

Oral I/(III) 

UCN01 

 

Intravenous II 

Table 2. Structures of CDK drugs under clinical trials 

1.6     Marketed drugs containing pyrimidine/fused pyrimidine scaffold  
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Pyrazolopyrimidines are the fused heterocyclic ring systems, which structurally resemble purines have 

prompted medicinal investigations to evaluate their potential therapeutic significance. Several 

anticancer drugs with pyrimidine/fused pyrimidine scaffold such as abemaciclib, afatinib, copanlisib, 

brigatinib, nelarabine, capecitabine to name but a few exist in the market and are illustrated in Table 3. 

 

Drug Structure Target 

Abemaciclib 

 

Advanced/metastatic 

breast cancers. 

Afatinib 

 

Pleural mesothelioma 

and non-small cell 

lung cancer. 

Copanlisib 

 

Non-Hodgkin 

lymphoma and 

chronic lymphocytic 

leukemia. 

Brigatinib 

 

Anaplastic 

lymphoma. 

Nelarabine 

 

Acute lymphoblastic 

leukemia and T-cell 

lymphoblastic 

lymphoma. 

https://en.wikipedia.org/wiki/Pleural
https://en.wikipedia.org/wiki/Mesothelioma
https://en.wikipedia.org/wiki/Lung_cancer#Non-small_cell_lung_cancer
https://en.wikipedia.org/wiki/Lung_cancer#Non-small_cell_lung_cancer
https://en.wikipedia.org/wiki/Non-Hodgkin_lymphoma
https://en.wikipedia.org/wiki/Non-Hodgkin_lymphoma
https://en.wikipedia.org/wiki/B-cell_chronic_lymphocytic_leukemia
https://en.wikipedia.org/wiki/B-cell_chronic_lymphocytic_leukemia
https://en.wikipedia.org/wiki/ALK_inhibitor
https://en.wikipedia.org/wiki/ALK_inhibitor
https://en.wikipedia.org/wiki/T-lymphoblastic_leukemia/lymphoma
https://en.wikipedia.org/wiki/T-lymphoblastic_leukemia/lymphoma
https://en.wikipedia.org/wiki/T-lymphoblastic_leukemia/lymphoma
https://en.wikipedia.org/wiki/T-lymphoblastic_leukemia/lymphoma
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Capecitabine 

 

Breast cancer, gastric  

and colorectal cancer. 

Fluorouracil 

 

Colon cancer, 

esophageal cancer,  

pancreatic cancer, 

breast cancer, 

cervical cancer. 

Cladribine 

 

Hairy cell leukemia 

B-cell chronic 

lymphocytic 

leukemia. 

Clofarabine 

 

Acute lymphoblastic 

leukemia. 

Cytarabine 

 

Acute myeloid 

leukemia, acute 

lymphocytic 

leukemia, chronic 

myelogenous 

leukemia, and non-

Hodgkin's lymphoma. 

https://en.wikipedia.org/wiki/Breast_cancer
https://en.wikipedia.org/wiki/Gastric_cancer
https://en.wikipedia.org/wiki/Colorectal_cancer
https://en.wikipedia.org/wiki/Colon_cancer
https://en.wikipedia.org/wiki/Esophageal_cancer
https://en.wikipedia.org/wiki/Pancreatic_cancer
https://en.wikipedia.org/wiki/Breast_cancer
https://en.wikipedia.org/wiki/Cervical_cancer
https://en.wikipedia.org/wiki/Hairy_cell_leukemia
https://en.wikipedia.org/wiki/B-cell_chronic_lymphocytic_leukemia
https://en.wikipedia.org/wiki/B-cell_chronic_lymphocytic_leukemia
https://en.wikipedia.org/wiki/B-cell_chronic_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Acute_lymphoblastic_leukaemia
https://en.wikipedia.org/wiki/Acute_lymphoblastic_leukaemia
https://en.wikipedia.org/wiki/Acute_myeloid_leukemia
https://en.wikipedia.org/wiki/Acute_myeloid_leukemia
https://en.wikipedia.org/wiki/Acute_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Acute_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Acute_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Chronic_myelogenous_leukemia
https://en.wikipedia.org/wiki/Chronic_myelogenous_leukemia
https://en.wikipedia.org/wiki/Chronic_myelogenous_leukemia
https://en.wikipedia.org/wiki/Non-Hodgkin%27s_lymphoma
https://en.wikipedia.org/wiki/Non-Hodgkin%27s_lymphoma


Chapter 1 

 

  Srinivasulu Cherukupalli                              15                                                     UKZN-2018 
  

Dabrafenib 

 

Non small-cell lung 

cancer. 

Dasatinib 

 

Chronic myelogenous 

leukemia, acute 

lymphoblastic 

leukemia. 

Fludarabine 

 

Leukemia and 

lymphoma. 

Gemcitabine 

 

Breast cancer, 

ovarian cancer, non-

small cell lung 

cancer, pancreatic 

cancer. 

Imatinib 

 

Chronic myelogenous 

leukemia and acute 

lymphocytic 

leukemia. 

Ibrutinib 

 

Mantle cell 

lymphoma, chronic 

lymphocytic 

leukemia, and 

Waldenström's 

macroglobulinemia. 

https://en.wikipedia.org/wiki/Non_small-cell_lung_cancer
https://en.wikipedia.org/wiki/Non_small-cell_lung_cancer
https://en.wikipedia.org/wiki/Chronic_myelogenous_leukemia
https://en.wikipedia.org/wiki/Chronic_myelogenous_leukemia
https://en.wikipedia.org/wiki/Acute_lymphoblastic_leukemia
https://en.wikipedia.org/wiki/Acute_lymphoblastic_leukemia
https://en.wikipedia.org/wiki/Acute_lymphoblastic_leukemia
https://en.wikipedia.org/wiki/Leukemia
https://en.wikipedia.org/wiki/Lymphoma
https://en.wikipedia.org/wiki/Breast_cancer
https://en.wikipedia.org/wiki/Ovarian_cancer
https://en.wikipedia.org/wiki/Non-small_cell_lung_cancer
https://en.wikipedia.org/wiki/Non-small_cell_lung_cancer
https://en.wikipedia.org/wiki/Non-small_cell_lung_cancer
https://en.wikipedia.org/wiki/Pancreatic_cancer
https://en.wikipedia.org/wiki/Pancreatic_cancer
https://en.wikipedia.org/wiki/Chronic_myelogenous_leukemia
https://en.wikipedia.org/wiki/Chronic_myelogenous_leukemia
https://en.wikipedia.org/wiki/Acute_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Acute_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Acute_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Mantle_cell_lymphoma
https://en.wikipedia.org/wiki/Mantle_cell_lymphoma
https://en.wikipedia.org/wiki/Chronic_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Chronic_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Chronic_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Waldenstr%C3%B6m%27s_macroglobulinemia
https://en.wikipedia.org/wiki/Waldenstr%C3%B6m%27s_macroglobulinemia
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Ribociclib 

 

Breast cancer 

Mercaptopurine 

 

Acute lymphocytic 

leukemia, chronic 

myeloid leukemia 

Crohn's disease. 

Osimertinib 

 

Non-small-cell lung 

cancer. 

Pazopanib 

 

Renal cell carcinoma 

and soft tissue 

sarcoma. 

Tioguanine 

 

Acute myeloid 

leukemia (AML), 

acute lymphocytic 

leukemia. 

Nilotinib 

 

Chronic myelogenous 

leukemia. 

Trifluridine 

 

 

Colorectal cancer 

https://en.wikipedia.org/wiki/Breast_cancer
https://en.wikipedia.org/wiki/Acute_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Acute_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Chronic_myeloid_leukemia
https://en.wikipedia.org/wiki/Chronic_myeloid_leukemia
https://en.wikipedia.org/wiki/Crohn%27s_disease
https://en.wikipedia.org/wiki/Non-small-cell_lung_cancer
https://en.wikipedia.org/wiki/Non-small-cell_lung_cancer
https://en.wikipedia.org/wiki/Renal_cell_carcinoma
https://en.wikipedia.org/wiki/Soft_tissue_sarcoma
https://en.wikipedia.org/wiki/Soft_tissue_sarcoma
https://en.wikipedia.org/wiki/Acute_myeloid_leukemia
https://en.wikipedia.org/wiki/Acute_myeloid_leukemia
https://en.wikipedia.org/wiki/Acute_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Acute_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Chronic_myelogenous_leukemia
https://en.wikipedia.org/wiki/Chronic_myelogenous_leukemia
https://en.wikipedia.org/wiki/Colorectal_cancer
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tipiracil 

 

Colorectal cancer 

Ceritinib 

 

Metastatic non-small 

cell lung cancer. 

Table 3. Pyrimidine/fused pyrimidine containing marketed drugs as anticancer agents 

2     RATIONALE OF OUR RESEARCH 

From our literature review, it was noted that countries like Africa, Northern America, Eastern Asia, 

Central, Eastern Europe, and Australia/New Zealand carry a massive burden of cancer making it a 

multifaceted disease affecting every region of the world. Clinicians handling the cancer cases, 

frequently encounter significant challenges such as lack of clinical experience, adverse events, lack of 

patients adherence, inadequate availability diagnostics or second line drugs, thus augmenting the risk 

of drug resistance. Therefore, after considering all the above mentioned facts, a robust and diverse drug 

discovery and development approach needs to be implemented to fill the pipeline with potential leads 

as well as developing new drug molecules against the new cancer targets. One should also look for 

extensive exploitation of chemical space and optimize lead hits for effective cancer drugs for future. 

Scaffolds such as nitrogen containing heterocyclic compounds have been widely known to display 

anticancer activity. One such scaffold is “Purine” which has been widely used as a building block for 

developing various anticancer drugs. Bioisosteric replacement of purines has resulted in several 

potential anticancer drugs like roscovitine, dinaciclib, nelarabine, cladribine, etc. Similarly, 

abemaciclib, brigatinib, capecitabine, etc, are examples of some of the significant anticancer drugs 

derived from pyrimidine scaffold39. Thus, bioisosteric replacement is an important tool/technique in 

developing potential anticancer drugs. Pyrazolo[3,4-d]pyrimidine is one such scaffold that could be 

used as an bioisostere in developing new potential anticancer drugs. Hence, in an effort to identify new 

leads, a pyrazolo[3,4-d] pyrimidine scaffold was exploited.  

https://en.wikipedia.org/wiki/Colorectal_cancer
https://en.wikipedia.org/wiki/Metastatic
https://en.wikipedia.org/wiki/Non-small_cell_lung_cancer
https://en.wikipedia.org/wiki/Non-small_cell_lung_cancer
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Structural isomers of pyrazolopyrimidine 

Fusion of pyrazole with the pyrimidine ring results in the formation of a bicyclic system known as 

“pyrazolopyrimidine”. Approximately five different structural isomers of this bicyclic system are 

known, such as pyrazolo[1,5-a]pyrimidine, pyrazolo[4,3-d]pyrimidine, pyrazolo[3,4-d]pyrimidine, 

pyrazolo[5,1-b]pyrimidine, and pyrazolo[1,5-c]pyrimidine. These isomers vary by the position of 

nitrogen, degree of saturation or unsaturation, or the number of nitrogen’s in the pyrazole nucleus.  

Form our extensive literature survey, it was noted that pyrazolo[3,4-d]pyrimidine is a versatile and 

pharmacologically significant scaffold. Pyrazolo[3,4-d]pyrimidine is also known for its diverse of 

biological activities namely anticancer, anti-inflammatory, antibacterial, antiviral and antifungal 

properties to name but a few. However, there were only few research articles on pyrazolo[3,4-

d]pyrimidines as specific CDK2 inhibitors.  Thus we envisaged to further exploit pyrazolo[3,4-

d]pyrimidine as potential CDK2 inhibitors. We aimed to design and synthesize a library of novel  

pyrazolo[3,4-d]pyrimidine as potential anticancer agents keeping in mind the active site of CDK2 

enzyme as well as the core structural features highly active ligands against kinases family. The 

paragraphs below outlines our work plan in brief. 

➢ Our comprehensive literature search revealed that there were no comprehensive reviews 

published on structural isomers of pyrazolopyrimidines such as pyrazolo[1,5-a]pyrimidine and 

pyrazolo[4,3-d]pyrimidine. Hence we envisioned to write a review on synthetic and medicinal 

aspects of pyrazolo[1,5-a]pyrimidine and pyrazolo[4,3-d]pyrimidine with special emphasis on 

structure-activity relationship studies. 
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➢ Phenethyl and pentane groups are essential moieties in drug discovery. The derivatives from 

these moieties are well known to possess varied range of activities such as anti-inflammatory, 

anticancer, anti-HIV, antibacterial, and anti-inflammatory. However, there were no reports on 

phenethyl/pentane containing pyrazolo[3,4-d]pyrimidines as anticancer agents. Therefore, we 

attempted to synthesize pyrazolo[3,4-d]pyrimidine analogs incorporating phenethyl/pentane 

groups as potential anticancer agents.  

➢ Ring systems such as furan, benzofuran and thiphene are pharmacologically active five and six 

membered heterocycles, which contain oxygen and sulphur heteroatoms. These vital core 

structures have been extensively investigated for numerous biological properties namely 

anticancer, antitubercular, anti-inflammatory, antimicrobial, antiviral and anticonvulsant. In 

this chapter we attempted to synthesize a number of substituted benzoate derivatives as 

potential CDK2 inhibitors by incorporating different acid chlorides at the C-4 position of the 

pyrazolo[3,4-d]pyrimidine scaffold while keeping phenethyl/pentane groups at C-6 of the 

scaffold.  

➢ Phenylcarbamoyl acetamide is a well-known six membered heterocycle, which contains urea 

functional group. This vital core structure has been known to exhibit a significant range of 

biological activities namely, anticancer, anti-inflammatory, antibacterial, antifungal, antiviral, 

antidiabetic, anti-atherosclerosis, and antimycobacterial. Therefore, in this chapter we 

anticipated to synthesize phenylcarbamoyl acetamide derivatives of pyrazolo[3,4-d]pyrimidine 

as potential anticancer agents.  

 

3     OBJECTIVES OF THE PRESENT RESEARCH WORK 

Cancer is affecting humans at an alarming rate. New drugs with an ability to overcome the 

drawbacks of existing anticancer chemotherapy are of high priority. The field of medicinal 

chemistry is contributing implicitly to the process of drug discovery and development. Synthesis of 

novel chemical entities, modification of existing scaffolds, combining two or more bioactive 

molecules (hybridization), replacing groups with bioisosteres, and optimization of natural 

compounds to identify promising leads are some of the interesting themes in the field of medicinal 

chemistry. Heterocyclic scaffolds having one or more hetero atoms have become crucial in drug 

discovery, which is evident from the fact that more than 95% of the marketed drugs are built on 

heterocyclic scaffolds. 

Based on the abovementioned, the aims and objectives of the present research work are: 
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1. To carry out a comprehensive literature review/assessment for identification of new chemical 

entities as anticancer activity (Identification of a research gap and defining the scope of 

proposed work). 

2.  To synthesize a novel series of pyrazolo[3,4-d]pyrimidine by incorporating certain structural 

features/groups that could lead to hit molecules as CDK2 inhibitors: 

a. Phenethyl/pentane/hexane derivatives. 

b. Furan, thiophene and benzofuran etc. derivatives  

c. Phenylcarbamoyl acetamide derivatives. 

3. To purify the synthesized compounds by chromatographic techniques namely column (flash) 

chromatography. 

4. To establish the structures of synthesized compounds by physicochemical and spectral analysis 

(IR, 1H NMR, 13C NMR and High-resolution mass spectrometry). 

5. To carry out the preliminary biological evaluation of the synthesized compounds for their 

anticancer activity.  

6. Molecular docking studies to determine the binding affinity of these molecules against CDK2 

active site. 

7. To generate a valid SAR based on the data obtained from the CDK2 inhibitory activity, 

molecular docking studies and the chemical structures of the inhibitors. 

8. Based on this research to develop a future strategy to improve/optimize the lead molecules as 

potential CDK2 inhibitors. 

 

 

 

The subsequent chapters unveils the extensive literature review on pyrazolo[1,5-a]pyrimidine, 

pyrazolo[4,3-d]pyrimidine scaffolds with emphasis on novel synthetic routes, pharmacological activity 

and SAR. 
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CHAPTER 2 

An insight on synthetic and medicinal aspects of pyrazolo[1,5-a]pyrimidine 

scaffold   

Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, 

Durban 4000, South Africa 
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Abstract:  

Pyrazolo[1,5-a]pyrimidine scaffold is one of the privileged heterocycles in drug discovery. Its 

application as a buliding block for developing drug-like candidates has displayed broad range of 

medicinal properties such as anticancer, CNS agents, anti-infectious, anti-inflammatory, CRF1 

antagonists and radio diagnostics. The structure-activity relationship (SAR) studies have acquired 

greater attention amid medicinal chemists, and many of the lead compounds were derived for various 

disease targets. However, there is plenty of room for the medicinal chemists to further exploit this 

privileged scaffold in devloping potential drug candidates. The present review briefly outlines relevant 

synthetic strategies employed for pyrazolo[1,5-a]pyrimidine derivatives. It also extensively reveals 

significant biological properties along with SAR studies. To the best of our understanding current 

review is the first attempt made towards the compilation of significant advances made on pyrazolo[1,5-

a]pyrimidines reported since 1980s. 
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1    Introduction 

Heterocycles hold a key point in organic and medicinal chemistry as they act as a bridge between life 

sciences and biochemical investigations. A significant amount of contemporary investigation is being 

currently pursued on these compounds world wide. Aza-heterocycles are essential scaffolds for 

generating wide range of chemical libraries/drug-like candidates for their applications to obtain desired 

theapeutic/pharmacological activity. Among all the aza-heterocycles, pyrazolo pyrimidine is one such 

essential drug-like nucleus bearing enormous biologically applicability [1]. From historic point of view, 

pyrazolo pyrimidines were first described as adenosine receptor antagonists [2]. Numerous isomeric 

forms of pyrazolo pyrimidine namely pyrazolo[5,1-b]pyrimidines, pyrazolo[5,1-a]pyrimidines, 

pyrazolo[4,3-d]pyrimidines, pyrazolo[1,5-c]pyrimidines and pyrazolo[3,4-d]pyrimidines are known 

[3]. Among all, pyrazolo[1,5-a]pyrimidine is a rigid bicyclic heterocycle core (Fig. 1) and has emerged 

a vital building block for medicinal compounds. The synthesis is accomplished by condensing 3 or 5-

amino pyrazoles with sodium salts of formyl ketones [4], 1,3-diketones [5,6], enaminones [7–9], 

acetoacetanilides [10], β-ketoesters [11], enamino-nitriles [12], β-ketoaldehydes [13], 3-oxo-2-

phenylpropanenitrile [14], dehydroacetic acid [15], malononitriles [16] and β,γ-unsaturated- γ-alkoxy-

α-keto esters [17].  

 

Fig. 1. The General structure of pyrazolo[1,5-a]pyrimidine. 

These numerous synthetic pathways have prompted medicinal scientists to discover several new drugs 

consisting of pyrazolo[1,5-a]pyrimidines as a core moiety. These are also known to be purine analogues 

with diverse biological applications as antimetabolites in purine bio-chemical interactions, 

antischistosomal, antitrypanosomal and sedative [18], anxiolytic [19], AMP phosphodiesterase 

inhibitors [20], benzodiazepine receptor ligands [21], HMG-CoA reductase inhibitors [22], KDR kinase 

inhibitors [23], COX-1, COX-2 selective inhibitors [24], HCV inhibitors [25], PET tumor imaging 

agents [26], serotonin 5-HT6 receptor antagonists [27], kinase inhibitors [28], HIV reverse transcriptase 

inhibitors [29], CCR1 antagonists [30], antimalarial and antifungal activities [31]. Several marketed 

drugs with pyrazolo[1,5-a]pyrimidine nucleus such as zaleplon, indiplon [32], dinaciclib [33], 

dorsomorphin [34], ocinaplon [1], anagliptin [35], lorediplon and pyrazophos [36] are illustrated in Fig. 
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2 with their respective structures and the approved activities. Inspired by these observations, in this 

review we summarize and represent the latest progress on synthetic strategies and medicinal properties 

of pyrazolo[1,5-a]pyrimidine derivatives, along with  special emphasis on SAR of aforementioned 

derivatives. 

 

Name of the Drug Structure Approved activity 

Zaleplon 

 

Insomnia 

Indiplon 

 

Hypnotic and sedative  

Dinaciclib 

 

Melanoma, chronic 

lymphocytic leukemia, 

pancreatic cancer  

Dorsomorphin 

 

Bone and cartilage  
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Ocinaplon 

 

Anxiolytic, sedative 

and amnestic  

Anagliptin 

 

Type 2 diabetes 

mellitus 

Lorediplon 

 

Insomnia 

Pyrazophos 

 

Fungicide and 

insecticide  

 

Fig. 2. Marketed drugs containing pyrazolo[1,5-a]pyrimidine nucleus. 

2    Synthetic approaches for pyrazolo[1,5-a]pyrimidine scaffold 

Synthesis of fused pyrimidine compounds was first reported in mid-1950’s [2]. Since then thousands 

of derivatives have been synthesized by applying numerous synthetic strategies and analysed for their 

pharmacological properties. The various strategies for synthesis of pyrazolo[1,5-a]pyrimidines have 

been presented in Fig. 3. 

One of the most common reagent, i.e. substituted 1H-pyrazole-5-amine (i-xviii), was used to obtain the 

target pyrazolo[1,5-a]pyrimidines (P1-P18) through numerous synthetic routes. Xu et al. prepared the 

desired product P1 by cyclization of i with N-methyluracil in the presence of sodium ethoxide as a 

Michael acceptor in ethanol (route-a) [37]. Li and co-workers synthesized P2 by allowing the reaction 

between ii and ethyl 4-chloroacetoacetate in acetone under refluxed conditions (route-b) [38]. Wang et 

al. reacted 5-amino-1H-pyrazol-4-yl thiophen-2-yl methanone (iii) with methyl (E)-3-(3-
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(dimethylamino)acryloyl)benzoate to afford pyrazolo[1,5-a]pyrimidine scaffold P3 under reflux 

conditions in acetone (route-c) [7]. Fraley et al. have accomplished the desired product P4 by treating 

4-phenyl-1H-pyrazol-5-amine (iv) with 3-hydroxy-2-phenylacrylaldehyde in acidic condition (route-d) 

[39]. Paruch et al. reported one pot synthesis of P5 by reacting v with methyl-3-oxobutanoate, 

phosphorus oxychloride and N,N-dimethylaniline under inert conditions (route-e) [40]. Gommermann 

and co-workers carried out the cyclization reaction of 4-(4-(4-methylpiperazin-1-yl)phenyl)-1H-

pyrazol-5-amine (vi) with 3-(dimethylamino)-2-(4-nitrophenyl)acrylonitrile to achieve P6 under acidic 

conditions (1.25 M HCl in ethanol) in acetone (route-f) [41]. Frey and co-workers established cyclo-

condensation reaction between 3-amino-4-bromo pyrazole (vii) with 3-oxo-2-phenyl propanenitrile to 

get target compound P7 (route-g) [12]. Selleri et al. obtained P8 via treating viii with ethyl-3-hydroxy-

2-(thiophen-3-yl)acrylate (route-h) [42]. Labroli and co-workers introduced cyclization reaction of 3-

amino pyrazole (ix) with tert-butyl 3-(3-methoxy-3-oxopropanoyl)piperidine-1-carboxylate to afford 

P9 (route-i) [43]. Engers et al. reported condensation reaction of 1H-pyrazole-5-amine (x) with 2-(4-

methoxyphenyl)malonaldehyde to achieve product P10 under microwave irradiation conditions (route-

j) [44].  
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Fig. 3. Synthetic approaches for pyrazolo[1,5-a]pyrimidines. 
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Fig. 3 (continued). Synthetic approaches for pyrazolo[1,5-a]pyrimidines. 

Dwyer et al. acquired the final compound P11 by the condensation reaction of 3-aminopyrazole (xi) 

with 1,3-dimethyluracil (route-k) [45]. Enany et al. attempted the reaction between xii and malanonitrile 

to produce P12 in presence of organic base like triethylamine (route-l) [46]. Kosugi and co-workers 

acquired P13 by treating xiii with 2-substituted malonic acid diester in the presence of sodium ethoxide 

in ethanol under reflux conditions (route-m) [47]. Campton et al. reported the reaction of xiv with 

1,1,3,3-tetramethoxypropane to attain the desired product P14 (route-n) [48]. Selleri and co-workers 

attempted condensation reaction between 2-(5-amino-3-(p-tolyl)-1H-pyrazol-4-yl)acetic acid (xv) and 

4,4-dimethoxy-2-butanone to attain P15 in ethanol (route-o) [19]. Ivachtchenko et al. blended  N3–
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methyl-4-(phenylsulfonyl)-4H-pyraole-3,5-diamine (xvi) and 3-aminobut-2-enenitrile in acetic acid to 

give P16 (route-p) [49]. Patnaik and co-workers reported condensation of ethyl 5-amino-1H-pyrazole-

4-carboxylate (xvii) with pentane-2,4-dione in the presence of aqueous NaOH and CH3OH in acetic 

acid yielding P17 (route-q) [50]. Tabrizi et al. offered synthesis of P18 employing cyclization of xviii 

with diethyl ethoxymethylenemalonate (route-r) [51]. 
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Fig. 3 (continued). Synthetic approaches for pyrazolo[1,5-a]pyrimidines. 
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Fig. 3 (continued). Synthetic approaches for pyrazolo[1,5-a]pyrimidines. 

 

3    Pharmacology 

During the course of literature study on pyrazolo pyrimidines such as pyrazolo[1,5-a]pyrimidines, 

pyrazolo[4,3-d]pyrimidines, pyrazolo[3,4-d]pyrimidines and pyrazolo[5,1-b]pyrimidines, it has been 

identified that pyrazolo[1,5-a]pyrimidines emerged as a promising lead agents against several ailments 

namely cancer, malaria, fungal infections, inflammation and etc. The following discussions illustrate 

the pharmacological applications of pyrazolo[1,5-a]pyrimidines against various biological properties. 
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It is quite evident that variations in functionalities on this scaffold brings about diverse biological 

activities. 

3.1    Anti-cancer agents 

3.1.1    Anti-proliferatives    

Cell proliferation is the process resulting in a progression of cell number and is a balance between cell 

divisions and cell death. Deregulation in cell proliferation or suppression of cell death is a hallmark 

cause of varied clinical consequences including several forms of cancers. These cancer cells may abstain 

the normal regulatory control of cell division, thus failing to undergo appropriate cell death resulting 

into tumorigenic state [52]. Drugs or chemical entities that selectively kill these aberrant cells have 

emerged as promising antiproliferative agents in cancer drug discovery [53]. 

In 2005, Gopalsamy et al. reported a series of pyrazolo[1,5-a]yrimidin-7-yl phenyl amides as p21 

chemoselective compounds for anti-proliferative activity. A p21 protein is a downstream effector of 

p53 gene, a major regulator of the DNA damage thus inhibiting cyclin dependent kinases (CDK) activity 

arresting the progression of cell cycle. The pharmacological evaluation was performed against HCT116 

and 80S14 cell lines. Among the tested series, compound 1 exhibited potential activity and SAR study 

revealed the significance of R group as shown in Fig. 4 [54]. 

 

C. No X R1 HCT116 80S14 Ratio 

IC50 (µM) IC50 (µM)  

1 NHCONH i-propyl 2.7 0.089 30 

Fig. 4. SAR of p21 chemoselective pyrazolo[1,5-a]pyrimidin-7-yl-phenyl amides and the anti-

proliferative activity of the representative compound 1. 
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In 2006, Li and co-workers introduced a series of 3–cyano-5,7-disubstituted pyrazolo[1,5-a]pyrimidine 

derivatives and evaluated them for anti-tumor activity. Among the series, derivative 2 presented 

excellent anti-tumor activity against human liver (Bel-7402) and human fibro sarcoma (HT-1080) 

cancer cell lines. SAR studies revealed that compound with bis(trifluoromethyl)aniline at C-7 and 

piperdinyl at C-5 position enhanced anti-tumor activity as compared to other groups as displayed in 

Fig. 5 [38]. 

 

Fig. 5. SAR of amino alkoxy moiety containing pyrazolo[1,5-a]pyrimidines and anti-tumor activities 

of the representative compound 2. 

In 2007, Powell et al. discovered N-(3-(3-(thiophene-2-carbonyl)pyrazolo[1,5-a]pyrimidin-7-

yl)phenyl)cyclopropane carboxamide derivatives as anti-proliferative agents. SAR studies indicated 

that methyl group at position 2 (R3) and 6 (R2) was responsible for lower activity as shown in Fig. 6. 

Among the tested series, compound 3 exhibited promising activity against HCT116 (p21+/+) and 80S14 

(p21-/-) cell lines [55]. 

 

C. 

No 

R1 R2 R3  R4 p 21+/+ 

IC50 (µM) 

p 21-/- 

IC50 (µM) 

Ratio 

C. No R1 NR2R3 Bel-7402 HT-1080 

IC50 (µM) IC50 (µM) 

2 3,5-di(trifluoromethyl)phenyl piperdinyl 13.7 17.6 
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3 H H H  cyclopropyl 11 0.45 23 

Fig. 6. SAR and anti-proliferative activity of pyrazolo[1,5-a]pyrimidine derivatives. 

In 2009, Wang et al. derivatized a series of pyrazolo[1,5-a]pyrimidin-7-ylphenyl amides and evaluated 

them as anti-proliferative agents. SAR was carried out to correlate the importance of numerous 

substituents with the observed activity. From the series, compound 4 exhibited excellent potency against 

six colon cell lines (Fig. 7), namely HCT116 (p21+/+), 80S14 (p21-/-), LoVo, SW620, DLD1 and HT-

29 [7] . 

 

C. No Ar/Het R Y p 21+/+ p 21-/- LoVo SW620 DLD1 HT-29 Ratio 

IC50 

(µM) 

IC50 

(µM) 

IC50 

(µM) 

IC50 

(µM) 

IC50 

(µM) 

IC50 

(µM) 

IC50 

(µM) 

4 1,3-Ph-

4-F 

i-Pr O 2.3 0.035 0.012 0015 0.015 0.015 65 

Fig. 7. pyrazolo[1,5-a]pyrimidin-7-ylphenyl amides and their effect on colon cell lines. 

In 2009, Ahmed et al. reported synthesis of novel compound 5 [N-(4-chlorophenyl)-2-(methylthio)-5-

(naphthalene-2-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide] by reacting sodium salt of 3-hydroxy-1-

(2-naphthyl)prop-2-en-1-one with substituted 3-aminopyrazole as anti-tumor agent. The 

pharmacological evaluation was carried out at different concentrations against four cell lines, namely 

HCT116 (colon carcinoma), HepG2 (liver carcinoma cell line), Hela (cervix carcinoma cell line) and 

MCF7 (breast carcinoma). Results revealed that compound 5 exhibited effective toxicity against 

HCT116 and Hela cell lines as shown in Fig. 8 [56].  
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Fig. 8. Anti-tumor activity of N-(4-chlorophenyl)-2-(methylthio)-5-(naphthalene-2-yl) pyrazolo[1,5-

a]pyrimidine-3-carboxamide. 

In 2010, Abdel-Aziz et al. described a facile synthesis of thiazolo[3,2-a]benzimidazole linked 

pyrazolo[1,5-a]pyrimidines and performed in vitro anti-tumor activity against CaCo-2 (colon cancer 

cell line) and cytotoxicity against BHK (fibroblast cell line). SAR studies revealed the role of different 

functional groups and their effect on anti-tumor activity and cytotoxicity, which is presented in Fig. 9. 

All the compounds exhibited good activity. However, compound 6 showed potential activity for both 

the cell lines CaCo-2 and BHK [57]. 

 

C. No R1 R2 
CaCo-2 

IC50 (µg/mL) 

BHK 

IC50 (µg/mL) 

6 NH2 F 0.5 2.3 

C. No 
HepG2 MCF7 HCT116 Hela 

IC50 (µg/mL) IC50 (µg/mL) IC50 (µg/mL) IC50.(µg/mL) 

5 1.88 0.47 0.54 0.40 
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Fig. 9. SAR and anti-tumor properties of thiazolo[3,2-a]benzimidazole linked pyrazolo[1,5-

a]pyrimidines. 

In 2011, El-Enany et al. described the synthesis of new pyrazolo[1,5-a]pyrimidine-3-carbonitriles with 

7-substituted amino groups along with anti-tumor activity. Compound 7 [7-cyclohexylamino-2-

methylthio-5-phenylpyrazolo[1,5-a]pyrimidine-3-carbonitrile] of this series displayed high potency 

against HCT116 cell line. SAR study revealed that the presence of functional groups at C-7 was 

essential for anti-tumor activity (Fig. 10) [46]. 

 

C. No R HCT116 IC50 (µM) 

7 C6H11 0.0020 

Fig. 10. SAR of pyrazolo[1,5-a]pyrimidine-3-carbonitriles as anti-tumor agents. 

In 2012, Metwally et al. synthesized novel substituted pyrazolo[1,5-a]pyrimidine compounds and 

evaluated them for their anti-tumor and antioxidative properties. SAR study presented the significance 

of substituents for favourable activity. However, outcome of this work concluded that compound 8 [(E)-

1,5-dimethyl-4-((2-methyl-7-phenylpyrazolo[1,5-a]pyrimidin-3-yl)diazenyl)-2-phenyl-1,2-dihydro-

3H-pyrazol-3-one] showed promising potency against ehrlich ascites carcinoma cells (EAC) at different 

effective doses (ED) (Fig. 11) [58].  

 

C. 

No 
X EAC IC50 (µg/mL) ED100 (µg/mL) ED50 (µg/mL) ED25 (µg/mL) 
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8 H 3.13 99.8 87.1 70.2 

Fig. 11. SAR of pyrazolo[1,5-a]pyrimidine derivative as anti-tumor agent.  

3.1.2    CDK Inhibitors 

Cyclin-dependent kinases (CDKs) are a group of serine/threonine or mammalian heterodimeric kinase 

enzymes that are associated with regulation of cell-cycle progression by phosphorylating proteins 

involved in cell division. Regulatory subunits of these enzymes play a crucial role in controlling cell 

cycle, cell division and transcription mechanism in eukaryotes and hence regulate DNA replication 

process. Any disruptions in routine activity or deregulations result in numerous tumors, thus making 

the critical target for anticancer therapy. CDK inhibitors oversee the regulation of CDKs, and hence 

control cell cycle progression [59,60]. 

In 2005, Williamson et al. attempted structure-guided synthesis of pyrazolo[1,5-a]pyrimidines  as 

CDK2 inhibitors. Among the synthesized series, compounds 9-11 exhibited potent activity against 

tested enzymes CDK2 and GSK-3β. GI50 was also determined on a cancer cell line HCT 116. A close 

SAR observation (Fig. 12) revealed the effect of substituents [61]. 

 

C. No X R1 R2 
CDK2 GSK-3β HCT 116 

IC50 (µM) IC50 (µM) GI50 (µM) 

9 NH Br 

 

0.002 8.7 0.34 



Chapter 2 

 

  Srinivasulu Cherukupalli                                     41                                                            UKZN-2018 
 

10 NH Cl 

 

0.011 4.0 0.12 

11 NH Br 

 

0.016 5.3 0.08 

Fig. 12. SAR of pyrazolo[1,5-a]pyrimidines as CDK2 inhibitors. 

In 2007, Paruch and co-workers prepared pyrazolo[1,5-a]pyrimidine derivatives as orally available 

CDK2 inhibitors from suitable acetonitrile and β-keto esters. Among the synthesised molecules, 

compound 12 exhibited excellent potency against CDK2/cyclin A, GSK-3β and Thym. Further 

screening against a panel of around 50 kinases (e.g. JNK 1, PKB, PDK1, ROCK-II) and 17 tumor cell 

lines was performed. The outcome of this work concluded that compound 12 was orally active and 

exhibited efficacy in A2780 mouse tumor xenograft model. SAR study depicting various substituents 

is elaborated in Fig. 13 [40]. 

 

C. 

No 
R1 R2 R3 

CDK2/CyclinA GSK-3β Thym 

IC50 (µM) IC50 (µM) IC50 (µM) 

12 Br 

 

CH2-3Pyr-O 0.013 0.13 0.21 

 

Animal 

model 
Dose, mpkδ vehicle AUC (µM h) Cmax (µM) Tmax (h) 

Mouse 
40 

20 % HPBCDϕ 
17.9 6.81 2.0 

mpkδ: milligrams per kilograms; HPBCDϕ: Hydroxy propyl-beta-cyclodextrin 
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Fig. 13. SAR studies and pharmacokinetic properties of pyrazolo[1,5-a]pyrimidine derivatives as orally 

available CDK2 inhibitors. 

In 2010, Heathcote et al. reported synthesis and biological evaluation of compound 13 [(2S,3S)-3-((7-

(benzylzmino)-3-isopropylpyrazolo[1,5-a]pyrimidine-5-yl)amino)butane-1,2,4-triol] as effective 

inhibitor for CDK1, 2, 5 and 9 kinases. The cell line studies of this compound showed potent activity 

against various CDKs, namely CDK9, CDK2, CDK5, CDK1 and CDK7. This cell based study also 

displayed inhibition of phosphorylation of CDK substrate. The pharmacokinetic studies concluded that 

13 is a potent and novel CDK inhibitor with a potential for oral delivery in cancer patients. SAR studies 

identified the significant role of side chain, hydroxyl group along with terminal amine group as depicted 

in Fig. 14 [62]. 

 

C. No Kinase IC50 (µM) (SD) 

13 

CDK1 0.033 (0.01) 

CDK2 0.003 (0.001) 

CDK4 20 (1.3) 

CDK5 0.03 (0.006) 

CDK6 35.5 (1.3) 

CDK7 0.25 (0.04) 

CDK9 0.09 (0.01) 

Fig. 14. SAR studies of (2S,3S)-3-((7-(benzylamino)-3-isopropylpyrazolo[1,5-a]pyrimidine-5-

yl)amino)butane-1,2,4-triol as CDK inhibitors. 

In 2013, Kamal et al. introduced a series of 2-aminobenzothiazole linked pyrazolo[1,5-a]pyrimidines 

and determined their anticancer activities against five cell lines A549, DU-145, ACHN, MCF-7 and 

Hela. From series, compounds 14 and 15 displayed promising activity with IC50 values ranging from 
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2.01 to 7.07 and 1.94 to 3.46 µM respectively. Further, highly active compounds were screened on 

A549 cell line to know the molecular events involved in G2/M cell cycle and the expression of CDKs. 

Results suggested that the most active compound arrested G2/M cell cycle and reduced the expression 

level of CDKs. Fig. 15 illustrates a brief SAR study depicting the effect of various substituents on the 

cancer activity [63]. 

 

C. No R1 R2 R3 
A549 DU-145 MCF-7 ACHN Hela 

IC50 (µM) IC50 (µM) IC50 (µM) IC50 (µM) IC50 (µM) 

14 OCH3 OCH3 OCH3 2.01 3.16 2.88 4.36 7.07 

15 H F H 1.94 2.08 2.29 3.46 2.63 

Fig. 15. SAR and effect of 2-aminobenzothiazole linked pyrimidines on human cancer cell lines.  

In 2013, Li et al. selected pyrazolo[1,5-a]pyrimidine type cyclin A/CDK2 inhibitors and carried out an 

inclusive in silico investigation by three dimensional quantitative structure-activity relationship (3D-

QSAR), MD simulations and docking experiments. The results of CoMSIA (SEE = 0.347, Q2 = 0.516, 

Rpre
2 = 0.914, Rncv

2 = 0.912, Rm
2 = 0.843, SEP = 0.812) with ten constituents (16-25) by steric, 

hydrophobic and H-bond donor showed internal and external predictive capacity. SAR studies were 

developed to determine the role of different substituents on the activity as depicted in Fig. 16 [33]. 
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C. 

No 
R1 R2 R3 R4 pIC50 (M) 

16 H H 

 

H 5.11 

17 H H 

  

6.19 

18 

 

H 

  

4.51 

19 H Et 

  

6.48 

20 H 3-pyridyl 

  

5.82 

21 H Br 

 

 

5.55 

22 

 

H Ph c-Pr 7.15 

23 

 

H Ph S(CH2)2NHAc 8.70 
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24 Pr H 

 

Br 6.79 

25 CH2-3Pyr-O H 

 

Br 7.89 

Fig. 16.  SAR of pyrazolo[1,5-a]pyrimidine type CDK2 inhibitors. 

In 2015, Phillipson et al. reported pyrazolo[1,5-a]pyrimidine derivatives as effective CDK9 inhibitors. 

Among all the synthesized molecules, compound 26 [N-(2-(5-chloropyrazolo[1,5-a]pyrimidin-3-

yl)ethyl)-5-cyano-N,2-dimethylbenzenesulfonamide] showed significant potency against CDK9, 

CDK7, P13Kα and FLT3 enzymes. SAR observations suggest the importance of functionalities as 

illustrated in Fig. 17 [64] 

 

C. No R X IC50 (nM) 

   CDK9 CDK7 P13Kα FLT3 MV4:11 

26 CN 

 

203 >10,000 >10,000 219 0.177 

Fig. 17. SAR and pharmacological activities of compound 26 as CDK9 inhibitor. 

3.1.3    c-Src, lck and chk inhibitors 

Src family kinase (SFKs) is a non-receptor tyrosine kinase that plays a crucial role in tumor growth 

[65]. SFKs consists nine family members that share alike structural and functional features. Their over-

expressed or elevated levels is known to be linked to cancer progression by mediating or promoting 

signal pathways of oncogenesis [66]. 

Lymphocyte-specific protein tyrosine kinase (Lck), a member of the Src-family is a key activator 

enzyme playing role in signal transductions essential in T-cell differentiation and proliferation. 

https://en.wikipedia.org/wiki/Non-receptor_tyrosine_kinase
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Functions of T-cell are widely implicated in malignancies and autoimmune diseases. Lck inhibitors 

necessarily inhibit T-cell activation and are therefore widely used in T-cell mediated responses 

including cell proliferation and auto immune responses [67,68]. 

Serine/threonine checkpoint kinases (CHKs) are intracellular kinases that regulate checkpoints in 

cellular growth cycles [69]. CHKs specifically control both the G2/M and intra-S checkpoints and hence 

play a key role in cell-cycle progression [70]. 

In 2008, Makaiyama et al. reported synthesis of pyrazolo[1,5-a]pyrimidines as c-Src kinase inhibitors 

to decrease IKr channel blockade. Among all, compound 27 [7-((S)-1-benzyl-2-hydroxyethylamino)-5-

cyclopropyl-2-(3,5-dimethoxyphenylaminopyrazolo[1,5-a]pyrimidine-3-carboxamine] surfaced as the 

most potent structure having good activity with less IKr channel blockade and excellent in vivo efficacy 

in middle cerebral artery (MCA) in rat. SAR study (Fig. 18) revealed the effect of incorporating 

different substituents on pyrazolo[1,5-a]pyrimidine scaffold for c-Src kinase activity [71]. 

 

C. 

No 
R1 R2 R3 c-Src ELISA IKr 

    IC50 (µM) 

% 

inhibition 

at 1 µM  

IC50 (µM) 
% 

inhibition 

27 

 

 

OCH3 0.003 100 0.1 23.4 

 

Animal 

Model 
AUC (µg h/mL) CI (mL/min/kg) t ½  (min) V ss (L/kg) 
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Rat 1.99 25 22 0.53 

Fig. 18. SAR and pharmacokinetic properties of (7-((S)-1-benzyl-2-hydroxyethylamino)-5-

cyclopropyl-2-(3,5-dimethoxyphenylamino)pyrazolo[1,5-a]pyrimidine-3-carboxamide. 

In 2010, Gommermann and co-workers reported the design and synthesis of pyrazolo[1,5-a]pyrimidine 

compounds as orally active inhibitors of  Lck. A SAR study towards an effective Lck activity and also 

for selectivity against Hck, cSrc and KDR is shown in Fig. 19. Among the series of compounds, 28 

[Isobutyl (4-(7-amino-3-(3-(piperzin-1-yl)pyrazolo[1,5-a]pyrimidin-6-yl)phenyl)carbamate] was 

optimized as active Lck inhibitor which also indicated excellent selectivity against Hck, cSrc and KDR 

[41]. 

 

C. No X 
Lck lance* cSrc lance Hck lance KDR 

IC50 (nM) IC50 (nM) IC50 (nM) IC50 (nM) 

28 NH, meta 7 642 310 2100 

*Lance is a trademark for assay kits by PerkinElmer, Inc. 

Fig. 19. SAR and selectivity values of Isobutyl(4-(7-amino-3-(3-(piperzin-1-yl)pyrazolo[1,5-

a]pyrimidin-6-yl)phenylcarbamate. 

In 2011, Dwyer et al. reported the synthesis of a series of pyrazolo[1,5-a]pyrimidine compounds as 

CHK1 and CDK2 inhibitors. Compound 29 [3-methyl-N-(3-(1-methyl-1H-pyrazol-4-yl)-5-(piperidin-

3-yl)pyrazolo[1,5-a]pyrimidin-7-yl)isothiazol-5-amine] emerged as the most active against CHK1 

enzyme and also displayed  selectivity against CDK2 enzyme. Single X-ray crystal structure of 

compound 29 bound to CHK1 protein was determined. Molecular docking studies of 29 presented 

significant interactions between pyrazolo[1,5-a]pyrimidine scaffold and CHK1 active site. Further, 

from SAR studies it was observed that substitution at C-7 was crucial for activity as shown in Fig. 20 

[11]. 
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C. No R 
CHK1 CDK2/Cyclin A 

IC50 (µM) IC50 (µM) 

29 

 

0.009 40 

Fig. 20. SAR and molecular interactions of 3-methyl-N-(3-(1-methyl-1H-pyrazol-4-yl)-5-(piperidin-3-

yl)pyrazolo[1,5-a]pyrimidin-7-yl)isothiazol-5-amine. 

In 2011, Labroli et al. reported the preparation and pharmacological properties of novel pyrazolo[1,5-

a]pyrimidines as CHK1 inhibitors. Compounds 30-32 from this series were highly potent against CHK1 

and CDK2. X-ray crystallographic studies of potent compound 31, revealed that the -NH2 group at C-7 

displayed strong hydrogen bonding interactions with the water molecule at the CHK1 enzyme active 

site. The SAR study is elaborated in Fig. 21 [43]. 
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C. No R3 
CHK1 CDK2/Cyclin A 

IC50 (µM) IC50 (µM) 

30 

 

0.007 0.84 

31 

 

0.007 2.4 

32 

 

0.005 0.44 

Fig. 21. SAR studies of 5-(3-aminocyclohexyl)-6-bromo-3-(1-methyl-1H-pyrazol-4-yl)pyrazolo[1,5-

a]pyrimidin-7-amines derivatives. 

3.1.4    B-Raf kinase inhibitors 

Rapidly accelerated fibrosarcoma (Raf) kinase is a class of serine/threonine protein kinases and a key 

component in growth and survival of the cell. It is also known to be an important constituent of Raf- 

MEK-ERK signalling pathway. B-Raf kinase is active in several human cancers and has therefore been 

a potential target for inhibition in cancer therapeutics [72-74]. 

In 2009, Gopalsamy and co-workers reported the synthesis of a series of novel pyrazolo[1,5-

a]pyrimidine-3-carboxylates and evaluated these compounds as B-Raf kinase inhibitors. In this series, 

compounds 33-35 exhibited potent activity. A brief SAR study of this series is presented in Fig. 22 [75]. 

 

C. 

No 
R1 R2 Linker (L) 

B-Raf kinase 

IC50 (µM) 



Chapter 2 

 

  Srinivasulu Cherukupalli                                     50                                                            UKZN-2018 
 

33 CONHCH2CH2N(C2H5)2 Cl NH-CO-NH 0.17 

34 CONH(CH2)3OCH3 Cl NH-CO-NH 0.27 

35 CONHCH2CH2-N-morpholinyl Cl NH-CO-NH 0.16 

Fig. 22. SAR study of pyrazolo[1,5-a]pyrimidine-3-carboxylates as potent B-Raf kinase inhibitors. 

In 2009, Berger et al. reported synthesis of novel 3-substituted pyrazolo[1,5-a]pyrimidin-7-yl)phenyl)-

3-(trifluoromethyl)benzamides as active B-Raf kinase inhibitors. Potent B-Raf kinase activity was 

observed for the compounds 36-38 from this series. Compounds were also tested against WM 266-4 

and HT29 cell lines and the results are shown in Fig. 23. From SAR studies, it was noted that higher 

potency was exhibited for compounds with basic amine residue at C-3 position (Fig. 23) [76]. 

 

C. 

No 
R1 

B-Raf HT29 WM 266-4 

IC50 (µM) IC50 (µM) IC50 (µM) 

36 4-Ph-CH2-N(CH3)2 0.024 0.78 0.92 

37 3-Pyridinyl-6-NHCH2CH2N(CH3)2 0.030 0.46 0.92 

38 3-Pyridinyl-6-N-methylpiperazine 0.044 0.31 0.74 

Fig. 23. SAR and B-Raf kinase activity of 3-substituted N-(3-(pyrazolo[1,5-a]pyrimidin-7-yl)phenyl)-

3-(trifluoromethyl)benzamides. 

In 2009, Grandi and co-workers reported the synthesis of 3,7-disubstituted pyrazolo[1,5-a]pyrimidines 

and evaluated them as B-Raf kinase inhibitors. SAR study revealed that the compounds with tropanes 
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at C-7, indazole at C-3 positions were well tolerated as depicted in Fig. 24. From the synthesized 

compounds, 39-41 exhibited good activity against B-Raf, A375 and WM266-4 cell lines [77]. 

 

C. No X R1 
B-Raf A375 WM266-4 

IC50 (µM) IC50 (µM) IC50 (µM) 

39 H COOC2H5 0.002 0.38 0.30 

40 Cl COOC2H5 0.0004 0.58 0.28 

41 F COOC2H5 0.0004 0.62 0.30 

Fig. 24. B-Raf kinase activity and SAR studies of disubstituted pyrazolo[1,5-a]pyrimidines. 

Wang et al. in 2009 reported a series of novel pyrazolo[1,5-a]pyrimidines and as B-Raf type-1 kinase 

inhibitors. Compound 42 [3-(7-(2-chloro-4-((1S,4S)-5-methyl-2,5-diazabicyclo[2.2.1]heptan-2-

yl)phenyl)-2-(pyridin-4-yl)pyrazolo[1,5-a]pyrimidin-3-yl)phenol] was highly selective and potent 

against B-Raf kinase as well as significantly effective against A 375 cell line. Fig. 25 briefly describes 

the SAR studies for this series [78]. 
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C. No R1 R2 
B-Raf A375 

IC50 (nM) IC50 (µM) 

42 CH3 Cl <0.3 <0.010 

Fig. 25. SAR and B-Raf kinase activity of lead compound consisting pyrazolo[1,5-a]pyrimidine. 

3.1.5    Pim kinase inhibitors 

The PIM family of serine/threonine kinases are highly homologous (60-70%) in their kinase domains. 

They are mainly comprised of three members, Pim-1, Pim-2, and Pim-3 that regulate numerous 

signalling pathways essential in tumor development and progression. Overexpression of these kinases 

results in several forms of cancers namely pancreatic, prostate, bladder, haematological and many 

others. PIM inhibitors reduced the survival, progression and migration of these tumor cells thus proving 

to be effective in cancer treatment [79]. 

In 2013, Wang and co-workers reported structure and property based pyrazolo[1,5-a]pyrimidines as 

pan-pim inhibitors. For this series, SAR studies and lead optimization techniques identified a  potent 

compound 43 [N-(5-(2-fluorophenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)-5-(((3-fluoropiperidin-4-

yl)methyl)amino)pyrazolo[1,5-a]pyrimidine-3-carboxamide] (Fig. 26). Along with pan-pim activity, 

43 also exhibited good potency (IC50 of 1.9 µM) against multiple myeloma cell line (MM1s) [80]. 
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C. No X Y R ΨSC Ki (nM) ¥c.pKa 

Pim-1 Pim-2 Pim-3  

43 F H 2-F-Ph Trans 0.003 0.032 0.009 8.3 

 ΨSC: relative stereochemistry amid X- and -NHCH2- functional groups. 
¥c.pKa: Calculated pKa of piperidine nitrogen using MoKa 1.1.0 through the proprietary roche model. 

Fig. 26. Pin-pam inhibitory activities and SAR of N-(5-(2-fluorophenyl)-1H-pyrrolo[2,3-b]pyridin-3-

yl)-5-(((3-fluoropiperidin-4-yl)methyl)amino)pyrazolo[1,5-a]pyrimidine-3-carboxamide. 

Dwyer et al. in 2013 reported the synthesis of C-3, C-5 di-substituted pyrazolo[1,5-a]pyrimidines as 

pim inhibitors. Among this series, compound 44 [N1-(3-(3-(5-methyl-1,3,4-oxadiazol-2-

yl)phenyl)pyrazolo[1,5-a]pyrimidin-5-yl)ethane-1,2-diamine] exhibited potent inhibitory activity 

against pim-1 and pim-2 as well as indicated moderate selectivity  against CDK2, pim-3, CK2, CHK1, 

P13K and mTOR kinases. It was observed from SAR studies that appropriate substitution at C-3 

position influenced the activity. Fig. 27 concisely presents the SAR studies and various kinase enzyme 

activities for the potent compund 44 [45]. 

 

C. No R Pim-1 Pim-2 
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IC50 (nM) IC50 (nM) 

44 

 

1.3 7.3 

 

Kinase IC50 (nM) 

CDK2 580 

Pim-3 1.8 

CK2 950 

CHK1 7100 

mTor >3000 

P1K >3000 

Fig. 27. SAR, Pim and kinase activity of 3,5-disubstituted pyrazolo[1,5-a]pyrimidine. 

Xu and co-workers in 2015 reported synthesis of disubstituted pyrazolo[1,5-a]pyrimidine derivatives 

and evaluated their pharmacological properties as potent pim-1 and Flt-3 kinase inhibitors. Compounds 

45-49 in this series unveiled good inhibition. Further, it was revealed that compound 49 also exibited 

strong inhibition of BAD phosphorylation at 1 µM concentration. A brief SAR study has been 

represented in Fig. 28 [37]. 

 

C. 

No 
R1 R2 

Pim-1 Pim-2 Flt-3 

IC50 (nM) IC50 (nM) IC50 (nM) 

45 

 

OCF3 45 1491 ND 
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46 

 

CF3 25 282 157 

47 

 

OCF3 27 269 53 

48 

 

CF3 17 525 271 

49 

 

Cl 23 228 125 

Fig. 28. SAR and pim activities of disubstituted pyrazolo[1,5-a]pyrimidine derivatives. 

3.1.6     KDR kinase inhibitors 

The kinase insert domain-containing receptor (KDR), also referred to as VEGFR-2, is one of the vital 

mediators of vascular endothelial growth factor (VEGF) functions in endothelial cells, and a key 

regulator of angiogenesis and subsequent progression of the tumor. Thus making it a potential and valid 

target for anticancer drug discovery [81]. 

In 2002, Fraley et al. synthesized 3,6-diaryl pyrazolo[1,5-a]pyrimidines by the condensation reaction 

between 2-arylmalondialdehydes and 3-amino-4-aryl pyrazoles and evaluated their activity as KDR 

kinase inhibitors. SAR studies suggested that substituents at C-6 and C-3 positions are essential for 

potency and are presented in Fig. 29. Among the series, compounds 50-53 showed moderate to good 

activity against KDR kinase and these compounds were also further screened against highly 

homologous receptor tyrosine kinases (PDGFRβ, FLT-4, FGFR-1 and FLT-1) and SRC kinase [39]. 
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C. No R1 R2 KDR IC50 (nM) 

50 

  

224 

51 

  

37 

52 

  

24 

53 

  

19 

 

C. No PDGFRβ FGFR-1 FLT-1 FLT-4 SRC 

50 0.4 59 4.6 2.7 20 

51 0.5 54 5.7 2.2 27 

52 11.4 104 7.1 9.2 146 

53 1.8 >100 10.0 10.0 >100 

Fig. 29. SAR and KDR kinase and KDR selectivity values of 3,6-diaryl pyrazolo[1,5-a]pyrimidines. 

The same research group in order to improve the solubility and biological property, reported a novel 

series of pyrazolo[1,5-a]pyrimidines as KDR kinase inhibitors. From the reported series, compounds 

54-56 exhibited promising potency against KDR kinase, thus inferring the importance of physical 
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properties in improving the activity. SAR study reveals the importance of structural modifications at C-

6 of pyrazolo[1,5-a]pyrimidine core to afford greater kinase activity as depicted in Fig. 30 [20]. 

 

C. 

No 

Side chain 

position 
R1 R2 

KDR 

IC50 (nM) 

ECMA 

IC50 (nM) 

54 para 

  

4 22 

55 para 

  

9 32 

56 para 

  

3 18 

Fig. 30. KDR kinase and ECMA activities. 

In 2008, Frey et al. reported the synthesis of 7-aminopyrazolo[1,5-a]pyrimidines as KDR inhibitors. 

SAR study revealed that incorporation of N,N-diaryl urea moiety at C-6 region and N-methyl pyrazole 

at C-3 region enhanced the kinase and cellular activity as shown in Fig. 31. It was noted that compound 

57 exhibited greater KDR kinase and cellular activity. The compounds were also found to have good 

pharmacokinetic profiles and efficacy in estradiol-induced murine uterine edema (UE) assay [12]. 
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C. No R 
KDR KDR (cell) UE 

IC50 (nM) IC50 (nM) ED50 (mg/kg) 

57 3-CF3 3 0.7 1.4 

Fig. 31. Structural activity studies, KDR and UE results of 7-aminopyrazolo[1,5-a]pyrimidines. 

3.2     Central nervous system (CNS) agents 

3.2.1    Benzodiazepine receptor modulators 

Benzodiazepines are a class of drugs affecting the central nervous system. They have been commonly 

prescribed as medications mainly as anxiolytics, hypnotics, sedatives and as anticonvulsants. The 

pharmacological response is believed to be mediated by the benzodiazepine receptors (BZR) in the 

brain [82]. This receptor is known to be a supramolecular complex consisting of the binding site for 

benzodiazepine, the recognition sites for GABA, and the GABA-dependent chloride channel, thus 

bringing about two types of pharmacological profile namely benzodiazepine agonists (anxiolytic, 

anticonvulsant and sedative), and inverse agonists (cause anxiety and convulsions) [83]. 

In 1999, Selleri et al. synthesized thienyl and methoxyphenyl substituted pyrazolo[1,5-a]pyrimidines 

and evaluated their biological activity against BZR. Within the series, compounds 58 [3-(4-

methoxyphenyl)-6-(thiophen-3-yl)pyrazolo[1,5-a]pyrimidin-7(4H)-one and 59 [3,6-di(thiophen-3-

yl)pyrazolo[1,5-a]pyrimidin-7(4H)-one] were reported as highly active compounds. SAR study is 

briefed in Fig. 32 [84].  
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C. 

No 
R R1 ϕInhibition (%) Ki (nM) ѱGABA ratio 

58 

  

92 ± 0.8 42.2 ± 1.7 1.25 

59 

  

100 ± 6.7 16.3 ± 1.3 1.30 

ϕInhibition (%): percent of inhibition of [3H]RO15-1788 at 10 µM concentrations are means ± 5 SEM of five 

determinations; ѱGABA ratio: IC50 compound/IC50 compound + 10 µM GABA. 

Fig. 32. SAR and activity values of thienyl and methoxyphenyl substituted pyrazolo[1,5-a]pyrimidines. 

The same research group in 2001, reported the synthesis of 2-aryl pyrazolo[1,5-a]pyrimidine-3-yl 

acetamides as potent peripheral and central BZR ligands (PBZR & CBZR). Binding assays were 

performed for PBZR ([3H]PK 11195 and [3H]Ro 5-4864) and CBZR ([3H]Ro 15-1788) using radio 

ligands. SAR studies concluded with a key factor that was anticipated to enhance the cellular activity 

for both CBZR and PBZR ligands as shown in Fig. 33. Among the series, compounds 60-64 were found 

to be more selective and potent inhibitors [21]. 
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C. 

No 
R1 R2 R3 R 

Ki (nM) PBZR 
Ki (nM) CBZR 

[3H]PK 11195 [3H]Ro 5-4864 

60 CH3 H CH3 Cl 2.4 ± 0.2 1.4 ± 0.2 >10.00 

61 CH3 H CH3 CH3 0.8 ± 0.1 1.7 ± 0.2 >10.00 

62 CH3 H CH3 OCH3 4.7 ± 0.4 3.1 ± 0.2 >10.00 

63 CH3 H Ph Cl 2.4 ± 0.2 2.5 ± 0.2 >10.00 

64 Ph H CH3 Cl 3.4 ± 0.2 2.7 ± 0.2 >10.00 

Fig. 33. SAR and PBBR, CBZR studies of N,N-diethyl-(2-arylpyrazolo[1,5-a]pyrimidin-3-yl 

acetamides. 

In 2003, Selleri et al. reported the synthesis of 3-aryl-6-(3-thienyl)pyrazolo[1,5-a]pyrimidin-7-ones and 

in vitro biological evaluation on Bz/GABAA and recombinant BZRs (α1235β2/3γ2). Compound 65 [3-

(pyridin-2-yl)-6-(thiophen-3-yl)pyrazolo[1,5-a]pyrimidin-7(4H)-one] was found to be the most active 

in comparison to the standard drugs (diazepam, zolpidem)  and a brief SAR study has been depicted in 

Fig. 34. [42].  

 

C. No R 
Inhibition 

(%) 
Ki (nM) *GR α 1 α 2 α 3 α 5 

65 2-pyridyl 98 ± 1 3.9 ± 0.5 1.10 7.0 ± 0.8 927 ± 83 ND 740 ± 51 

Diazepam  NR 10 1.5 14 20 15 11 

Zolpidem  NR NR NR 26.7 156 383 >10000 

ND: Not determined; NR: Not reported; *GR: GABA ratio. 

Fig. 34. SAR and activity data of 3-aryl-6-(3-thienyl)pyrazolo[1,5-a]pyrimidin-7-ones against 

recombinant BZRs. 

In 2005, the same research group reported the synthesis and biological properties of 2-phenyl 

pyrazolo[1,5-a]pyrimidin-3-yl acetamides as peripheral benzodiazepine receptor (PBZR) ligands. SAR 

study is briefed in Fig. 35. Among the discovered series, ligands 66-68 showed prominent affinity for 

both PBZR and central benzodiazepine receptors (CBZR) [85]. 
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C. No R R1 R2 PBR 

Ki (nM) 

CBR 

Ki (nM) 

66 C2H5 C2H5 4-CH3-Ph 0.8 >10.00 

67 n-but n-but Ph 4.5 10.00 

68 C2H5 Ph Ph 0.8 10.00 

Fig. 35. SAR and activity studies of 2-phenyl pyrazolo[1,5-a]pyrimidin-3-yl acetamides. 

The same research group (in 2005) reported the synthesis of compound 69 [N,N-dimethyl-2-(5-methyl-

2-(p-tolyl)pyrazolo[1,5-a]pyrimidin-3-yl)acetamide]  as selective GABAA α1 receptor antagonist. In 

vitro studies were performed in comparison with the standard drugs, namely zolpidem and diazepam, 

on bovine brain homogenate along with recombinant BZRs (αxβ2/3γ2, x = 123&5). The results 

emphasise the binding affinities only for α1 as illustrated in Fig. 36 [19].  

 

C. No 
Ki (nM) 

α 1 α 2 α 3 α 5 

69 31 ± 4 >10000 >10000 >10000 

Zolpidem 26.7 156 383 >10000 

Diazepam 14 20 15 11 

Fig. 36. Recombinant BZRs affinity values of N,N-dimethyl-2-(5-methyl-2-(p-tolyl)pyrazolo[1,5-

a]pyrimidin-3-yl)acetamide. 
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In 2010, Reynolds et al. discovered the synthesis of pyrazolo[1,5-a]pyrimidine acetamides bearing 

phenyl alkyl ether functional groups and evaluated them as translocator protein (TSPO) and CBZR 

ligands. All the synthesized compounds 70-75 exhibited good affinity for TSPO with broad selectivity 

over CBZR as well as CNS transporters and receptors, as illustrated in Fig. 37 [86]. 

 

C. No R TSPO Ki (nM) CBR Ki (nM) 

70 CH3 4.7 ± 0.2 >10000 

71 CH2CH3 5.7 ± 0.5 >10000 

72 CH2CH2F 7.0 ± 0.4 >10000 

73 (CH2)2CH3 1.4 ± 0.2 >10000 

74 (CH2)3CH3 1.1 ± 0.1 >10000 

75 
 

4.8 ± 0.5 >10000 

Fig. 37. TSPO and CBZR binding and selectivity studies of pyrazolo[1,5-a]pyrimidines. 

3.2.2    5-HT6 receptor antagonists 

5-Hydroxytryptamine subtype 6 receptor (5-HT6R) is a recently discovered serotonin receptor (a 

typical G protein-coupled receptor) and a promising target for cognitive disorders like Alzheimer's, 

schizophrenia, anxiety and obesity [87,88]. 

In 2010, Ivachtchenko et al. reported the synthesis of (3-phenylsulfonylcycloalkano[e and 

d]pyrazolo[1,5-a]pyrimidin-2-yl)amines as serotonin 5-HT6 receptors. Among the series, compounds 

76 and 77 exhibited the maximum affinity against 5-HT6 receptor. A brief SAR study has been depicted 

in Fig. 38 [27]. 
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C. No n NR1R2 R3 

Ki (nM) 

(binding) 
Ki (nM) (functional) 

5-HT6 5-HT6 5-HT2B 

76 1 NHCH3 H 0.088 0.375 0.259 

77 2 NHCH3 H 0.112 464 153 

Fig. 38. SAR and 5-HT6 receptor studies of pyrazolo[1,5-a]pyrimidines. 

The same research group (in 2011) reported the synthesis and SAR studies of substituted 5,N2-dimethyl-

3-phenylsulfonyl-pyrazolo[1,5-a]pyrimidine-2-amines and evaluated them as 5-HT6 receptor ligands. 

SAR studies reveal that the formation of intermolecular hydrogen bond between 2-methylamino and 3-

sulfo group highly enhanced the potency and selectivity to block serotonin responses in HEK-293 cells. 

Among the series, compounds 78-81 were found to be more potent inhibitors of 5-HT6 receptors and 

the activity values are represented in Fig. 39 [49]. 

 

C. No R1 R2 R3 R4 PKi (nM) pA2 ALogP98 

78 H H H H 9.52 9.3 1.89 

79 H H H Cl 9.66 ND 2.55 
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80 H H Cl H 9.85 ND 2.55 

81 CH3 CH3 H H 9.46 ND 2.80 

ND: Not determined. 

Fig. 39. SAR, 5-HT6R activity profiles of substituted 5,N2-dimethyl-3-phenylsulfonyl-pyrazolo[1,5-

a]pyrimidine-2-amines. 

3.3    Anti-infectious agents 

Infectious diseases are major threat to human kind from pre-historic era. In recent decades, the 

emergence of drug-resistance microbial infections has generated serious life-threatening health issues 

and are resposible for highest mortality [89]. Various analogs of pyrazolo[1,5-a]pyrimidines scafold 

have been reported possess effective antimicrobial activity as mentioned in the succeeding sections. 

In 1975, Senga et al. discovered the synthesis of pyrazolo[1,5-a]pyrimidines as antitrichomonal agents. 

In this series, compound 82 [6-carbethoxy-4-ethyl-3-nitropyrazolo[l,5-a]pyrimidin-7-one] 

demonstrated potent antitrichomonal activity than the standard drug metronidazole. From the SAR, it 

was deduced that 3-nitro, 6-carbethoxy and 4-ethyl groups are essential for activity. The structure of 

potent compound has been described in Fig. 40 including its inhibitory potency [90]. 

 

MIC a: Minimum inhibitory concentration; MLC b: Minimum lethal concentration. 

Fig. 40. SAR of multi substituted pyrazolo[1,5-a]pyrimidines as antitrichomonal agents. 

In 1976, Novinson and co-workers reported the synthesis of hydrazine containing pyrazolo[1,5-

a]pyrimidine derivatives and evaluated them for in vitro antitrypanosomal activity. Further, the authors 

have screened the title compounds for in vitro and in vivo activities against Trypanosama cruzi. Among 

all the synthesized molecules, compound 83 showed significant activity. A brief SAR study on the 

scaffold is presented in Fig. 41 [91]. 

C. No R R1 R2 Conc (µg/mL) 

MIC a MLC b 

82 NO2 C2H5 COOC2H5 1.0 3.2 

Metronidazole  3.2 10 
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C. No R1 R2 R3 In vitro 
*MIC/MLC** 

In vivo 
ΔIMST 

83 H H CH3 10/10 63.4 

*MIC: Minimum inhibitory concentration; MLC**: Minimum lethal concentration expressed in µg/mL; ΔIMST: 

Increase in mean survival time was expressed as present increase beyond survival time of control mice 100 mg/kg 

twice daily by gavage. 

Fig. 41. SAR and antitrypanosomal activity studies of compound 83. 

In 1977, Novinson et al. synthesized 7-alkylamino substituted pyrazolo[l,5-a]pyrimidines and in vitro 

antifungal activity against Trichophyton mentagrophytes  was performed. Out of 22 tested derivatives,  

compounds 84 and 85 revealed potent fungicidal activity (in vitro). It was also observed that compound 

85 was one fold more potent than 84. However, their topical applications on unabraded and abraded 

guinea pig skin (in vivo) generated skin irritation. Preliminary SAR and structures of active compounds 

are presented in Fig. 42 [92]. 

 

C. No R R1 R2 R3 

Conc 

(in µmol/mL) 

MIC MLC 

84 H CH3 H NH(CH2)7CH3 0.02 0.16 
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85 Br CH3 H NH(CH2)8CH=CH(CH2)7CH3 0.01 0.02 

Fig. 42. SAR of 7-alkylamino substituted pyrazolo[l,5-a]pyrimidines as antifungal compounds. 

El-Gaby and co-workers in 2000 carried out the synthesis and antibacterial evaluation of pyrazolo[1,5-

a]pyrimidines bearing sulfonamido moieties. Of the screened compounds, four derivatives (86-89) 

exhibited potent activity against gram negative than gram positive bacterial strains in comparison to the 

standard drug streptomycin. The preliminary SAR study suggested arylamino substitutions on basic 

nucleus contributed maximum inhibition against gram negative bacterial strains, whereas unsubstitution 

on sulphonamido moiety generated weak inhibition. The antibacterial screening results for the active 

compounds are presented in Fig. 43 [93]. 

 

C. No R R1 

Gram positive Gram negative 

Staphylococcu

s aureus 

Bacillu

s 

subtilis 

Sarcin

a sp. 

Escherichi

a coli 

Serratia 

marcescen

s 

86 2-Pyrimidinyl 

NH-

C6H4

-O-

CH3-

p 

++ + +++ +++ +++ 

87 
2-(4-Methyl 

pyrimidinyl) 

NH-

C6H4

-O-

CH3-

p 

++ + +++ ++ +++ 

88 H 

C6H4

-O-

CH3-

o 

+ +++ ++ ++ ++ 

89 2-Pyridinyl 
C6H4

-O- +++ 
+++ ++ ++ ++ 
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CH3-

o 

Streptomycin  
++++ 

++++ ++++ ++++ ++++ 

+: moderately sensitive giving a zone of inhibition 9–11 mm; ++: sensitive giving a zone of inhibition 12–14 mm; 

+++: very sensitive giving a zone of inhibition 15–18 mm. 

Fig. 43. SAR and active antibacterial pyrazolo[1,5-a]pyrimidines. 

In 2008, Bondock et al. synthesized new heterocyclic analogs including pyrazolo[1,5-a]pyrimidines 

containing antipyrine moiety and evaluated for antimicrobial potency against bacterial and fungal 

strains along with reference drugs like ampicillin, chloramphenicol and fluconazole. Compounds 90 

and 91 exhibit higher antimicrobial properties than the evaluated reference drugs. The SAR of the same 

is shown in Fig. 44 [94].  

 

C. No R 

Zone inhibition (in mm) 

Gram positive 

bacteria 

Gram negative 

bacteria 
Fungi 

B. thuringiensis K. pneumoniae B. fabae 
F. 

oxysporum 

90 CH3 21 28 24 25 

91 OH 20 24 27 25 

Ampicillin 18 19 17 15 

Chloramphenicol 23 20 16 15 

Fluconazole NA NA 22 16 

NA: No activity. 

Fig. 44. Structures and results of the antimicrobial (inhibition zone) potency of pyrazolo[1,5-

a]pyrimidines. 

Popovici-Muller et al. (2009) reported a novel series of pyrazolo[1,5-a]pyrimidines as Hepatitis-C Virus 

(HCV) RNA polymerase inhibitors. Authors synthesized three different analogues by modifying 

different functional groups/moieties at C-3 (carboxylic acid group), C-7 (cyclohexyl group) and C-6 

(aromatic substituents) positions. Authors evaluated all the synthesized compounds for HCV RNA 
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polymerase inhibition. Of the evaluated compounds (92-95), 95 was discovered as potent HCV RNA 

polymerase inhibitor. Fig. 45 illustrates a brief SAR study and active compounds of the series [95]. 

 
 

C. No R1 R2 HCV NS5B IC50 (µM) 

92 

 

 

0.09 

93 

 
 

0.042 

94 

 

 

0.02 

95 

 

 

0.011 

Fig. 45. SAR and antiviral properties of active compounds. 

In 2010, Abdelhamid et al. carried out the synthesis and antimicrobial activity of some fused pyrimidine 

compounds including pyrazolo[1,5-a]pyrimidines bearing thiazole moiety. From the eight synthesized 

pyrazolo[1,5-a]pyrimidines, only four compounds (96-99) were evaluated for their biological activity. 

Moderate activity was observed as compared to the standard drugs (Fig. 46) [96]. 
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C. No X Y 
S. 

aureus 
B. subtilis 

E. 

coli 

P. 

aeruginosa 

C. 

albiacns 

96 Ph H ≥800 ≥800 ≥800 ≥800 ≥800 

97 H Ph ≥800 ≥400 ≥800 ≥400 ≥400 

98 4-CH3 Ph ≥800 ≥400 ≥400 ≥800 ≥400 

99 CN H ≥800 ≥800 ≥800 ≥800 ≥400 

Ciprofloxacin ≤25 ≤25 ≤25 400 ≥800 

Triflucan ≥800 ≥800 ≥800 ≥800 ≤25 

Fig. 46. Structures and MIC values of pyrazolo[1,5-a]pyrimidines against different bacterial and fungal 

strains. 

In 2011, Aggarwal et al. synthesized pyrazol-1-ylpyrazolo[1,5-a]pyrimidines regioselectively. All the 

synthesized molecules were tested for antimicrobial properties against two gram positive and gram 

negative bacterial strains along with four phytopathogenic fungi. Among the screened molecules, 

compound 100 and 101 exhibited maximum antibacterial potency on par with standard dugs, 

gentamycin and linezolid. Compound 102 displayed potent antifungal activity (200 mg/mL) than the 

standard drugs gentamycin, linezolid and mancozeb. SAR study on this series has been presented in 

Fig. 47 [97]. 

 

 

 

R2 R3 Zone of inhibition (in mm) % Inhibition at 200 µg/mL 
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C. 

No 

R
1 

R
4 

Gram 

negative 

bacteria 

Gram 

positive 

bacteria 
A. 

terre

us 

A. 

alterna

ta 

F. 

oxysporu

m 

Helmi

n- 

Thosp

o 

-rium 

sp. 

E. 

col

i 

P. 

aerugino

sa 

S. 

aure

us 

B. 

cere

us 

10

0 
H 

4-CH3-

C6H4- 
H 

10.

5 
8 8 8.5 ND ND ND ND 

10

1 
H 

4-Cl-

C6H4- 
H 13 10 9 13 12.5 0 16.3 36.6 

10

2 
H 

CH

3 

CH

3 
H 7 7 7 7 73.2 73.1 71.9 79.2 

Gentamycin 24 12 14 14 ND ND ND ND 

Linezolid 12 8.5 18 10 ND ND ND ND 

Mancozeb ND ND ND ND 76.40 65.90 81.11 70.00 

ND: Not determined. 

Fig. 47. SAR and antimicrobial results of pyrazolo[1,5-a]pyrimidines. 

In the same year, Shaikh et al. reported an eco-friendly green synthesis and in vitro antimicrobial 

screening studies for pyrazolo[1,5-a]pyrimidine compounds. Of the evaluated compounds, 103-105 

exhibited maximum inhibition against E. coli, while 106 and its analog 107 showed good activity 

against A. niger. The structures of the active compounds with screening results and SAR studies are 

disclosed in Fig. 48 [98]. 

 

C. 

No 
R1 R2 R3 

Zone of inhibition (in mm) 

Bacterial strains Fungal strains 

E. 

coli 

B. 

subtilis 

S. 

aureus 

S. 

typhi 

A. 

niger 

A. 

flavus 

C. 

albicans 

P. 

chrysogenum 

103 H H Cl 18 12 15 15 20 NA 11 13 

104 I H Cl 17 15 18 16 26 21 19 17 
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105 Br CH3 Cl 19 NA 10 30 14 17 15 16 

106 Cl H Cl 26 16 NA 24 18 21 17 24 

107 H CH3 Cl 16 18 14 NA 16 10 20 19 
NA: No activity. 

Fig. 48. Structures and antimicrobial results of pyrazolo[1,5-a]pyrimidines. 

In 2013, Al-Adiwish et al. synthesized derivatives of pyrazolo[1,5-a]pyrimidine, pyrazolo[5,1-

c][1,2,4]triazine and evaluated for their antibacterial and cytotoxicity properties. Further, these 

compounds were screened against a panel of two gram positive and three gram negative bacterial 

strains. The prepared compounds exhibited moderate to low antibacterial activity than the standard 

drugs (chloramphenicol and streptomycin). All the compounds were demonstrated to be non-cytotoxic 

to Vero cells. Fig. 49 illustrates the SAR, highly active structures (108-110) and MIC values of 

evaluated compounds [99]. 

 

C. 

No 
R R1 R2 R3 

Gram positive 

bacteria 

Zone of inhibition 

(in mm) 

Gram negative 

bacteria 

Zone of inhibition (in mm) 

B. 

subtilis 

S. 

aureus 
E. coli 

P. 

aeruginosa 

S. 

marcescens 

108 NH2 CN SCH3 

 

10 ± 

0.57 

11 ± 

0.57 

10 ± 

0.55 
7 ± 1.15 7 ± 1.00 

109 CH3 H OH 

 

10 ± 

0.58 

12 ± 

0.58 

11 ± 

0.58 
7 ± 0.00 7 ± 1.15 

110 CH3 H CH3 

 

9 ± 

0.58 
9 ± 0.55 

10 ± 

0.57 
7 ± 0.57 6 ± 0.00 

Chloramphenicol 
25 ± 

0.28 

25 ± 

0.28 
NT NT NT 

Streptomycin NT NT 
13 ± 

0.58 
14 ± 0.57 20 ± 0.57 

NT: Not tested. 

Fig. 49. SAR, antibacterial activity of pyrazolo[1,5-a]pyrimidines. 
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In the same year, Ishak et al. reported the synthesis and antimicrobial screening of pyrazolo[1,5-

a]pyrimidine derivatives. Of the thirteen derivatives synthesized, six compounds were evaluated for 

both antibacterial and antifungal activities. Among the screened derivatives, compounds 111-113 

showed potent activity comparable to that of standard drugs. Fig. 50 represents the structures, zone of 

inhibition (values) of active compounds and reference drugs along with SAR studies [31]. 

 

 

C. 

No 
R X Y 

Zone of inhibition (in mm) 

Bacterial strains Fungal strains 

S. 

aureu

s 

B. 

subtili

s 

P. 

aerugino

sa 

E. 

coli 

A. 

fumigat

es 

G. 

candidu

m 

C. 

albica

ns 

S. 

racemosu

m 

11

1 
H S S 

15.3 

± 

0.03 

17.9 ± 

0.09 
9.3 ± 0.05 

14.

9 ± 

0.0

7 

15.2 ± 

0.08 

11.3 ± 

0.05 

10 ± 

0.04 
8.2 ± 0.06 

11

2 
H O O 

16.7 

± 

0.05 

15.7 ± 

0.3 
NA 

15.

2 ± 

0.2 

14.2 ± 

0.09 

15.3 ± 

0.3 
NA 

10.2 ± 

0.06 

11

3 

CH

3 
O O 

22.2 

± 

0.09 

23.3 ± 

0.2 

18.5 ± 

0.08 

21.

9 ± 

0.1 

21.8 ± 

0.2 

19.5 ± 

0.08 

18.1 ± 

0.3 

14.8 ± 

0.09 

Pencillin G 

30.1 

± 

0.06 

31.6 ± 

0.05 

28.3 ± 

0.08 

33.

1 ± 

0.0

9 

ND ND ND ND 

Streptomycin 

28.1 

± 

0.07 

29.7 ± 

0.06 

25.2 ± 

0.09 

29.

7 ± 

0.0

9 

ND ND ND ND 

Itraconazole ND ND ND ND 
27.4 ± 

0.05 

24.2 ± 

0.09 

25.2 ± 

0.07 

23.9 ± 

0.04 

Clotrimazole ND ND ND ND 
26.3 ± 

0.08 

23.2 ± 

0.03 

20.8 ± 

0.02 

21.4 ± 

0.05 
NA: No activity; ND: Not determined. 
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Fig. 50. SAR and antimicrobial studies of pyrazolo[1,5-a]pyrimidines. 

Recently in 2014, Tian et al. reported the synthesis and medicinal properties of new pyrazolo[1,5-

a]pyrimidines as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Within the evaluated 

derivatives, compound 114 was found to be the most potent inhibitor with an EC50 of 0.07 µM against 

wild-type HIV-1 with high selectivity index (SI, 3999). Moreover, 114 was determined as an effective 

NNRTI than the standard drugs (nevirapine and delavirdine). Authors also performed HIV-1 RT 

inhibitory assay for compound 114, which showed an IC50 of 2.26 µM. The SAR and anti-HIV 

evaluation results of active compound are given in Fig. 51 [29]. 

 

C. No R1 R2 

EC50 (µM) 

CC50 

(µM) 

SI 
RT 

inhibition 

(µM) 

HIV-1 

IIIB 

HIV-

2 

ROD 

HIV-

1 

IIIB 

HIV-

2 

ROD 

114 2,4,6-Trimethyl 4-CN 
0.07 ± 

0.01 
>276 

276 ± 

53.7 
3999 <1 2.26 

Nevirapine 
0.07 ± 

0.06 
NA >14.99 >89 NA ND 

Delavirdine 
0.16 ± 

0.15 
NA >43.81 >277 NA ND 

ND: Not determined; NA: No activity. 

Fig. 51. SAR and activity data of active compounds. 

Recently (2015) Mackman et al. discovered new pyrazolo[1,5-a]pyrimidine derivatives as orally bio-

available respiratory syncytial virus (RSV) fusion inhibitor through hit-to-lead optimization campaign. 

Authors conducted phenotypic screen using HEp-2 cells infected with RSV A2 virus on a library of 

∼4,00,000 molecules and identified compound 115 as a lead antiviral molecule (EC50 = 65 nM) for 
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optimization. Further, X-ray crystallography of 115 confirmed the S-configuration in which 2-

heteroaryl functional group on piperidine ring positioned into an axial alignment with a dihedral angle 

of 95°. The pharmacokinetic study of 115 indicated the poor passive permeability and oral 

bioavailability as depicted in Fig. 52a. Hence, pyrazolo[1,5-a]pyrimidin-2-yl C-5 N-linked pyrrolidine 

and azetidine analogues were developed to obtain a potent compound with enhanced permeability or 

efflux properties. Among the evaluated derivatives, compound 116 displayed higher potency with 

favourable properties as illustrated in Fig. 52b. Apart from pharmacokinetic studies, authors also 

investigated in vivo preclinical (cotton rat model) and clinical evaluation of 116 that demonstrated 

antiviral efficacy in a dose-dependent manner [100]. 

 

C. 

No 
R1 R2 R3 R4 R5 

RSV 

EC50 

(nM) 

log D 

Caco2 

AB/BA (× 

10-6 cm/s) 

% Free 

human 

plasma 

Fold 

plasma 

shift 

115 H NHSO2CH3 H H H 65 1.3 0.33/2.2 6.5 13 

Fig. 52a. SAR and biological studies of a lead compound. 

 

C. 

No 
X 

RSV 

EC50 

(nM) 

log D 

Caco2 

AB/BA 

(× 10-6 

cm/s) 

% Free 

human 

plasma 

MS pred CL 

human/rat/dog 

(L/h/kg) 

Fold 

plasma 

shift 

SD rat 

F % 

116 
CH-

NH2(S) 
0.37 2.0 6.4/19 4.4 <0.16/0.26/0.41 22 46 
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Fig. 52b. Pharmacokinetic properties of potent derivative 116. 

3.4    Anti-inflammatory agents 

Inflammation is a beneficial and defensive biological response to tissue damage, infections, toxins or 

autoimmune injury in order to abolish or limit the blow-out of an injurious agent. The process is a 

complex phenomenon involving the role of several cellular mediators [101]. Management of 

inflammatory disorders encompasses usage of drugs or anti-inflammatory agents.  

In 1974, Novinson and co-workers reported the synthesis of 3-substituted 5,7-dimethyl pyrazolo[1,5-

a]pyrimidines and evaluated them against 3,5-cyclic-AMP phosphodiesterase enzyme. Out of the 15 

synthesized molecules, compounds 117-120 having halogen (-Br, Cl, I) and acetyl groups at C-3 

position were found to be more potent in inhibiting phosphodiesterase enzyme as illustrated in Fig. 53 

[23]. 

 

C. No R 
High Km PDE IC50 (nM) Low Km PDE IC50 (nM) 

Rabbit kidney Rabbit lung Beef heart Rabbit lung 

117 Br 2.20 2.40 1.7 0.7 

118 Cl 1.33 3.11 1.7 2.2 

119 I 1.23 3.55 1.5 3.5 

120 COCH3 0.57 1.5 0.4 1.0 

Fig. 53. 3,5-cyclic-AMP phosphodiesterase inhibitory abilities of active compounds. 

In 1982, Springer et al. synthesized pyrazolo[1,5-a]pyrimidines and their related analogs for adenosine 

cyclic 3',5'-phosphate phosphodiesterase (PDE) inhibition. Of the tested derivatives, 121 and 122 were 

determined to be potent inhibitors. In the case of ADP-induced platelet aggregation inhibitory studies, 

123 was identified as a potent compound. A brief SAR of this series and the activity data of most active 

compounds is illustrated in Fig. 54 [102]. 
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C. 

No 
R1 R2 R3 R4 

PDE Inhibition 

Inhibition of ADP-

induced platelet 

Aggregation 

Lung Kidney Heart Conc. Inhibition 

121 Br OH COOC2H5 H 0.5 1.0 NA 50 34 

122 H NHCH2CH2OH H CH3 0.5 NA 3.7 NA NA 

123 Br NH2 COOC2H5 H NA NA NA 25 67 

NA: No activity. 

Fig. 54. SAR and 3',5'-phosphate phosphodiesterase inhibitor studies of substituted pyrazolo[1,5-

a]pyrimidines. 

In 1983, Auzzi et al. synthesized 2-phenylpyrazolo[1,5-a]pyrimidin-7-ones and explored their 

antipyretic and anti-inflammatory properties. While deriving a relationship between chemical structure 

and anti-inflammatory potential, authors further synthesized some more derivatives with modifications 

of an elongated side chain at the C-4 position. Among the tested derivatives, compound 124 [4-ethyl-

5,6-dihydro-2-phenylpyrazolo[1,5-a]pyrimidine-7-one] exhibited potent anti-inflammatory and 

moderate antiulcer activity. Fig. 55 illustrates a brief SAR and activity profile of compound 124 [103]. 

 
 

 

R R1 R2 R3 R4 Anti-inflammatory activity 
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C. 

No 

Dose 

(mg) 

% reduction of 

edema, 3 h 

ED50 

mg/kg 

124 Ph H C2H5 H H 

10 54.1 ± 4.9 

7.3 

(2.4-22.1) 
25 69.8 ± 4.1 

100 90.1 ± 2.6 

Fig. 55.  SAR and anti-inflammatory properties of 2-phenylpyrazolo[1,5-a]pyrimidin-7-ones. 

In 2001, Almansa et al. reported the synthesis and anti-inflammatory evaluation of a series of bicyclic 

pyrazolo[1,5-a]pyrimidines. Authors performed in vitro COX-1 and COX-2 enzyme inhibition assay 

and in vivo (carrageenan-induced paw edema, air-pouch model) studies. From this series, compound 

125 exhibited potent and selective COX-2 inhibition. The SAR and pharmacological data of the potent 

molecule 125 are presented in Fig. 56 [24]. 

 

C. No R1 R2 R3 

% Inh HWB IC50 Whole Cell 

COX-1 COX-2 COX-1 COX-2 

10 (µM) 10 (µM) (µM) (µM) 

125 H CH3 CH3 47.5 96.4 >10 0.012 

Fig. 56. SAR and the data of potent molecule. 

In 2008, Shaaban et al. synthesized pyrazolo[1,5-a]pyrimidines,  pyrimido[1,2-a]benzimidazole and 

triazolo[1,5-a]pyrimidine ring systems and evaluated all the synthesized compounds for the analgesic 

and anti-inflammatory properties. Compounds 126 [2-(4-bromophenyl)-6-(phenylsulphonyl)-7-(4-

methylphenyl)-pyrazolo[1,5-a]pyrimidine] and 127 [3-bromo-2-phenyl-6-(phenylsulphonyl)-7-(4-

methylphenyl)-pyrazolo[1,5-a]pyrimidine] were reported as potent anti-inflammatory as well as 

analgesic agents. SAR study demonstrated that the other scaffolds exhibited lower activity as compared 

to pyrazolo[1,5-a]pyrimidine system. Among the series, bromine substituent on pyrazole moiety 127 
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enhanced the analgesic effect. In compound 126, the electronic influence of bromine on aryl ring over 

pyrazole exhibited higher anti-inflammatory activity. The pharmacological evaluation results and SAR 

of active compounds are given in Fig. 57 [104]. 

 
 

C. 

No 

R1 R2 Anti-inflammatory profile Analgesic profile 

% edema inhibition Number of writhing 

1h 2h 3h 4h 5h 6h 30 

min 

% 

Change 

Potency 

126 
H 4-Br-

C6H4 

74.1 72.6 69.2 26.6 31.7 54.3 29.5 ± 

1.4 

65.2 0.76 

127 
Br Ph 65.5 61.0 54.8 12.5 0 6.6 12.2 ± 

1.1 

85.6 0.99 

Fig. 57. Pharmacological evaluation results of active compounds. 

 

In 2012, Gege et al. discovered non-Zn chelating, selective matrix metalloproteinase 13 (MMP-13) 

inhibitors for the cure of osteoarthritis. Of the synthesized molecules, compound 128 was considered 

as intra-articular disease modifying osteoarthritic drug (IA-DMOAD). Further, it had a favourable 

pharmacokinetic profile which minimized the total exposure. Insignificant levels of the constituent were 

noticed in the plasma resulting 1 mg/kg (IV route) or 0.5 mg/kg (IA route) administration to rats. 

Moreover, derivative 128 exhibited good ex vivo and in vitro efficacy, effectively blocking collagen 

degradation in a dose-dependent manner with an IC50 of 20 nM as depicted in Fig. 58. This study 

concluded that 128 possess long permanency in joints, penetrates cartilage efficiently with no 

measurable systemic exposure and has significant efficacy [105]. 
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C. 

No 

IC50 (nM) vs. catalytic domain 

MMP

-1 

MMP

-2 

MM

P-3 

MMP

-7 

MM

P-8 

MMP

-9 

MM

P-12 

MM

P-13 

MMP

-14 

TAC

E 

Agg 

1 

12

8 

>2000

0 

>2000

0 
8200 

>2000

0 
3200 

>2000

0 
655 0.03 

>2000

0 

>2000

0 

240

0 

Fig. 58. Selectivity and potency of compound 128 towards MMP-13. 

In 2012, Kosugi et al. reported the synthesis of 5,6,7-trisubstituted pyrazolo[1,5-a]pyrimidines and 

evaluated their biological properties as mitogen-activated protein kinase-activated protein kinase-2 

(MAPKAP K-2) inhibitors. SAR studies were performed to optimize highly potent and selective 

analogues and revealed that substitution at C-6 position was necessary to enhance the activity as 

depicted in Fig. 59. All the synthesized derivatives exhibited good activity and compounds 129-131 

were most potent [47]. 

 

 

 

C. 

No 
R1 Y-R2 

MAPKAP-

K2 
CDK2 

Selectivity 

CDK2/ 

MAPKAP-

K2 
IC50 (µM) IC50 (µM) 

129 

  

0.054 25 463 

130 

  

0.057 21 368 
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131 

  

0.076 27 355 

Fig. 59. SAR, MAPKAP-K2 kinase and CDK2 selectivity values of 5,6,7-trisubstituted pyrimidines. 

Recently (2015), Lim et al. developed a methodology for the synthesis of 5-amino-N-(1H-pyrazol-4-

yl)pyrazolo[1,5-a]pyrimidine-3-carboxamides as Interleukin-1 receptor associated kinase 4 (IRAK4) 

inhibitors. Initially, authors identified compound 132 as a lead molecule through high-throughput 

screening (HTS) campaign. Encouraging results of compound 132 with an IC50 value of 110 nM and 

high ligand binding efficiency (LBE) of 0.44 encouraged the authors to further explore the pyrazolo[1,5-

a]pyrimidine scaffold as inhibitors to IRAK4, which is a remarkable target for many inflammatory 

diseases. A library of pyrazolopyrimidines bearing amine substitutions at the 5-position of the ring 

followed by carboxamide replacement and finally diamino substitutions at the 5th position to obtain 

potent inhibitor 133 was generated. Robust PK/PD response in the R848-induced rat model was 

reported for compound 134. Molecular modelling guided SAR studies and pharmacological evaluation 

including cell potencies, kinase selectivities, and pharmacokinetic profiles are given in Fig. 60 [106]. 

 

 
 

C. 

No 
R R1 

IRAK4 

IC50 

(nM) 

cLogD 
Polar surface area 

(A2) 

Cell 

permeability 

(Papp) 

132 H CONH2 110 1.7 127 17 

133 

 

-CHF2 < 0.5 -2.8 ND 30 
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134 

 

-

CONH2 
0.3 -4.3 152 2 

ND: Not determined. 

 

C. 

No 

hPBMC 

IC50 (nM) 

rWB 

IC50 (nM) 

No. of kinases 

tested 
% of kinases 

rat Clp (mL 

min−1 kg−1) 
rat %F 

133 12 81 101 > 95 46 42 

134 31 300 264 99 56 0 

Fig. 60. SAR and IRAK4 inhibitory, pharmacokinetic activities of pyrazolo[1,5-a]pyrimidine-3-

carboxamide derivatives. 

In 2016, Roux and co-workers reported novel substituted pyrazolo[1,5-a]pyrimidines and evaluated 

them as potent phosphodiesterase-4 (PDE4) inhibitors. These tested molecules showed moderate to high 

activity against PDE4. Among all, compounds 135 and 136 revealed 200 fold improvement in both 

activity and cellular potency. SAR was performed to optimize the potent molecules as PDE-4 inhibitors 

and is illustrated in Fig. 61 [107]. 

 

C. No R PDE4B1 IC50 (nM) 

135 3-OCH3 0.1 

136 3,5-Cl 0.03 

Fig. 61. SAR and PDE4 inhibitory studies. 

3.5    CRF-1 receptor antagonists 
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Corticotropin-releasing factor (CRF) is a 41-amino-acid neuropeptide produced in the paraventricular 

nucleus of the hypothalamus and released in response to stress and pain [108]. CRF binds to CRF 

receptors in the anterior pituitary, resulting in release of adrenocorticotropic hormone (ACTH) 

[109,110]. 

In 1998, Wustrow et al. reported the synthesis, X-ray crystallography studies and evaluation of 

pyrazolo[1,5-a]pyrimidines for their binding affinity towards human CRF-1 receptor. SAR and X-ray 

crystallographic studies revealed the extension of the 3-phenyl ring and alkyl group on 7-position of the 

amino substituent are essential for CRF binding affinity as illustrated in Fig. 62. Among the series, 

compound 137 was identified as essential CRF inhibitor with high affinity [111]. 

 
 

C. No R R1 R2 
CRF1 Binding 

(Ki nM) 

137 Ethyl Butyl 2,4-Dichlorophenyl 5 

Fig. 62. CRF binding affinity studies of pyrazolo[1,5-a]pyrimidine derivative. 

In 2000, Gilligan et al. discovered a series of novel pyrazolo[1,5-a]pyrimidines as corticotropin-

releasing factor (hCRF1) antagonists. In this series, compounds 138-140 demonstrated good hCRF1 

activity. Results of their work concluded that compound 140 showed good anxiety efficacy in the dog 

(0.3 mg/kg). The results of key intravenous (iv) pharmacokinetic parameters (t 1/2, CL and Vd, ss) and a 

brief SAR study are depicted in Fig. 63 [112]. 
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C. No R Ar Mean hCRF1 Ki (nM) 

138 NH-3-pentyl 2-CH3-4-ClPh 1.7 ± 0.9 

139 NH-3-pentyl 2-Cl-4-CH3Ph 1.5 ± 1.0 

140 NH-3-pentyl 2-Me-4-CH3OPh 1.0 ± 0.2 

 

Parameter iv (intravenous) po (peroral) 

t ½ (h) 46.4 ± 7.6 45.1 ± 10.2 

CL (L/h/kg) 049 ± 0.08 NA 

Vd, ss (L/kg) 23.0 ± 4.2 NA 

NA: No activity 

Fig. 63. SAR and single dose pharmacokinetic data of pyrazolo[1,5-a]pyrimidines. 

In 2011, Saito and co-workers discovered 6,7-dihydro-5H-cyclopenta[d]pyrazolo[1,5-a]pyrimidines as 

novel CRF1 antagonists. SAR studies revealed the role of different functional groups on the moiety, 

which is presented in Fig. 64. Among the synthesized compounds, 141-143 exhibited both binding 

affinities and potent antagonist activity. Later, pharmacokinetic studies were carried out in a rat model 

and it was concluded that compound 141 was orally effective CRF1 antagonist [30]. 
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C. 

No 
X         Y Binding affinity IC50 (nM) 

Human 

Antagonist activity EC50 (nM) 

Human 

141 H         H 4 40 

142 O         H 7 4 

143    H         O 84 8 

Fig. 64. SAR and CRF1 affinity studies of pyrazolo[1,5-a]pyrimidines. 

In the same year, the same research group reported the synthesis of pyrazolo[1,5-a]pyrimidines and 

triazolo[1,5-a]pyrimidines as novel CRF1 receptor antagonists. SAR studies revealed that the significant 

activity was afforded by changing substitutions at C-5 and C-7 positions as depicted in Fig. 65. Among 

the series, compounds 144-147 showed potent results for binding affinity and antagonist activity [113]. 

 

C. 

No 
R1 R2 X 

Binding affinity 

IC50 (nM) Human 

Antagonist activity 

EC50 (nM) 

Human 
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144 CH3 H 

 

7.4 7.4 

145 CH3 H 
 

8 4 

146 C2H5 H 
 

4.2 8.6 

147 H CH2OCH3 

 
15 4.4 

Fig. 65. CRF1 binding affinity and antagonist studies of pyrazolo[1,5-a]pyrimidines. 

3.6    Radiopharmaceuticals  

In 2010, Ding et al. reported the synthesis and medicinal valuation of pyrazolo[1,5-a] pyrimidines as 

imaging agents for tumors. Initially, authors synthesized 5-((2-aminoethylamino)methyl)-7-(4-

bromoanilino)-3-cyanopyrazolo[1,5-a]pyrimidine (ABCPP) and conjugated the compound with N-

mercaptoacetylglycine (MAG), MAF (N-mercaptoacetyl-phenylalanine) and N-mercaptoacetylvaline 

(MAA). All the conjugates were radiolabelled with isotope [99mTcN]2+ and studied for their bio-

distribution towards tumor-bearing mice. Of the evaluated complexes, N-mercaptoacetylglycine tagged 

compound exhibited maximum favorable tumor/muscle ratios, tumor/blood ratios reaching 2.97 and 

1.51 at thirty minute post-injection. Structure and bio-distribution results are presented in Fig. 66 for 

the favourable complex 99mTcN-MAG-ABCPP (148) [114]. 

 

C. 

No 
Tissue 5 min 30 min 60 min 120 min 

148 

Heart 0.93 ± 0.11 0.32 ± 0.06 0.35 ± 0.02 0.37 ± 0.08 

Blood 2.38 ± 0.17 0.77 ± 0.01 0.46 ± 0.04 0.38 ± 0.01 

Spleen 19.90 ± 1.70 14.38 ± 1.64 8.16 ± 0.10 8.32 ± 1.05 

Stomach 0.69 ± 0.12 0.54 ± 0.11 0.32 ± 0.04 0.09 ± 0.02 

Kidney 11.08 ± 1.13 5.06 ± 1.16 3.58 ± 0.21 3.35 ± 0.29 
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Liver 23.32 ± 1.32 23.88 ± 2.83 14.67 ± 0.87 12.84 ± 0.91 

Muscle 0.72 ± 0.05 0.39 ± 0.08 0.34 ± 0.07 0.22 ± 0.03 

Small Intestine 8.82 ± 1.29 3.42 ± 0.42 0.64 ± 0.08 0.62 ± 0.15 

Large Intestine 1.62 ± 0.20 0.62 ± 0.08 0.68 ± 0.02 0.67 ± 0.06 

Tumor 1.23 ± 0.13 1.16 ± 0.14 0.86 ± 0.14 0.45 ± 0.07 

Bone 1.25 ± 0.74 0.95 ± 0.27 0.73 ± 0.28 0.86 ± 0.09 

Brain 0.13 ± 0.01 0.04 ± 0.004 0.08 ± 0.01 0.07 ± 0.01 

Lung 4.53 ± 0.99 2.30 ± 0.60 0.86 ± 0.07 0.73 ± 0.41 

*T/B ratio 0.52 1.51 1.84 1.17 

§T/M ratio 1.71 2.97 2.49 2.01 
§T/M: tumor-to-muscle; *T/B: tumor-to-blood; All data are the mean percentage (n = 3) of the injected dose per 

gram of tissue, ±: the standard deviation of the mean. 

Fig. 66. Structure and bio-distribution of 99mTcN-MAG-ABCPP in mice bearing S 180 tumor (% ID/g). 

In 2011, Xu et al. synthesized 7-(2-[18F]fluoroethylamino)-5-methylpyrazolo[1,5-a] pyrimidine-3-

carbonitrile ([18F]FEMPPC, [18F]1) and evaluated as positron emission tomography (PET) imaging 

agents for tumor detection. Initially, authors conducted uptake characteristics of [18F]1 against S180 

tumor cells and mice bearing S180 tumor followed by ex vivo bio distribution studies and concluded 

higher features for [18F]1 with respect to the total tracer accumulation and preservation in the tumor. In 

vitro and in vivo results suggested that [18F]1 (149) could be a favorable PET tracer for tumor detection. 

The structure and bio-distribution results are presented in Fig. 67 for [18F]1 (149) [115]. 

 

 

C. 

No 

Tissue 5 min 15 min 30 min 60 min 120 min 

149 

Lung 6.61 ± 0.54 3.79 ± 0.93 3.77 ± 0.31 2.78 ± 0.19 2.54 ± 0.96 

Heart 5.53 ± 0.61 3.57 ± 0.65 4.06 ± 0.09 3.46 ± 0.78 2.59 ± 0.18 

Spleen 4.66 ± 0.26 3.42 ± 0.52 3.43 ± 0.39 2.82 ± 0.31 2.15 ± 0.94 

Brain 3.17 ± 0.48 2.70 ± 0.07 2.47 ± 0.24 1.93 ± 0.25 1.79 ± 0.27 

Blood 4.83 ± 0.45 4.65 ± 0.05 4.49 ± 0.31 3.63 ± 0.33 2.95 ± 0.30 
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Kidney 7.93 ± 1.27 5.04 ± 0.48 3.28 ± 0.20 2.58 ± 0.16 1.92 ± 0.40 

Tumor 1.88 ± 0.63 4.37 ± 0.30 5.51 ± 0.31 2.95 ± 0.36 2.88 ± 0.34 

Muscle 3.99 ± 1.05 3.84 ± 0.45 3.05 ± 0.22 2.31 ± 0.48 2.64 ± 0.60 

Liver 6.99 ± 1.00 4.02 ± 0.20 3.17 ± 0.16 2.45 ± 0.30 1.84 ± 0.22 

T/muscle ratio 0.47 1.14 1.81 1.28 1.09 

T/Blood ratio 0.39 0.94 1.23 0.81 0.98 

T/brain ratio 0.59 1.62 2.23 1.53 1.61 

Fig. 67. Structure and bio-distribution in mice bearing S180 for [18F]1 expressed as % injected dose per 

gram. 

3.7    Organic dyes 

Dyes are coloured substances having affinity to the substrate being applied on. They usually possess 

chromophoric groups and have a conjugated system [116]. 

Al-Etaibi et al. in 2011 synthesized dyes consisting of pyrazolo[1,5-a]pyrimidine moiety and applied 

those dyes to polyester fibers employing high temperature method using microwave as heating source. 

Results of the study indicated that the dyed fabrics demonstrated reasonable light fastness and good 

washing fastness characteristics. Structures of dyes (150-153) and the results are given in Fig. 68 [117].  

.  

 

C. No. R 

Wash Fastness 

Light fastness (4 % o.m.f. dyeing) 

ψAlt *SC ΔSW 

150 Ph 5 5 5 2 

151 4-Cl-Ph 5 5 5 2 

152 -Fur-2-yl 4 5 4 2 

153 -Thien-2-yl 4-5 4-5 4-5 2 

ISO CO2/CO41; ψAlt: alteration; *SC: staining on cotton; ΔSW: staining on wool; o.m.f: mass of fabric. 

Fig. 68. Organic dye properties of synthesized compounds. 
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In 2014, Kamel et al. prepared bifunctional bis-sulphatoethylsulphone (154) and bis-

monochlorotriazine (155) reactive dyes bearing pyrazolo[1,5-a]pyrimidine as a basic nucleus. Authors 

tested the synthesized dyes for their behavior on cotton, wool and silk fabrics. The results of this study 

indicated maximum fixation values and level of exhaustion for the dyes and the dyed fabrics exhibited 

nice light fastness, good rubbing, washing and perspiration fastness. The chemical structure of dyes and 

the study results at 4% shade are depicted in Fig. 69 [118]. 

 

C. 

No 

 

Dyed 

sample

s 

K/S 

Fastness 

to 

rubbing Wash Fastness 
Fastness to perspiration 

Ligh

t 
We
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Dr
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C 
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W 
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t 

S

C 

S

W 
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C 

S

W 

15

4 

C 
12.5

1 
4-5 5 5 4-5 4-5 5 

4-

5 
4-5 5 

4-

5 
5 4-5 

W 
20.4

5 
5 4-5 4-5 5 4-5 5 

4-

5 
5 5 5 5 5-6 

S 
15.9

5 
5 5 5 5 5 

4-

5 
5 5 

4-

5 
5 4-5 4-5 

15

5 

C 
14.7

1 
5 5 5 5 5 

4-

5 
5 4-5 

4-

5 
5 4-5 6 

W 
26.8

5 
4-5 4-5 4-5 4-5 4-5 

4-

5 

4-

5 
4-5 5 

4-

5 
4-5 5-6 

S 
16.3

5 
4-5 4-5 4-5 4-5 4-5 5 

4-

5 
5 5 

4-

5 
5 6 

ψAlt: alteration; *SC: staining on cotton; ΔSW: staining on wool; K/S: color strength. 

Fig. 69. Dye properties of bis-sulphatoethylsulphone and bis-monochlorotriazine containing 

pyrazolo[1,5-a]pyrimidines. 

 

Moreover, the same research group reported the synthesis of heterocyclic reactive dyes based on disazo 

pyrazolopyrimidine analogs possessing a sulfatoethylsulfone reactive group and applied to cotton, wool 
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and silk fabrics. Their research findings evidenced that the dyed fabrics manifested notable light 

fastness, good rubbing, washing and perspiration fastness. The chemical structure of representative dye 

156 and its fastness properties as well as colour yields on the test fabrics are given in Fig. 70 [119] 

 
 

C. 

No 

Shad

e 

(%) 

Sampl

e 

dyed 

K/S 

Fastness 

to 

rubbing Wash fastness 
Fastness to perspiration 

Ligh

t 
We

t 

Dr

y 

Alkaline Acidic 
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c 
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e 

Al

t 

S

C 

S

W 

Al

t 

S

C 

S

W 

15

6 

2 

C 1.93 4-5 4-5 4-5 5 5 5 4-5 5 
4-

5 
4-5 3-4 

W 
13.1

9 
4-5 4-5 5 4-5 

4-

5 

4-

5 
5 

4-

5 

4-

5 
5 6 

S 4.44 4-5 4-5 5 4-5 5 5 5 5 
4-

5 
5 5-6 

4 

C 4.12 4-5 4-5 5 4-5 5 5 4-5 
4-

5 

4-

5 
5 2-3 

W 
18.9

9 
5 5 4-5 5 5 5 4-5 5 

4-

5 
5 5-6 

S 6.35 5 5 5 5 
4-

5 

4-

5 
5 5 5 4-5 2-3 

Fig. 70. Dye properties of the representative compound. 

3.8    Miscellaneous agents 

In 1995, Kiyama et al. reported the synthesis and evaluation of pyrazolo[1,5-a]pyrimidine derivatives 

as non-peptide angiotensin II receptor antagonists. Among the evaluated compounds, derivative 157 

decreased the mean blood pressure by more than 30 mmHg from the normal at a dose of 1 mg/kg by 

intravenous administration spontaneously to hypertensive rats. Fig. 71 illustrates the SAR studies and 

the structures of active compounds (158 and 159) in the angiotensin II receptor binding assay [120]. 
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C. No R1 R2 R3 
Receptor Assay (Ki nM) 

Human Rat 

157 n-Propyl H H 0.68 2.5 

158 n-Pentyl H H 0.36 3.4 

159 n-Butyl H H 0.85 2.5 

Fig. 71. SAR and the binding affinity of active compounds towards angiotensin II receptors. 

In 2011, Kato et al. discovered a series of pyrazolo[1,5-a]pyrimidine derivatives as novel Dipeptidyl 

peptidase-IV (DPP-IV) inhibitors. Among the series, compounds 159-161 were discovered as potent 

DPP-IV inhibitors. Pharmacokinetics studies revealed compound 159 exhibited metabolic stability and 

well balanced elimination. SAR, pharmacological and selected pharmacokinetic data are presented in 

Fig. 72 [35]. 

 

C. 

No 
R 

IC50 (nM) 

Serum Protein 

binding (%) 20 

hg/mL 

Metabolic activity 

[CL'int (l/h/kg)] 

DPP-

IV 

DPP-

8 

DPP-

9 
Rat Dog Human Rat Dog Human 

159 H 3.8 68 60 77.3 64.8 29.2 1.4 0.1 0.3 

160 CH3 13 76 64 22.1 22.5 18.9 NA NA NA 

161 OH 1.8 58 45 NA NA NA NA NA NA 

NA: No activity. 

Fig. 72. SAR, pharmacological and selected pharmacokinetic data of active compounds. 
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In the same year (2011), Griffith et al. discovered and synthesized pyrazolo[1,5-a]pyrimidine 

derivatives as neuropeptide Y1 receptor (an anti-obesity drug target) antagonists. Authors prepared 

thirteen new final compounds and evaluated (in vitro) using human Y1R radioligand binding assay. 

Within the series, compound 162 was discovered as a potent antagonist with the binding affinity value 

of 1 nM with comparatively active compound 163. Further, compound 162 inhibited NPY-induced rises 

in blood pressure (BP) and food intake after intravenous and intracerebroventricular administration in 

an animal model. In feeding behavioural studies of 162, modest inhibitions of food intake were reported 

in several lean rodent models. SAR, binding affinity and selected pharmacokinetic data are 

demonstrated in Fig. 73 [121]. 

 

C. 

No 
Ar 

R1, 

R2 R 

cE 

log 

D 

ѱKi 

(nM) 

Rat Clp 

(mL/min/kg) 

Rat 

fu,p 

Rat Clp, u 

(mL/min/kg) 

NPY 

pressor 

response 

(% inh 

at 3 

mg/kg 

iv) 

162 

2,6-Cl-

4-

CH3O-

Ph 

H,H 
tetrahydro-

pyran-4-yl 
2.6 1 45 0.059 763 92 

163 

2,6-Cl-

4-

C2H5O-

Ph 

H,H 
tetrahydro-

pyran-4-yl 
2.8 3 28 0.029 996 47 

ѱKi: Human Y1R radioligand binding assay; Rat Clp: Rat plasma clearance; Rat fu,p: Rat functional potency; 

Rat Clp, u: Rat plasma clearance, unbound clearance; iv: intra venous. 
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Fig. 73. SAR, binding affinity and selected pharmacokinetic data of potent inhibitors. 

In 2004, Campton and co-workers discovered and optimized the pyrazolo[1,5-a]pyrimidines as estrogen 

receptor (ER) ligands. Among those, compounds 164-166 exhibited promising binding affinities for 

ERα and ERβ. The optimized SAR studies revealed that incorporation of –OH group on the structure 

resulted in low affinity values at C-6 as shown in Fig. 74, which indicated that ligand core was attached 

to the ER in a reverse mode and served as isostere of the A-ring of estradiol [48]. 

 

C. No R R1 R2 ERα IC50 (nM) ERβ IC50 (nM) 

164 H OH H 0.010 0.050 

165 OH H H 0.007 0.023 

166 OH OH H 0.004 0.100 

Fig. 74. Estrogen receptor ligands bearing pyrazolo[1,5-a]pyrimidine scaffold. 

In 2015, Hassan and co-workers synthesized pyrazolo[1,5-a]pyrimidine derivatives by reacting 5-

amino-N-aryl-1H-pyrazoles with acetylacetone and 2-(4-methoxybenzylidene)- malononitrile. All the 

synthesized compounds were tested against Ehrlich ascites carcinoma (EAC) cell line for their in vitro 

cytotoxic activity. Among those, compounds 167 and 168 displayed potential activity when compared 

to doxorubicin as a reference drug. A brief SAR study has been presented in Fig. 75 [32].  
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C. No R EAC IC50 (µg/mL) 

167 Ph 10 

168 4-Cl-Ph 25 

Doxorubicin  37.4 

Fig. 75. Cytotoxicity studies of pyrazolo[1,5-a]pyrimidines with reference drug doxorubicin. 

In 2015, the same above mentioned authors (Hassan and co-workers) reported the synthesis and in vitro 

cytotoxic activities of 7-hydroxy-5-methyl-N-(aryl)pyrazolo[1,5-a] pyrimidines. All the synthesized 

compounds were tested against four human cancer cell lines (lung A549, liver HepG, colon HCT116 

and breast MCF-7). Within the series, compounds 169 and 170 showed significant cytotoxic activities 

when compared to reference drug doxorubicin. SAR studies have been represented in Fig. 76 [122]. 

 

C. No R Human cancer cell lines 

  Colon HCT116 

IC50 (µg/mL) 

Lung A549 

IC50 

(µg/mL) 

Liver 

HepG2 

Breast MCF-

7 

IC50 (µg/mL) 
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IC50 

(µg/mL) 

169 Ph NA 5.00 ± 0.50 4.00 ± 0.44 4.60 ± 0.55 

170 4-Cl-C6H4 NA 5.45 ± 0.62 6.10 ± 0.62 4.20 ± 0.60 

Doxorubicin  6.30 ± 0.60 5.10 ± 0.50 4.20 ± 0.46 4.70 ± 0.55 

NA: No activity. 

Fig. 76. SAR and cytotoxic properties of highly active compounds consisting pyrazolo[1,5-

a]pyrimidine scaffold. 

Engers and co-workers reported the synthesis and pharmacological evaluation of 3,6-disubstituted 

pyrazolo[1,5-a]pyrimidine derivatives as bone morphogenetic protein (BMP) receptors. SAR studies 

were carried out to determine the active functional groups at C-6, C-3 positions in order to enhance the 

potency and also carried out comparative studies with known drugs such as dorsomorphin, LDN-

193189 and DMH-1 as represented in Fig. 77. Among the series, compounds 171-173 exhibited 

equipotent activity against BMP receptors (BMP4 cell IC50 = <1 nM) [44]. 

 

C. No R1 R2 BMP4 cell IC50 (nM) 

171 

 

-OCH3 <1 

172 

  

<1 
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173 

  

<1 

Fig. 77. SAR and BMP4 cell line properties of 3,6-difunctionalized pyrazolo[1,5-a]pyrimidines. 

In 2013, Tabrizi and co-workers reported the synthesis of 7-oxopyrazolo[1,5-a]pyrimidine-6-

carboxamides and evaluated their pharmacological activity as effective and selective cannabinoid 

receptor inverse agonists. SAR studies were performed to find out the effective functional groups at C-

6 and C-2 positions to achieve potent cannabinoid receptor type-2 (CB2) receptors. Among the series, 

compounds 174-177 displayed potent and selective CB2 receptor affinities as depicted in Fig. 78 [51]. 

 

 

 

C. 

No 
R R1 Ki (nM) 

   ΔrCB1 
*rCB2 ψhCB1 §hCB2 ϕSI 

174 Ph Adamant-1-yl 
> 10000 

(40%) 

2.74 ± 

0.28 

>10000 

(40%) 

2.56 ± 

0.22 
>3906 

175 
2-CH3-

Ph 
Adamant-1-yl 

> 10000 

(30%) 

3.21 ± 

0.30 

>10000 

(22%) 

2.86 ± 

0.25 
>3496 

176 4-Cl-Ph Adamant-1-yl 
> 10000 

(10%) 

4.21 ± 

0.42 

>10000 

(13%) 

3.88 ± 

0.31 
>2577 

177 
Furan-2-

yl 
Adamant-1-yl 

> 10000 

(40%) 

5.14 ± 

0.42 

>10000 

(34%) 

4.92 ± 

0.43 
>2032 

Here ΔrCB1: rat brain for CB1 receptors; *rCB2: rat spleen for CB2 receptors; ψhCB1: human CB1 CHO membrane; 
§hCB2: human CB2 CHO membrane; ϕSI: selectivity. 

Fig. 78. SAR and cannabinoid receptor studies of 7-oxopyrazolo[1,5-a]pyrimidine-6-carboxamides. 

In 2016, Liu et al. reported the discovery of pyrazolo[1,5-a]pyrimidines as threonine tyrosine kinase 

(TTK) inhibitors. All synthesized molecules were screened against various cancer cell lines. Compound 

178 indicated potent activities against all tested cancer cell lines. SAR studies concluded that 

assimilation of polar, basic and solubilizing groups in the hydrophobic and solvent accessible areas 

modulated physiochemical assets while maintaining potency, as illustrated in Fig. 79 [123]. 
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C. No R R1 TTK 

IC50 (nM) 

Cancer cell GI50 (µM) 

    MDA-MB-

468 

HCT116 OVCAR-3 

178 

 
 

1.7 0.002 0.002 0.004 

Fig. 79. SAR and TTK activity studies. 

3.9    Patents covering pyrazolo[1,5-a]pyrimidine nucleus and their target activity 

Medicinal importance of pyrazolo[1,5-a]pyrimidine scaffold is further evidenced based on numerous 

patents registered from 1980 to recent past. Various research groups that patented this scaffold for 

different therapeutic segments are concisely presented in Table-1.  

Research group Patent number Target activity Year 

Dusza US4626538 
Anxiolytic, antiepileptic, sedative-

hypnotic agents [9] 
1986 

Nugent US005397774A Anti-inflammatory[124]  1995 

Inoue US005688949A Anti-inflammatory [125] 1997 

Inoue US005843951A Analgesic [126] 1998 

Levin US20070219183A1  Cancer [127]  2007 

Chen WO2008036579A1 CRF1 receptor antagonists [128] 2008 

Andrews WO2011029027A1 mTOR inhibitors [129] 2011 
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Zhao WO2012027239A1 mTOR inhibitors [130] 2012 

Marugan WO2012078855A1 Glucocerebrosidase activators [131] 2012 

Bearss US8710057B2 Protein kinase inhibitors [132] 2014 

Ahmad WO2014089379A9 ATR kinase inhibitors [133] 2014 

Table-1. Pyrazolo[1,5-a]pyrimidine nucleus containing patents having numerous biological activities. 

 

Fig. 80. Biological activities of pyrazolo[1,5-a]pyrimidines. 
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Fig. 81. Summary of structural modifications to influence the activity. 
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4    Conclusion 

Literature survey indicated pyrazolo[1,5-a]pyrimidine as a privileged scaffold in medicinal chemistry 

with diverse pharmacological activities. In this review, we initially discussed various strategies 

employed for the syntheses of substituted pyrazolo[1,5-a]- pyrimidines through multi-component 

reactions (MCRs), conventional heating and/or microwave-assisted organic reactions (MAORs). 

Moreover, these synthetic protocols offer pharmaceutical chemists to generate a library of pyrazolo[1,5-

a]pyrimidines for high throughput screening (HTS) analysis. Clinically administered drugs such as 

zaleplon, indiplon, ocinaplon, dinaciclib, dosomorphin, anagliptin, pyrazophos and lorediplon bearing 

pyrazolo[1,5-a]pyrimidine nucleus  have been effectively used till date for therapy of numerous 

ailments. Medicinal attributes of pyrazolo[1,5-a]pyrimidines have been extensively studied for different 

biological activities such as anticancer, antimicrobials, CNS depressant and other applications  such as 

organic dyes, and in radiopharmaceuticals, as illustrated in Fig. 80. Recently, several therapeutic 

applications and patents on this scaffold have been emerged and much more is yet to be explored. A 

number of researchers and scientists analyzed SAR of pyrazolo[1,5-a]pyrimidines and deduced the 

bioactive structures in a quantitative manner (QSAR). The C-3 position of pyrazolo[1,5-a]pyrimidines 

accomplished favourable CNS activity, whereas modifications at C-2, C-3, C-5, C-6 and C-7 positions 

attributed towards different anticancer targets. Further, change in substitution patterns on C-5 and C-7 

positions imparted higher affinity towards HIV-NNRTIs and CRF1 receptors. Overall structural 

diversifications and their effects on biological activities are presented in Fig. 81. A wide range of 

pharmaceutical properties displayed by this privileged scaffold will definitely serve the purpose for 

developing effective potent chemotherapeutics. This review aims to provide an extensive information 

to the scientific community to design novel, target selective, optimized and varied pyrazolo[1,5-

a]pyrimidine analogs for the treatment of multifactorial diseases. 
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Abstract:  

Pyrazolo[4,3-d]pyrimidine, a fused heterocycle bearing pyrazole and pyrimidine portions has gained a 

significant attention in the field of bioorganic and medicinal chemistry. Pyrazolo[4,3-d]pyrimidine 

derivatives have demonstrated numerous pharmacological activities particularly, anti-cancer, anti-

infectious, phosphodiesterase inhibitors, adenosine antagonists and cytokinin antagonists etc. This review 

extensively unveils the synthetic and pharmacological diversity with special emphasis on structural 

variations around pyrazolo[4,3-d]pyrimidine scaffold. This endeavour has thus uncovered the medicinal 

worthiness of pyrazolo[4,3-d]pyrimidine framework. To the best of our knowledge this review is the first 

compilation on synthetic, medicinal and structure activity relationship (SAR) aspects of pyrazolo[4,3-

d]pyrimidines since 1956. 
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1    Introduction 

Heterocyclic compounds have been significant part of both organic and medicinal chemistry research. 

Majority of the commercially available drugs are built on heterocyclic scaffolds and these scaffolds are core 

part of the drugs responsible for desired pharmacological activity. Over the years, these heterocycles have 

been synthesized with numerous improved synthetic methods.1 Further these compounds have also been a 

valuable source of intermediates in the synthesis of several fused heterocyclic compounds of biological 

importance.2 These fused heterocyclic compounds have major roles in biological processes, and they are 

present in a wide variety of drugs, antibiotics, vitamins, natural products and many other biomolecules. In 

addition, nitrogen bearing fused heterocycles have gained a substantial attention and occur in a variety of 

bioactive natural products, pharmaceuticals, organic materials, dyes and agrochemicals.3 Among these N-

fused heterocycles, pyrazolopyrimidine is one of the attractive fused heterocyclic moiety owing to its 

synthesis and immense pharmacological importance. Some of the marketed drugs containing 

pyrazolopyrimidine core structure are allopurinol,4 zaleplon, indiplon,5 dinaciclib,6 dorsomorphin,7 

ocinaplon,8 anagliptin,9 lorediplon and pyrazophos,10 sildenafil,11 tisopurine.12 Pyrazolopyrimidines show 

pharmacological properties such as cyclin-dependent kinase (CDK) inhibitors,13,14 anti-proliferative,15 anti-

bacterial,16 anti-fungal,17,18 anti-viral agents,19 anti-leishmanial.20 Furthermore, pyrazolopyrimidines acts as 

central nervous system depressants,21 COX-1, COX-2 selective inhibitors,22 antitrypanosomal and 

sedative,23 serotonin 5-HT6 receptor antagonists,24,25 corticotropin-releasing factor (CRF) 1 receptor 

antagonists,26  tuberculostatic27 and PET tumor imaging agents.28 

Several isomeric forms of pyrazolopyrimidines are well-known such as pyrazolo[1,5-c]pyrimidines, 

pyrazolo[5,1-b]pyrimidines, pyrazolo[5,1-a]pyrimidines, pyrazolo[4,3-d]pyrimidines and pyrazolo[3,4-

d]pyrimidines.29 Of them, pyrazolo[4,3-d]pyrimidine (Fig. 1), which is an isostere of purines has acquired 

considerable importance due to its diverse, facile and general synthetic methodologies with great medicinal 

importance. In 1958, Robins reported the synthesis of pyrazolo pyrimidines as potential purine 

antagonists.30 Substituted 1H-pyrazole and 1,3-dimethylpyrimidine-2,4-(1H,3H)-dione are the most 

common substrates for synthesizing pyrazolo[4,3-d]pyrimidine derivatives. 
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Fig. 1. General structures of purine (a) and pyrazolo[4,3-d]pyrimidine (b). 

The versatile  synthetic approaches for pyrazolo[4,3-d]pyrimidine derivatives have gained significant 

interest of the medicinal chemists due to its wide range of pharmacological applications namely, adenosine 

receptor antagonists,31 cytokinin antagonists,32 corticotrophin-releasing factor receptor antagonists,33 anti-

leishmanial,19 phosphodiesterase 5 (PDE5) inhibitors,34 anti-viral, anti-fungal,35 diagnostic agents,36 anti-

inflammatory,37 agents in male and female sexual dysfunctions38 etc. Marketed drug, Sildenafil is a well-

known example of a drug containing pyrazolo[4,3-d]pyrimidine scaffold. This drug is marketed with brand 

names as Viagra® and Revatio®
, is the first drug of its kind to be used for the treatment of male erectile 

dysfunction and pulmonary arterial hypertension (PAH)39 (Fig. 2). Pyrazolo[4,3-d]pyrimidine scaffold also 

forms a vital component of naturally occurring nucleoside antibiotics such as formycin A and B.40  

Recently, our research group reported a review on pyrazolo[1,5-a]pyrimidine framework emphasising on 

methods of synthesis, structure activity correlations with their reported pharmacological activities.41 In 

continuation of our interest on pyrazolopyrimidines, the current review reveals various synthetic approaches 

and medicinal properties of pyrazolo[4,3-d]pyrimidine derivatives. To the best of our understanding, this 

review is the first of its kind with extensive compilation on synthesis, structure-activity relationship (SAR) 

and medicinal properties of pyrazolo[4,3-d]pyrimidine derivatives.  

 
 

Fig. 2. Marketed drug Sildenafil containing pyrazolo[4,3-d]pyrimidine scaffold. 

2    Synthetic methodologies for pyrazolo[4,3-d]pyrimidine scaffold 

Pyrimidine is a six membered 1,3-diazine heterocycle containing two imine nitrogen atoms. These two 

nitrogens exhibit electron withdrawing tendency on the surrounding atoms thus making pyrimidine ring 

more resistant towards electrophilic substitution while facilitating nucleophilic attack.42 On the other hand, 

pyrazole a five membered 1,2-diazine heterocycle bearing two nitrogen atoms adjacent to each other and is 

a structural isomer of imidazole having nitrogen atoms at 1- and 3-position.43  Fusion of pyrazole with the 
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pyrimidine ring results in the formation of new bicyclic system known as “pyrazolopyrimidine”. There are 

almost five different structural isomers of this bicyclic system, which exists due to the varying position of 

nitrogen, degree of saturation or unsaturation, or the number of nitrogens in the pyrazole nucleus.44 Among 

those, pyrazolo[4,3-d]pyrimidine scaffold is privileged and medicinally significant as it has multiple 

reaction centres (Nitrogen at 1, 2, 4 and 6 positions and Carbon at 3, 5 and 7 positions). Their manifestation 

contributes to the expression of dual or multiple reactive abilities in terms of electrophilic as well as 

nucleophilic substitution reactions (Fig. 3). These properties outlined above, prompted chemists to 

synthesize pyrazolopyrimidine derivatives for their potential application in medicinal chemistry. From the 

historic point of view, synthesis of pyrazolo[4,3-d]pyrimidines was first reported in 1956,30 since then 

numerous derivatives have been synthesized by applying various synthetic methodologies and were  

evaluated for their biological properties. The numerous synthetic strategies of pyrazolo[4,3-d]pyrimidines 

are represented in Fig. 4. 

 

Fig. 3. Possible reaction centres of pyrazolo[4,3-d]pyrimidine scaffold. 

The synthesis of pyrazolo[4,3-d]pyrimidine derivatives (P1-P39) have been achieved by utilizing several 

simple substituted 1H-pyrazoles (i-xxxvi) and substituted 1,3-dimethylpyrimidine-2,4(1H,3H)-diones 

(xxxvii-xxxix) by employing different synthetic routes. The following discussion divulges in detail about 

the synthesis of pyrazolo[4,3-d]pyrimidines derivatives. 

Robins et al. accomplished the desired product P1 by the cyclization of i (4-amino-3-methyl-1H-pyrazole-

5-carboxamide) with thiourea under reflux conditions (scheme-1).45 Robins et al. treated 4-amino-1H-

pyrazole-5-carboxamide (ii) with formamide under boiling conditions to afford 7-hydroxypyrazolo[4,3-

d]pyrimidine (P2) as a target molecule (scheme-2).46 Long and co-workers introduced a fusion reaction by 

ring annulation of iii (4-amino-3-methyl-1H-pyrazole-5-carbothioamide) with urea to achieve P3 (scheme-

3).47 Acton and co-workers carried out the Curtius rearrangement of iv in boiling toluene to achieve 

pyrazolo[4,3-d]pyrimidinedione (P4) as a final compound (scheme-4).48 Takei et al. attempted the reaction 
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between v (ethyl 4-amino-5-oxo-4,5-dihydro-1H-pyrazole-3-carboxylate hydrochloride) and formamidine 

acetate to attain P5 in presence of triethylamine as a base in 2-ethoxy ethanol (scheme-5).49 Wierzchowski 

and co-workers reported the cyclization reaction of ethyl 4-amino-1-ethyl-3-propyl-1H-pyrazole-5-

carboxylate (vi) with formamide to afford P6 under reflux conditions (scheme-6).50 Lewis et al. obtained 

P7 via treating methyl (Z)-N-benzoyl-N'-(5-carbamoyl-1H-pyrazol-4-yl)carbamimidothioate (vii) with a 

saturated solution of ammonia in dimethylformamide and dilute NaOH solution under reflux conditions 

(scheme-7).51 Ochi and co-workers have reported hydrogenation and subsequent cyclization of viii (4-

nitroso-5-hydroxy-1-phenyl-1H-pyrazole-3-carboxylate) with formamide to obtain P8 under inert 

conditions at 180-190 0C (scheme-8).52 
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Fig. 4. Synthetic strategies for pyrazolo[4,3-d]pyrimidines. 
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Fig. 4. (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines. 

Acton et al. have obtained the desired product P9, by cyclization reaction of ix with ammonia (scheme-9).53 

Baraldi and co-workers synthesized P10 by allowing the cyclization reaction between 4-amino-N-(4-

chlorophenyl)-3-methyl-1H-pyrazole-5-carboxamide (x) and formamide (scheme-10).17 Hamilton et al. 

have performed cyclization reaction between 4-amino-1,3-dimethyl-1H-pyrazole-5-carboxamide (xi) and 
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4-methylbenzoic acid to obtain P11 in polyphosphoric acid (scheme-11).31 Buchanan and co-workers have 

attained the desired product P12 by cyclization of xii with ammonia in dimethylformamide (scheme-12).54 

Haddad et al. have succefully carried out the cyclization reaction of methyl 1,3-diphenyl-4-(3-

phenylureido)-1H-pyrazole-5-carboxylate (xiii) with sodium ethoxide in ethanol under reflux conditions to 

achieve P13 (scheme-13).55 Dale and co-workers have performed cyclization reaction of 4-(2-

ethoxybenzamido)-1-methyl-3-propyl-1H-pyrazole-5-carboxamide (xiv) in presence of sodium hydroxide 

as a base to afford P14 (scheme-14).56 El-abadelah et al. have reported cyclo-condensation reaction between 

4-amino-1-methyl-5-propyl-1H-pyrazole-3-carboxamide (xv) and 2-ethoxybenzoic acid in polyphosphoric 

acid at 130-140 0C to obtain P15 (scheme-15).57 Yuan and co-workers attempted and achived the reaction 

between ethyl 4-amino-5-(2,4-dichlorophenyl)-1-methyl-1H-pyrazole-3-carboxylate (xvi) and benzyl 

thioacetimidate hydrobromide in pyridine to afford P16 (scheme-16).33 
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Fig. 4. (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines. 
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Fig. 4. (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines. 

Moravcova and co-workers acquired the desired compound P17 by the cyclization reaction of methyl 4-

amino-3-isopropyl-1H-pyrazole-5-carboxylate (xvii) with formamidine acetate in presence of triethylamine 

(scheme-17).14 Reddy et al. attempted the reaction between 4-amino-1-methyl-3-propyl-1H-pyrazole-5-
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carboxamide (xviii) and benzaldehyde to attain P18 in acetic acid containing catalytic amount of p-toluene 

sulfonic acid (scheme-18).58 Khan and co-workers obtained P19 via treating 4-(3-bromobenzamido)-1-

methyl-3-propyl-1H-pyrazole-5-carboxamide (xviv) with basic alumina under microwave irradiation 

conditions (scheme-19).59 Krystof et al. reported fusion reaction of 4-amino-3-isopropyl-1H-pyrazole-5-

carboxamide (xx) with urea to achieve compound P20 (scheme-20).60 Brady and co-workers acquired P21 

by treating 4-amino-N-ethyl-1-methyl-3-phenyl-1H-pyrazole-5-carboxamide (xxi) with 

carbonyldiimidazole or other phosgene equivalent reagents (scheme-21).61 Lenzi et al. attempted the 

cyclization reaction of ethyl 4-amino-1-(4-methoxyphenyl)-1H-pyrazole-3-carboxylate (xxii) with 1,1,1-

triethoxyethane in presence of ammonium acetate to afford P22 under microwave irradiation conditions 

(scheme-22).62 Tollefson and co-workers carried out the cyclization reaction of 4-amino-3-ethyl-1-(2-

(2,2,2-trifluoroethoxy)ethyl)-1H-pyrazole-5-carboxamide (xxiii) with carbonyldiimidazole to get target 

molecule P23 (scheme-23).34 Reddy et al. obtained the final compound P24 by condensation reaction of 

methyl 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxylate (xxiv) with triethyl orthoformate in 

presence of aromatic amines (scheme-24).63 
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Fig. 4. (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines. 
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Fig. 4. (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines.  

Jorda and co-workers established fusion reaction between 4-amino-3-isopropyl-1H-pyrazole-5-

carboxamide (xxv) with thiourea under inert conditions to attain the desired product P25 (scheme-25).13 

Geffken et al. offered synthesis of desired compound P26 employing cyclization of ethyl 4-amino-3-phenyl-

1H-pyrazole-5-carboxylate (xxvi) with formamidine acetate under reflux conditions (scheme-26).64 Nayak 
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and co-workers blended 4-iodo-1,5-diphenyl-1H-pyrazole-3-carbaldehyde (xxvii) and acetamidine 

hydrochloride in presence of catalytic amount of copper iodide and cesium carbonate to achieve P27 

(scheme-27).65 Bratenko and co-workers attempted intramolecular cyclization reaction of xxviii by treating 

with potassium hydroxide or potassium tert-butoxide in ethanol to afford P28 (scheme-28).66 Squarcialupi 

et al. established one pot synthesis of P29 by reacting xxix (4-amino-1-(4-methoxyphenyl)-1H-pyrazole-3-

carbonitrile) with triethyl orthobenzoate and ammonium acetate under microwave conditions (scheme-

29).67 Reddy and co-workers reported the cyclization reaction of 4-amino-1-methyl-3-propyl-1H-pyrazole-

5-carboxamide (xxx) with 2-ethoxybenzaldehyde to afford P30 in presence of catalytic amount of potassium 

persulfate in H2O:DMSO (1:1) under microwave irradiation conditions (scheme-30).68 Squarcialupi et al. 

reacted 4-amino-1-phenyl-1H-pyrazole-3-carbonitrile (xxxi) with ethyl (E)-3-(4-

methoxyphenyl)acrylimidate hydrochloride to attain P31 in presence of ammonium acetate under 

microwave conditions (scheme-31).69 Rote and co-workers have carried out the regioselective condensation 

of 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide (xxxii) with benzaldehyde in presence of 

acetonitrile and slight excess of molecular iodine to afford P32 (scheme-32).70 
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Fig. 4. (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines. 
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Fig. 4. (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines. 
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Mohammed and co-workers have treated 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide (xxxiii) 

and 1-(4-nitrophenyl)ethan-1-one to achieve P33 in presence of catalytic amount of molecular iodine 

(scheme-33).71 Hafez et al. have obtained P34 by treating (E)-N-(5-(2-benzylidenehydrazine-1-carbonyl)-

3-(4-chlorophenyl)-1H-pyrazol-4-yl)acetamide (xxxiv) with sodium ethoxide under reflux conditions 

(scheme-34).35 Squarcialupi and co-workers have accomplished the target product P35 by reacting 4-amino-

1-(2-hydroxyphenyl)-1H-pyrazole-3-carbonitrile (xxxv) with ethyl iminoester hydrochloride (scheme-

35).72 Squarcialupi et al. treated methyl 4-amino-1-methyl-1H-pyrazole-3-carboxylate (xxxvi) with 

(triethoxymethyl)benzene to get target compound P36 under microwave irradiation conditions (scheme-

36).73 Pepesch and co-workers have treated xxxvii with strong alkali (NaOH) to afford the desired molecule 

P37 (scheme-37).74 Senda et al. have accomplished the desired molecule P38 by reacting 6-(bromomethyl)-

1,3-dimethyl-5-nitropyrimidine-2,4(1H,3H)-dione (xxxviii) with methylamine in ethanol under reflux 

conditions (scheme-38).75 Hirota and co-workers introduced cyclization of 1,3-dimethyl-5-nitro-6-

((phenylamino)methyl)pyrimidine-2,4(1H,3H)-dione (xxxix) to achieve the desired molecule P39 (scheme-

39).76 
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Fig. 4. (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines. 
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Fig. 4. (Continued). Synthetic strategies for pyrazolo[4,3-d]pyrimidines. 

3     Biological activities 

3.1    Anti-cancer agents 

In 2003, Moravcova et al. attempted novel synthesis of 3,7-disubstituted pyrazolo[4,3-d]pyrimidines and 

evaluated their anticancer activity against CDK1/Cyclin B kinase and anti-proliferative activity against 

myeloid leukemia cell line (K-562). All the molecules exhibited good potency against both CDK1/Cyclin 

B kinase and K-562 cell line. From the series, compound 1 (2-(((3-isopropyl-1H-pyrazolo[4,3-d]pyrimidin-

7-yl)amino)methyl)phenol) showed maximum CDK1 inhibitory activity (IC50 = 0.44 µmoL/dm3) as well as 

K-562 cell line activity (IC50 = 54 µmoL/dm3) when compared to reference drug olomoucine (CDK1: IC50 = 

7 µmoL/dm3; K-562: IC50 = 163 µmoL/dm3). SAR studies revealed that the presence of hydroxy benzyl 

functional group at C-7 was essential for both anticancer and anti-proliferative activity Fig. 5.14 
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C. No R CDK1/Cyclin B IC50 (µM) K-562 IC50 (µM) 

1 

 

0.44 54 

Olomoucine 7 163 

Fig. 5. SAR and anticancer properties of 2-(((3-isopropyl-1H-pyrazolo[4,3-d]pyrimidin-7-

yl)amino)methyl)phenol. 

 In 2006, Krystof and co-workers synthesized 3-isopropyl-N5,N7-bis(4-methoxybenzyl)-1H-pyrazolo[4,3-

d]pyrimidine-5,7-diamine (2) as CDK1 inhibitor. Compound 2 was also tested against a panel of human 

cancer cell lines (A431, A549, BT474, CEM, G361, HBL100, HeLa, K562, MCF7 and many others) for 

their anti-proliferative activity. Of the tested cell lines, compound 2 showed significant potency against 

HeLa cell line. From SAR studies, it was revealed that amino linkage at C-5 and C-7 positions have greatly 

influenced the activity as depicted in Fig. 6.60 
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C. No CDK1 IC50 (µM) 

2 4.1 ± 1.3 

 

C. No Cell lines IC50 (µM) 

 

 

 

2 

A431 6.9 ± 0.2 

A549 6.8 ± 0.4 

BT474 6.8 ± 0.2 

CEM 6.3 ± 0.6 

G361 6.7 ± 0.2 

HBL100 6.4 ± 0.1 

HeLa 5.2 ± 0.4 

K562 6.2 ± 0.2 

MCF7 6.4 ± 0.5 

Fig. 6. SAR and antiproliferative activity of compound 2 on various cancer cell lines. 

In 2011, Jorda and co-workers reported synthesis of (R)-2-((7-(benzylamino)-3-isopropyl-1H-pyrazolo[4,3-

d]pyrimidin-5-yl)amino)butan-1-ol (3) and determined its anti-proliferative activity against a panel of 

human cancer cell lines (MCF-7, HCT-116, RPMI-8226, CEM, G-361, A-549, A-431 and others). Further, 

compound 3 was found to have potent inhibitory activity against several CDKs, namely CDK2, CDK5, 

CDK7 and CDK9. Fig. 7 briefly displays the anti-proliferative and CDK activity of compound 3.13 

                                                              

C. No Human tumor Cell lines IC50 (µM) 

 

 

3 

MCF-7 7.5 ± 2.3 

HCT-116 11.0 ± 1.8 

RPMI-8226 3.6 ± 0.3 

CEM 3.8 ± 0.8 

G-361 4.8 ± 1.6 

A-549 7.1 ± 2.1 

A-431 7.7 ± 0.3 
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C. No IC50 (µM) 

 CDK2/Cyclin E CDK5/P35 CDK7/Cyclin H/MAT1 CDK9/Cyclin T1 

3 0.04 0.20 0.16 1.00 

Fig. 7. Anticancer activity on various cancer cell lines and kinase selectivity profile for compound 3. 

In 2013, Weitensteiner et al. observed potential anti-angiogenic activity of the newly synthesized 3,5,7-

trisubstituted pyrazolo[4,3-d]pyrimidine derivatives by employing three in vitro assays (proliferation, cell 

migration and tube formation) and substantiated based on n vivo chorioallantoic membrane assay. The most 

active compounds were examined further for their kinase selectivity profile against a panel of 24 different 

kinases including other isoforms of CDK (Fig. 8). From the experimental data, compound 4 and 5 displayed 

high selectivity towards Cdk2 and Cdk5. Authors also investigated to understand the relationship between 

the CDK-5 inhibition and anti-angiogenic properties of 4 and 5 by quantifying lamellipodia formation 

followed by immunocytochemistry analysis. Thus, concluding that these two compounds (4 and 5) inhibited 

angiogenesis (in vitro) via CDK5 inhibitory mechanism.77   

 

C. 

No 

CDK1 

IC50  

CDK2 

IC50  

CDK4 

IC50  

CDK5 

IC50  

CDK6 

IC50  
CDK7 IC50  

CDK9 

IC50  

4 3.2 × 10-6 9.9 × 10-7 1.5 × 10-5 4.4 × 10-7 > 10-4 > 10-4 > 10-6 

5 5.8 × 10-6 1.5 × 10-6 6.6 × 10-6 1.6 × 10-6 9.1 × 10-5 > 10-4 1.9 × 10-6 

IC50 values are given in molar. 

Fig. 8. CDK kinase activity of lead compounds consisting trisubstituted pyrazolo[4,3-d]pyrimidine scaffold. 

In 2014, Reddy and co-workers reported a microwave assisted synthesis of 5-substituted-1H-pyrazolo[4,3-

d]pyrimidine-7(6H)-one analogs and evaluated their pharmacological activity against various human cancer 
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cell lines (HeLa, CAKI-1, PC-3, MiaPaca-2 and A-549). From this series, compound 6, (5-(3,5-

dimethoxyphenyl)-1-methyl-3-propyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one displayed potent 

activity against all cancer cell lines. SAR studies revealed that appropriate substitutions at C-5 influenced 

the potency as shown in Fig. 9.68 

 

C. No R 

IC50 (µM) 

 

  Hela CAKI-1 PC-3 Miapaca-2 A-549 

6 

 

19 17 37 24 14 

Fig. 9. SAR and anti-proliferative activity of compound 6 on various human cancer cell lines. 

In 2015, Reznickova et al. reported the synthesis of 3,5,7-trisubstituted pyrazolo[4,3-d]pyrimidines and 

evaluated their CDK inhibitor activity. All the synthesized molecules having isopropyl group at C-3 position 

showed significant activity. From the series, compounds 7, 8 and 9 exhibited potent CDK2 inhibitory 

activity and excellent cytotoxicity against MCF-7 and K-562 human cancer cell lines as represented in Fig. 

10. From SAR studies, it was concluded that substitutions at C-5 and C-7 positions were necessary for both 

CDK2 and cancer activities.78 
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C. No R1 R2 
CDK2/E 

IC50 (nM) 

MCF-7 

GI50 (µM) 

K-562 

GI50 (µM) 

7 NH2 

 
16.5 ± 8.1 4.4 ± 0.5 15.5 ± 1.0 

8 NH2 

 

15.3 ± 1.2 10.9 ± 4.0 22.3 ± 1.7 

9 NH2 

 

10.5 ± 3.4 2.8 ± 0.4 9.2 ± 1.4 

Fig. 10. Anticancer activity and SAR studies of 3,5,7-trisubstituted pyrazolo[4,3-d]pyrimidines. 

In 2016, Vymetalova and co-workers reported the synthesis of 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-

1(2)H-pyrazolo[4,3-d]pyrimidines and evaluated for their CDK inhibition activity. SAR study revealed 

that compounds contained hydroxyalkylamines at C-5 exhibited maximum potency for both CDK2 and 

CDK5. Compounds were also tested against K-562, MCF-7, G-361 and HCT-116 cell lines and the 

activity results are shown in Fig. 11. From the synthesized series, compounds 10, 11, 12 and 13 exhibited 

significant potency against CDK2 and CDK5 kinases, K-562, MCF-7, G-361 and HCT-116 cell lines. 

Further highly active compound 10 was screened against a panel of 50 protein kinases revealed its 

selectivity for CDKs.79 
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C. No R1 

IC50 (µM) 

K-562 MCF-7 G-361 HCT-116 CDK2 CDK5 

10 
 

0.029 0.024 0.048 0.085 0.009 0.001 

11 

 

0.047 0.059 0.072 0.087 0.012 0.021 

12 

 

0.110 0.163 0.197 0.270 0.018 0.005 

13 
 

0.063 0.062 0.230 0.227 0.018 0.008 

Fig. 11. SAR study of 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines as 

potent CDK inhibitors. 

3.2    Anti-infectious agents 

In 1984, Baraldi and co-workers reported the synthesis and antiviral activity of 1-β-D-ribofuranosyl-3-

methyl-6-substituted-7H-pyrazolo[4,3-d]pyrimidin-7-ones. From SAR studies, it was noted that 

significant activity was displayed for compounds with 4-methoxybenzyl and 4-chlorophenyl moieties at 

C-6 as shown in Fig. 12. From the series, compounds 14, 15 and 16 exhibited moderate activity against 

herpes simplex virus type-1 (HSV-1) when compared to 5-iodo-2-deoxyuridine (IDU) as reference drug.17  
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C. No R HSV-1 ED50 (µM) 

14 

 

50 

15 
 

152 

16 

 

49.5 

IDU  1.2 

Fig. 12. Structures and anti-viral activity of 1-β-D-ribofuranosyl-3-methyl-6-substituted-7H-

pyrazolo[4,3-d]pyrimidin-7-ones against HSV-1. 

In 1991, Sanghvi et al. reported in vivo anti-viral activity of pyrazolo[4,3-d]pyrimidines and related 

guanosine analogues prepared from formycin. Three derivatives were prepared and tested for their ability 

to inhibit certain RNA and DNA viral replication by in vitro and semliki forest virus infection by in vivo 

methods. From the synthesized compounds, 5-amino-1-methyl-3-β-D-ribofuranosyl-pyrazolo[4,3-

d]pyrimidin-7(6H)-one (17) exhibited favourable protection survivor against a lethal dose of semliki forest 

virus infection in mice model as compared to the standard drug. A brief SAR study and activity data have 

been represented in Fig. 13.80 
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C. No R Dosea (mg/kg) Survivors/total (%)b Mean survival timec 

17 CH3 

200 7/12 (58) 7 ± 0.8 

100 8/12 (67) 8 ± 0.8 

50 8/12 (67) 6 ± 0.8 

30 6/12 (50) 9.2 ± 2.9 

10 1/12 (8) 9.6 ± 2.4 

7-thia-8-oxo-guanosine 100 11/12 (92) 8 ± 0.0 

a: Half daily doses were administered intraperitoneally at 24 and 18 hours relative to virus inoculation; b: Statistically 

significant (p ˂0.025) determined by the two-tailed fisher exact test; c: Dead mice.  

Fig. 13. Anti-viral activity of 5-amino-1-methyl-3-β-D-ribofuranosyl-pyrazolo[4,3-d]pyrimidin-7(6H)-one. 

In 2011, Geffken and co-workers reported design and synthesis of pyrazolo[4,3-d]pyrimidin-4-ones and 

evaluated their pharmacological activity against bacterial and fungal strains. Of the screened compounds, 

3-(4-bromophenyl)-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (18) exhibited moderate activity 

against C. albicans and inactive against other bacterial strains as compared to the standard drugs ampicillin 

and clotrimazole. SAR and antibacterial and fungal screening results are presented in Fig. 14.64  
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C. No 

 

R 

 

S. aureus 

(µg mL-1) 

E. Coli 

(µg mL-1) 

P. aeruginosa 

(µg mL-1) 

C. albicans 

(µg mL-1) 

MIC MBC MIC MBC MIC MBC MIC MBC 

18 Br NA NA NA NA NA NA 250 250 

Clotrimazole NA NA NA NA NA NA 7.81 15.62 

Ampicillin 3.9 15.62 7.81 31.25 250 500 NA NA 

NA: No activity. 

Fig. 14. Anti-microbial values of 3-(4-bromophenyl)-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one 

against different bacterial and fungal strains. 

In 2016, Hafez and co-workers synthesized a series of novel 6-amino-3-(4-chlorophenyl)-5-methyl-1,6-

dihydro-7H-pyrazolo[4,3-d]-pyrimidin-7-one derivatives and evaluated them for their antimicrobial 

properties. All the synthesized molecules exhibited potent activity against gram positive and gram negative 

bacterial and fungal strains, comparable to that of standard drug. Compounds were also tested against HT29, 

HePG2 and MCF-7 cancer cell lines. Compounds 19 and 20 showed prominent results for both 

antimicrobial and anti-cancer activity. Fig. 15 represents the structures, SAR studies and biological 

properties of active compounds along with reference drugs.35 
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C. No R 

Bacterial Strains 
Fungi 

MIC (µg mL-1) Gram -ve 

¥ZI(mm)/MIC (µg mL-1) 

Gram +ve 

ZI(mm)/MIC (µg mL-1) 

E. Coli P. aeruginosa S. lactis S. aureus 
C. 

albicans 
A. flavus 

19 

 

12/50 10/35 15/35 18/40 22/- 25/- 

20 

 

14/40 14/55 20/40 24/40 18/- 24/- 

Cefatoxime 26/13 18/10 30/12 31/15 -/- -/- 

Nystatin -/- -/- -/- -/- 25/20 30/25 

-/-: No activity; ¥Results expressed as inhibition zone (ZI) diameter in mm./Minimal inhibitory concentration (MIC) 

 

C. No R 
HT-29 

IC50 (µg mL-1) 

HePG-2 

IC50 (µg mL-1) 

MCF-7 

IC50 (µg mL-1) 

19 

 

1.52 ± 0.09 1.62 ± 0.11 1.77 ± 0.15 

20 

 

0.88 ± 0.04 0.42 ± 0.12 0.62 ± 0.03 
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Fig. 15. Antimicrobial and anti-cancer properties of 6-amino-3-(4-chlorophenyl)-5-methyl-1,6-dihydro-

7H-pyrazolo[4,3-d]-pyrimidin-7-one derivatives. 

3.3.    CNS Agents 

3.3.1.    Phosphodiesterase-5 inhibitor activity 

In 2010, Tollefson et al. introduced a series of 1-(2-ethoxyethyl)-1H-pyrazolo[4,3-d]pyrimidines and 

determined their biological activity as potent phosphodiesterase-5 inhibitors (PDE5). From SAR study, it 

was revealed that the substitution of functional groups at C-3, C-5 and C-7 positions are necessary to achieve 

significant potency. From this series, compounds 21-24 exhibited significant potency, selectivity and 

efficacy against PDE5 as shown in Fig. 16. Further, the most active compound 24 of the series was 

incubated with human liver microsomes and observed that 87% of compound remained after 30 minutes 

time.81 

 

C. No R1 R2 NR3R4 
PDE5 

IC50 (nM) 

PDE6/PDE5a 

ratio 

PDE11/PDE5a 

ratio 
HLMb 

21 Et 

  

0.07 140× 160× 81% 
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22 Et 

 

 

0.087 110× 540× 36% 

23 Et 

 
 

0.07 100× 120× 28% 

24 Et 

 
 

0.04 100× 530× 87% 

a: Ratios of IC50’s.; b: Human liver microsome stability, % compound remaining after 30 minutes. 

Fig. 16. SAR and phosphodiesterase inhibitory abilities of active compounds. 

In 2010, Tollefson et al. reported the synthesis of a series of 1-(2-(2,2,2-trifluoroethoxy)ethyl-1H-

pyrazolo[4,3-d]pyrimidines as potent phosphodiesterase (PDE5/6/11) inhibitors. Among the series, 

compounds 25-28 displayed potent activity against PDE5. From SAR studies, it was revealed that the 

presence of trifluoroethoxyethyl group at N-1 position was necessary for significant PDE5 activity. The 

pharmacokinetic data of active compounds were examined by using dogs. Apart from these studies, authors 

also investigated in vivo model for efficacy in spontaneously hypertensive rats (SHR) to investigate the 

compound levels and blood pressure. Results of the active compounds and pharmacokinetic data are 

represented in Fig. 17.34 
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C. No R2 NR3R4 R5 
PDE5 

IC50 (nM) 

PDE6/PDE5a 

ratio 

PDE11/PDE5a 

ratio 
HLMb 

25 

 
 

Me 0.78 420× 440× 83 

26 

 
 

Et 0.15 120× 2800× 96 

27 

 
 

Me 0.14 312× 14,700× 76 minc 

28 

 
 

Et 0.07 125× 27,000× 42 minc 

a: Ratios of IC50’s.; b: Human liver microsome stability, % compound remaining after 30 minutes; c: HLM half life. 

 

C. No Dofetilidea (%) 

hERGb 

IC50 (µM) 

IV Dog PKc 

SHRd 

t1/2 Cl Vdss 

25 40.0 5.6 ND ND ND ND 
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26 10.7 5.1 6.7 20.2 8.0 + 

27 24.7 9.0 4.9 22 9.4 ++ 

28 18.8 1.4 5.1 18.5 7.8 ++ 

a: Percent inhibition of [3H]-dofetilide binding to the hERG protein stably expressed on HEK-293 cells following a 

10 lM dose of test compound; b: hERG patch clamp electrophysiology assay, IC50; c: Compound dosed at 0.2f–0.5e 

mpk in 10 kg beagles. Halflife (t1/2) in h, clearance (Cl) in mL/min/kg, volume of distribution (Vdss) in L/kg; d: 

Compound dosed orally in spontaneously hypertensive rats (SHR) while monitoring MAP, + = decrease of 10–15 

mmHg, ++ decrease of >15 mmHg. 

 

Fig. 17. SAR and pharmacokinetic properties of piperazine linked pyrazolo[4,3-d]pyrimidines as potent 

phosphodiesterase inhibitors. 

In 2015, Choudhari et al. reported the three dimensional quantitative structure-activity relationship (3D-

QSAR), pharmacophore identification studies on a series of 1-(2-ethoxyethyl)-1H-pyrazolo[4,3-

d]pyrimidines as PDE5 inhibitors. Two different QSAR models (multiple linear regression analysis and 

kNN-MFA analysis) were used to carry out identification studies on 32 molecules and observed that both 

techniques showed similar results. From the obtained results, they concluded kNN-MFA technique can be 

utilized for cross validation of the results of multiple linear regression studies. A brief SAR and QSAR 

results of compounds 29-35 are presented in Fig. 18.82 

 

 

C. No R1 NR2R3 

3D QSAR by MLRa D QSAR by kNN-MFAb 

Obs. Act§ Pre. Act€ Res. Obs. Act Pre. Act Res. 

29 Me 

 

-0.41497 -0.50069 0.085718 -0.41497 -0.34802 -0.06696 
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30 Et 

 

0.05061 0.043787 0.006823 0.05061 -0.07732 0.127927 

31 Et 

 

-0.39794 -0.12422 -0.27373 -0.39794 -0.35668 -0.04126 

32 Et 

 

-0.07918 -0.03801 -0.04117 -0.07918 -0.2384 0.159214 

33 Et 

 

0.119186 0.098904 0.020282 0.119186 -0.08439 0.203571 

34 Me 

 

-0.36173 -0.27329 -0.08844 -0.36173 0.03908 0.40075 

35 Et 

 

0.69897 0.87657 -0.1776 0.69897 0.47816 0.220824 

a: Multiple linear regression; b: k-nearest neighbour molecular field analysis; §: Observed activity; €: previous activity. 

Fig. 18. 3D-QSAR studies of 1-(2-ethoxyethyl)-1H-pyrazolo[4,3-d]pyrimidines as PDE5 inhibitors. 

In 2016, Rabal and co-workers described the synthesis and biological evaluation of pyrazolo[4,3-

d]pyrimidines as first-in-class dual acting histone deacetylases (HDACs) and PDE5 inhibitors for the 

treatment of Alzheimer’s disease. Role of functional groups at C-5 position in achieving potent inhibitory 

activity against PDE-5, HDAC-2 and HDAC-6 has been elaborated in Fig. 19. From the tested series, 

compounds 36-39 showed promising activity with IC50 values ranging from 0.5 to 60 nM against PDE-5, 

while the hit compound 37 exhibited PDE-5 inhibition at 3 nM. The identified lead compound 39 

demonstrated higher selectivity for HDAC-6 (IC50 = 91 nM) over other isoforms of HDAC.83 
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C. No R1 IC50 (nM) 

  
PDE-5 

 

HDAC-1 

 

HDAC-2 

 

HDAC-3-NCOR-2 

 

HDAC-6 

 

36 

 

3 8 117 36 268 

37 

 

3 10500 >20000 NA 2360 
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38 

 

0.5 406 1940 NA 87 

39 

 

60 310 490 322 91 

NA: No activity; HDACs: dual acting histone deacetylases. 

Fig. 19. Structures, biological results of active compounds as potent PDE5 inhibitors. 

3.3.2.    Adenosine receptor antagonist’s activity 

In 1987, Hamilton and co-workers reported synthesis of 1,3-dialkylpyrazolo[4,3-d]pyrimidin-7-ones and 

evaluated their pharmacological properties for adenosine receptor antagonists. From the synthesized series, 

compounds 40-42 exhibited excellent potency towards adenosine A1 receptors. SAR studies indicated that 

N-(2 (dimethylamino)ethyl) benzenesulfonamide group at C-5 and methyl group at C-3 position was 

responsible for higher activity as depicted Fig.20.31 

 

C. No R1 R2 Antagonist activity IC50 (nM) 
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40 CH3 

 

68 

41 CH3 

 

230 

42 C2H5 4-pyridyl 250 

Fig. 20. SAR and adenosine receptor antagonist activity of 1,3-dialkyl pyrazolo[4,3-d]pyrimidin-7-ones. 

 In 2009, Lenzi and co-workers reported synthesis and biological evaluation of 2-phenyl pyrazolo[4,3-

d]pyrimidines as potent and selective human A3 adenosine receptor antagonists. SAR studies indicated that 

presence of small lipophilic substituent at C-5 position was important for significant activity. From series, 

compound 43 [2-(4-methoxyphenyl)-5-methyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one] exhibited 

potent activity as represented in Fig. 21.62 

 

C. No R1 R2 

Binding experiments Ki (nM) cAMP assays IC50 (nM) 

hA3
a

 hA1
b hA2A

c hA2B
d hA3

e 

43 4-OCH3 CH3 1.2 ± 0.1 5% 1% 2% 5.2 ± 0.5 

a: Displacement of specific [125I]AB-MECA binding to hA3 CHO cells, where Ki values are mean values (SEM of four 

separate assays each performed in duplicate. Percentage of inhibition in [125I]AB-MECA competition binding assays 

to hA3CHO cells at 1μM tested compounds; b: Percentage of inhibition in [3H]DPCPX competition binding assays to 

hA1CHO cells at 1  μM tested compounds; c:  Percentage of inhibition in [3H]ZM241385 competition binding assays 

to hA2ACHO cells at 1μM tested compounds; d: Percentage of inhibition on cAMP experiments in hA2BCHO cells, 

stimulated by 200 nM NECA, at 1 μM examined compounds; e: IC50 values are expressed as mean values (SEM of 

four separate cAMP experiments in hA3CHO cells, inhibited by 100 nM Cl-IB-MECA. 

Fig. 21. SAR and human A3 adenosine receptor antagonist activity of 2-(4-methoxyphenyl)-5-methyl-2,6-

dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one. 
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In 2013, Squarcialupi et al. reported synthesis, molecular modelling and pharmacological evaluation of 2-

arylpyrazolo[4,3-d]pyrimidin-7-amino derivatives as human A3 adenosine receptor antagonists. SAR 

studies suggested that para-methoxy group on 2-phenyl ring at C-2 position, lipophilic groups at C-5 and 

acyl groups at C-7 position are essential for significant potency. From the set of series synthesized, 

compounds 44-46 exhibited good activity. A brief SAR along with active most compounds are presented in 

Fig. 22.84 

 

C. No R1 R2 R3 

Binding experimentsa 

Ki (nM) or I% 

cAMP assays 

IC50 (nM) 

hA1
b

 hA2A
c hA3

d rA3
e
 hA2B

f hA3
g 

44 H CH3 

CO-C6H4-

OCH3 

4% 1% 2.4 ± 0.2 NIL 1% NIL 

45 H CH3 CO-Ph 30% 1% 5.6 ± 0.5 6% 2% 2.4 ± 0.2 

46 OCH3 Ph CO-Ph 3% 1% 18 ± 2 12% 2% 63 ± 5 

a: Ki values are means ± SEM of four separate assays each performed in duplicate. Percentage of inhibition (I%) is 

determined at 1 μM concentration of the tested compounds; b: Displacement of specific [3H]DPCPX competition 

binding assays to hA1CHO cells; c: Displacement of specific [3H]ZM241385 competition binding to hA2ACHO cells; 

d: Displacement of specific [125I]AB-MECA competition binding to hA3CHO cells; e: Percentage of inhibition (I%) 

in [125I]AB-MECA  competition binding assays to rA3HEK cells. fcAMP experiments in hA2BCHO cells, stimulated 

by 200 nM NECA. IC50 values are expressed as means ± SEM of four separate cAMP experiments. Percentage of 

inhibition (I%) is determined at 1 μM concentration of the tested compounds; g: IC50 values are expressed as means ± 

SEM of four separate cAMP experiments in hA3CHO cells, in the presence of 100 nM Cl-IB-MECA. 

 

Fig. 22. Structures, binding results of 7-amino-2-phenylpyrazolo[4,3-d]pyrimidines as A3 adenosine 

receptor antagonists. 



Chapter 3 

 

  Srinivasulu Cherukupalli                                    153                                                         UKZN-2018 
 

In 2014, Squarcialupi et al. reported molecular modeling and biological properties of 7-amino-2-

phenylpyrazolo[4,3-d]pyrimidines as A1 and A2A adenosine receptors. SAR studies revealed that affinity 

and selectivity were based on the nature of the functional groups at C-5 position as depicted in Fig. 23. In 

this series, compounds 47-52 exhibited potent activity against both human A1 and A2A adenosine receptors.69 

 

C. No R1 

Binding experimentsa 

Ki (nM) or I% 

cAMP assays 

IC50 (nM) or I% 

hA1
b hA2A

c hA3
d hA2B

e 

47 2-F-C6H4-CH2- 35 ± 4 154 ± 13 37% 123 ± 11 

48 Ph-(CH2)3 5.31 ± 0.42 55 ± 5 12% 42% 

49 2-OMe-C6H4-(CH2)3 1.31 ± 0.15 1.53 ± 12 47% 387 ± 36 

50 3-OMe-C6H4-(CH2)3 0.15 ± 0.02 147 ± 13 33% 334 ± 27 

51 2-OH-C6H4-(CH2)3 0.54 ± 0.05 102 ± 9 36% 247 ± 18 

52 3-OH-C6H4-(CH2)3 0.22 ± 0.03 146 ± 15 46% 314 ± 26 

a: Ki values are means ± SEM of four separate assays each performed in duplicate. Percentage of inhibition (I%) are 

determined at 1 µM concentration of the tested compounds; b: Displacement of specific [3H]DPCPX competition 

binding assays to hA1CHO cells; c: Displacement of specific [3H]ZM241385 competition binding to hA2ACHO cells; 

d: Displacement of specific [125I]AB-MECA competition binding to hA3CHO cells; e: cAMP experiments in hA2BCHO 

cells, stimulated by 200 nM NECA. IC50 values are expressed as means ± SEM of four separate cAMP experiments. 

Percentage of inhibition (I%) are determined at 1 µM concentration of the tested compounds. 

Fig. 23. SAR and A1 and A2A adenosine receptor activity of pyrazolo[4,3-d]pyrimidines. 
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 In 2016, Squarcialupi et al. reported structural refinement of pyrazolo[4,3-d]pyrimidine derivatives to 

obtain potent and selective antagonists for the human A3 adenosine receptors. SAR studies presented the 

significance of phenyl group at C-2, 2-thienyl moiety at C-5 and acyl groups at C-7 positions for favorable 

activity as illustrated in Fig. 24. However, outcome of this work concluded that compounds 53-55 exhibited 

potent activity against A3 adenosine receptors.73 

 

 

C. No R2 R5 R7 Binding experimentsa 

Ki (nM) or I% 

cAMP assays 

IC50 (nM) or I% 

hA1
b hA2A

c hA3
d hA2B

e hA3
f 

53 Ph 2-thienyl C6H4-OMe 1% 1% 0.027 ± 

0.003 

1% 0.11 ± 0.01 

54 Ph 2-thienyl 3-pyridyl 764 ± 68 3% 0.41 ± 0.04 1% 0.01 ± 0.09 

55 Ph C6H4-OMe C6H4-OMe 3% 1% 1.31 ± 0.12 1% 4.27 ± 0.03 

a: Ki values are means ± SEM of four separate assays each performed in duplicate. Percentage of inhibition (I%) are 

determined at 1 µM concentration of the tested compounds; b: Displacement of specific [3H]DPCPX competition 

binding assays to hA1CHO cells; c: Displacement of specific [3H]ZM241385 competition binding to hA2ACHO cells; 

d: Displacement of specific [125I]AB-MECA competition binding to hA3CHO cells; e: cAMP experiments in hA2BCHO 

cells, stimulated by 200 nM NECA. IC50 values are expressed as means ± SEM of four separate cAMP experiments. 

Percentage of inhibition (I%) are determined at 1 µM concentration of the tested compounds. 

Fig. 24. SAR and human A3 adenosine receptor activity of lead compounds consisting pyrazolo[4,3-

d]pyrimidine. 

 

In 2016, Squarcialupi et al. synthesized 7-aminopyrazolo[4,3-d]pyrimidines to evaluate structural 

modification at C-2 and C-5 positions to afford significant activity against human A1 and A2A  adenosine 

receptors. SAR study revealed that incorporation of 2-methoxybenzyl group at C-2 region and 5-
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methylfuran-2-yl at C-5 region enhanced the adenosine activity as shown in Fig. 25. From the series, 

compounds 56-59 displayed promising activity against both A1 and A2A receptors.72 

 

C. No R2 R5 

aBinding experiments 

Ki (nM) or I% 

cAMP assays 

IC50 (nM) or I% 

hA1 hA2A hA3 hA2B 

56 

 

 
18 ± 2 3.62 ± 0.34 82 ± 7 30% 

57 

 

 
126 ± 11 5.26 ± 0.47 88 ± 6 293 ± 26 

58 

 

 
308 ± 8 57 ± 6 498 ± 47 354 ± 32 

59 

 

 
252 ± 21 51 ± 5 427 ± 41 421 ± 39 

a: Ki values are means ± SEM of four separate assays each performed in duplicate. Percentage of inhibition (I%) are 

determined at 1 µM concentration of the tested compounds; b: Displacement of specific [3H]DPCPX competition 

binding assays to hA1CHO cells; c: Displacement of specific [3H]ZM241385 competition binding to hA2ACHO cells; 

d: Displacement of specific [125I]AB-MECA competition binding to hA3CHO cells; e: cAMP experiments in hA2BCHO 
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cells, stimulated by 200 nM NECA. Percentage of inhibition (I%) are determined at 1 µM concentration of the tested 

compounds. 

 

Fig. 25. Structures and biological activity of 7-aminopyrazolo[4,3-d]pyrimidines as human A1 and A2A  

adenosine receptors. 

3.4.    Cytokinin activity 

In 1971, Hecht and co-workers synthesized 3,7-disubstituted pyrazolo[4,3-d]pyrimidines and evaluated 

their cytokinin activity in tobacco bioassay. The anti-cytokinin activity was determined by the growth of 

tobacco callus on a standard medium to which 6-aminobenzylpurine and other prepared compounds were 

added at various concentrations. From the series, compounds 60 and 61 exhibited potent cytokinin activity 

of 0.081 and 0.24 µM respectively. SAR studies indicated that isopentenyl substitution at C-7 position was 

responsible for higher activity as depicted in Fig. 26.85 

 

Fig. 26. Structures of lead compounds with potent cytokinin activity. 

 In 1972, Skoog et al. reported the synthesis of 7-substituted 3-methylpyrazolo[4,3-d]pyrimidines and 

evaluated their biological properties as cytokinin antagonists in the tobacco bioassay. Potent cytokinin 

antagonist activity was determined for the compounds 62-64 from this synthesized series. SAR study 

revealed that compounds with linear groups such as n-pentyl and n-butyl at C-7 position were well favored 

for activity as depicted in Fig. 27.86  
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C. No R 
Range 

tested 

Cytokinin activity 

IC50 (µM) 

Antagonist activity IC50 

(µM) 

Detection 
Maximum 

growth 
Detection 

Lethal 

dosage 

62 
 

0.009-20 NA NG 0.03 0.2 

63 
 

0.009-20 NA NG 0.03 0.5 

64 

 

0.009-20 NA NG 0.1 0.73 

NA: No activity; NG: No growth. 

Fig. 27. SAR of 7-substituted 3-methylpyrazolo[4,3-d]pyrimidines as cytokinin antagonists in tobacco 

bioassay. 

In 1980, Gregorini and co-workers reported synthesis of 7-(pentylamino), 7-(benzylamino)-3-

methylpyrazolo[4,3-d]pyrimidines and evaluated them as  cytokinin antagonists on suspension-cultured 

tobacco cells. All molecules were found highly inhibitory to cytokinin-autonomous and cytokinin-requiring 

tobacco cells. The structures of active compounds (65, 66) and cytokinin activity results are represented in 

Fig. 28.32 
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C. No 

cytokinin-autonomous tobacco cells 

IC50 (µM) 

cytokinin-requiring tobacco cells 

IC50 (µM) 

I50
* I100

* I50 I100 

65 0.025 0.05 0.02 0.05 

66 0.03 0.1 0.04 0.15 

    *I50 and I1oo correspond to concentrations of analogs which produce 50% and 100% of growth inhibition, respectively. 

Fig. 28. Cytokinin activity of pyrazolo[4,3-d]pyrimidines on various tobacco cells. 

3.5.    Miscellaneous agents  

In 2002, Yuan and co-workers reported the synthesis and pharmacological evaluation of 3-aryl 

pyrazolo[4,3-d]pyrimidine derivatives as potential carticotropin releasing factor-1 (CRF-1) antagonists. 

SAR studies reveal the effect of substitutions on nitrogen at C-7 and at C-3 positions as depicted in Fig. 29. 

From the reported series, compounds 67-70 exhibited significant antagonist activity against nonpeptide 

CRF-1.33 
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C. No R R1 
CRF1 Binding 

Ki (nM) 

67 n-propyl n-propyl 2 ± 1 

68 (CH2)2OCH3 (CH2)2OCH3 3 ± 2 

69 Ethyl n-butyl 2 ± 1 

70 Ethyl n-propyl 3 ± 2 

 

Fig. 29. SAR, structures and CRF-1 binding affinity studies of lead compounds. 

In 2011, Jorda et al. reported a series of 3,7-disubstituted pyrazolo[4,3-d]pyrimidine derivatives and 

evaluated them for anti-leishmanial and CRK/CYC6 (cdc2-related kinase/ Cyclin 6) kinase activity. Among 

the tested series, compounds 71-74 exhibited potential activity whose SAR studies revealed that the 

lipophilic groups (namely adamantyl, halo substituted phenyl and 2-hydroxybenzyl) at C-7 position were 

responsible for increased activity whereas, non-lipophilic (furyl) and lipophilic (pentyl) groups lowered the 

activity as discussed in Fig. 30.19 

 

C. No R 

Leishmanial donovani 

axeaxenicaxenic amastigotes 

inhibition 

CRK/CYC6 kinase inhibiton 

(%)a EC50 (µM) (%)b IC50 (µM)c 

71 2-hydroxybenzyl 87.4 ± 0.4 35.7 68.0 ± 2.1 11.91 

72 Adamantan-1-yl 73.2 ± 0.0 1.22 93.8 ± 0.3 1.82 

73 4-F-Ph 75.8 ± 1.7 11.6 78.8 ± 0.4 6.8 
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74 3-Cl-Ph 73.3 ± 1.1 12.4 81.3 ± 2.3 9.86 

a: In the presence of 30 µM compound; b: In the presence of 15 ATP with 30 µM compound; c: In the presence of 

15 µM ATP. 

Fig. 30. Anti-leishmanial activity and SAR studies of 3,7-disubstituted pyrazolo[4,3-d]pyrimidines. 

3.6.    Patents covering pyrazolo[4,3-d]pyrimidine scaffold with diverse biological activities 

Pharmacological significance of pyrazolo[4,3-d]pyrimidine scaffold is further proved based on several 

patents registered from 1976 to 2012. Different research groups patented this nucleus for numerous 

therapeutic sections are briefly presented in Table-1. 

Research group Patent number Target activity Year 

Ratajczyk US3939161 

Anti-convulsant, sedative, anti-

inflammatory and gastric anti-secretory 

agents.87 

1976 

Hecht US4282361 Various schemes for synthesis.88 1981 

Fujikawa US4654348 Anti-hyperlipidemic agents.89 1987 

Hamilton US4663326 A1 adenosine and cardiovascular.90 1987 

Hamilton US4666908 PDE5 inhibitors.91 1987 

Hamilton WO8800192 
Anti-anxiety, asthma and allergic 

agents.92 
1988  

Yuan US5723608 CRF1 receptor antagonists.93 1998  

Zhihua WO0014088 Male erectile dysfunction.94 2000  

Lu US6204383 B1 
Synthetic process for preparing 

sildenafil.95 
2001  

Yuan US6211187 B1 CRF1 receptor ligands.96 2001 

Bunnage WO0127113 A2 
Male erectile dysfunction and female 

sexual dysfunction.38 
2001  

Daniela EP1348707 A1 Diagnostic agents.36 2003 

Jonas US6777419 B1 PDE5 inhibitors.97 2004 

Eggenweiler US20040023990 
Asthma, allergic and female sexual 

disorder.98 
2004  

Eggenweiler US20040063730 A1 
Hypertension, angina and pulmonary 

hypertension.99 
2004  

Eggenweiler US20040077664 A1 Hypertension, angina and bronchitis.100 2004  
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Hodgetts CA2537916 A1 CRF1 receptor modulators.101 2005  

Hodgetts WO2005028480 A2 
Selective modulators of CRF1 

receptors.102 
2005  

Bell WO2005097799 A1 PDE5 inhibitors.103 2005  

Pal US20060128729 A1 Anti-inflammatory.37 2006  

Acker WO2006046135 A2 PDE5 inhibitors.104 2006  

Bell US7262192 B2 PDE5 inhibitors.105 2007  

Butora US7534767 B2 
RNA dependent RNA viral 

polymerase.106 
2009  

Bell US7569572 B2 PDE5 inhibitors.107 2009  

Bell US7572799 B2 PDE5 inhibitors.108 2009  

Moravcova US7745450 B2 Cancer.109 2010  

Bell US8097621 B2 PDE5 inhibitors.110 2012  

 

Table 1. Pyrazolo[4,3-d]pyrimidine nucleus containing patents having numerous biological 

Activities. 
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Fig. 31. Summary of structural amendments to influence the biological activity. 

 

4. Conclusion 

 

Nitrogen containing heterocycles have been a versatile class of compounds displaying array of biological 

properties. Pyrazolo[4,3-d]pyrimidine is a significant framework that is being explored exponentially for 

its multifarious medicinal properties. The present manuscript at the beginning has emphasized numerous 

methods for synthesizing variously substituted pyrazolo[4,3-d]pyrimidines through conventional, multi-

component and microwave-assisted reaction methods. Apart from remarkable synthetic evolutions, 

pyrazolo[4,3-d]pyrimidine derivatives have been found to unveil a diverse set of pharmaceutical properties. 

Numerous applications along with patents (Table 1) have been explored based on their biochemical, 

biophysical and medicinal aspects and much more is yet to be explored. Medicinal properties of 

pyrazolo[4,3-d]pyrimidines have been broadly examined for diverse biological activities such as 
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antimicrobial, human adenosine antagonists, anticancer, CNS depressant, phosphodiesterase 5 inhibitors 

and other applications such as anti-leishmanial and cytokinin inhibitors. Many of the researchers have 

successfully achieved the modifications over the pyrazolo[4,3-d]pyrimidine scaffold and have investigated 

them on diverse biological activities. These activity profiles could be regulated by suitable selection of the 

fused heterocycles and the substitutions on the pyrazolo[4,3-d]pyrimidine scaffold. Substitutions on C-3, 

C-5 and C-7 positions of pyrazolo[4,3-d]pyrimidine showed distinct anti-cancer activity, whereas 

substitutions at N-1, C-3 and C-5 positions showed antibacterial activity. Further, the sites of modifications 

on pyrazolo[4,3-d]pyrimidine scaffold and variation of biological activity has been represented in Fig. 31. 

A wide range of synthetic pathways and varied biological properties have opened the door for the discovery 

of novel drug candidates and other target activities. In addition, the current manuscript can be valuable to 

researchers to find out novel, optimized and target selective pyrazolo[4,3-d]pyrimidine compounds and its 

use in the treatment of some more incurable diseases. 
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Abstract:    

A novel series of 4,6-disubstituted pyrazolo[3,4-d]pyrimidines (7-43) bearing various anilines at C-4 

position and thiophenethyl or thiopentane moieties at C-6 position have been designed and synthesized 

by molecular hybridization approach. All the synthesized compounds were evaluated for in vitro 

CDK2/cyclin E and Abl kinase inhibitory activity as well as anti-proliferative activity against K-562 

(chronic myelogeneous leukemia), and MCF-7 (breast adenocarcinoma) cell lines. The structure-activity 

relationship (SAR) studies revealed that compounds with thiophenethyl group at C-6 with mono-

substituted anilines at C-4 exhibited better CDK2 inhibitory activity compared to alkyl group 

(thiopentane) at C-6 and di-substituted anilines at C-4 of the scaffold. In particular, compounds having 2-

chloro, 3-nitro and 4-methylthio aniline groups at C-4 displayed significant enzymatic inhibitory activity 

against CDK2 with single digit micro molar IC50 values. The in silico molecular docking studies suggested 

possible binding orientation and the binding energies were in agreement with the observed SAR as well 

as experimental results. In addition, some of the synthesized compounds indicated anti-proliferative 

effects against K-562 and MCF-7 cancer cell lines with IC50 values in a micro molar range. Thus, the 

synthesized compounds could be considered as new anticancer hits for further lead optimization. 
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1    Introduction 

Cancer is an enormous global health burden, affecting almost every region and socio-economic level. It 

is the second leading cause of death worldwide, accounted for 8.8 million deaths in 2015 and nearly 1 in 

6 of all global deaths.1 The new cancer cases are expected to increase to 15 million per year by 2020, 

according to the World Health Organization (WHO), unless further precautionary measures are followed.2 

Wide efforts are being carried out in order to discover new treatment approaches as well as to improve 

prevention and molecular diagnostic systems.3,4 It is becoming noteworthy to investigate new druggable 

molecular targets, identify and develop their modulators as novel drugs for the treatment of cancer. 

Amongst others, protein kinases have become an important group of drug targets and number of kinase 

inhibitors in clinical development is rapidly increasing.5 

Cyclin-dependent kinases (CDKs) are a group of serine/threonine kinases comprising 20 members, of 

which some are linked with regulation of cell-cycle progression by phosphorylating proteins involved 

in cell division. For example, formation of active complex composed of CDK2 and cyclin E enables 

pRb phosphorylation, activation of transcription factor E2F which initiates S phase of the cell cycle.6 

CDK2 then also associates with cyclin A, governing continuous DNA replication and properly 

programed deactivation of E2F. Deregulations of CDKs or cyclins, as well as the loss of endogenous 

inhibitory proteins, result in abrogation of cell cycle control, which is connected with development of 

tumors. Thus CDKs are considered important targets for anticancer drugs.7,8  The lack of clarity as to 

which CDK is the most suitable drug target followed by poor selectivity hindered the clinical 

development of specific CDK inhibitors.9  

Initially, the importance of CDK2 as a drug target for cancer therapy was in question since CDK2 

knockdown investigations failed to block cell proliferation in a number of tumour cell lines,10 and by 

mouse knockout investigations where the animals were viable.11,12 Current investigations employing a 

chemical genetic method in which CDK2 countenance was maintained, but enzymatic activity was 

inhibited, affords interesting sign that CDK2 is a valid anticancer drug target.6 Up to date many CDK2 

inhibitors have been developed and some of them (including roscovitine, CYC065, dinaciclib, AT7519, 

milciclib) undergo clinical evaluation.13,14 CDK2 inhibitors are also anticipated to have efficacy in 

combinations with other drugs or where synthetic lethality can be recognized.15 Recent study proved 

that a combination of phosphatidylinositol-3-kinase and CDK2 inhibitors induced apoptosis in 

malignant glioma xenografts via synthetic-lethal interaction.16 CDK2 was proved as a therapeutic target 

in BRCA-deficient cancers,17 ovarian cancer.18  

Fused pyrimidines have received a great deal of attention due to their immense role as active 

pharmacophores.19 The pyrazole annulated on the pyrimidine scaffold leads to pyrazolopyrimidine, 

which can be looked upon as the bio-isostere of purine.20 The pharmacological significance of purine 
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nucleus is well established. Oxypurinol and its congeners allopurinol and thiopurinol (Tisopurine) 

which contains pyrazolo[3,4-d]pyrimidine scaffold inhibit xanthine oxidase enzyme and interfere with 

the biosynthesis of uric acid, further allopurinol acting as a causative agent for gout.21 Ibrutinib/PCI-

32765 was recently approved by the US FDA for the treatment of mantle cell lymphoma, chronic 

lymphocytic leukemia and Waldenstrom's macroglobulinemia diseases (Figure 1).22  

 

Figure 1. Structures of active drugs containing fused pyrimidine. 

Pyrazolo[3,4-d]pyrimidine is also reported to encompass biological potential as anticancer, antiviral, 

antimicrobial, herbicidal, CNS agents (phosphodiesterase 9 and benzodiazepine receptors), anti-

inflammatory and cardiovascular activities.23  Figure 2 depicts several reported analogs of pyrazolo[3,4-

d]pyrimidine with anti-cancer activities related to inhibition of various protein kinases.24-29 

Based on the above mentioned facts and in continuation of our research work on anticancer drug 

discovery, we envisaged to further exploit the pyrazolo[3,4-d]pyrimidine scaffold to synthesize novel 

CDK2 inhibitors.30,31 Thus a series of 4,6-disubstituted pyrazolo[3,4-d]pyrimidine was synthesized with 

a design strategy: a) bioisosteric replacement of purine nucleus, b) incorporation of more lipophilic 

aromatic amines (C-4) and aliphatic or aromatic groups (C-6). These derivatives were also evaluated 

against Abl kinase and two cancer cell lines K-562 (chronic myelogeneous leukemia) and MCF-7 

(breast adenocarcinoma). Further, in silico molecular docking studies were performed to calculate the 

binding energies and orientations of these compounds with respect to the active site of CDK-2 protein. 

The computational results were in agreement with our experimental observations. 

https://en.wikipedia.org/wiki/Waldenstrom%27s_macroglobulinemia
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Figure 2. Known derivatives of pyrazolo[3,4-d]pyrimidine and their anticancer activities along with 

the designed molecules. A: (Ki50 against Src, AblT315I = 0.056, 0.01 µM);24 B: (IC50 against CDK9 = 

17 nM);25 C: (IC50 against CDK2 = 0.5µM);26 D: (Ki50 against Abl = 80 nM);27 E: (Ki50 against cSrc, Abl 

= 0.21± 0.02, 0.15±0.02 µM);28 F: (IC50 against Src = 1.2 ± 0.4 µM).29 

 

2    Results and discussion 

2.1    Chemistry 

The synthesis of novel series of pyrazolo[3,4-d]pyrimidine hybrids was achieved through an efficient 

and versatile synthetic route as depicted Scheme 1. On the pyrazolopyrimidine scaffold, chloro group 

was introduced at C-4 as a good leaving group, which acted as a most reactive site for different 

nucleophiles, while thiophenethyl or thiopentane groups were introduced at C-6 position. With a view 
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to prepare the target hybrid molecules (7-43), the key intermediates 4-chloro-6-(phenethylthio)-1H-

pyrazolo[3,4-d]pyrimidine (6a), 4-chloro-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidine (6b)  were 

synthesized from ethoxymethylene malononitrile (1) as illustrated in Scheme 1.  

From the earlier reported literature methods compound 4 was successfully synthesized.32 Further under 

microwave irradiation alkylation of compound 4 was achieved by reacting with 2-chloroethyl benzene 

in presence of anhydrous potassium carbonate in N,N-dimethylformamide (DMF) to obtain 6-

(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (5a). Similarly reacting 4 with 1-bromopentane in 

1M NaOH solution at 70 C resulted in 6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (5b) in 

moderate yield. Chlorination of 5a and 5b was easily achieved with Vilsmeier complex (POCl3:DMF) 

to obtain halogenated key intermediates 4-chloro-6-(phenethyl/pentylthio)-1H-pyrazolo[3,4-d]- 

pyrimidine that is 6a  and 6b. As displayed in Scheme 1, the synthesis of the final hybrid compounds 

(7-43) in good yield (75-95%) was achieved by nucleophilic substitution with various primary amines 

at C-4. The IR, 1H and 13C NMR spectroscopic data of all the novel compounds were in agreement with 

the predicted structures, which was further validated by the HR-MS data (Supporting information).  
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Scheme 1: Synthetic exploration for the preparation of 4,6-disubstituted pyrazolo[3,4-d]pyrimidine 

analogues (7-43). 

Reagents and conditions: (a) hydrazine hydrate, ethanol, 80 C, 3h, 92%; (b) Conc. H2SO4, NH4OH, 

H2O, 50 C, 5h, 90%; (c) potassium ethyl xanthogenate, DMF, 120 C, 6h, 82%; (d) 2-chloroethyl 

benzene, K2CO3, DMF, 70 C, microwave, 20 min, 76%; (e) 1-bromopentane, NaOH, H2O, glacial 

acetic acid, 50 C, 5h, RT, overnight, 80%; (f) POCl3, DMF, 80 C, 2h, 85%; (g) R-NH2, EtOH, 80 C, 

2h, 75-95%.  

 

The 1H NMR of compound 4 exhibited very distinct singlet signals resonating at around δ 13.61, 13.03, 

11.86 and 8.42 ppm, was attributed to the N-H, S-H, O-H and Ar-H protons of pyrazole ring. Thus, 

indicating the formation of the fused pyrazolopyrimidine by ring annulation of 5-amino-1H-pyrazole-

4-carboxamide (3) with potassium ethyl xanthogenate. For compounds 5a and 5b, the distinctive 

methylene signals (Ph-CH2-CH2-S- and -S-CH2-CH2-CH2-CH2-) appeared around δ 3.43-3.39, 3.01-

2.97 ppm and δ 3.17-2.87, 1.73-1.43, 1.41-1.14 respectively, while the methyl peak for 5b was observed 

at δ 0.86-0.80 ppm. In particular, the disappearance of a distinct singlet signal at around δ 13.03 ppm 

for mercapto (-SH) group evidently indicated the successful alkylation of pyrimidine scaffold. Whereas 

the most characteristic singlet, doublet and triplet signals at around δ 7.32-7.20 ppm was attributed to 

the aromatic protons (C6H5-CH2-CH2-S-) at C-6 of the pyrimidine ring. Further, the absence of 

characteristic singlet signal at around δ 12.22-12.28 ppm for (-OH) at C-4 of pyrimidine ring confirmed 

the formation of halogenated (-Cl) key intermediates 4-chloro-6-(phenethyl/pentylthio)-1H-

pyrazolo[3,4-d]pyrimidine (6a and 6b). These findings corroborated with their respective 13C NMR, 

where the methylene carbon peaks at δ 34.61, 31.08 ppm (C6H5-CH2-CH2-) and δ 30.61-30.37, 30.16-

29.69, 29.22-28.11, 21.78-21.73 ppm (-S-CH2-CH2-CH2-CH2-) were assigned to 5a and 5b. The single 

methyl peak (5b) appeared around 13.90-13.83 ppm while the prominent aromatic signals (5a and 5b) 

resonated around δ 167.89-109.79 ppm.   

The IR spectra of the title compounds 7-43 displayed a reasonably sturdy and characteristic bands 

around 2921-3033 cm-1, 1270-1300 cm-1 accounting for N-H and C-S stretching respectively, while the 

most prominent band of C-N appearing around 1180-1184 cm-1 indicated the formation of final hybrid 

molecules. Further, the prominent 1H-NMR signals of the title compounds 7-43 resonated around δ 

13.39-10.28 ppm (exocyclic-N-H), δ 9.94-7.75 ppm (ring-N-H) and 10.02-8.19 ppm (C-3 aromatic 

proton) while, the singlet or multiplet aromatic proton peaks appeared around δ 8.47-6.84 ppm. For 

compounds 7-25 the methylene protons (-S-CH2-CH2-Ph) were observed around δ 3.43-2.81 ppm while 

for compounds 26-43 the signals (-S-CH2-CH2-CH2-CH2-) appeared around δ 3.10-1.20 ppm. The 

methyl protons for 26-43 resonated around δ 0.87-0.80 ppm. Further the methylthio (-Ph-SCH3), methyl 

(Br-Ph-CH3), methoxy (Ph-OCH3) and ethynyl-H protons resonated around δ 2.47-2.44 ppm, δ 2.30-
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2.18 ppm, δ 3.77-3.71 ppm and 4.18 ppm respectively. The 13C NMR spectra further confirmed the 

structures of the title compounds. The characteristic carbon signals C-6, C-4 and C-3 of the pyrimidine 

ring were observed around δ 167.41-166.40, 155.73-153.11 and 132.88-130.56 ppm, while the various 

aromatic/heteroaromatic carbons resonated between δ 153.62-98.12 ppm. Further, the prominent carbon 

signals observed around δ 55.66-55.61 ppm δ 21.78-17.74 ppm  and 30.17-15.31 ppm were attributed 

to the methoxy (-OCH3), methyl and thiomethyl carbons respectively. Further, for compounds 7-25 the 

methylene carbon peaks (-S-CH2-CH2-Ph) were observed around δ 35.51-31.08 ppm while for 

compounds 26-43 the signals (-S-CH2-CH2-CH2-CH2-) appeared around δ 30.62-21.73 ppm and  the 

methyl peak resonated around δ 13.89-13.83 ppm. In addition, the HR-MS spectrums of the title 

compounds (7-43) displayed accurate molecular ion peaks, which were in agreement with their expected 

molecular weights (supporting information). 

 2.2    In vitro evaluation for CDK2 and Abl kinase inhibitors 

All the final compounds were evaluated for CDK2/cyclin E kinase inhibition and the IC50 values of 

various in vitro anticancer profiles of the final compounds are summarized in Table 1. Abl kinase 

inhibition was evaluated as a counter screen, to get a preliminary information about selectivity. 

 

Code R
 

IC50 (µM)
a
 

CDK2/Cyclin E Abl K-562 MCF-7 

7 Ph ˃12.5 ˃12.5 19.9 19.2 

8 2-ClPh 7.8 ˃12.5 ˃6.25 ˃6.25 

9 3-ClPh 13.3 ˃25 ˃25 24.0 

10 4-ClPh ˃25 ˃25 ˃25 ˃25 

11 3-NO2Ph 5.1 ˃25 24.6 24.3 

12 4-NO2Ph ˃12.5 ˃12.5 ˃6.25 ˃6.25 

13 2-BrPh ˃12.5 ˃12.5 ˃6.25 ˃6.25 

14 3-BrPh ˃25 ˃25 27.4 23.9 

15 4-BrPh ˃25 ˃25 ˃50 ˃50 

16 2,4-(CH3)2Ph ˃12.5 ˃12.5 ˃6.25 ˃6.25 

17 SCH3Ph ˃25 ˃25 ˃6.25 ˃6.25 

18 4-Cl-3-CF3Ph 13.4 ˃25 ˃6.25 ˃6.25 

19 4-Br-3-CF3Ph ˃25 ˃25 ˃6.25 ˃6.25 

20 4-Cl-3-NO2Ph ˃25 ˃25 ˃6.25 ˃6.25 

21 4-F-2-CH3Ph ˃12.5 ˃12.5 ˃6.25 ˃6.25 

22 3-Br-4-CH3Ph ˃25 ˃25 ˃6.25 ˃6.25 
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23 2-Cl-4-FPh ˃12.5 ˃12.5 ˃12.5 ˃12.5 

24 3,4-(OCH3)Ph 15.9 ˃12.5 ˃6.25 ˃6.25 

25 4-(ethynyl)Ph ˃25 ˃25 ˃12.5 ˃12.5 

26 Ph ˃50 ˃50 ˃100 ˃100 

27 2-ClPh 8.7 ˃12.5 ˃25 ˃25 

28 3-ClPh ˃25 ˃25 ˃12.5 ˃12.5 

29 4-ClPh ˃12.5 ˃12.5 ˃6.25 ˃6.25 

30 3-NO2Ph 17.7 ˃25 ˃12.5 ˃12.5 

31 4-NO2Ph ˃25 ˃25 ˃6.25 ˃6.25 

32 2-BrPh ˃25 ˃25 ˃12.5 ˃12.5 

33 3-BrPh ˃25 ˃25 ˃6.25 ˃6.25 

34 4-BrPh ˃25 ˃25 ˃6.25 ˃6.25 

35 2,4-(CH3)2Ph ˃25 ˃25 ˃12.5 ˃12.5 

36 SCH3Ph 8.8 ˃25 ˃6.25 ˃6.25 

37 4-Cl-3-CF3Ph ˃25 ˃25 ˃12.5 ˃12.5 

38 4-Br-3-CF3Ph ˃25 ˃25 ˃6.25 ˃6.25 

39 4-Cl-3-NO2Ph ˃25 ˃25 ˃12.5 ˃12.5 

40 4-F-2-CH3Ph ˃12.5 ˃12.5 ˃12.5 ˃12.5 

41 3-Br-4-CH3Ph ˃25 ˃25 ˃6.25 ˃6.25 

42 2-Cl-4-FPh ˃12.5 ˃12.5 ˃6.25 ˃6.25 

43 3,4-(OCH3)Ph ˃12.5 ˃12.5 ˃6.25 ˃6.25 

 Roscovitine 0.1 ˃100 42 11 

 Imatinib ˃100 0.2 0.5 ˃10 

a IC50 values were determined in triplicate in the range of 0.05 to 100 µM. IC50 value indicates concentration (µM) 

that inhibits activity of the tested enzyme to 50%. For cytotoxic assays, IC50 means the concentration (μM) that 

inhibits the growth of 50% of cells during a three-day cultivation  

Table 1. Anticancer evaluation of novel 4,6-disubstituted pyrazolo[3,4-d]pyrimidine derivatives.  

Some synthesized compounds displayed an activity in the single digit micro molar range against 

CDK2/cyclin E. Fascinatingly, it was observed that some compounds containing thiophenethyl group 

at C-6 displayed prominent anticancer activity (7, 9, 11, 14) as compared to compounds 26-43 having 

thiopentane group. It was also observed that incorporation of phenyl/substituted phenyl groups at C-4 

of the pyrazolo[3,4-d]pyrimidine nucleus was essential for CDK2 activity. From the tested 

thiophenethyl series the highest CDK2 inhibitory activity was recorded for compounds 11 (IC50 = 5.1 

µM) and 8 (IC50 = 7.8 µM) with 3-nitroaniline and 2-chloroaniline group at C-4 respectively. Notable 

significant inhibition was also observed for compounds bearing 3-chloroaniline (9; IC50 = 13.3 µM), 4-
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chloro-3-trifluoromethylaniline (18; IC50 = 13.4 µM) and 3,4-dimethoxyaniline (24; IC50 = 15.9 µM). 

For the remaining compounds of this thiophenethyl series, IC50 values could not be measured due to a 

solubility limit (IC50 value >12.5 or >25 µM).  

Similarly, some thiopentane derivatives (series 26-43) also exhibited a reasonable activity profile with 

IC50 starting from 8.7 µM. From this series, compounds with 2-chloroaniline (27) and 4-

methylthioaniline (36) showed the best activity with IC50 8.7 µM and 8.8 µM, respectively; this was 

followed by 3-nitroaniline derivative (30) with IC50 17.7 µM.  The remaining compounds in this series 

were less soluble and their IC50 were not achieved. In addition, all compounds (7-43) were also 

evaluated against Abl kinase but none of the compounds showed any inhibition in the assayed 

concentration range, confirming reasonable selectivity towards CDK2 over unrelated Abl.  

2.3    Anti-proliferative activity against K-562 and MCF-7 cell lines 

All the newly synthesized 4,6-disubstituted pyrazolo[3,4-d]pyrimidine analogues 7-43 were further 

evaluated for their in vitro anti-proliferative activity against K-562 (chronic myelogeneous leukemia) 

and MCF-7 (breast adenocarcinoma) cell lines. Several compounds are displaying appreciable activity 

with measurable IC50 values against the two cell lines, such as compounds 7 (IC50 = 19.9, 19.2 µM), 9 

(IC50 = >25, 24 µM), 11 (IC50 = 24.6, 24.3 µM), and 14 (IC50 = 27.4, 23.9 µM). The remaining 

compounds were not active in the tested concentration range. 

2.4    Structure-activity relationship (SAR) studies 

In general, a careful observation of the structure-activity relationship (SAR) indicated that the CDK 

inhibitory activity was considerably affected by the nature of various substituents present at C-4 

(aromatic ring) and C-6 positions on pyrazolo[3,4-d]pyrimidine scaffold. From the two series of 

compounds (phenethyl and pentane at C6), the phenethyl series gave most number of active compounds 

(8, 9, 11, 18 and 24), while in pentane series only three molecules (27, 30 and 36) were active. Further 

analysis of both the series revealed that compounds 8, 9, 11, 27, 30 and 36  with mono substituted 

phenyl ring (2-Cl-Ph, 3-Cl-Ph, 3-NO2-Ph, and 4-SCH3-Ph groups) at C-4 showed better activity than 

compounds with disubstituted phenyl groups except for compounds 18 and 24 (4Cl-3CF3-Ph and 3,4-

OCH3-Ph). Compound 11 followed by 8, 9, 27, 30 and 36 presented highest inhibitory activity.  

Further, no specific activity was observed for all the compounds against Abl kinase (IC50 = >12.5 to 

>50.0).  However, compounds 7, 11 and 14, displayed specific anti-proliferative activity against K-562 

(IC50 = 19.9, 24.6 and 27.4) and MCF-7 (IC50 = 19.2, 24.3 and 23.9), indicating that mono-

substitutions at C4 with phenethyl at C6 was favorable. In summary, compound 11 was most active, 
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however due to low solubility profile for most of the compounds a conclusive SAR could not be derived. 

Figure 3 provides a brief overview of the SAR. 

 

 

Fig. 3. SAR study of 4,6-disubstituted pyrazolo[3,4-d]pyrimidines as potent anticancer agents. 

 

2.5    Molecular docking study 

Computational and bioinformatics tools have become essential part for the design and development of 

therapeutically effective novel chemical entity.33 Dinaciclib, a pyrazolo[1,5-a]pyrimidine compound, 

displayed higher binding affinity towards CDKs.34 Hence, to further understand and substantiate our 

observed experimental data, molecular docking simulation was performed for the synthesized 

compounds with the target CDK2 protein.   

To validate the docking protocols and to reproduce the reported orientation of R-roscovitine in the 

predefined binding site of CDK2 (PDB ID: 2A4L), docking studies were performed using Glide 

program of Schrodinger-Maestro 11.2. From the docking results, the pose of R-roscovitine obtained 

revealed similar molecular interactions as reported.35 The docked complex presented characteristic 

hydrogen bonding (H-bond) interactions with crucial residues of the active-site, such as Leu83 

interacted with roscovitine by forming a strong [C=O with benzylamino NH (1.91 Å)] and a weak 

[(C=O with ring nitrogen (2.39 Å)] H-bond. Similarly, the residue Asp86 interacted with OH group of 

roscovitine via a strong H-bond (1.67 Å), whereas Lys89 exhibited π–cation interaction with phenyl 

ring of the ligand. Figure 4 represents the reproduced 3D molecular interactions of the docked pose, 

validating the docking protocols.  
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Figure 4: Reported pose of Roscovitine (black thin tube model) and docked pose (thick tube model) 

into the active-site showing similar interactions (docking validation). Magenta coloured dashed lines 

indicate hydrogen bonding, while grey-coloured thin tube amino acids are considered as crucial 

residues. 

The docking experimental data with our synthesized compounds revealed that they fit well into the 

binding-site and display favourable interactions with the crucial amino acid residues. Interestingly, two 

nitrogen atoms of pyrazole ring of the best active compound 11 (IC50 = 5.1 µM) displayed strong H 

bond interactions with NH of Leu83 (2.37 Å) and C=O of Glu81 (2.02 Å) respectively, signifying these 

H bond interactions were crucial for the CDK-2 inhibition. The nitro group of the ligand was in close 

proximity to Lys89 presenting weak vdW interaction, whereas the acidic and basic amino acid residues 

(Lys129, Glu131, Asn132 and Asp145) surrounded thiophenethyl group. The exocyclic NH and the 

side chain sulphur displayed no characteristic interactions with the protein (Figure 5a). In the case of 

moderately active compound 27, the ring NH displayed H bond interaction with Leu83 (1.69 Å), while 

the exocyclic NH presented weak H bond interaction (2.59 Å) with Asp86. The side chain was anchored 

within the catalytic residues Phe80 and Asp145, whereas the pocket consisting of Val18, Lys33, and 

Asp145 residues surrounded chlorophenyl ring. While in the case of the least active compound 30, the 

orientation of the docked pose was observed to be different with respect to best and the moderately 

active compounds (11 and 27). The nitro group showed weak H bond interactions with the basic residues 

(Lys33 and Asn 132), which could have contributed to the altered pose of the ligand. Furthermore the 

aliphatic side chain occupied the hydrophobic region (Val64, Phe80, Leu134, and Ala144) resulting in 

H-bond interactions of the ring and exocyclic nitrogen with different residues of the active site (Leu83 

and Ile10). Figure 5 presents the different molecular interactions of 11, 27 and 30 with the active site 

residues of CDK-2 protein (PDB ID: 2A4L). 
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Figure 5. Molecular interactions of a) best active compound 11 b) moderately active compound 27 c) 

less active compound 30 into the binding site of CDK2/cyclin E protein. Nonpolar hydrogens were 

hidden for clarity and pink dashed lines indicate H bond. 

3    Conclusion 

In summary, we have successfully synthesized and characterized a new series of pyrazolo[3,4-

d]pyrimidine derivatives 7-43 in good yields. The key intermediates 4-chloro-6-(phenethylthio)-1H-

pyrazolo[3,4-d]pyrimidine (6a), 4-chloro-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidine (6b) allowed 

us to generate a library of condensed pyrimidines. All synthesized compounds were evaluated for their 

in vitro enzymatic inhibitory activity against CDK2/cyclin E and four compounds (8, 11, 27, and 36) 

were significantly active with IC50 values ranging from 5.1 µM to 8.8 µM. From the SAR, it was clear 

that the presence of thiophenethyl group at C-6 with mono-substituted anilines at C-4 of the 

pyrazolo[3,4-d]pyrimidine nucleus was essential for anticancer activity. In addition, the binding 
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energies of the best active compounds were in agreement with the experimental data and supported the 

SAR studies. However, the moderate to poor activity observed for the majority of the compounds could 

be attributed to the solubility limit and this is currently being addressed in our laboratory.  Thus, these 

preliminary research findings can further guide the researchers at large in developing novel 

pyrazolo[3,4-d]pyrimidine based CDK2 inhibitors as potential anticancer agents. 

4    Experimental Section 

All the chemicals used in this research work were purchased from Sigma-Aldrich and Merck Millipore, 

South Africa. All the solvents, except those of laboratory-reagent grade, were dried and purified when 

necessary according to previously published methods. The progress of the reactions was monitored by 

thin-layer chromatography (TLC) on pre-coated silica gel plates procured from E. Merck and Co. 

(Darmstadt, Germany) using 36% ethyl acetate in n-hexane as the mobile phase and iodine vapor as the 

visualizing agent. Purification of crude compounds were performed by crystallization using appropriate 

solvent  and by flash column chromatography using 100-200 mesh silica gel with Methanol (MeOH) 

and DCM as solvents. The melting points of the synthesized compounds were determined using a 

Thermo Fisher Scientific (IA9000, UK) digital melting point apparatus and are uncorrected. The IR 

spectra were recorded on a Bruker Alpha FT-IR spectrometer (Billerica, MA, USA) using the ATR 

technique. The 1H NMR and 13C NMR spectra were recorded on a Bruker AVANCE 400 and 600 MHz 

(Bruker, Rheinstetten/Karlsruhe, Germany) spectrometers using CDCl3 and DMSO-d6. The chemical 

shifts are reported in δ ppm units with respect to TMS as an internal standard. HR-MS was recorded on 

an Autospec mass spectrometer with electron impact at 70 eV. 

 4.1    Synthesis of 6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (5a) 

To a stirred solution of 6-mercapto-1H-pyrazolo[3,4-d]pyrimidin-4-ol (compound 4, 0.3g, 0.00179 

mol) in N,N-dimethyl formamide (2 mL), K2CO3 (0.247 g, 0.0017 9 mol) was added and stirred at room 

temperature for 10 min. To this constantly stirred reaction mass, 2-chloroethyl benzene (0.28 mL, 0.002 

mol) was slowly added dropwise and heated at 80 C for 20 min. in a microwave reactor at 150 psi. 

After completion of reaction (monitored on TLC), the reaction mixture was poured in ice cold water 

and extracted with dichloromethane (DCM). The extracted organic layer was dried over anhydrous 

sodium sulphate and concentrated under reduced pressure to obtain crude product (dark brown viscous 

liquid) which was further purified by flash silica column [MeOH/ DCM, 10:90] to afford the desired 

compound 5a as light brown solid. Yield: 76%; mp 210-212 C; FTIR (ATR, cm-1) max: 3022 (NH 

Str.), 2920 (Ar-H Str. of Pyr.), 1671 (C=O Str.); 1H-NMR (400 MHz, DMSO-d6) δ: 13.59 (s, 1H, NH), 

12.22 (s, 1H, OH), 8.03 (s, 1H, ArH), 7.31 (t, J = 2.52 Hz, 4H, ArH), 7.25-7.20 (m, 1H, ArH), 3.41 (t, 

J = 5.04 Hz, 2H, CH2), 2.99 (t, J = 7.56 Hz, 2H, CH2) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 158.20, 

139.93, 128.73, 128.62, 128.41, 126.41, 102.89, 34.61 (CH2), 31.08 (CH2) ppm.  
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4.2    Synthesis of 6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (5b) 

To a stirred solution of 6-mercapto-1H-pyrazolo[3,4-d]pyrimidin-4-ol (compound 4, 1g, 0.005 mol) in 

1M NaOH solution (12 mL), 1-bromopentane (1.48 mL, 0.011 mol) was added dropwise and heated at 

70 C for 6h and later slowly brought to RT and continued stirring for overnight. After completion of 

reaction (monitored on TLC), glacial acetic acid was added dropwise to yield the crude solid, which 

further washed with petroleum ether and purified by flash silica column [MeOH/DCM, 05:95] to afford 

the desired compound 5b as yellow solid. Yield: 80%; mp 201-203 C; FTIR (ATR, cm-1) max: 3180 

(NH Str.), 2953 (Ar-H Str.), 1678 (C=O Str.); 1H-NMR (400 MHz, DMSO-d6) δ: 13.54 (s, 1H, NH), 

12.28 (s, 1H, OH), 7.93 (s, 1H, ArH), 3.15 (t, J = 7.26 Hz, 2H, CH2), 1.70-1.63 (m, 2H, CH2), 1.39-

1.26 (m, 4H, (CH2)2), 0.86 (t, J = 7.08 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 159.49, 

157.75, 135.24, 30.37 (CH2), 29.69 (CH2), 28.24 (CH2), 21.66 (CH2), 13.84 (CH3) ppm. 

4.3    Synthesis of 4-chloro-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidine(6a) 

Vilsmeier-Haack reagent was freshly prepared by the careful addition of POCl3 (3.75 mL, 0.041 mol) 

in DMF (0.85 mL, 0.011 mol) at 0 °C with constant stirring. To this reaction mixture (maintained at 0 

°C), added 6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (5a, 1g, 0.003 mol) and stirred initially 

for 30 min and later slowly brought to RT and continued stirring for another 30 min. Finally, the reaction 

mixture was allowed to reflux at 80 C for 2 h until the TLC showed full consumption of starting 

material. The reaction mixture was then poured on ice cold water and neutralized with 10% NaOH 

solution. Thus, the obtained precipitate was filtered under suction and further purified by flash silica 

column [MeOH/DCM, 05:95] to afford the desired compound 6a, as light yellow solid. Yield: 85%; mp 

218-220 C; FTIR (ATR, cm-1) max: 3208 (NH Str.), 2927 (Ar-H Str.); 1H-NMR (400 MHz, DMSO-

d6) δ:  14.24 (s, 1H, NH), 8.30 (s, 1H, ArH), 7.31 (t, J = 2.48 Hz, 4H, ArH), 7.25-7.19 (m, 1H, ArH), 

3.41 (t, J = 7.66 Hz, 2H, CH2), 3.01 (t, J = 7.62 Hz, 2H, CH2) ppm;13C NMR (100 MHz, DMSO-d6) δ:  

167.89, 140.07, 128.73, 128.63, 128.39, 126.36, 109.79, 34.58 (CH2), 31.93 (CH2) ppm. 

4.4    Synthesis of 4-chloro-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidine (6b) 

Vilsmeier-Haack reagent was freshly prepared by the careful addition of POCl3 (4.29 mL, 0.047 mol) 

in DMF (0.97 mL, 0.012 mol) at 0 °C with constant stirring. To this reaction mixture (maintained at 0 

°C) was added 6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (5b, 1g, 0.004 mol) and stirred initially 

for 30 min and later slowly brought to RT and continued stirring for another 30 min. Finally, the reaction 

mixture was allowed to reflux at 80 C for 2 h until the TLC showed full consumption of starting 

material. The reaction mixture was then poured in ice cold water and neutralized with 10% NaOH 

solution. Thus, the generated precipitate was filtered under suction and further purified by flash silica 

column [MeOH/DCM, 05:95] to afford the desired compound 6b as light yellow solid. Yield: 85%; mp 

194-196 C; FTIR (ATR, cm-1)max: 3095 (NH Str.), 2956 (Ar-H Str.), 1602 , 1556, 1465; 1H-NMR 
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(400 MHz, DMSO-d6) δ: 14.19 (s, 1H, NH), 8.28 (s, 1H, ArH), 3.16 (t, J = 7.32 Hz, 2H, CH2), 1.73-

1.66 (m, 2H, CH2), 1.42-1.27 (m, 4H, (CH2)2), 0.87 (t, J = 7.16 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, 

DMSO-d6) δ: 168.23, 109.70, 30.42 (CH2), 30.38 (CH2), 28.11 (CH2), 21.66 (CH2), 13.84 (CH3) ppm. 

4.5    General procedure for the synthesis of 6-(phenethylthio/pentylthio)-N-phenyl-1H   

pyrazolo[3,4-d]pyrimidin-4-amines (7-43) 

To a well stirred solution of compound 6a or 6b (0.2g, 1Eq.) in 10 mL absolute ethanol, was added an 

appropriately substituted anilines (1.1Eq.) and the reaction mixture was refluxed for 2-3 h until TLC 

showed full consumption of starting materials. The excess of solvent was evaporated under reduced 

pressure to yield the crude solids, which were further purified by recrystallization with methanol to 

afford the desired title compounds (7-43).  

 4.5.1. 6-(phenethylthio)-N-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine (7) 

White solid; yield: 90%; mp 226-228 C; FTIR (ATR, cm-1)max: 3363, 3119, 2918, 1621, 1567, 1491, 

1470, 1301, 1183; 1H-NMR (400 MHz, DMSO-d6) δ: 13.44 (s, 1H, NH), 10.05 (s, 1H, ArH), 8.17 (s, 

1H, NH), 7.77 (d, J = 7.92 Hz, 2H, ArH), 7.35-7.19 (m, 7H, ArH), 7.10 (t, J = 7.34 Hz, 1H, ArH), 3.36 

(t, J = 5.14 Hz, 2H, CH2), 2.97 (t, J = 5.14, 2H, CH2) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.40, 

155.51, 153.48, 140.38, 138.90, 128.69, 128.52, 128.31, 126.20, 123.59, 121.34, 98.41, 35.30 (CH2), 

31.31 (CH2) ppm; HRMS (ESI) for C19H16N5S, [M+H]+ calcd: 346.1126, found: 346.1126. 

4.5.2.  N-(2-chlorophenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (8) 

White solid; yield: 92%; mp 268-270 C; FTIR (ATR, cm-1)max: 3055, 2918, 2718, 1626, 1560, 1379, 

1269, 1184; 1H-NMR (400 MHz, DMSO-d6): δ 10.47 (s, 1H, NH), 7.98 (s, 1H, NH), 7.62-7.58 (m, 2H, 

ArH), 7.41-7.08 (m, 8H, ArH), 3.20 (t, J = 7.68 Hz, 2H, CH2), 2.83 (t, J = 7.56 Hz, 2H, CH2) ppm; 13C 

NMR (100 MHz, DMSO-d6) δ:  166.95, 155.03, 140.21, 134.86, 130.46, 129.95, 129.39, 128.49, 

128.29, 127.81, 126.20, 98.12, 35.33 (CH2), 31.37 (CH2) ppm. 

4.5.3. N-(3-chlorophenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (9) 

White solid; yield: 85%; mp 216-218 C; FTIR (ATR, cm-1)max: 3311, 3210, 3132, 3023, 2917, 1635, 

1558, 1473, 1388, 1309, 1176; 1H-NMR (400 MHz, DMSO-d6) δ: 10.46 (s, 1H, NH), 8.35 (s, 1H, NH), 

8.08 (s, 1H, ArH), 7.73 (dd, J = 8.08, 1.04 Hz, 1H, ArH), 7.36-7.12 (m, 8H, ArH), 3.39 (t, J = 7.62 Hz, 

2H, CH2), 2.98 (t, J = 7.62 Hz, 2H, CH2) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.27, 155.19, 

153.30, 140.47, 140.24, 132.99, 132.48, 130.28, 128.57, 128.32, 126.25, 123.05, 120.55, 119.31, 35.06 

(CH2), 31.52 (CH2) ppm; HRMS (ESI) for C19H15N5SCl, [M+H]+ calcd: 380.0733, found: 380.0737. 

4.5.4. N-(4-chlorophenyl)-6-(3-phenylpropyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (10) 
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White solid; yield: 85%; mp 286-288 C; FTIR (ATR, cm-1)max: 3052, 2911, 2725, 1627, 1566, 1487, 

1383, 1276, 1184, 1080, 1015; 1H-NMR (400 MHz, DMSO-d6) δ: 10.81 (s, 1H, NH), 8.49 (s, 1H, NH), 

7.84 (d, J = 8.80 Hz, 2H, ArH), 7.35-7.18 (m, 8H, ArH), 3.37 (t, J = 7.74 Hz, 2H, CH2), 2.95 (t, J = 

7.74 Hz, 2H, CH2) ppm; 13C NMR (100 MHz, DMSO-d6):δ 166.99, 154.47, 153.53, 140.20, 137.55, 

132.23, 128.56, 128.51, 128.31, 127.63, 126.26, 123.16, 98.76, 35.21 (CH2), 31.38 (CH2) ppm.  

4.5.5. N-(3-nitrophenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (11) 

Yellow solid; yield: 81%; mp 249-251C; FTIR (ATR, cm-1)max: 3378, 3100, 3030, 2828, 1629, 1566, 

1525, 1478, 1429, 1349, 1250, 1109; 1H-NMR (400 MHz, DMSO-d6) δ: 10.63 (s, 1H, NH), 8.91 (t, J = 

2.12 Hz, 1H, ArH), 8.34 (s, 1H, NH), 8.22 (dd, J = 8.06, 1.62 Hz, 1H, ArH), 7.91 (dd, J = 8.14, 1.98 

Hz, 1H, ArH), 7.61 (t, J = 8.18 Hz, 1H, ArH), 7.28-7.17 (m, 6H, ArH), 3.41 (t, J = 7.62 Hz, 2H, CH2), 

2.97 (t, J = 7.60 Hz, 2H, CH2) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.38, 155.45, 153.12, 147.90, 

140.35, 140.23, 132.53, 130.00, 128.47, 128.29, 126.46, 126.22, 117.51, 114.85, 98.72, 35.03 (CH2), 

31.44 (CH2) ppm. 

4.5.6. N-(4-nitrophenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (12) 

White solid; yield: 88%; mp 265-267 C; FTIR (ATR, cm-1)max: 3033, 2902, 2820, 2752, 1627, 1570, 

1515, 1338, 1274, 1183, 1110; 1H-NMR (400 MHz, DMSO-d6) δ: 11.06 (s, 1H, NH), 9.94 (s, 1H, NH), 

8.54 (s, 1H, ArH), 8.17 (s, 4H, ArH), 7.29-7.19 (m, 5H, ArH), 3.41 (t, J = 7.70 Hz, 2H, CH2), 3.00 (t, J 

= 7.68 Hz, 2H, CH2) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.34, 155.39, 153.01, 145.64, 141.83, 

140.27, 132.88, 128.51, 128.32, 126.29, 124.72, 120.14, 99.19, 35.08 (CH2), 31.39 (CH2) ppm; HRMS 

(ESI) for C19H15N6O2S, [M+H]+ calcd: 391.0974, found: 391.0977. 

4.5.7. N-(2-bromophenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (13) 

White solid; yield: 85%; mp 266-268 C; FTIR (ATR, cm-1)max: 3052, 2921, 2709, 1625, 1585, 1564, 

1547, 1507, 1415, 1380, 1268, 1185; 1H-NMR (400 MHz, DMSO-d6) δ: 10.57 (s, 1H, NH), 7.96 (s, 1H, 

NH), 7.76 (dd, J = 8.0, 1.0 Hz, 1H, ArH), 7.57 (dd, J = 7.80, 1.52 Hz, 1H, ArH), 7.44 (dd, J = 7.62, 

1.16 Hz, 1H, ArH), 7.32-7.24 (m, 4H, ArH), 7.18 (t, J = 7.28 Hz, 1H, ArH), 7.08 (d, J = 7.28 Hz, 2H, 

ArH), 3.19 (t, J = 7.72 Hz, 2H, CH2), 2.82 (t, J = 7.68 Hz, 2H, CH2) ppm; 13C NMR (100 MHz, DMSO-

d6) δ: 166.85, 155.15, 140.18, 136.35, 133.12, 131.87, 129.79, 128.88, 128.50, 128.29, 126.20, 35.32 

(CH2), 31.39 (CH2) ppm.  

4.5.8. N-(3-bromophenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (14) 

White solid; yield: 81%; mp 265-267 C; FTIR (ATR, cm-1)max: 3053, 2914, 2724, 1625, 1558, 1507, 

1472, 1379, 1273, 1184; 1H-NMR (400 MHz, DMSO-d6) δ: 10.61 (s, 1H, NH), 8.42 (s, 1H, NH), 8.23 

(s, 1H, ArH), 7.80 (t, J = 2.66 Hz, 1H, ArH), 7.29-7.20 (m, 8H, ArH), 3.39 (t, J = 7.58 Hz, 2H, CH2), 

2.98 (t, J = 7.56 Hz, 2H, CH2) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.16, 153.39, 140.52, 140.17, 
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132.46, 130.56, 128.59, 128.33, 126.26, 126.09, 123.55, 121.41, 119.85, 98.75, 35.02 (CH2), 31.56 

(CH2) ppm; HRMS (ESI) for C19H15N5SBr, [M+H]+ calcd: 424.0224, found: 424.0232. 

4.5.9. N-(4-bromophenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (15) 

White solid; yield: 78%; mp 284-286 C; FTIR (ATR, cm-1)max: 3100, 3025, 2917, 1613, 1579, 1495, 

1473, 1304, 1225, 1180; 1H-NMR (400 MHz, DMSO-d6) δ: 10.84 (s, 1H, NH), 8.51 (s, 1H, NH), 7.79 

(d, J = 8.76 Hz, 2H, ArH), 7.46 (d, J = 8.80 Hz, 2H, ArH), 7.30-7.18 (m, 6H, ArH), 3.37 (t, J = 5.16 

Hz, 2H, CH2), 2.95 (t, J = 7.74 Hz, 2H, CH2) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 166.98, 153.50, 

140.20, 137.97, 132.22, 131.47, 128.51, 128.33, 126.27, 123.52, 115.74, 98.81, 35.21 (CH2), 31.38 

(CH2) ppm. 

4.6.0. N-(2,4-dimethylphenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (16) 

White solid; yield: 76%; mp 238-240 C; FTIR (ATR, cm-1)max: 3100, 3025, 2917, 1613, 1579, 1495, 

1473, 1335, 1304, 1225, 1180; 1H-NMR (400 MHz, DMSO-d6) δ:13.29 (s, 1H, NH), 9.66 (s, 1H, NH), 

7.29-7.04 (m, 9H, ArH), 3.22 (s, 2H, CH2), 2.88 (s, 2H, CH2), 2.31 (s, 3H, CH3), 2.14 (s, 3H, CH3) ppm; 

13C NMR (100 MHz, DMSO-d6) δ: 167.40, 155.73, 140.50, 133.89, 132.55, 131.23, 128.51, 128.25, 

127.04, 126.13, 35.51 (CH2), 31.28 (CH2), 20.64 (CH3), 17.74 (CH3) ppm; HRMS (ESI) for C21H20N5S, 

[M+H]+ calcd: 374.1447, found: 374.1439. 

4.6.1.  N-(4-(methylthio)phenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (17) 

White solid; yield: 90%; mp 262-264 C; FTIR (ATR, cm-1)max: 3054, 2921, 2809, 2752, 1625, 1583, 

1586, 1488, 1417, 1385, 1274, 1243, 1184; 1H-NMR (400 MHz, DMSO-d6) δ: 10.50 (s, 1H, NH), 8.36 

(s, 1H, NH), 7.74 (d, J = 8.52 Hz, 2H, ArH), 7.31-7.19 (m, 8H, ArH), 3.37 (t, J = 7.80 Hz, 2H, CH2), 

2.96 (t, J = 7.76 Hz, 2H, CH2), 2.44 (s, 3H, SCH3); 
13C NMR (100 MHz, DMSO-d6) δ: 167.07, 154.78, 

153.49, 140.28, 135.91, 132.20, 128.51, 128.31, 126.70, 126.24, 122.23, 98.58, 35.31 (CH2), 31.31 

(CH2), 15.31 (CH3) ppm; HRMS (ESI) for C20H18N5S2, [M+H]+ calcd: 392.1000, found: 392.1004. 

4.6.2.     N-(4-chloro-3-(trifluoromethyl)phenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d] pyrimidin-4-

amine (18) 

White solid; yield: 89%; mp 273-275 C; FTIR (ATR, cm-1)max: 3033, 2920, 2808, 2752, 1628, 1566, 

1507, 1498, 1399, 1315, 1274, 1171, 1153, 1107, 1037; 1H-NMR (400 MHz, DMSO-d6) δ: 10.93 (s, 

1H, NH), 8.49 (d, J = 2.52 Hz, 1H, ArH), 8.47 (s, 1H, NH), 8.18 (dd, J = 8.82, 2.50 Hz, 1H, ArH), 7.61 

(d, J = 8.80 Hz, 1H, ArH), 7.29-7.20 (m, 6H, ArH), 3.37 (t, J = 7.68 Hz, 2H, CH2), 2.96 (t, J = 7.66 Hz, 

2H, CH2) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.21, 155.12, 153.17, 140.21, 138.63, 132.61, 

131.89, 126.76, 126.46, 125.52, 124.15, 123.86, 121.44, 119.62, 119.57, 98.83, 35.03 (CH2), 31.40 

(CH2) ppm; HRMS (ESI) for C20H15N5F3SCl, [M+H]+ calcd: 449.0689, found: 448.0611. 
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4.6.3. N-(4-bromo-3-(trifluoromethyl)phenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-

amine (19) 

White solid; yield: 86%; mp 273-275 C; FTIR (ATR, cm-1)max: 3033, 2905, 2809, 2752, 1628, 1562, 

1507, 1473, 1381, 1315, 1273, 1182, 1131, 1097; 1H-NMR (400 MHz, DMSO-d6) δ: 10.71 (s, 1H, NH), 

8.48 (s, 1H, NH), 8.37 (s, 1H, ArH), 8.08 (t, J =6.48 Hz, 1H, ArH), 7.76 (t, J = 7.44 Hz, 1H, ArH), 

7.29-7.20 (m, 6H, ArH), 3.37 (t, J =7.66 Hz, 2H, CH2), 2.96 (t, J =7.54 Hz, 2H, CH2) ppm; 13C NMR 

(100 MHz, DMSO-d6) δ: 167.27, 153.11, 140.23, 139.12, 135.27, 132.61, 128.50, 128.32, 128.26, 

126.26, 125.49, 124.25, 121.53, 119.82, 35.04 (CH2), 31.38 (CH2) ppm; HRMS (ESI) for 

C20H15N5F3SBr, [M+H]+ calcd: 493.0184, found: 492.0105. 

4.6.4. N-(4-chloro-3-nitrophenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (20) 

White solid; yield: 75%; mp 265-267 C; FTIR (ATR, cm-1)max: 3023, 2899, 2827, 2759, 1628, 1557, 

1531, 1494, 1432, 1376, 1338, 1275, 1182, 1048; 1H-NMR (400 MHz, DMSO-d6) δ: 10.95 (s, 1H, NH), 

8.75 (s, 1H, ArH), 8.43 (s, 1H, NH), 8.16 (d, J = 8.84 Hz, 1H, ArH), 7.68 (dd, J = 8.82, 1.66 Hz, 1H, 

ArH), 7.29-7.18 (m, 6H, ArH), 3.40 (t, J = 7.58 Hz, 2H, CH2), 2.97 (t, J = 7.56 Hz, 2H, CH2) ppm; 13C 

NMR (100 MHz, DMSO-d6) δ: 167.28, 155.29, 153.02, 147.02, 140.21, 139.17, 132.71, 131.82, 128.50, 

128.30, 126.25, 125.57, 118.35, 117.18, 98.82, 34.98 (CH2), 31.45 (CH2) ppm. 

4.6.5. N-(4-fluoro-2-methylphenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (21) 

White solid; yield: 80 %; mp 268-270 C; FTIR (ATR, cm-1)max: 3103, 3026, 3000, 2934, 1593, 1580, 

1492, 1313, 1303, 1210, 1180, 1144; 1H-NMR (400 MHz, DMSO-d6) δ: 13.34 (s, 1H, NH), 9.72 (s, 1H, 

NH), 7.39 (q, J = 4.76 Hz, 1H, ArH), 7.29-7.04 (m, 8H, ArH), 3.20 (s, 2H, CH2), 2.87 (d, J = 6.92 Hz, 

2H, CH2), 2.19 (s, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.41, 161.66, 155.71, 140.44, 

132.79, 132.48, 128.47, 128.24, 126.15, 117.12, 116.89, 113.21, 113.00, 35.50 (CH2), 31.28 (CH2), 

17.90 (CH3) ppm; HRMS (ESI) for C20H17N5FS, [M+H]+ calcd: 378.1191, found: 378.1189. 

4.6.6. N-(3-bromo-4-methylphenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (22)  

White solid; yield: 85%; mp 279-281 C; FTIR (ATR, cm-1)max: 3056, 2923, 2745, 1626, 1583, 1550, 

1487, 1383, 1270, 1184, 1145, 1038; 1H-NMR (400 MHz, DMSO-d6) δ: 10.67 (s, 1H, NH), 8.43 (s, 1H, 

NH), 8.19 (d, J = 1.84 Hz, 1H, ArH), 7.68 (dd, J = 8.24, 2.00 Hz, 1H, ArH), 7.28-7.18 (m, 7H, ArH), 

3.38 (t, J = 7.66 Hz, 2H, CH2), 2.96 (t, J = 7.62 Hz, 2H, CH2), 2.30 (s, 3H, CH3) ppm; 13C NMR (100 

MHz, DMSO-d6) δ: 167.06, 154.62, 153.45, 140.16, 137.83, 130.85, 128.58, 128.30, 126.25, 124.55, 

123.64, 120.54, 119.29, 35.07 (CH2), 31.56 (CH2), 21.78 (CH3) ppm; HRMS (ESI) for C20H18N5SBr, 

[M+H]+ calcd: 439.0466, found: 438.0388. 

4.6.7. N-(2-chloro-4-fluorophenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (23) 
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White solid; yield: 83 %; mp 282-284 C; FTIR (ATR, cm-1)max: 3037, 2907, 2724, 1629, 1569, 1488, 

1380, 1269, 1256, 1196, 1180; 1H-NMR (400 MHz, DMSO-d6) δ: 10.28 (s, 1H, NH), 8.08 (s, 1H, NH), 

7.65-7.57 (m, 2H, ArH), 7.28-7.17 (m, 5H, ArH), 7.09 (d, J = 10.24 Hz, 2H, ArH), 3.18 (t, J = 7.76 Hz, 

2H, CH2), 2.82 (d, J = 5.80 Hz, 2H, CH2) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 155.10, 140.17, 

131.55, 130.92, 130.82, 128.41, 128.26, 126.21, 117.24, 116.98, 115.09, 114.87, 35.36 (CH2), 31.32 

(CH2) ppm. 

4.6.8. N-(3,4-dimethoxyphenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (24) 

Light yellow solid; yield: 78%; mp 265-267 C; FTIR (ATR, cm-1)max: 3063, 2930, 2716, 1629, 1584, 

1505, 1457, 1388, 1259, 1232, 1204, 1184, 1129; 1H-NMR (400 MHz, DMSO-d6) δ: 10.97 (s, 1H, NH), 

8.63 (s, 1H, NH), 7.39-7.14 (m, 8H, ArH), 6.85 (d, J = 8.40 Hz, 1H, ArH), 3.73 (s, 3H, OCH3), 3.71 (s, 

3H, OCH3), 3.38 (t, J = 7.80 Hz, 2H, CH2), 2.93 (t, J = 7.74 Hz, 2H, CH2) ppm; 13C NMR (100 MHz, 

DMSO-d6) δ: 166.40, 148.58, 140.05, 131.11, 128.52, 128.30, 126.29, 111.69, 55.66 (O-CH3), 55.51 

(O-CH3), 35.19 (CH2), 31.46 (CH2) ppm. 

4.6.9. N-(3-ethynylphenyl)-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (25) 

Light yellow solid; yield: 78%; mp 254-256 C; FTIR (ATR, cm-1)max: 3230, 3065, 2914, 2750, 1627, 

1571, 1543, 1509, 1381, 1257, 1167, 1051; 1H-NMR (400 MHz, DMSO-d6) δ: 10.82 (s, 1H, NH), 8.51 

(s, 1H, NH), 8.03 (s, 1H, ArH), 7.86 (d, J = 4.54 Hz, 1H, ArH), 7.35-7.18 (m, 8H, ArH), 4.18 (s, 1H, 

Ethynyl-H), 3.39 (t, J = 7.54 Hz, 2H, CH2), 2.97 (t, J = 7.52 Hz, 2H, CH2) ppm; 13C NMR (100 MHz, 

DMSO-d6) δ: 166.99, 153.62, 140.13, 138.92, 129.13, 127.04, 126.27, 124.41, 122.09, 122.04, 98.80, 

83.30, 80.75, 35.04 (CH2), 31.56 (CH2) ppm. 

4.7.0. 6-(pentylthio)-N-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine (26) 

White solid; yield: 86%; mp 202-204 C; FTIR (ATR, cm-1)max: 3079, 2924, 1624, 1568, 1540, 1507, 

1496, 1309, 1185; 1H-NMR (400 MHz, DMSO-d6) δ:  13.39 (s, 1H, NH), 10.02 (s, 1H, ArH), 8.15 (s, 

1H, NH), 7.78 (d, J=7.88 Hz, 2H, ArH), 7.38 (t, J = 7.92 Hz, 2H, ArH), 7.12 (t, J = 7.32 Hz, 1H, ArH), 

3.09 (t, J = 7.38 Hz, 2H, CH2), 1.66 (m, 2H, CH2), 1.25-1.38 (m, 4H, (CH2)2), 0.85 (t, J = 7.16 Hz, 3H, 

CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.73, 155.51, 153.39, 138.96, 128.64, 123.53, 121.22, 

98.34, 30.57 (CH2), 29.97 (CH2), 28.97 (CH2), 21.75 (CH2), 13.85 (CH3) ppm; HRMS (ESI) for 

C16H18N5S, [M+H]+ calcd: 312.1284, found: 312.1283. 

4.7.1. N-(2-chlorophenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (27) 

White solid; yield: 75%; mp 231-233 C; FTIR (ATR, cm-1)max: 3054, 2924, 2719, 1624, 1571, 1383, 

1273, 1185, 1057; 1H-NMR (400 MHz, DMSO-d6) δ: 10.48 (s, 1H, NH), 7.99 (S, 1H, NH), 7.57-7.61 

(m, 2H, ArH), 7.35-7.44 (m, 2H, ArH), 2.90 (t, J = 7.44 Hz, 2H, CH2), 1.46-1.53 (m, 2H, CH2), 1.14-

1.22 (m, 4H, (CH2)2), 0.82 (t, J = 6.86 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ:  167.35, 
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154.87, 134.96, 132.05, 129.84, 129.43, 128.19, 127.70, 97.95, 30.50 (CH2), 29.99 (CH2), 29.11 (CH2), 

21.74(CH2), 13.87 (CH3) ppm. 

4.7.2. N-(3-chlorophenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (28) 

White solid; yield: 92%; mp 224-226 C; FTIR (ATR, cm-1)max: 3099, 2928, 1623, 1558, 1541, 1473, 

1386, 1304, 1180; 1H-NMR (400 MHz, DMSO-d6) δ: 10.35 (s, 1H, NH), 8.30 (s, 1H, NH), 8.12 (s, 1H, 

ArH), 7.70 (d, J = 8.28 Hz, 1H, ArH), 7.39 (t, J = 8.10 Hz, 1H, ArH), 7.15 (dd, J = 7.90, 1.70 Hz, 1H, 

ArH), 3.12 (t, J = 7.32 Hz, 2H, CH2), 1.63-1.70 (m, 2H, CH2), 1.21-1.41 (m, 4H (CH2)2), 0.84 (t, J = 

7.16 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.64, 155.27, 153.21, 140.53, 132.96, 

132.43, 130.28, 123.00, 120.47, 119.19, 98.62, 30.51 (CH2), 30.14 (CH2), 28.75 (CH2), 21.76 (CH2), 

13.87 (CH3) ppm. 

4.7.3. N-(4-chlorophenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (29) 

White solid; yield: 88%; mp 253-255 C; FTIR (ATR, cm-1)max: 3056, 2923, 2717, 1625, 1567, 1541, 

1384, 1267, 1183, 1080, 1013; 1H-NMR (400 MHz, DMSO-d6) δ: 10.58 (s, 1H, NH), 8.39 (s, 1H, NH), 

7.85 (d, J = 8.88 Hz, 2H, ArH), 7.43 (d, J = 8.88 Hz, 2H, ArH), 3.09 (t, J = 7.38 Hz, 2H, CH2), 1.61-

1.68 (m, 2H, CH2), 1.22-1.37 (m, 4H, (CH2)2), 0.84 (t, J = 7.16 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, 

DMSO-d6) δ:  167.45, 153.38, 137.76, 132.27, 128.51, 127.40, 122.95, 98.60, 30.58 (CH2), 30.12 (CH2), 

28.88 (CH2), 21.76 (CH2), 13.87 (CH3) ppm. 

4.7.4. N-(3-nitrophenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (30) 

Brown solid; yield: 84%; mp 210-212 C; FTIR (ATR, cm-1)max: 3080, 2928, 2757, 1625, 1558, 1522, 

1348, 1299, 1175, 1072; 1H-NMR (400 MHz, DMSO-d6) δ: 10.70 (s, 1H, NH), 8.96 (t, J = 2.14 Hz, 

1H, ArH), 8.37 (s, 1H, ArH), 8.20-8.23 (m, 1H, ArH), 7.92-7.94 (m, 1H, ArH), 7.66 (t, J = 8.22 Hz, 

1H, ArH), 3.15 (t, J = 7.30 Hz, 2H, CH2), 1.62-1.69 (m, 2H, CH2), 1.21-1.38 (m, 4H, (CH2)2), 0.82 (t, 

J = 7.20 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.72, 155.34, 153.14, 147.93, 140.40, 

132.55, 130.00, 126.49, 117.56, 114.85, 98.72, 30.49 (CH2), 30.16 (CH2), 28.57 (CH2), 21.74 (CH2), 

13.86 (CH3) ppm. 

4.7.5. N-(4-nitrophenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (31) 

Yellow solid; yield: 93%; mp 268-270 C; FTIR (ATR, cm-1)max: 3108, 2923, 1626, 1568, 1508, 1336, 

1297, 1250, 1182, 1111; 1H-NMR (400 MHz, DMSO-d6) δ: 10.66 (s, 1H, NH), 8.33 (s, 1H, NH), 8.27 

(d, J = 9.24 Hz, 2H, ArH), 8.13 (d, J = 9.24 Hz, 2H, ArH), 3.14 (t, J = 7.32 Hz, 2H, CH2), 1.66-1.73 

(m, 2H, CH2), 1.25-1.43 (m, 4H, (CH2)2), 0.85 (t, J = 7.18 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, 

DMSO-d6) δ: 167.77, 155.64, 152.77, 145.70, 141.75, 132.57, 124.79, 119.87, 99.00, 30.60 (CH2), 

30.12 (CH2), 28.73 (CH2), 21.77 (CH2), 13.86 (CH3) ppm. 
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4.7.6. N-(2-bromophenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (32) 

White solid; yield: 81%; mp 255-257 C; FTIR (ATR, cm-1)max: 3052, 2924, 2725, 1626, 1570, 1542, 

1507, 1379, 1275, 1184, 1044; 1H-NMR (400 MHz, DMSO-d6) δ: 10.53 (s, 1H, NH), 7.96 (s, 1H, NH), 

7.75-7.78 (m, 1H, ArH), 7.53-7.56 (m, 1H, ArH), 7.45-7.49 (m, 1H, ArH), 7.29-7.33 (m, 1H, ArH), 

2.90 (t, J = 7.42 Hz, 2H, CH2), 1.45-1.53 (m, 2H, CH2), 1.14-1.22 (m, 4H, (CH2)2, 0.82 (t, J = 6.98 Hz, 

3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.15, 155.06, 136.37, 133.01, 131.81, 129.82, 

128.80, 128.40, 121.69, 97.97, 30.49 (CH2), 30.06 (CH2), 29.15 (CH2), 21.75 (CH2), 13.88 (CH3) ppm. 

4.7.7. N-(3-bromophenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (33) 

Brown solid; yield: 76%; mp 232-234 C; FTIR (ATR, cm-1)max: 3099, 2927, 1622, 1557, 1472, 1298, 

1178, 1063; 1H-NMR (400 MHz, DMSO-d6) δ: 10.41 (s, 1H, NH), 8.32 (s, 1H, NH), 8.26 (t, J = 1.78 

Hz, 1H, ArH), 7.75 (d, J = 8.04 Hz, 1H, ArH), 7.27-7.35 (m, 2H, ArH), 3.12 (t, J = 7.28 Hz, 2H, CH2), 

1.63-1.71 (m, 2H, CH2), 1.23-1.41 (m, 4H, (CH2)2), 0.84 (t, J = 7.22 Hz, 3H, CH2) ppm; 13C NMR (100 

MHz, DMSO-d6) δ:  167.59, 155.19, 153.18, 140.63, 132.41, 130.56, 125.88, 123.32, 121.39, 119.57, 

98.61, 30.49 (CH2), 30.13 (CH2), 28.70 (CH2), 21.75 (CH2), 13.86 (CH3) ppm. 

4.7.8. N-(4-bromophenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (34) 

White solid; yield: 90%; mp 256-258 C; FTIR (ATR, cm-1)max: 3056, 2924, 2718, 1626, 1559, 1474, 

1383, 1269, 1183, 1065; 1H-NMR (400 MHz, DMSO-d6) δ: 10.53 (s, 1H, NH), 8.36 (s, 1H, NH), 7.80 

(d, J = 8.64 Hz, 2H, ArH), 7.55 (d, J = 8.80 Hz, 2H, ArH), 3.09 (t, J = 7.36 Hz, 2H, CH2), 1.61-1.68 

(m, 2H, CH2), 1.22-1.37 (m, 4H, (CH2)2), 0.85 (t, J = 7.08 Hz, 3H, CH3); 
13C NMR (100 MHz, DMSO-

d6) δ: 167.48, 153.34, 138.22, 132.27, 131.41, 123.25, 98.61, 30.59 (CH2), 30.12 (CH2), 28.89 (CH2), 

21.76 (CH2), 13.89 (CH3) ppm; HRMS (ESI) for C16H17N5SBr, [M+H]+ calcd: 390.0383, found: 

390.0388. 

4.7.9. N-(2,4-dimethylphenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (35) 

Brown solid; yield: 90%; mp 256-258 C; FTIR (ATR, cm-1)max: 3099, 2922, 1614, 1578, 1473, 1315, 

1223, 1180; 1H-NMR (400 MHz, DMSO-d6) δ: 13.24 (s, 1H, NH), 9.62 (s, 1H, ArH), 7.17 (t, J = 9.64 

Hz, 2H, ArH), 7.06 (d, J = 7.68 Hz, 1H, ArH), 2.95 (s, 2H, CH2), 2.31 (s, 3H, CH3), 2.13 (s, 3H, CH3), 

1.56 (s, 2H, CH2), 1.25 (s, 4H, (CH2)2), 0.84 (t, J = 6.68 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, 

DMSO-d6) δ: 167.72, 155.74, 133.93, 132.51, 131.16, 127.51, 127.00, 30.58 (CH2), 29.80 (CH2), 29.10 

(CH3), 21.76 (CH2), 20.62 (CH3), 17.72 (CH2), 13.90 (CH3) ppm; HRMS (ESI) for C18H22N5S, [M+H]+ 

calcd: 340.1601, found: 340.1596. 

4.8.0.  N-(4-(methylthio)phenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (36) 
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Brown solid; yield: 77%; mp 242-244 C; FTIR (ATR, cm-1)max: 3064, 2923, 2724, 1624, 1558, 1520, 

1507, 1386, 1185, 1083; 1H-NMR (400 MHz, DMSO-d6) δ: 10.65 (s, 1H, NH), 8.42 (d, J = 9.84, 1H, 

NH), 7.75 (d, J = 8.60 Hz, 2H, ArH), 7.29 (d, J = 8.64 Hz, 2H, ArH), 3.09 (t, J = 7.42 Hz, 2H, CH2), 

2.47 (s, 3H, SCH3), 1.60-1.68 (m, 2H, CH2), 1.21-1.36 (m, 4H, (CH2)2), 0.84 (t, J = 7.12 Hz, 3H, CH3) 

ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.25, 153.57, 135.82, 131.96, 126.74, 122.41, 98.61, 30.61 

(CH2), 30.17 (CH2), 28.98 (CH2), 21.77 (CH2), 15.38 (CH3), 13.90 (CH3) ppm. 

4.8.1. N-(4-chloro-3-(trifluoromethyl)phenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine 

(37) 

White solid; yield: 83%; mp 258-260 C; FTIR (ATR, cm-1)max: 3101, 2927, 1628, 1567, 1478, 1437, 

1385, 1321, 1256, 1176, 1132; 1H-NMR (400 MHz, DMSO-d6) δ: 10.60 (s, 1H, NH), 8.51 (d, J = 2.52 

Hz, 1H, ArH), 8.32 (s, 1H, ArH), 8.10 (dd, J = 8.80, 2.52 Hz, 1H, ArH), 7.71 (d, J = 8.80 Hz, 1H, ArH), 

3.10 (t, J = 7.34 Hz, 2H, CH2), 1.61-1.68 (m, 2H, CH2), 1.21-1.38 (m, 4H, (CH2)2), 0.84 (t, J = 7.18 Hz, 

3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.67, 155.41, 152.99, 138.72, 132.49, 131.94, 

126.45, 125.33, 123.73, 119.47, 98.66, 30.48 (CH2), 30.01 (CH2), 28.57 (CH2), 21.73 (CH2), 13.83 

(CH3) ppm. 

4.8.2. N-(4-bromo-3-(trifluoromethyl)phenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine 

(38) 

Brown solid; yield: 79%; mp 257-259 C; FTIR (ATR, cm-1)max: 3099, 2926, 1633, 1559, 1541, 1474, 

1436, 1257, 1145, 1097; 1H-NMR (400 MHz, DMSO-d6) δ: 10.62 (s, 1H, NH), 8.51 (d, J = 2.52 Hz, 

1H, ArH), 8.34 (s, 1H, NH), 8.03 (dd, J = 8.74, 2.50 Hz, 1H, ArH), 7.86 (d, J = 8.72 Hz, 1H, ArH), 

3.10 (t, J = 7.32 Hz, 2H, CH2), 1.61-1.68 (m, 2H, CH2), 1.22-1.38 (m, 4H, (CH2)2), 0.84 (t, J = 7.14 Hz, 

3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.64, 155.37, 152.98, 139.16, 135.28, 132.50, 

128.54, 125.39, 124.29, 119.73, 111.31, 98.70, 30.48 (CH2), 30.00 (CH2), 28.56 (CH2), 21.73 (CH2), 

13.83 (CH3) ppm; HRMS (ESI) for C17H16N5F3SBr, [M+H]+ calcd: 458.0258, found: 458.0262. 

4.8.3. N-(4-chloro-3-nitrophenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (39) 

Yellow solid; yield: 91%; mp 251-253 C; FTIR (ATR, cm-1)max: 3098, 2925, 1626, 1558, 1540, 1473, 

1339, 1297, 1265, 1182; 1H-NMR (400 MHz, DMSO-d6) δ:  10.73 (s, 1H, NH), 8.78 (d, J = 2.52 Hz, 

1H, ArH), 8.33 (s, 1H, ArH), 8.08 (dd, J = 8.92, 2.56 Hz, 1H, ArH), 7.76 (d, J = 8.88 Hz, 1H, ArH), 

3.12 (t, J = 7.26 Hz, 2H, CH2), 1.61-1.68 (m, 2H, CH2), 1.20-1.39 (m, 4H, (CH2)2), 0.84 (t, J = 7.14 Hz, 

3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.70, 155.45, 152.90, 147.12, 139.23, 132.54, 

131.83, 125.33, 118.20, 116.94, 98.71, 30.48 (CH2), 30.14 (CH2), 28.50 (CH2), 21.76 (CH2), 13.86 

(CH3) ppm. 

4.8.4. N-(4-fluoro-2-methylphenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (40) 
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White solid; yield: 90%; mp 261-263 C; FTIR (ATR, cm-1)max: 3100, 2953, 1577, 1490, 1206, 1181; 

1H-NMR (400 MHz, DMSO-d6) δ: 13.29 (s, 1H, NH), 9.69 (s, 1H, ArH), 7.33-7.36 (m, 1H, ArH), 7.20 

(t, J = 4.76 Hz, 1H, ArH), 7.01-7.11 (m, 1H, ArH), 2.93 (s, 2H, CH2), 2.18 (s, 3H, CH3), 1.54 (s, 2H, 

CH2), 1.22 (s, 4H, (CH2)2), 0.84 (t, J = 6.96 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 

167.72, 155.80, 132.83, 132.39, 129.41, 117.01, 116.79, 113.15, 112.90, 30.59 (CH2), 29.84(CH2), 

29.13 (CH3), 21.76 (CH2), 17.87 (CH2), 13.87 (CH3) ppm. 

4.8.5. N-(3-bromo-4-methylphenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (41) 

Brown solid; yield: 86%; mp 237-239 C; FTIR (ATR, cm-1)max: 3099, 2923, 1623, 1556, 1474, 1395, 

1301, 1178; 1H-NMR (400 MHz, DMSO-d6) δ: 10.63 (s, 1H, NH), 8.30 (s, 1H, NH), 8.23 (d, J = 1.84 

Hz, 1H, ArH), 7.65 (dd, J = 8.28, 2.08 Hz, 1H, ArH), 7.34 (d, J = 8.32 Hz, 1H, ArH), 3.12 (t, J = 7.28 

Hz, 2H, CH2), 1.62-1.70 (m, 2H, CH2), 1.22-1.40 (m, 4H, (CH2)2), 0.84 (t, J = 7.22 Hz, 3H, CH3) ppm; 

13C NMR (100 MHz, DMSO-d6) δ: 167.54, 153.23, 138.05, 132.30, 131.98, 130.82, 124.29, 123.61, 

120.19, 98.52, 30.50 (CH2), 30.13 (CH2), 28.72 (CH2), 21.75(CH2), 21.73(CH3), 13.86 (CH3) ppm; 

HRMS (ESI) for C17H19N5FS, [M+H]+ calcd: 344.1348, found: 344.1345. 

4.8.6. N-(2-chloro-4-fluorophenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (42) 

White solid; yield: 80%; mp 247-249 C; FTIR (ATR, cm-1)max: 3054, 2925, 2716, 1625, 1573, 1488, 

1382, 1257, 1181; 1H-NMR (400 MHz, DMSO-d6) δ: 10.44 (s, 1H, NH), 8.04 (s, 1H, ArH), 7.59-7.62 

(m, 2H, ArH), 7.29-7.34 (m, 1H, ArH), 2.89 (t, J = 7.42 Hz, 2H, CH2), 1.45-1.52 (m, 2H, CH2), 1.16-

1.22 (m, 4H, (CH2)2), 0.82 (t, J = 6.88 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 167.20, 

161.54, 159.08, 155.10, 131.86, 131.01, 117.13, 116.87, 115.01, 114.78, 98.01, 30.59 (CH2), 30.09 

(CH2), 29.19 (CH2), 21.76 (CH2), 13.86 (CH3) ppm.  

4.8.7.  N-(3,4-dimethoxyphenyl)-6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (43) 

Brown solid; yield: 78%; mp 247-249 C; FTIR (ATR, cm-1)max: 3055, 2951, 2725, 1625, 1507, 1260, 

1233, 1026; 1H-NMR (400 MHz, DMSO-d6) δ: 10.52 (s, 1H, NH), 8.43 (s, 1H, NH), 7.40 (s, 1H, ArH), 

7.28 (s, 1H, ArH), 6.97 (d, J = 8.72 Hz, 1H, ArH), 3.76 (d, J = 2.12 Hz, 6H, (OCH3)2), 3.10 (t, J = 7.38 

Hz, 2H, CH2), 1.59-1.64 (m, 2H, CH2), 1.20-1.34 (m, 4H, (CH2)2), 0.83 (t, J = 7.08 Hz, 3H, CH3) ppm; 

13C NMR (100 MHz, DMSO-d6) δ: 166.72, 153.97, 148.59, 131.38, 114.58, 111.74, 107.58, 98.57, 

55.73 (OCH3), 55.59 (OCH3), 30.50 (CH2), 30.28 (CH2), 28.81 (CH2), 21.72 (CH2), 13.83 CH3) ppm; 

HRMS (ESI) for C18H22N5O2S, [M+H]+ calcd: 372.1496, found: 372.1494. 

5    Biological activity  

5.1    CDK2 and Abl kinase inhibition assays 
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CDK2/cyclin E and Abl kinases were produced in Sf9 insect cells via baculoviral infection and purified 

on a NiNTA column. The kinase reactions were assayed with suitable substrates (1 mg/mL histone H1 

for CDK2 and 500 µM peptide GGEAIYAAPFKK for Abl) in the presence of 15 or 10 µM ATP for 

CDK2 and Abl, respectively, 0.05 µCi [γ-33P]ATP, and the test compound in a final volume of 10 µL, 

all in a reaction buffer (60 mM HEPES-NaOH, pH 7.5, 3 mM MgCl2, 3 mM MnCl2, 3 μM Na-

orthovanadate, 1.2 mM DTT, 2.5 μg / 50 μl PEG20.000). The reactions were stopped by adding 5 µL of 

3% aq. H3PO4. Aliquots were spotted onto P-81 phosphocellulose (Whatman), washed 3× with 0.5% 

aq. H3PO4 and finally air-dried. Kinase inhibition was quantified using a FLA-7000 digital image 

analyzer. The concentration of the test compounds required to reduce the kinase activity by 50 % was 

determined from dose-response curves and recorded as their IC50.  

 

5.2    Anti-proliferative evaluation for K-562 and MCF-7 cell lines 

The tumor cells (purchased from the American Type Culture Collection) were grown in DMEM 

medium (Gibco BRL) supplemented with 10% (v/v) fetal bovine serum and L-glutamine (0.3 g/L) and 

were maintained at 37°C in a humidified atmosphere with 5% CO2. For anticancer cytotoxicity 

estimations, 104 cells were seeded into each well of a 96-well plate, allowed to stabilize for 20 h, and 

the test inhibitors were then added at different concentrations (ranging from 0.1 to 100 μM or to a 

solubility limit) in triplicate. Three days after addition of the inhibitors, calcein AM solution (Molecular 

Probes) was added. One hour later, fluorescence of cells was quantified using a Fluoroskan Ascent 

(Labsystems) reader and cytotoxic effective concentrations were calculated and expressed as IC50 

values from dose-response curves. Roscovitine and imatinib were used as reference drugs.  

6     Molecular docking simulation 

Molecular docking experiments were performed using Glide software package36 implemented in 

Schrodinger Suite (2017-2) (Schrödinger, Inc., USA)37 running on Intel CORE i7 based hpZ230 

workstation with the Microsoft Windows 10 OS. In this protocol, the protein was kept rigid, while the 

ligands were allowed to be flexible throughout the docking simulation.                     

6.1     Protein preparation 

The starting X-ray solved protein crystal structure of cyclin dependent kinase-2 bound with R-

roscovitine was retrieved from protein data bank (PDB) bearing ID 2A4L.35 The protein was prepared 

by automatic preparation by Protein Preparation Wizard of Glide employing the Optimized Potentials 

for Liquid Simulations 3 (OPLS3) forcefield. During the pre-processing stage, crystallographic water 

molecules were removed and added missing hydrogens to the protein structure corresponding to pH 7.0 

was achieved. The protein metal ions and cofactors were viewed and removed from the protein 

structure. The tool neutralized the side chains that are not close to the binding cavity and do not 



Chapter 4 

 

   Srinivasulu Cherukupalli                                194                                              UKZN-2018 

participate in salt bridges. The pre-processed protein structure was refined initially by optimizing the 

sample-water orientation followed by restrained minimization of co-crystallized complex using OPLS3, 

which reorients side chain hydroxyl groups and alleviates potential steric clashes. Thus, the complex 

obtained was minimized until it reaches the convergent of heavy atom to RMSD 0.3 Å and taken finally 

in .mae format.    

6.2    Grid file generation 

Receptor grid generation protocol of Maestro 11.2 was used to define the binding-site of the protein 

(2A4L) for docking simulation by excluding any co-crystallized metals, co-factors, water molecules all 

of which may have crystallized during experimental crystallization of the CDK-2 protein. A grid box 

was generated around the centroid of the cognate ligand (R-roscovitine) specifying the size for the 

docking ligands (20 Å) with default settings.  

6.3    Ligand preparation 

The structures of the synthesized ligands and standard R-roscovitine were sketched using built panel of 

Maestro and taken in .mae format. LigPrep is a utility of Schrodinger software suit that combines tools 

for generating 3D structures from 1D (Smiles) and 2D (SDF) representation, searching for tautomers, 

steric isomers and perform a geometry minimization of the ligands. By employing Ligprep protocol, all 

the ligands were prepared using OPLS3 with default settings and the output file was saved in maegz 

format automatically. 

6.4    Docking simulation 

For precision and accuracy of the docking protocols, the co-crystallized ligand was extracted from the 

crystal structure of 2A4L and re-docked using Glide docking algorithm (Schrodinger Inc) in its extra 

precision (XP) mode with default settings without applying any constraints. A good agreement of the 

obtained pose of docked R-roscovitine with cognate ligand indicated the reliability of the selected 

docking parameters for docking of the synthesized ligands. Hence, by specifying the ligands against the 

receptor grid, molecular docking was performed using default settings in Glide XP mode. 

6.5    Binding mode analysis 

The protein-ligand complexes were analysed to investigate various types of interactions by utilizing XP 

visualizer protocol. For the best-scored ligands, the 2D and 3D plots of molecular ligand-receptor 

interactions were analysed for hydrogen bond, halogen bond, salt bridges, π-π stacking, and π-cation 

interactions.  
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Abstract:  

A series of novel 4,6-disubstituted pyrazolo[3,4-d]pyrimidines (5a-5h, 6a-6d, 7a-7c) bearing different 

mono & bicyclic heterocycles at C-4 position in a combination of pentane/phenethyl/hexane 

substituents at C-6 position has been designed and synthesized. All the novel compounds were 

evaluated for in vitro CDK2/cyclin E and Abl kinase inhibitory activity as well as anti-proliferative 

activity against K-562 (chronic myelogeneous leukemia), MCF-7 (breast adenocarcinoma) cell lines. 

The structure-activity relationship studies (SAR) revealed that the compounds with pentane/phenethyl 

group at C-6 with heteroatom containing bicyclic moiety at C-4 exhibited commendable CDK2 

inhibitory compared to hexane group at C-6 with monocyclic groups at C-4 of the scaffold. From the 

tested results, compounds having benzofuran moiety at C-4 showed single digit micro molar IC50 values. 

Further from in silico molecular docking studies, it was suggested that possible binding orientations 

and binding energies were in agreement with the observed SAR as well as experimental results. In 

addition, some of the synthesized compounds indicated anti-proliferative effects against K-562 and 

MCF-7 cancer cell lines with IC50 values in a micromolar range. Thus, the research findings on the 

pyrazolo[3,4-d]pyrimidine hybrids specified the prospective greatness of molecular hybridization and 

strongly encouraged us for further lead optimization with an aim to develop potential anticancer agents. 
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1    Introduction 

Cancer is one of the most serious health burden touching all over the world. After the cardiovascular, 

cancer is the second leading cause of death.1 The understanding of the molecular mechanism of cancer 

improved strongly in recent years and has deeply impacted on experimental, slowly also on clinical 

tumor therapy.2 Predominant efforts are being carried out in order to identify advanced treatments and 

developments in prevention and chemotherapeutic organization.3,4 Apart from surgical treatment and 

irradiation methods, chemotherapy remains a significant route for cancer therapy by the progress of 

molecular targets that exactly interfere with the vital mechanisms involved in expansion and 

progression of various types of cancer.5 Among others, protein kinases have become a significant group 

of drug targets and number of kinase inhibitors in clinical development is rapidly increasing.6 

Cyclin-dependent kinases (CDKs) are a family of serine/threonine kinase comprising 20 members, 

which participates in regulation of cell-cycle progression by phosphorylating proteins in cell division. 

These enzymes play a crucial role in cell division, transcription, post-transcriptional modification and 

controlling cell cycle.7 Among the 20 existing CDK proteins, CDK2 actively participates in the G1/S 

checkpoint and initiates the cell cycle through S-phase results in apoptosis.8 For example, formation of 

active complex composed of CDK2 and cyclin E enables pRb phosphorylation, activation of 

transcription factor E2F which and initiation of S phase of the cell cycle. CDK2 then also associates 

with cyclin A, governing continuous DNA replication and properly programed deactivation of E2F. 

Thus, CDK2 became as prospective target for the treatment of tumors by initiation of apoptotic 

pathways as contrasting to cell cycle arrest.9 Up to date many CDK2 have been developed and some of 

them (including roscovitine, CYC065 , dinaciclib, AT7519, milciclib) undergo clinical evaluation.10,11 

To support these findings, recent research study evidenced that both phosphatidylinositol-3-kinase and 

CDK2 inhibitors together induced apoptosis in malignant glioma xenografts via a synthetic-lethal 

interaction.12 In addition, CDK2 inhibitor also proved as a therapeutic target in ovarian cancer,13 

neuroblastoma14 and BRCA-deficient cancers.15 Positively these results, taken together with clinical 

data, have led to a revival of interest in CDK2 inhibitors as anti-cancer agents. 

It is a well-known fact that, broad range of investigations have been conducted on pyrazolo[3,4-

d]pyrimidines due to their enormous role as potent pharmacophore. Fusion of pyrazole on pyrimidine 

leads to bicyclic system known as pyrazolopyrimidine, which can be looked upon as the bioisostere of 

purine, thus exhibits promising antitumor activity by acting as ATP competitive inhibitor for several 

kinase enzymes.16,17 Several compounds of this family were found to induce apoptosis and/or reduce 

cell proliferation in various solid tumor and leukemia cell lines.18-21 Their cytotoxic activities might be 

accredited to inhibition of various enzymes such as mammalian target of rapamycin (mTOR),22 Src/Abl 

kinase,23 glycogen synthase kinase (GSK),24 tyrosine kinase,25 cyclin dependent kinase (CDK)26 and 



Chapter 5 

 

  Srinivasulu Cherukupalli                                202                                               UKZN-2018 
 

xanthine oxidase inhibitors.27 Also reported to encompass biological potential as CNS agents, antiviral, 

anti-inflammatory, herbicidal, anticancer, antimicrobial and cardiovascular activities.28 Fig. 2 depicts 

several reported derivatives of pyrazolo[3,4-d]pyrimidine with anticancer activities related to inhibition 

of different protein kinases.25, 29-34  

Based on the above mentioned facts and in continuation of our research work on anticancer drug 

discovery,35,36 we envisaged to further exploit the pyrazolo[3,4-d]pyrimidine scaffold to synthesize 

novel CDK2 inhibitors. In the present study a novel series of pyrazolo[3,4-d]pyrimidine derivatives 

(scheme-1) has been synthesized by substituting various chemical entities at C-4 and C-6 positions 

through efficient synthetic method. Further, these synthesized molecules were also evaluated against 

Abl kinase as well as K562 and MCF7 cancer cell lines. In addition, the in silico molecular docking 

studies were performed to analyze the binding energies and orientations of these compounds with 

respect to the active site of CDK-2 protein. The computational results were in agreement with our 

experimental observations. 
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Fig. 1. Structures of the CDK2 inhibitors in clinical trials. 
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Fig. 2. Known derivatives of pyrazolo[3,4-d]pyrimidine and their anticancer activities. Compound A: 

(Ki50 against Src, AblT315I = 0.056, 0.01 µM)29; B: (IC50 against CDK2 =0.020 µM)30; C: (IC50 against 

CDK2 = 0.5 µM)31; D: (Ki50 against Abl = 80 nM)32; E: (Ki50 against cSrc, Abl = 0.21± 0.02, 0.15±0.02 

µM)33; F: (IC50 against Src = 1.2 ± 0.4 µM)34. 

2    Results and discussion  

2.1    Chemistry 

6-mercapto-1H-pyrazolo[3,4-d]pyrimidin-4-ol (1), is a key intermediate for the synthesis of desired 

hybrid molecules as shown in Scheme 1. On the pyrazolopyrimidine scaffold, the hydroxy group was 

introduced at C-4 as a nucleophilic substituent, which acted as a most reactive site for different 

nucleophiles, while mercapto group was introduced at C-6 as a precursor to perform the alkylation with 

different aliphatic and aromatic substituents. 

From the previous reported literature methods compound 1 was successfully synthesized.37 Further, to 

increase the structural exploration around the nucleus, alkylation of compound 1 was done with 1-

bromopentane to acheive 6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (2) and also with 2-

chloroethyl benzene, 1-bromohexane to obtain 6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (3) 

and 6-(hexylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (4)  respectively. As displayed in scheme 1 the 

nucleophilic substitution of compounds 2, 3 and 4 at C-4 with acid chlorides was successfully 

accomplished the final compounds (5a-5h, 6a-6d and 7a-7c) in THF containing catalytic amount of 
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pyridine in good yield (70-85%). The IR, 1H and 13C NMR spectroscopic data of all the novel 

compounds were in agreement with the predicted structures and were further corroborated by HR-MS 

information, which is precised in supporting information.  

 

 

Scheme 1: Synthesis of 4,6-disubstituted pyrazolo[3,4-d]pyrimidine derivatives. 

Reagents and conditions: (a) hydrazine hydrate, ethanol, 80 C, 3h, 92%; (b) Conc. H2SO4, NH4OH, 

H2O, 50 C, 5h, 90%; (c) potassium ethyl xanthogenate, DMF, 120 C, 6h, 82%; (d) 1-bromopentane, 

NaOH, H2O, glacial acetic acid, 50 C, 5h, RT, overnight, 80%; (e) acid chlorides, pyridine, RT, 2h, 

75-85%; (f) 2-chloroethyl benzene, K2CO3, DMF, 70 C, microwave, 20 min, 76%; (g) acid chlorides, 

pyridine, THF, RT, 2h, 70-85%; (h) 1-bromohexane, NaOH, H2O, glacial acetic acid, 50 C, 5h, RT, 

overnight, 70%; (i) acid chlorides, pyridine, RT, 2h, 65-85%. 

The 1H NMR of compound 1 exhibited the presence of a very distinct singlet signals resonating at 

around δ 13.61, 13.03, 11.86 and 8.42 ppm for N-H proton, S-H proton, O-H proton and Ar-H proton 

of pyrazole ring. Thus, indicated the formation of bicyclic moiety by fusion of 5-amino-1H-pyrazole-

4-carboxamide with potassium ethyl xanthogenate. 1H NMR of compounds 2, 3 and 4 displayed  the 

characteristic methylene signals (-S-CH2-CH2-CH2-CH2-, Ph-CH2-CH2-S- and -S-CH2-CH2-CH2-
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CH2-CH2-) around δ 3.17-2.87, 1.73-1.43, 1.41-1.14 ppm; δ 3.43-3.39, 3.01-2.97 ppm; δ 3.17-3.13, 

1.69-1.62, 1.41-1.36, 1.34-1.26 ppm respectively, while the methyl signals for 2 and 4 were observed 

at around δ 0.86-0.80 ppm. In particular, the disappearance of a distinct singlet signal at around δ 13.60-

13.54 ppm for mercapto (-SH) group evidently indicated the successful alkylation of pyrimidine 

scaffold. Whereas most distinctive singlet, doublet and triplet signals at around δ 7.32-7.20 ppm was 

attributed to the aromatic protons of 11 (C6H5-CH2-CH2-) at C-6 of pyrazolopyrimidine ring.  These 

findings were further validated with their respective 13C NMR, where the most prominent methylene 

carbon signal resonated at around δ 30.37, 29.69, 28.24, 21.66 ppm (-S-CH2-CH2-CH2-CH2-), δ 34.61 

and 31.08 ppm (-C6H5-CH2-CH2) and δ 30.74, 29.75, 28.50, 27.85, 22.00 ppm (-S-CH2-CH2-CH2-CH2-

CH2-) were assigned for compounds 2, 3 and 4. The distinctive methyl peaks (2 and 4) appeared around 

δ 13.84 and 13.88 ppm while the prominent aromatic signals (2, 3 and 4) resonated around δ 173.28-

130.19 ppm. Further, the characteristic singlet signal disappeared at around δ 12.28-12.31 ppm, which 

was accounted for (-OH) at C-4 evidently indicated the formation of title compounds (5a-5h, 6a-6d and 

7a-7c) with ester linkage as displayed in scheme 2. 

The IR spectra of the title compounds (5a-5h, 6a-6d and 7a-7c) showed a reasonably sturdy and 

distinctive bands around 2904-3290 cm-1, 1232-1292 cm-1 accounting for N-H and C-S stretching 

respectively, while the most distinctive bands of both ester carbonyl group (-O-C=O) and ketone 

carbonyl (-C=O) were appearing around 1667-1715 cm-1 indicated the formation of title molecules. 

Further, the 1H NMR signals of the title compounds displayed distinctive singlet signal around δ 12.36-

12.17 ppm for cyclic –NH proton, while the hydroxyl proton (-OH) resonated around at δ 11.47-10.65 

ppm. For the title compounds the singlet signal resonated around δ 10.78-8.96 ppm for C-3 proton 

while, the doublet or multiplet aromatic peaks existed around δ 8.61-6.87 ppm. Further, for compounds 

5a-5h, 6a-6d and 7a-7c the methylene protons were appeared around δ 3.52-1.23 ppm while, the methyl 

protons for 5a-5h and 7a-7c were resonated around δ 0.90-0.83 ppm. Further, the most characteristic 

singlet signals resonated at δ 4.27 ppm, δ 2.57 ppm and δ 1.05 ppm for cyclobutane C-H (5d), 

methylthio and -CH3)3  (5c) protons respectively. The 13C NMR spectra was further confirmed the 

structures of the final compounds. The characteristic carbon peaks for C-3, C-4 and C-6 of 

pyrazolopyrimidine ring were appeared at around δ 131.96-130.19, 158.87-158.19 and 173.28-161.87 

ppm while, different aromatic carbons were observed between δ 159.78-107.87 ppm. Further, the 

methylene peaks observed for compounds 5a-5h (-S-CH2-CH2-CH2-CH2: δ 30.37-21.66 ppm), 6a-6d 

(-S-CH2-CH2-Ph: δ 34.24-31.20 ppm) and for 7a-7c (-S-CH2-CH2-CH2-CH2-CH2: δ 30.74-22.00 ppm) 

respectively. The methyl peak for 5a-5h and 7a-7c appeared around δ 13.84-13.36 ppm while, the 

prominent carbon peaks resonated around δ 13.88 ppm (–S-CH3), δ 44.80 and 31.04-29.86 ppm (13c: -

CH2-C(CH3)3). In addition, the HR-MS spectrums of the final compounds (5a-5h, 6a-6d and 7a-7c) 
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showed accurate molecular ion peaks, which were in agreement with their expected molecular weights 

(supporting information). 

2.2    In vitro evaluation for CDK2 and Abl kinase inhibitors  

All the final compounds were evaluated for CDK2/cyclin E kinase inhibition and the IC50 values of 

various in vitro anticancer profiles are summarized in Table 1. Abl kinase inhibition was evaluated as 

a counter screen, to get a preliminary information about selectivity. We carried a considerable effort in 

optimizing the tail groups at both C-4 and C-6 of the pyrazolo[3,4-d]pyrimidine scaffold. Thus, 

substituted various bioactive groups such as pentane, phenethyl, hexane groups at C-6 as well as mono 

and bicyclic aromatic/heteroaromatic groups at C-4 through ester linkage (Scheme 1). The tested 

compounds from scheme 1 belongs to three series; pentane (5a-5h), phenethyl (6a-6d) and hexane 

series (7a-7c). Interestingly, it was observed that the compounds from phenethyl series (6a-6d) showed 

prominent anticancer activity as compared to pentane (5a-5h) and hexane (7a-7c) series, also observed 

that the incorporation of aromatics/heteroaromatics at C-4 of the nucleus is necessary for potent activity. 

From the tested pentane/phenethyl/hexane series, compounds 5a and 6c bearing benzofuran moiety at 

C-4 indicated the best CDK2 activity profile with IC50  = 8.8 µM and 6.8 µM respectively. Further, 

notable activity profile was also observed for compounds bearing 3,3-dimethylbutane (5c: IC50  = 16.9 

µM), phenyl (7a: IC50  = 14.8 µM) and 2-furan (7b: IC50  = 21.2 µM) groups. In addition, these 

pentane/phenethyl/hexane series of compounds where evaluated against Abl kinase, but none of the 

compounds showed any inhibition in the assayed concentration range, confirming reasonable selectivity 

towards CDK2 over unrelated Abl. 

C. No R IC50 (µM)a 

  CDK2 Abl K-562 MCF-7 

5a 

 

8.8 ˃12.5 ˃50 ˃50 

5b 

 

˃12.5 ˃12.5 ˃50 ˃50 

5c 

 

16.9 ˃50 73.4 89.3 

5d 

 

˃25 ˃25 25.0 23.0 

5e 
 

˃12.5 ˃12.5 ˃25 ˃25 
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5f 
 

˃12.5 ˃12.5 ˃25 ˃25 

5g 

 

˃12.5 ˃12.5 ˃12.5 ˃12.5 

5h 
 

˃12.5 ˃12.5 ˃50 ˃50 

6a 

 

˃12.5 ˃12.5 ˃12.5 ˃12.5 

6b 
 

˃12.5 ˃12.5 20.4 25 

6c 

 

6.8 ˃12.5 19.8 18.9 

6d 
 

˃12.5 ˃12.5 23.2 18.9 

7a 

 

14.8 ˃12.5 ˃50 ˃50 

7b 
 

21.2 ˃25 ˃12.5 ˃12.5 

7c 
 

˃25 ˃25 ˃6.25 ˃6.25 

 Roscovitine 0.1 ˃100 42 11 

 Imatinib ˃100 0.2 0.5 ˃10 

a IC50 values were determined in triplicate in the range of 0.05 to 100 µM. IC50 value indicates concentration 

(µM) that inhibits activity of tested enzyme to 50% or for cytotoxic assays, concentration (µM) that reduces 

50% of cells during a three-day cultivation  

Table 1. Anticancer evaluation of novel 4,6-disubstituted pyrazolo[3,4-d]pyrimidine derivatives. 

2.3    Anti-proliferative activity against K-562 and MCF-7 cell line 

All the novel mono and disubstituted pyrazolo[3,4-d]pyrimidine analogues  (5a-5h, 6a-6d and 7a-7c) 

were evaluated for their in vitro anti-proliferative activity against K-562 (chronic myelogeneous 

leukemia) and MCF-7 (breast adenocarcinoma) cell lines. Several compounds displaying appreciable 

activity with measurable IC50 values against the two cell lines, such as compounds 6c (IC50 = 19.8, 18.9 

µM), 6d (IC50 = 23.2, 18.9 µM) and 6b (IC50 = 20.4, 25 µM). Further, notable anti-proliferative profile 
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was observed for compounds 5d (IC50 = 25.0, 23.0 µM), and 5c (IC50 = 73.4, 89.3 µM) respectively. 

The remaining compounds were not active in the tested concentration range. 

2.4    Structure-activity relationship (SAR) Studies 

In general, careful observation of the structure-activity relationship (SAR) indicated that the anticancer 

activity was considerably affected by the nature of different substituents present at C-4 and C-6 

positions on pyrazolo[3,4-d]pyrimidine scaffold. Initially it was observed that the compounds only 

substituted at C-6 showed least activity whereas compounds substituted at both C-4 and C-6 positions 

exhibited potent activity, indicated that the incorporation of heterocyclic moieties at C-4 resulted in 

significant activity. Further analyses of the data revealed that benzofuran group (5a, 6c) at C-4 was 

more favorable for anticancer and anti-proliferative activity than furan (5e) and thiophene (6d) indicated 

that the presence of bi-heterocyclic moiety at C-4 was resulted in best activity. Surprisingly from 

scheme 1, it was observed that phenethyl pentane groups at C-6 showed better activity results than 

hexane group as illustrated in Fig. 3. 

 

Fig. 3. SAR study around pyrazolo[3,4-d]pyrimidine scaffold towards potent activity. 

2.5    Molecular docking study  

Bioinformatics has become an essential part in the design of therapeutically active novel chemical entity 

(NCE).38 From the literature, higher binding affinity reported for a pyrazolo[1,5-a]pyrimidine-based 

experimental drug (dinaciclib) towards CDKs motivated us to conduct molecular docking of our 

synthesized compounds to further understand and substantiate our observed in vitro experimental data.39 
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To validate the docking protocols and to reproduce the protein data bank (PDB) reported orientation of 

R-roscovitine (PDB ID: 2A4L),40 docking studies were performed using Glide program of Schrodinger-

Maestro 11.2. From the docking experiments, the obtained pose of R-roscovitine revealed similar 

molecular interactions as reported in the PDB. The docked complex presented characteristic hydrogen 

bonding (H-bond) interactions with crucial residues of the active-site, such as Leu83 with roscovitine 

by forming a strong [C=O with benzylamino NH (1.91 Å)] and a weak [(C=O with ring nitrogen (2.39 

Å)] H-bonds. Similarly, the residue Asp86 interacted with OH group of roscovitine via a strong H-bond 

(1.67 Å), whereas Lys89 exhibited π–cation interaction with phenyl ring of R-roscovitine. Fig. 4 

represents the reproduced 3D molecular interactions of the docked pose together with the reported pose 

of R-roscovitine.  

 

 

Fig. 4. Reported pose (wire-frame model) and Docked pose (thick tube model) into the 

            active-site showing similar interactions (docking validation). 

 

The docking experimental data of our synthesized compounds revealed that they docked well into the 

binding-site and displayed favourable interactions with the crucial amino acid residues. Interestingly, 

the most active compound 6c showed three significant molecular interactions with crucial amino acid 

residues of CDK2. The carbonyl oxygen (C=O) of 6c exhibited a strong H-bond interaction with NH 

of the basic residue Lys33 (2.02 Å). Further, the pyrazole ring and phenyl ring of thiophenethyl 

substitution were presented π-π (Phe80) and π-cation (Lys89) interactions, respectively (Fig. 5a). 

Hence, these three molecular interactions were considered as crucial which might have contributed 

significantly to the potent in vitro CDK-2 inhibition.  
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In the case of less active compound 7c, the orientation of the docked pose was observed to be different 

wherein the pyrazole NH presented a strong H-bond interaction with Leu83 (1.68 Å). There is no other 

characteristic molecular interactions observed for 7c with active-site residues of CDK2. Hence, lacking 

of two of the crucial interactions may have contributed to the less in vitro CDK-2 inhibition potential 

of 7c, while comparing with the most active 6c. Fig. 5 presents different molecular interactions of 6c 

and 7c with the active site residues of CDK-2 (PDB ID: 2A4L). 

 

 

 

 

a b 

Fig. 5. Molecular interactions of a) 6c (most active compd) b) 7c (less active compd) in the binding 

site of CDK2. Nonpolar hydrogens were hidden for clarity and yellow dashed line indicate H bond. 

The cyano and green coloured dashed lines indicate π-π interactions and π-cation interactions, 

respectively. 

 

3    Conclusion  

In summary, we have successfully synthesized and characterized a new series of 4,6-disubstituted 

pyrazolo[3,4-d]pyrimidine derivatives with good yields. The key intermediates 6-mercapto-1H-

pyrazolo[3,4-d]pyrimidin-4-ol (1), 6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (2), 6-

(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (3) and 6-(hexylthio)-1H-pyrazolo[3,4-

d]pyrimidin-4-ol (4) allowed us to increase a library of total 34 fused pyrimidine derivatives (5a-5h, 

6a-6d, 7a-7c). All synthesized compounds were evaluated for in vitro enzymatic activity against 

CDK2/cyclin E, Abl kinases as well as anti-proliferative activity against K-562 and MCF-7 cancer cell 

lines. Interestingly, it was observed that compounds 6c, 5a, 7a, 5c and 7b showed most potent 

CDK2/cyclin E activity with IC50 values ranging from 6.8 to 21.2 µM. Further, compounds 6b (IC50= 



Chapter 5 

 

  Srinivasulu Cherukupalli                                212                                               UKZN-2018 
 

20.4, 25 µM), 6c (IC50= 19.8, 18.9 µM) and 6d (IC50= 23.2, 18.9 µM) displayed appreciable anti-

proliferative activity at specific IC50 values. From the SAR study, it was clear that the presence of bi 

heterocyclic group (benzofuran) at C-4 of the scaffold led to prominent activity. In addition, the in silico 

binding interaction and energies of the best active compound (6c) were in agreement with the 

experimental data and supported the SAR studies.  Thus, these research outcomes can further guide the 

researchers in emerging novel pyrazolo[3,4-d]pyrimidine based CDK-2 inhibitors as potential 

anticancer agents.  

4    Experimental Section 

4.1     Chemistry protocol  

All the chemicals used in this research work were purchased from Sigma-Aldrich and Merck Millipore, 

South Africa. All the solvents, except those of laboratory-reagent grade, were dried and purified when 

necessary according to previously published methods. The progress of the reactions and the purity of 

the compounds were monitored by thin-layer chromatography (TLC) on pre-coated silica gel plates 

procured from E. Merck and Co. (Darmstadt, Germany) using 36% ethyl acetate in n-hexane as the 

mobile phase and iodine vapor as the visualizing agent. The melting points of the synthesized 

compounds were determined using a Thermo Fisher Scientific (IA9000, UK) digital melting point 

apparatus and are uncorrected. The IR spectra were recorded on a Bruker Alpha FT-IR spectrometer 

(Billerica, MA, USA) using the ATR technique. The 1H NMR and 13C NMR spectra were recorded 

on a Bruker AVANCE 400 and 600 MHz (Bruker, Rheinstetten/Karlsruhe, Germany) spectrometers 

using CDCl3 and DMSO-d6. The chemical shifts are reported in δ ppm units with respect to TMS as 

an internal standard. HRMS spectra was recorded on an Autospec mass spectrometer with electron 

impact at 70 eV. 

4.2    Synthesis of 6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (2) 

To a stirred solution of 6-mercapto-1H-pyrazolo[3,4-d]pyrimidin-4-ol (compound 1, 1g, 0.00595mol) 

in 1M NaOH solution (12 mL), 1-bromopentane (1.48 mL, 0.01190mol) was added dropwise and heated 

at 700 C for 6h and later slowly brought to RT and continued stirring for overnight. After completion of 

reaction (monitored on TLC), glacial acetic acid was added dropwise to yield the crude solid, which 

further washed with petroleum ether and purified by flash silica column [MeOH/DCM, 05:95] to afford 

the desired compound (2), as yellow solid. Yield: 80 %; mp 201-203 C; FTIR (ATR, cm-1) max: 

3180.27 (NH Str.), 2953 (Ar C-H Str.), 2925, 1678 (C=O Str.), 1556, 1390, 1240, 1154, 1123, 961, 874, 

773, 665, 588, 534; 1H-NMR (400 MHz, DMSO-d6) δ:  13.54 (s, 1H, NH), 12.28 (s, 1H, OH), 7.93 (s, 

1H, ArH), 3.15 (t, J = 7.26 Hz, 2H, CH2), 1.70-1.63 (m, 2H, CH2), 1.39-1.26 (m, 4H, (CH2)2), 0.86 (t, 
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J = 7.08 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 159.49, 157.75, 135.24, 30.37 (CH2), 

29.69 (CH2), 28.24 (CH2), 21.66 (CH2), 13.84 (CH3). 

4.3    Synthesis of 6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (3) 

To a stirred solution of 6-mercapto-1H-pyrazolo[3,4-d]pyrimidin-4-ol (compound 1, 0.3g, 0.00179mol) 

in N,N-dimethyl formamide (2mL), K2CO3 (0.247g, 0.00179mol) was added and stirred at room 

temperature for 10 min. To this constantly stirred reaction mass, 2-chloroethyl benzene (0.28 mL, 

0.00214mol) was slowly added dropwise and heated at 80 C for 20 minutes in microwave reactor at 

150 psi. After completion of reaction (monitored on TLC), the reaction mixture was poured on ice cold 

water and extracted with dichloromethane (DCM). The extracted organic layer was dried over 

anhydrous sodium sulphate and concentrated under reduced pressure to obtain dark brown gel liquid, 

was further purified by flash silica column [MeOH/DCM, 10:90] to afford the desired compound (3), 

as light brown solid. Yield: 72 %; mp 210-212 C; FTIR (ATR, cm-1) max: 3022 (NH Str.), 2920 (Ar 

C-H Str. of Pyr.), 1671 (C=O Str.), 1571, 1239, 1144, 963,  952, 774, 757, 701, 617;  1H-NMR (400 

MHz, DMSO-d6) δ:  13.59 (s, 1H, NH), 12.22 (s, 1H, OH), 8.03 (s, 1H, ArH), 7.31 (t, J = 2.52 Hz, 4H, 

ArH), 7.25-7.20 (m, 1H, ArH), 3.41 (t, J = 5.04 Hz, 2H, CH2), 2.99 (t, J = 7.56 Hz, 2H, CH2) ppm; 13C 

NMR (100 MHz, DMSO-d6): δ 158.20, 139.93, 128.73, 128.62, 128.41, 126.41, 102.89, 34.61 (CH2), 

31.08 (CH2) ppm. 

4.4    6-(hexylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (4) 

To a stirred solution of 6-mercapto-1H-pyrazolo[3,4-d]pyrimidin-4-ol (compound 1, 1g, 0.00595mol) 

in 1M NaOH solution (12 mL), 1-bromohexane (1.65 mL, 0.01190mol) was added dropwise and heated 

at 700 C for 6h and later slowly brought to RT and continued stirring for overnight. After completion of 

reaction (monitored on TLC), glacial acetic acid was added dropwise to yield the crude solid, which 

further washed with petroleum ether and purified by flash silica column [MeOH/DCM, 05:95] to afford 

the desired compound (4), as yellow solid. Yield: 75 %; mp 211-213 C; FTIR (ATR, cm-1) max: 3174 

(NH Str.), 2925 (Ar C-H Str.), 2851, 1670 (C=O Str.), 1595, 1395, 1240, 1151, 1053, 961, 876, 780, 

538; 1H-NMR (400 MHz, DMSO-d6) δ: 13.54 (s, 1H, NH), 12.28 (s, 1H, OH), 7.93 (s, 1H, ArH), 3.15 

(t, J = 7.22 Hz, 2H, CH2), 1.69-1.62 (m, 2H, CH2), 1.41-1.34 (m, 2H, CH2), 1.27 (t, J = 3.62 Hz, 4H, 

(CH2)2), 0.85 (t, J = 6.96 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 159.48, 157.72, 153.37, 

135.23, 102.54, 30.74 (CH2), 29.75 (CH2), 28.50 (CH2), 27.85 (CH2), 22.00 (CH2), 13.88 (CH3) ppm. 

4.5    General procedure for synthesis of final compounds (5a-5h, 6a-6d and 7a-7c) 
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To a constantly stirred solution of compounds 6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (5), 6-

(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (7) 6-(hexylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-

ol (9) (0.2g, 0.00074mol) in THF was added pyridine (0.060ml, 0.00047mol) and stirred for 10 min. To 

this reaction mixture were added different acid chlorides (0.00074mol), continued stirring for 60 min. 

Progress of the reaction was monitored on TLC. On completion, the reaction mixture was poured into 

ice cold water to yield the crude solids, which were further purified by recrystallization with ethanol to 

afford the desired title compounds (5a-5h, 6a-6d and 7a-7c). 

4.5.1    6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl benzofuran-2-carboxylate (5a) 

White solid; yield: 80 %; mp 205-207 C; FTIR (ATR, cm-1) max:  2954 (NH Str.), 2927 (Ar C-H Str.), 

2865 (alkane C-H Str.), 1714 (ester C=O Str.), 1442, 1371, 1291, 1177, 1129, 946, 877, 735; 1H-NMR 

(400 MHz, DMSO-d6) δ:  2.36 (s, 1H, NH), 9.18 (s, 1H, ArH), 8.58 (s, 1H, ArH), 7.99 (d, J = 7.80 Hz, 

1H, ArH), 7.79 (d, J = 8.52 Hz, 1H, ArH), 7.61 (t, J = 7.80 Hz, 1H, ArH), 7.41 (t, J = 7.50 Hz, 1H, 

ArH), 3.19 (t, J = 7.24 Hz, 2H, CH2), 1.73-1.66 (m, 2H, CH2), 1.41-1.28 (m, 4H, (CH2)2), 0.88 (t, J = 

7.08 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ: 162.14 (C=O), 159.78, 158.33, 155.54, 

155.32, 144.07, 130.46, 129.52, 126.81, 124.62, 124.39, 121.83, 112.17, 108.27, 30.38 (CH2), 29.93 

(CH2), 27.99 (CH2), 21.69 (CH2), 13.83 (CH3) ppm; HRMS (ESI, m/z) [M+H]+; calculated for 

C19H18N4O3S , 381.1027; found 381.1021. 

4.5.2    6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl 4-(methylthio)benzoate (5b) 

White solid; yield: 78 %; mp 187-189 C; FTIR (ATR, cm-1) max: 3056 (NH Str.), 2923 (Ar C-H Str.), 

2854 (alkane C-H Str.), 1686 (ester C=O Str.), 1586, 1453, 1355, 1239, 1093, 966, 896, 774, 741; 1H-

NMR (400 MHz, DMSO-d6) δ:  12.31 (s, 1H, NH), 9.10 (s, 1H, ArH), 8.06 (d, J = 8.56 Hz, 2H, ArH), 

7.45 (d, J = 8.56 Hz, 2H, ArH), 3.16 (t, J = 7.24 Hz, 2H, CH2), 2.57 (s, 3H, S-CH3), 1.70-1.63 (m, J = 

7.26 Hz, 2H, CH2), 1.40-1.25 (m, 4H, (CH2)2), 0.86 (t, J = 7.08 Hz, 3H, CH3) ppm; 13C NMR (100 

MHz, DMSO-d6) δ: 165.32, 161.52 (C=O), 159.28, 158.54, 146.95, 132.19, 130.61, 125.76, 124.46, 

107.90, 30.36 (CH2), 29.86 (CH2), 28.13 (CH2), 21.67 (CH2), 13.88 (S-CH3), 13.81 (CH3) ppm; HRMS 

(ESI, m/z) [M+H]+; calculated for C18H20N4O2S2 , 387.0944; found 387.0949. 

4.5.3    6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl 3,3-dimethylbutanoate (5c) 

Light brown solid; yield: 75 %; mp 174-176 C; FTIR (ATR, cm-1) max: 3191 (C-H Str. of CH3), 3090 

(N-H Str.), 2929 (Ar C-H Str.), 2856 (alkane C-H Str.),  1667 (ester C=O Str.), 1575, 1388, 1245, 1221, 

1155, 964, 938, 750, 664; 1H-NMR (400 MHz, DMSO-d6) δ:  12.28 (s, 1H, NH), 9.00 (s, 1H, ArH), 

3.16 (t, J = 7.26 Hz, 2H, CH2), 3.12 (s, 2H, (CH2), 1.71-1.63 (m, 2H, CH2), 1.41-1.26 (m, 4H, (CH2)2), 

1.05 (s, 9H, (CH3)3), 0.87 (t, J = 7.12 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ:  170.74, 
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161.41 (C=O), 158.87, 158.62, 127.94, 108.30, 44.80, 31.04, 30.38 (CH2), 29.86 (CH2), 29.23, 28.20 

(CH2), 21.70 (CH2), 13.84 (CH3) ppm. 

4.5.4    6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl cyclobutanecarboxylate (5d) 

White solid; yield: 75 %; mp 165-167 C; FTIR (ATR, cm-1) max: 3057 (Ar C-H Str.), 2917 (N-H Str.), 

2855 (alkane C-H Str.), 1698 (ester C=O Str.), 1599, 1452, 1367, 1249, 1136, 965, 779; 1H-NMR (400 

MHz, DMSO-d6) δ:  12.27 (s, 1H, NH), 8.95 (s, 1H, ArH), 4.29-4.20 (m, 1H, alicyclic CH), 3.16 (t, J 

= 7.24 Hz, 2H, CH2), 2.35-2.29 (m, 4H, alicyclic (CH2)2), 2.11-2.00 (m, 1H, alicyclic CH), 1.91-1.82 

(m, 1H), 1.71-1.63 (m, 2H, CH2), 1.41-1.28 (m, 4H, (CH2)2), 0.87 (t, J = 7.04 Hz, 3H, CH3) ppm; 13C 

NMR (100 MHz, DMSO-d6) δ:  173.28, 161.32 (C=O), 159.13, 158.57, 128.25, 108.12, 37.41, 30.38 

(CH2), 29.84 (CH2), 28.18 (CH2), 24.70, 21.69 (CH2), 17.82, 13.84 (CH3) ppm. 

4.5.5    6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl furan-2-carboxylate (5e) 

White solid; yield: 80 %; mp 197-199 C; FTIR (ATR, cm-1) max: 3058 (Ar C-H Str.), 2974 (N-H Str.), 

2887 (alkane C-H Str.), 1688 (ester C=O Str.), 1603, 1459, 1373, 1285, 1084, 936, 863, 763; 1H-NMR 

(400 MHz, DMSO-d6) δ:  12.33 (s, 1H, NH), 9.12 (s, 1H, ArH), 8.25 (d, J = 0.80 Hz, 1H, ArH), 8.11 

(d, J = 3.60 Hz, 1H, ArH), 6.88 (dd, J = 3.68, 1.64 Hz, 1H, ArH), 3.19 (t, J = 7.24 Hz, 2H, CH2), 1.73-

1.65 (m, 2H, CH2), 1.40-1.29 (m, 4H, (CH2)2), 0.88 (t, 7.08 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, 

DMSO-d6) δ:  161.91 (C=O), 159.68, 158.43, 154.15, 150.64, 143.50, 130.19, 126.39, 113.50, 108.03, 

30.37 (CH2), 29.91(CH2), 28.09 (CH2), 21.66 (CH2), 13.83 (CH3) ppm; HRMS (ESI, m/z) [M+H]+; 

calculated for C15H16N4O3S, 331.0854; found 331.0865. 

4.5.6    6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl thiophene-2-carboxylate (5f) 

White solid; yield: 85 %; mp 205-207 C; FTIR (ATR, cm-1) max: 3040 (Ar C-H Str.), 2927 (N-H Str.), 

2854 (alkane C-H Str.), 1691 (ester C=O Str.), 1608, 1452, 1352, 1242, 1088, 887, 773, 426; 1H-NMR 

(400 MHz, DMSO-d6): δ 12.34 (s, 1H, NH), 9.12 (s, 1H, ArH), 8.44 (d, J = 3.24 Hz, 1H, ArH), 8.26 (d, 

J = 4.32 Hz, 1H, ArH), 7.34 (t, J = 4.42 Hz, 1H, ArH), 3.20 (t, J = 7.22 Hz, 2H, CH2), 1.73-1.66 (m, 

2H, CH2), 1.42-1.28 (m, 4H, (CH2)2), 0.88 (t, J = 7.02 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-

d6) δ:  161.97 (C=O), 159.33, 158.39, 158.35, 140.13, 139.59, 130.95, 129.92, 128.25, 108.37, 30.33 

(CH2), 29.89 (CH2), 28.00 (CH2), 21.62 (CH2), 13.80 (CH3) ppm; HRMS (ESI, m/z) [M+H]+; calculated 

for C15H16N4O2S2, 347.0634; found 347.0636. 

4.5.7     6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl benzoate (5g) 

White solid; yield: 76 %; mp 168-170 C; FTIR (ATR, cm-1) max: 3040 (Ar C-H Str.), 2927 (N-H Str.), 

2854 (alkane C-H Str.), 1687 (ester C=O Str.), 1597, 1452, 1363, 1238, 1090, 898, 773, 706; 1H-NMR 
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(400 MHz, DMSO-d6) δ:  12.32 (s, 1H, NH), 9.13 (s, 1H, ArH), 8.06 (d, J = 7.40 Hz, 2H, ArH), 7.74 

(t, J =7.42 Hz, 1H, ArH), 7.60 (t, J = 7.70 Hz, 2H, ArH), 3.16 (t, J = 7.22 Hz, 2H, CH2), 1.70-1.63 (m, 

2H, CH2), 1.39-1.23 (m, 4H, (CH2)2), 0.85 (t, J =7.04 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-

d6) δ:  166.24, 161.61 (C=O), 159.33, 158.53, 133.65, 131.44, 130.64, 130.45, 128.29, 108.11, 30.33 

(CH2), 29.84 (CH2), 28.11 (CH2), 21.64 (CH2), 13.79 (CH3) ppm; HRMS (ESI, m/z) [M+H]+; calculated 

for C17H18N4O2S , 341.1071; found 341.1072. 

4.5.8    6-(pentylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl [1,1'-biphenyl]-4-carboxylate (5h) 

White solid; yield: 84 %; mp 173-175 C; FTIR (ATR, cm-1) max: 3036 (Ar C-H Str.), 2904 (N-H Str.), 

2873 (alkane C-H Str.), 1691 (ester C=O Str.), 1604, 1448, 1367, 1283, 1253, 1137, 903, 735, 692; 1H-

NMR (400 MHz, DMSO-d6) δ:  12.17 (s, 1H, NH), 9.09 (s, 1H, ArH), 8.21 (d, J = 8.34 Hz, 2H, ArH), 7.90 

(d, J = 8.34 Hz, 2H, ArH), 7.79 (d, J = 7.56 Hz, 2H, ArH), 7.53 (t, J = 7.59 Hz, 2H, ArH), 7.45 (t, J = 7.47 

Hz, 1H, ArH), 3.20 (t, J = 7.26 Hz, 2H, CH2), 1.73-1.68 (m, 2H, CH2), 1.42-1.30 (m, 4H, (CH2)2), 0.87 (t, 

J = 7.20 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ:  165.51, 161.43 (C=O), 159.17, 158.19, 

144.98, 138.50, 131.96, 128.92, 128.82, 128.29, 126.79, 126.23, 107.87, 30.04 (CH2), 29.75 (CH2), 27.84 

(CH2), 21.27 (CH2), 13.36 (CH3) ppm. 

4.5.9    6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl benzoate (6a) 

White solid; yield: 80 %; mp 198-200 C; FTIR (ATR, cm-1) max: 3061 (Ar C-H Str.), 2982 (N-H Str.), 

2880 (alkane C-H Str.), 1704 (ester C=O Str.), 1684, 1597, 1455, 1362, 1232, 1135, 898, 698; 1H-NMR 

(400 MHz, DMSO-d6) δ:  12.34 (s, 1H, NH), 9.15 (s, 1H, ArH), 8.08 (d, J = 7.32 Hz, 1H, ArH), 7.74 (t, J 

=7.46 Hz, 1H, ArH), 7.61 (t, J =7.74 Hz, 2H, ArH), 7.32-7.26 (m, 4H, ArH), 7.23-7.19 (m, 1H, ArH), 3.45 

(t, J = 7.34 Hz, 2H, CH2), 3.0 (t, J =7.34 Hz, 2H, CH2) ppm; 13C NMR (100 MHz, DMSO-d6) δ:  166.26, 

161.41 (C=O), 159.35, 158.55, 139.77, 133.72, 131.51, 130.75, 130.45, 128.60, 128.40, 128.33, 126.42, 

108.15, 34.23 (CH2), 31.20 (CH2) ppm; HRMS (ESI, m/z) [M+H]+; calculated for C20H16N4O2S , 375.0920; 

found 375.0916. 

4.6.0    6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-ylfuran-2-carboxylate (6b) 

White solid; yield: 78 %; mp 230-232 C; FTIR (ATR, cm-1) max: 3072 (Ar C-H Str.), 2927 (N-H Str.), 

2855 (alkane C-H Str.), 1688 (ester C=O Str.), 1608, 1453, 1419, 1368, 1271, 1243, 1139, 1090, 865, 

773, 693; 1H-NMR (400 MHz, DMSO-d6) δ:  12.34 (s, 1H, NH), 9.14 (s, 1H, ArH), 8.27 (d, J = 0.96 

Hz, 1H, ArH), 8.14 (d, J = 3.44 Hz, 1H, ArH), 7.32 (d, J = 4.48Hz, 4H, ArH), 7.23 (m, 1H, ArH), 6.89 

(dd, J = 3.7, 1.6 Hz, 1H, ArH), 3.47 (t, J = 7.42 Hz, 2H, CH2), 3.03 (t, J = 7.44 Hz, 2H, CH2) ppm; 13C 

NMR (100 MHz, DMSO-d6): δ 161.65 (C=O), 159.64, 158.38, 154.11, 150.63, 143.49, 139.85, 130.22, 

128.63, 128.43, 126.42, 113.52, 108.05, 34.27 (CH2), 31.28 (CH2) ppm. 
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4.6.1    6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl benzofuran-2-carboxylate (6c) 

White solid; yield: 75 %; mp 230-232 C; FTIR (ATR, cm-1) max: 3120 (Ar C-H Str.), 3028 (N-H Str.), 

2876 (alkane C-H Str.), 1706 (ester C=O Str.), 1604, 1542, 1542, 1454, 1373, 1292, 1141, 946, 866, 

742, 694; 1H-NMR (400 MHz, DMSO-d6) δ:  12.37 (s, 1H, NH), 9.21 (s, 1H, ArH), 8.61 (s, 1H, ArH), 

8.01 (d, J =7.84 Hz, 1H, ArH), 7.80 (d, J = 8.36 Hz, 1H, ArH), 7.61 (t, J = 7.78 Hz, 1H, ArH), 7.42 (t, 

J =7.54 Hz, 1H, ArH), 7.33 (d, J = 4.36 Hz, 4H, ArH), 7.24 (m, 1H, ArH), 3.50 (t, J = 7.36 Hz, 2H, 

CH2), 3.04 (t, J = 7.40 Hz, 2H, CH2) ppm; 13C NMR (100 MHz, DMSO-d6) δ:  161.92 (C=O), 159.78, 

158.32, 155.55, 155.33, 144.09, 139.81, 130.53, 129.53, 128.64, 128.44, 126.83, 126.46, 124.68, 

124.39, 121.87, 112.17, 108.30, 34.13 (CH2), 31.30 (CH2) ppm. 

4.6.2    6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl thiophene-2-carboxylate (6d) 

White solid; yield: 80 %; mp 252-254 C; FTIR (ATR, cm-1) max: 3124 (Ar C-H Str.), 3027 (N-H Str.), 

2879 (alkane C-H Str.), 1693 (ester C=O Str.), 1606, 1454, 1374, 1350, 1244, 1093, 887, 742, 725, 693; 

1H-NMR (400 MHz, DMSO-d6) δ:  12.35 (s, 1H, NH), 9.14 (s, 1H, ArH), 8.45 (d, J = 2.80 Hz, 1H, 

ArH), 8.26 (d, J = 4.40 Hz, 1H, ArH), 7.32 (d, J = 3.92 Hz, 5H, ArH), 7.23 (d, J = 3.84 Hz, 1H, ArH), 

3.48 (t, J = 7.18 Hz, 2H, CH2), 3.03 (t, J = 7.14 Hz, 2H, CH2); 13C NMR (100 MHz, DMSO-d6) δ:  

161.76 (C=O), 159.30, 158.37, 140.21, 139.86, 139.62, 130.95, 129.93, 128.62, 128.43, 128.25, 126.43, 

108.40, 34.24 (CH2), 31.34 (CH2) ppm; HRMS (ESI, m/z) [M+H]+; calculated for C18H14N4O2S2 , 

381.0481; found 381.0480. 

4.6.3    6-(hexylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl benzoate (7a) 

White solid; yield: 76 %; mp 167-169 C; FTIR (ATR, cm-1) max: 3140 (Ar C-H Str.), 2924 (N-H Str.), 

2847 (alkane C-H Str.), 1713 (ester C=O Str.), 1610, 1449, 1368, 1285, 1203, 1090, 900, 705; 1H-NMR 

(400 MHz, DMSO-d6) δ:  12.33 (s, 1H, NH), 9.14 (s, 1H, ArH), 8.06 (d, J = 7.32 Hz, 2H, ArH), 7.74 

(t, J = 7.40 Hz, 1H, ArH), 7.60 (t, J = 7.76 Hz, 2H, ArH), 3.16 (t, J = 7.24 Hz, 2H, CH2), 1.69-1.62 (m, 

2H, CH2), 1.41-1.34 (m, 2H, CH2), 1.28-1.24 (m, 4H, (CH2)2), 0.84 (t, J = 6.74 Hz, 3H, CH3) ppm; 13C 

NMR (100 MHz, DMSO-d6) δ: 166.27, 161.63 (C=O), 159.34, 158.55, 133.67, 131.46, 130.67, 130.46, 

128.30, 108.12, 30.71 (CH2), 29.87 (CH2), 28.40 (CH2), 27.83 (CH2), 21.96 (CH2), 13.87 (CH3) ppm. 

4.6.4    6-(hexylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl thiophene-2-carboxylate (7b) 

White solid; yield: 78 %; mp 205-207 C; FTIR (ATR, cm-1) max: 3143 (Ar C-H Str.), 2915 (N-H Str.), 

2850 (alkane C-H Str.), 1692 (ester C=O Str.), 1606, 1453, 1372, 1350, 1243, 1140, 1088, 887, 853,724; 

1H-NMR (400 MHz, DMSO-d6) δ:  12.35 (s, 1H, NH), 9.14 (s, 1H, ArH), 8.45 (d, J = 3.28 Hz, 1H, 

ArH), 8.26 (d, J = 4.68 Hz, 1H, ArH), 7.35 (t, J = 4.34 Hz, 1H, ArH), 3.21 (t, J = 7.14 Hz, 2H, CH2), 
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1.73-1.66 (m, 2H, CH2), 1.40 (d, J = 6.00 Hz, 2H, CH2), 1.29 (d, J = 3.36 Hz, 4H, (CH2)2), 0.87 (t, J = 

6.42 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ:  161.99 (C=O), 159.35, 158.41, 158.37, 

140.15, 139.61, 130.97, 129.98, 128.29, 108.38, 30.70 (CH2), 29.93 (CH2), 28.30 (CH2), 27.82 (CH2), 

21.97 (CH2), 13.90 (CH3) ppm; HRMS (ESI, m/z) [M+H]+; calculated for C16H18N4O2S2, 361.0793; 

found 361.0793. 

4.6.5    6-(hexylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl furan-2-carboxylate (7c) 

White solid; yield: 78 %; mp 152-154 C; FTIR (ATR, cm-1) max: 3092 (Ar C-H Str.), 2924 (N-H Str.), 

2849 (alkane C-H Str.), 1712 (ester C=O Str.), 1604, 1462, 1376, 1288, 1263, 1146, 936, 865, 772; 1H-

NMR (400 MHz, DMSO-d6) δ:  12.34 (s, 1H, NH), 9.14 (s, 1H, ArH), 8.27 (s, 1H, ArH), 8.13 (d, J = 

3.60 Hz, 1H, ArH), 6.89 (s, 1H, ArH), 3.22-3.13 (m, 2H, CH2), 1.73-1.62 (m, 2H, CH2), 1.40 (s, 2H, 

CH2), 1.29 (d, J = 3.60 Hz, 4H, (CH2)2), 0.86 (d, J = 5.60 Hz, 3H, CH3); 13C NMR (100 MHz, DMSO-

d6) δ:  161.87 (C=O), 159.65, 158.41, 158.38, 154.12, 143.48, 130.21, 129.98, 126.34, 113.46, 108.02, 

30.69 (CH2), 29.89 (CH2), 28.35 (CH2), 27.82 (CH2), 21.95 (CH2), 13.88 (CH3) ppm; HRMS (ESI, m/z) 

[M+H]+; calculated for C16H18N4O3S, 345.1017; found 345.1021. 

5    Biological activity protocol 

5.1    CDK2 and Abl kinase inhibition assays 

CDK2/cyclin E and Abl kinases were produced in Sf9 insect cells via baculoviral infection and purified 

on a NiNTA column. The kinase reactions were assayed with suitable substrates (1 mg/mL histone H1 

for CDK2 and 500 µM peptide GGEAIYAAPFKK for Abl) in the presence of 15 or 10 µM ATP for 

CDK2 and Abl, respectively, 0.05 µCi [γ-33P]ATP, and the test compound in a final volume of 10 µL, 

all in a reaction buffer (60 mM HEPES-NaOH, pH 7.5, 3 mM MgCl2, 3 mM MnCl2, 3 μM Na-

orthovanadate, 1.2 mM DTT, 2.5 μg / 50 μl PEG20.000). The reactions were stopped by adding 5 µL of 

3% aq. H3PO4. Aliquots were spotted onto P-81 phosphocellulose (Whatman), washed 3× with 0.5% 

aq. H3PO4 and finally air-dried. Kinase inhibition was quantified using a FLA-7000 digital image 

analyzer. The concentration of the test compounds required to reduce the kinase activity by 50 % was 

determined from dose-response curves and recorded as their IC50. 

5.2     Anti-proliferative (K-562 and MCF-7) activity assays 

The tumor cells (purchased from the American Type Culture Collection) were grown in DMEM 

medium supplemented with 10% (v/v) fetal bovine serum and L-glutamine (0.3 g/L) and were 

maintained at 37 °C in a humidified atmosphere with 5% CO2. For anticancer cytotoxicity estimations, 

104 cells were seeded into each well of a 96-well plate, allowed to stabilize for 20 h, and the test 
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inhibitors were then added at different concentrations (ranging from 0.1 to 100 μM or to a solubility 

limit) in triplicate. Three days after addition of the inhibitors, calcein AM solution (Molecular Probes) 

was added. One hour later, fluorescence of cells was quantified using a Fluoroskan Ascent (Labsystems) 

reader and cytotoxic effective concentrations were calculated and expressed as IC50 values from dose-

response curves. Roscovitine and imatinib were used as reference drugs. 

6    Molecular docking simulation 

Molecular docking experiments were performed using Glide software package41 implemented in 

Schrodinger Suite (2017-2) (Schrödinger, Inc., USA)42 running on Intel CORE i7 based hpZ230 

workstation with the Microsoft Windows 10 OS. In this protocol, the protein was kept rigid, while the 

ligands were allowed to be flexible throughout the docking simulation.  

6.1    Protein preparation 

The starting X-ray solved protein crystal structure of cyclin dependent kinase-2 bound with R-

roscovitine was retrieved from protein data bank (PDB) bearing ID 2A4L.43 The protein was prepared 

by automatic preparation by Protein Preparation Wizard of Glide employing the Optimized Potentials 

for Liquid Simulations 3 (OPLS3) forcefield. During the pre-processing stage, crystallographic water 

molecules were removed and added missing hydrogens to the protein structures corresponding to pH 

7.0 was achieved. The protein metal ions and cofactors were viewed and removed from the protein 

structure. The tool neutralized the side chains that are not close to the binding cavity and do not 

participate in salt bridges. The pre-processed protein structure was refined initially by optimizing the 

sample-water orientation followed by restrained minimization of co-crystallized complex using OPLS3, 

which reorients side chain hydroxyl groups and alleviates potential steric clashes. Thus, the complex 

obtained was minimized until it reaches the convergent of heavy atom to RMSD 0.3 Å and taken finally 

in .mae format.    

6.2    Grid file generation 

Receptor grid generation protocol of Maestro 11.2 was used to define the binding-site of the protein 

(2A4L) for docking simulation by excluding any co-crystallized metals, co-factors, water molecules all 

of which may have crystallized during experimental crystallization of the CDK-2 protein. A grid box 

was generated around the centroid of the cognate ligand (R-roscovitine) specifying the size for the 

docking ligands (20 Å) with default settings.  

6.3    Ligand preparation 
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The Structures of the synthesized ligands and standard R-roscovitine were sketched using built panel of 

Maestro and taken in .mae format. LigPrep is a utility of Schrodinger software suit that combines tools 

for generating 3D structures from 1D (Smiles) and 2D (SDF) representation, searching for tautomers, 

steric isomers and perform a geometry minimization of the ligands. By employing Ligprep protocol, all 

the ligands were prepared using OPLS3 with default settings and the output file was saved in .maegz 

format automatically. 

6.4    Docking simulation 

For precision and accuracy of the docking protocols, the co-crystallized ligand was extracted from the 

crystal structure of 2A4L and re-docked using Glide docking algorithm (Schrodinger Inc) in its extra 

precision (XP) mode with default settings without applying any constraints. A good agreement of the 

obtained pose of docked R-roscovitine with cognate ligand indicated the reliability of the selected 

docking parameters for docking of the synthesized ligands. Hence, by specifying the ligands against the 

receptor grid, molecular docking was performed using default settings in Glide XP mode. 

6.5    Binding mode analysis  

The protein-ligand complexes were analysed to investigate various types of interactions by utilizing XP 

visualizer protocol. For the best-scored ligands, the 2D and 3D plots of molecular ligand-receptor 

interactions were analysed for hydrogen bond, halogen bond, salt bridges, π-π stacking, and π-cation 

interactions. G-score and relevant docking descriptors were computed for each of the best docked pose. 
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CHAPTER 6 

Design, synthesis and biological evaluation of novel pyrazolo[3,4-

d]pyrimidine analogues as anticancer agents 
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Abstract:  

A new series of pyrazolo[3,4-d]pyrimidine (9a-9s) possessing phenylcarbamoyl acetamide at C-6 

position were designed and synthesized. The synthesized compounds were evaluated for anticancer 

activity against CDK2/Cyclin E and Abl kinase enzymes and further evaluated for anti-proliferative 

activity against K-562 (chronic myelogeneous leukemia) andMCF-7 (breast adenocarcinoma) cell lines. 

The structure-activity relationship studies (SAR) revealed that the compounds with mono substitution 

on phenylcarbamoyl acetamide moiety exhibited commendable activity compared to disubstitution. For 

all the synthesized molecules from this series, IC50 values could not be measured due to solubility limit 

(IC50 ˃ 12.5 µM or ˃ 25 µM). Therefore, the observed findings on the pyrazolo[3,4-d]pyrimidine scaffold 

with phenylcarbamoyl acetamide group seems to suggest need for further lead optimization with an aim 

to improve solubility and anticancer activity.  
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1    Introduction 

Cancer is a multifaceted disease characterized by uncontrolled growth of the malignant cell population. 

Cancer is considered as the most serious health burden touching every region of the world.1 It is a 

second leading cause of the death worldwide, accounted for 8.8 million death in 2015. According to the 

World Health Organization (WHO), the new cancer cases are anticipated to rise by as much as 15 

million per year by 2020 unless actions that are more preventive.2 Although, chemotherapy is the key 

remedy for cancer treatment, but the use of existing chemotherapeutics is often limited due to existing 

of limited anticancer drugs and detrimental side effects.3 It is thus momentous to identify new targets 

and agents for the cure of cancer. Thus, a substantial research for innovative anticancer agents has been 

fueled by many academics and industries to unveil novel targets and mechanisms based on the lead 

candidates of various classes of compounds.4  

Cyclin-dependent kinases (CDKs) are a group of serine/threonine kinase comprising more than 20 

members that are associated with regulation of cell-cycle progression by phosphorylating proteins 

involved in cell division. Controlling subunits of these enzymes play a key role in regulatory cell cycle, 

cell division and transcription mechanism in both eukaryotes and prokaryotes.5 From historic point of 

view, the first CDK2 inhibitor to be known as 6-dimethylaminopurine (IC50: 120 µM).6,7 From the 

existing CDK2 inhibitors only few molecules are in different levels of clinical trials. The molecules 

AT7519, R547 and SNS-032 have reached to phase-I; flavopiridol, roscovitine, P-276-00 and 

CSH727965 have touched phase-II, while PHA-793887 and AG-024322 have been dismissed in phase-

I clinical trials for either the insufficiency of perspicacity from other treatment modalities8 or the causing 

of simple hepatic toxicity.9 Fig. 1 represents the structures of CDK inhibitors under clinical trials. To 

support these findings, a study proved that both phosphatidylinositol-3-kinase and CDK2 inhibitors 

together induced apoptosis in malignant glioma xenografts via a synthetic-lethal interaction.10 Further, 

CDK2 inhibitors also evidenced as therapeutic target in neuroblastoma11 BRCA-deficient cancers12 and 

ovarian cancer.13  
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Fig. 1. Structures of the CDK2 inhibitors in clinical trials. 

In the past few years, significant amount of contemporary investigations have been conducted on aza-

heterocycles for producing wide range of chemical libraries/drug-like candidates. Among all, 
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pyrazolopyrimidine is one such important drug-like nucleus synthesized by fusion of pyrazole with 

pyrimidine.14 Several isomeric forms of pyrazolo pyrimidine namely pyrazolo[3,4-d]pyrimidines, 

pyrazolo[5,1-b]pyrimidines, pyrazolo[5,1-a]pyrimidines, pyrazolo[1,5-c]pyrimidines, pyrazolo[4,3-

d]pyrimidines are known.15 From the existing isomers, pyrazolo[3,4-d]pyrimidine is an bioisostere of 

purines  with many pharmacological applications as Src/Abl kinase,16 glycogen synthase kinase 

(GSK),17 mammalian target of rapamycin (mTOR),18 xanthine oxidase inhibitors ,19 tyrosine kinase20 

and cyclin dependent kinase (CDK).21 Many pyrazolo[3,4-d]pyrimidine derivatives bearing different 

substitutions on nucleus are stated for diverse cancer targets as illustrated in Fig. 2.22-27 

 Inspired by the important findings of pyrazolo[3,4-d]pyrimidines as anticancer agents and in 

continuation of our research work involving the identification of novel anticancer analogues,28,29 in the 

current study a novel series of pyrazolo[3,4-d]pyrimidine derivatives have been synthesized and 

evaluated for in vitro anticancer activity towards CDK2, Abl kinase inhibitors and K-562, MCF-7 cell 

lines. In this work we carried out chemical modifications at C-6 of the pyrazolo[3,4-d]pyrimidine 

nucleus (scheme-1) by efficient synthetic method.  

 

 

Fig. 2. Known derivatives of pyrazolo[3,4-d]pyrimidine analogues and their anticancer activities. A: 

(Ki50 against Src, AblT315I = 0.056, 0.01 µM);22 B: (IC50 against CDK9 = 17 nM);23 C: (IC50 against 

mTOR = 13 nM);24 D: (IC50 against mTOR = 9 nM);25 E: (Ki50 against cSrc, Abl = 25, 41 nM);26 F: 

(IC50 against Src = 1.2 ± 0.4 µM).27 

2    Results and discussion 
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2.1    Chemistry 

6-mercapto-1H-pyrazolo[3,4-d]pyrimidin-4-ol (4), as a key intermediate for the synthesis of desired 

hybrid molecules was accomplished from 2-(ethoxymethylene)malononitrile (1) by the sequence of 

reactions shown in Fig. 1. The synthesis was performed in a process that the five membered pyrazole 

ring was first accomplished and the pyrimidine ring formation was followed. In pyrazolopyrimidine 

scaffold, the hydroxy group as nucleophilic substituent was introduced at C-4 and the methylmercapto 

group was employed at C-6 as a precursor to perform the nucleophilic substitution with different 

phenylcarbamoyl acetamides. 

 

Scheme 1. Synthesis of 4-substituted pyrazolo[3,4-d]pyrimidine hybrid molecules. 

Reagents and conditions: (a) hydrazine hydrate, ethanol, 800 C, 3h, 92%; (b) Conc. H2SO4, NH4OH, 

H2O, 500 C, 5h, 90%; (c) potassium ethyl xanthogenate, DMF, 1200 C, 6h, 82%; (d) 1,2-dichloroethane, 

900 C, 6h, 90%; (e) 1M KOH, acetone, 600 C, 2-3h, 80-96%. 

Nucleophilic substitution of commercially available 2-(ethoxymethylene) malononitrile (1) with 

hydrazine hydrate in ethanol under reflux conditions afforded 5-amino-1H-pyrazole-4-carbonitrile (2) 

which underwent partial hydrolysis of nitrile group with 98% sulfuric acid to attain 5-amino-1H-

pyrazole-4-carboxamide (3) in excellent yield (90%). Subsequent fusion of carboxamide (2) with 

potassium ethyl xanthogenate in N,N-dimethylformamide accomplished the cyclic product 6-mercapto-

1H-pyrazolo[3,4-d]pyrimidin-4-ol (4) in good yield (82%).30 Further, various substituted 
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phenylcarbamoyl acetamides (8a-8s) were prepared by allowing the reaction of 2-chloroacetamide (5) 

and oxalyl chloride (6) with different amines (7a-7s) in anhydrous 1,2-dichloroethane under reflux 

conditions as reported in literature.31 The nucleophilic substitution of compound 4 at C-6 with 

substituted phenylcarbamoyl acetamides (8a-8s) was carried out in presence of 1M KOH solution under 

heat conditions to attain the desired final products (9a-9s) as presented in scheme 1. The anticipated 

structures of newly prepared final compounds were in agreement with physicochemical and spectral 

(IR, 1H NMR and 13C NMR) data attained and were further sub-stantiated by HR-MS information, 

which is precised in supporting information.  

The 1H NMR of compound 4 exhibited the presence of a very distinct singlet signals resonating at 

around δ 13.61, 13.03, 11.86 and 8.42 ppm attributed for N-H proton, S-H proton, O-H proton and C-3 

Ar-H protons respectively, indicating its formation of bicyclic system (pyrazolopyrimidine) by a 

process of simple condensation reaction by ring annulation of 5-amino-1H-pyrazole-4-carboxamide 

with potassium ethyl xanthogenate. Further, from 1H NMR of compounds 9a-9s, we observed most 

informative singlet signals at around δ 13.57-13.07, 12.51-12.16, 8.00-7.94 ppm accounted for three -

NH protons, while the characteristic singlet signal appearing at δ 4.28-4.20 ppm attributing to methylene 

group (-S-CH2-NH-NH-). Thus confirmed the alkylation of mercapto group (-SH-) with substituted 

phenylcarbamoyl acetamides (8a-8s) to achieve the desired final products (9a-9s) as represented in 

scheme 1. 

Further, from the IR spectra of the title compounds (9a-9s) we observed a reasonably sturdy and 

characteristic bands around 2904.93-3290.96cm-1, 1232.49-1292.89cm-1 accounting for N-H and C-S 

groups respectively, while most characteristic band of -C=O appearing around 1667.34-1715.29 cm-1 

indicated the formation of final hybrid molecules. Further, the 1H NMR spectrum of the final 

compounds displayed some characteristic singlet signals at around δ 12.36-12.17 ppm for ring N-H, δ 

13.57-13.07, 8.00-7.94 ppm for two exocyclic –NH protons (-NH-CO-NH-Ph), while the hydroxyl 

proton (-OH) on aromatic ring resonated as singlet signal around at δ 11.47-10.65 ppm. Further, the 

most informative singlet signals resonated around δ 10.78-8.96 ppm (C-3 aromatic proton), δ 4.28-4.20 

ppm for methylene protons of carbamoyl acetamide chain (-S-CH2-NH-CO-NH-). Further, various 

signals appeared as doublet or multiplets at around δ 8.61-6.87 ppm accounted for other aromatic 

protons. The 13C NMR spectra further confirmed the structures of the title compounds. The 

characteristic carbon signals resonated at around δ 173.28-161.87, 158.87-158.19 and 131.96-130.19 

ppm were assigned to C-6, C-4 and C-3 carbons of pyrazolopyrimidine ring. Further, other 

aromatic/heteroaromatic carbons resonated between δ 159.78-107.87 ppm while, the prominent carbon 

peaks observed at around δ 34.43-34.29 ppm for methylene (-S-CH2-NH-CO-NH-), δ 55.76 ppm for 

methoxy (-OCH3) and δ 20.03-17.05 ppm for methyl groups respectively. In addition, the formation of 
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the final pyrazolo[3,4-d]pyrimidine derivatives (9a-9s) was confirmed by calculating their individual 

mass spectrums (HR-MS), which displayed accurate molecular ion peaks that were in agreement with 

their expected molecular weights (supporting information). 

2.2    In vitro evaluation for anti-cancer (CDK2 & Abl) and anti-proliferative (K-562 & 

MCF-7) activity 

All the final compounds were evaluated for CDK2/cyclin E kinase inhibition and the IC50 values of 

various in vitro anticancer profiles are summarized in Table 1. Abl kinase inhibition was evaluated as 

a counter screen, to get a preliminary information about selectivity. In addition, to explore the biological 

significance, these compounds were further evaluated for their in vitro anti-proliferative activity against 

K-562 (chronic myelogeneous leukemia) and MCF-7 (breast adenocarcinoma) cell lines. We studied 

the effect of various substitutions on phenyl ring of the phenylcarbamoyl acetamide moiety at C-6, 

which was in turn connected to pyrazolopyrimidine nucleus through a sulphur bridge. From the obtained 

results, it was observed that for all the synthesized molecules from this series, IC50 values could not be 

measured due to solubility limit (IC50 ˃12.5 µM or ˃25 µM).  

 

C. No R IC50 (µM) 

  CDK2 Abl K-562 MCF-7 

9a 2,4-CH3 ˃12.5 ˃12.5 ˃25 ˃25 

9b 2-Cl ˃25 ˃25 ˃25 ˃25 

9c 3-Cl ˃12.5 ˃12.5 ˃25 ˃25 

9d 4-Cl ˃25 ˃25 ˃25 ˃25 

9e 2-Br ˃25 ˃25 ˃25 ˃25 

9f 3-Br ˃25 ˃25 ˃12.5 ˃12.5 

9g 4-Br ˃12.5 ˃12.5 ˃100 ˃100 

9h 2-NO2 ˃25 ˃25 ˃25 ˃25 

9i 3-NO2 ˃25 ˃25 ˃25 ˃25 

9j 4-NO2 ˃50 ˃50 ˃100 ˃100 
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9k 4-Cl-3-NO2 ˃25 ˃25 ˃50 ˃50 

9l 4-Br-3-CF3 ˃25 ˃25 ˃50 ˃50 

9m 4-SCH3 ˃12.5 ˃12.5 ˃12.5 ˃12.5 

9n 4-F-2-CH3 ˃25 ˃25 ˃12.5 ˃12.5 

9o 2-Cl-4-F ˃25 ˃25 ˃50 ˃50 

9p 4-OCH3-2-NO2 ˃12.5 ˃12.5 ˃50 ˃50 

9q 2-Cl-5-NO2 ˃25 ˃25 ˃25 ˃25 

9r H ˃25 ˃25 ˃50 ˃50 

9s N ˃25 ˃25 49.9 ˃50 

 Roscovitine 0.1 ˃100 42 11 

 Imatinib ˃100 0.2 0.5 ˃10 

a IC50 values were determined in triplicate in the range of 0.05 to 100 µM. IC50 value indicates concentration (µM) 

that inhibits activity of tested enzyme to 50% or for cytotoxic assays, concentration (µM) that reduces 50% of 

cells during a three-day cultivation  

Table 1. Anticancer evaluation of novel mono substituted pyrazolo[3,4-d]pyrimidines against 

CDK2/Abl kinases and K-562/MCF-7 cell lines. 

3    Conclusion  

In summary, a series of new mono substituted pyrazolo[3,4-d]pyrimidines with substituted 

phenylcarbamoyl acetamide side chain at C-4 positon has been designed and synthesized. The key 

intermediate 6-mercapto-1H-pyrazolo[3,4-d]pyrimidin-4-ol allowed us to increase our library of 

compounds. All synthesized compounds were evaluated for in vitro enzymatic activity against 

CDK2/cyclin E, Abl kinases as well as anti-proliferative activity against K-562 (chronic myelogeneous 

leukemia) and MCF-7 (breast adenocarcinoma) cell lines. From the obtained results, it was observed 

that for all the synthesized molecules from this series, IC50 values could not be measured due to 

solubility limit (IC50 ˃12.5 µM or ˃25 µM). This research outcome promotes the advantage of 

interaction of phenycarbomoyl acetamides to pyrazolopyrimidine scaffold through sulphur linkage, thus 
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offers an idea for further compound optimization and functionalization to enhance the solubility and 

anticancer activity, which deserves further investigation. 

4    Experimental Section 

All the chemicals used in this research work were purchased from Sigma-Aldrich and Merck Millipore, 

South Africa. All the solvents, except those of laboratory-reagent grade, were dried and purified when 

necessary according to previously published methods. The progress of the reactions and the purity of 

the compounds were monitored by thin-layer chromatography (TLC) on pre-coated silica gel plates 

procured from E. Merck and Co. (Darmstadt, Germany) using 36% ethyl acetate in n-hexane as the 

mobile phase and iodine vapor as the visualizing agent. The melting points of the synthesized 

compounds were determined using a Thermo Fisher Scientific (IA9000, UK) digital melting point 

apparatus and are uncorrected. The IR spectra were recorded on a Bruker Alpha FT-IR spectrometer 

(Billerica, MA, USA) using the ATR technique. The 1H NMR and 13C NMR spectra were recorded 

on a Bruker AVANCE 600 and 600 MHz (Bruker, Rheinstetten/Karlsruhe, Germany) spectrometers 

using CDCl3 and DMSO-d6. The chemical shifts are reported in δ ppm units with respect to TMS as 

an internal standard. HRMS spectra were recorded on an Autospec mass spectrometer with electron 

impact at 70 eV. 

4.1    General procedure for the synthesis of compounds (9a-9s) 

To a well-stirred solution of compound 4 (0.5g, 0.00298mol) in 1M KOH solution, added equimolar 

amount of a solution of compounds 8s-8s in acetone (10mL) was added. The reaction mixture was 

stirred for 1h at room temperature then heated at 50 oC for 2h. Upon completion, the precipitated product 

was filtered off to afford the crude product. The crude product was recrystallized from THF to yield the 

appropriate pure product. 

4.1.1    N-((2,4-dimethylphenyl)carbamoyl)-2-((4-hydroxy-1H-pyrazolo[3,4-d]pyrimidin-6-

yl)thio)acetamide (9a) 

Brown solid; yield: 84 %; mp 212-214C; FTIR (ATR, cm-1) max: 3487.05, 3101.10, 2930.55, 1687.76, 

1585.78, 1521.91, 1444.10, 1244.37, 1155.79, 966.32, 840.46, 748.54, 676.59, 553.68; 1H-NMR (600 

MHz, DMSO-d6): δ 13.46 (s, 1H, NH), 12.27 (s, 1H, NH), 10.80 (s, 1H, OH), 9.99 (s, 1H, ArH), 7.99 

(s, 1H, NH), 7.72 (d, J = 8.22 Hz, 1H, ArH), 7.02 (s, 1H, ArH), 6.97 (d, J = 8.28 Hz, 1H, ArH), 4.24 (s, 

2H, CH2), 2.23 (s, 3H, CH3), 2.16 (s, 3H, CH3); 
13C NMR (100 MHz, DMSO-d6): δ 169.85 (C=O), 

150.20, 133.00, 132.87, 130.52, 127.72, 126.48, 121.22, 34.37 (CH2), 20.03 (CH3), 17.05 (CH3) ppm. 
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4.1.2    N-((2-chlorophenyl)carbamoyl)-2-((4-hydroxy-1H-pyrazolo[3,4-d]pyrimidin-6- 

yl)thio)acetamide (9b) 

White solid; yield: 90%; mp 216-218C; FTIR (ATR, cm-1) max: 3487.05, 3101.10, 2952.37, 1687.76, 

1585.78, 1521.91, 1444.10, 1296.62, 1244.37, 1155.79, 966.32, 863.26, 748.54, 676.59; 1H-NMR (600 

MHz, DMSO-d6): δ 13.41 (s, 1H, NH), 12.20 (s, 1H, NH), 10.95 (s, 1H, OH), 10.65 (s, 1H, ArH), 8.21 

(dd, J = 8.28, 1.32 Hz, 1H, ArH), 7.96 (s, 1H, NH), 7.47 (dd, J = 8.22, 1.32 Hz, 1H, ArH), 7.34-7.31 

(m, J = 4.27 Hz, 1H, ArH), 7.12-7.10 (m, J = 3.43 Hz, 1H, ArH), 4.25 (s, 2H, CH2); 
13C NMR (100 

MHz, DMSO-d6): δ 169.92 (C=O), 149.99, 134.30, 128.91, 127.39, 124.46, 122.43, 121.43, 34.35 

(CH2) ppm. 

4.1.3    N-((3-chlorophenyl)carbamoyl)-2-((4-hydroxy-1H-pyrazolo[3,4-d]pyrimidin-6-

yl)thio)acetamide (9c) 

White solid; yield: 87 %; mp 211-213C; FTIR (ATR, cm-1) max: 3290.67, 3055.43, 2976.09, 1672.71, 

1487.68, 14783.48, 1245.54, 1148.70, 966.87, 772.62, 657.05, 532.95; 1H-NMR (600 MHz, DMSO-

d6): δ 13.41 (s, 1H, NH), 12.16 (s, 1H, NH), 10.75 (s, 1H, OH), 10.19 (s, 1H, ArH), 8.00 (s, 1H, NH), 

7.72 (s, 1H, ArH), 7.37 (d, J = 7.74 Hz, 1H, ArH), 7.32 (t, J = 8.01 Hz, 1H, ArH), 7.11 (d, J = 8.52 Hz, 

1H, ArH), 4.25 (s, 2H, CH2); 
13C NMR (100 MHz, DMSO-d6): δ 169.51 (C=O), 150.08, 138.78, 133.00, 

123.14, 119.14, 118.05, 34.40 (CH2) ppm. 

4.1.4     N-((4-chlorophenyl)carbamoyl)-2-((4-hydroxy-1H-pyrazolo[3,4-d]pyrimidin-6-

yl)thio)acetamide (9d) 

White solid; yield: 85%; mp 244-246C; FTIR (ATR, cm-1) max: 3242.17, 3137.95, 2975.08, 1704.19, 

1675.55, 1599.49, 1556.21, 1493.47, 1231.28, 1152.00, 949.78, 776.09, 708.23, 509.89; 1H-NMR (600 

MHz, DMSO-d6): δ 13.57 (s, 1H, NH), 12.48 (s, 1H, NH), 11.00 (s, 1H, OH), 10.29 (s, 1H, ArH), 7.95 

(s, 1H, NH), 7.56 (d, J = 8.88 Hz, 2H, ArH), 7.36 (d, J = 8.88 Hz, 2H, ArH), 4.23 (s, 2H, CH2); 
13C 

NMR (100 MHz, DMSO-d6): δ 169.43 (C=O), 157.57, 150.04, 136.24, 128.35, 128.26, 127.23, 121.90, 

121.15, 102.74, 34.39 (CH2) ppm. 

4.1.5    N-((2-bromophenyl)carbamoyl)-2-((4-hydroxy-1H-pyrazolo[3,4-d]pyrimidin-6-

yl)thio)acetamide (9e) 

Brown solid; yield: 84%; mp 240-242C; FTIR (ATR, cm-1) max: 3488.26, 3117.93, 2916.20, 1692.18, 

1580.58, 1511.78, 1295.08, 1228.77, 1156.20, 966.88, 739.17, 616.56, 546.38; 1H-NMR (600 MHz, 

DMSO-d6): δ 13.07 (s, 1H, NH), 11.67 (s, 1H, OH), 10.78 (s, 1H, ArH), 8.19 (dd, J = 8.28, 1.28 Hz, 
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1H, ArH), 7.83 (s, 1H, NH), 7.64 (dd, J = 8.00, 1.12 Hz, 1H, ArH), 7.39-7.35 (m, J = 4.21 Hz, 1H, 

ArH), 7.06-7.02 (m, J = 3.35 Hz, 1H, ArH), 4.05 (s, 2H, CH2); 
13C NMR (100 MHz, DMSO-d6): δ 

150.09, 135.69, 132.15, 131.69, 127.85, 127.82, 124.91, 122.01, 117.20, 115.25, 113.07, 107.33, 34.36 

(CH2) ppm. 

4.1.6    N-((3-bromophenyl)carbamoyl)-2-((4-hydroxy-1H-pyrazolo[3,4-d]pyrimidin-6-

yl)thio)acetamide (9f) 

White solid; yield: 87 %; mp 226-228C; FTIR (ATR, cm-1) max: 3251.64, 2874.39, 2824.05, 1686.84, 

1595.07, 1551.77, 1491.77, 1259.54, 1218.24, 1158.08, 769.81, 534.27; 1H-NMR (600 MHz, DMSO-

d6): δ 13.41 (s, 1H, NH), 12.18 (s, 1H, NH), 10.74 (s, 1H, OH), 10.18 (s, 1H, ArH), 8.01 (s, 1H, NH), 

7.87 (s, 1H, ArH), 7.41 (m, J = 2.19 Hz, 1H, ArH), 7.26 (t, J = 2.91 Hz, 2H, ArH), 4.25 (s, 2H, CH2); 

13C NMR (100 MHz, DMSO-d6): δ 169.48 (C=O), 150.05, 138.89, 130.34, 126.4, 121.97, 121.28, 

118.44, 34.38 (CH2) ppm. 

4.1.7    N-((4-bromophenyl)carbamoyl)-2-((4-hydroxy-1H-pyrazolo[3,4-d]pyrimidin-6-

yl)thio)acetamide (9g) 

Brown solid; yield: 81%; mp 232-234C; FTIR (ATR, cm-1) max:  3236.82, 3133.87, 2922.02, 1702.62, 

1672.40, 1547.00, 1489.02, 1392.06, 1311.37, 1227.97, 1118.73, 775.66, 665.01, 506.53; 1H-NMR 

(600 MHz, DMSO-d6): δ 13.41 (s, 1H, NH), 12.19 (s, 1H, NH), 10.72 (s, 1H, OH), 10.15 (s, 1H, ArH), 

7.98 (s, 1H, NH), 7.48 (s, 4H, ArH), 4.25 (s, 2H, CH2); 
13C NMR (100 MHz, DMSO-d6): δ 169.44 

(C=O), 150.01, 136.67, 131.28, 121.52, 115.13, 34.38 (CH2) ppm. 

4.1.8   2-((4-hydroxy-1H-pyrazolo[3,4-d]pyrimidin-6-yl)thio)-N-((2-nitrophenyl)carbamoyl) 

acetamide (9h) 

White solid; yield: 82%; mp 227-229C; FTIR (ATR, cm-1) max: 3216.47, 2872.46, 1680.99, 1581.77, 

1483.18, 1436.94, 1339.98, 1243.75, 1157.59, 857.52, 743.68, 529.26; 1H-NMR (600 MHz, DMSO-

d6): δ 13.42 (s, 1H, NH), 12.17 (s, 1H, NH), 11.59 (s, 1H, OH), 11.01 (s, 1H, ArH), 8.39 (d, J = 8.22 

Hz, 1H, ArH), 8.10 (dd, J = 8.25, 1.05 Hz, 1H, ArH), 8.03 (s, 1H, NH), 7.74-7.72 (m, J = 4.26 Hz, 1H, 

ArH), 7.32-7.30 (m, J = 4.19 Hz, 1H, ArH), 4.25 (s, 2H, CH2); 
13C NMR (100 MHz, DMSO-d6): δ 

169.33 (C=O), 15138.55, 134.52, 132.41, 129.77, 125.00, 123.67, 123.17, 117.85, 34.36 (CH2) ppm. 

4.1.9   2-((4-hydroxy-1H-pyrazolo[3,4-d]pyrimidin-6-yl)thio)-N-((3-nitrophenyl)carbamoyl) 

acetamide (9i) 
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Brown solid; yield: 90%; mp 210-212C; FTIR (ATR, cm-1) max: 3514.66, 3244.67,3128.20, 2885.63, 

1694.75, 1659.36, 1598.09, 1524.26, 1346.53, 1234.93, 1156.82, 735.81, 671.97; 1H-NMR (600 MHz, 

DMSO-d6): δ 13.42 (s, 1H, NH), 12.19 (s, 1H, NH), 10.84 (s, 1H, OH), 10.41 (s, 1H, ArH), 8.56 (s, 1H, 

ArH), 7.99 (s, 1H, NH), 7.91 (dd, J = 8.25, 1.95 Hz, 1H, ArH), 7.82 (d, J = 8.28 Hz, 1H, ArH), 7.58 (t, 

, J = 8.19 Hz, 1H, ArH), 4.27 (s, 2H, CH2); 
13C NMR (100 MHz, DMSO-d6): δ 169.50 (C=O), 150.29, 

147.97, 138.61, 129.78, 125.73, 117.86, 113.82, 34.43 (CH2) ppm. 

4.2.0    2-((4-hydroxy-1H-pyrazolo[3,4-d]pyrimidin-6-yl)thio)-N-((4-nitrophenyl) carbamoyl  

acetamide (9j) 

White solid; yield: 95%; mp 232-234C; FTIR (ATR, cm-1) max: 3226.58, 2874.63, 1685.85, 1595.53, 

1487.60, 1336.76, 1244.88, 1215.59, 1161.94, 1111.08, 853.82, 770.56, 715.98, 534.24; 1H-NMR (600 

MHz, DMSO-d6): δ 13.41 (s, 1H, NH), 12.17 (s, 1H, NH), 10.90 (s, 1H, OH), 10.53 (s, 1H, ArH), 8.18 

(d, J = 9.06 Hz, 2H, ArH), 7.98 (s, 1H, NH), 7.78 (d, J = 9.12 Hz, 2H, ArH), 4.27 (s, 2H, CH2); 
13C 

NMR (100 MHz, DMSO-d6): δ 169.64 (C=O), 150.01, 143.58, 142.59, 124.44, 124.24, 120.38, 119.27, 

34.47 (CH2) ppm. 

4.2.1    N-((4-chloro-3-nitrophenyl)carbamoyl)-2-((4-hydroxy-1H-pyrazolo[3,4-d] pyrimidin-6-

yl)thio)acetamide (9k) 

Brown solid; yield: 92%; mp 214-216C; FTIR (ATR, cm-1) max: 3523.06, 3231.76, 2920.69, 1693.28, 

1656.76, 1595.61, 1527.54, 1303.35, 1246.28, 1155.31, 969.66, 824.35, 764.03, 699.69; 1H-NMR (600 

MHz, DMSO-d6): δ 13.41 (s, 1H, NH), 12.20 (s, 1H, NH), 10.90 (s, 1H, OH), 10.42 (s, 1H, ArH), 8.35 

(d, J = 2.46 Hz, 1H, ArH), 7.96 (s, 1H, NH), 7.79 (dd, J = 8.79, 2.37 Hz, 1H, ArH), 7.67 (d, J = 8.88 

Hz, 1H, ArH), 4.26 (s, 2H, CH2); 
13C NMR (100 MHz, DMSO-d6): δ 169.39 (C=O), 150.20, 147.22, 

137.44, 131.68, 131.46, 125.22, 124.53, 118.56, 115.90, 34.37 (CH2) ppm. 

4.2.2    N-((4-bromo-3-(trifluoromethyl)phenyl)carbamoyl)-2-((4-hydroxy-1H-pyrazolo [3,4-

d]pyrimidin-6-yl)thio)acetamide (9l) 

Brown solid; yield: 83%; mp 225-227C; FTIR (ATR, cm-1) max: 3488.74, 3100.86, 2930.06, 1691.15, 

1597.49, 1521.09, 1419.88, 1305.27, 1227.40, 1134.94, 827.90, 775.05, 730.96; 1H-NMR (600 MHz, 

DMSO-d6): δ 13.39 (s, 1H, NH), 12.16 (s, 1H, NH), 10.81 (s, 1H, OH), 10.34 (s, 1H, ArH), 8.11 (d, J 

= 2.58 Hz, 1H, ArH), 7.96 (s, 1H, NH), 7.78 (d, J = 8.70 Hz, 1H, ArH), 7.70 (dd, 8.73, 2.55 Hz, 1H, 

ArH), 4.26 (s, 2H, CH2); 
13C NMR (100 MHz, DMSO-d6): δ 169.36 (C=O), 150.18, 137.39, 135.06, 

128.56, 128.36, 124.67, 123.30, 121.49, 118.89, 118.85, 111.71, 34.35 (CH2) ppm. 
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4.2.3    2-((4-hydroxy-1H-pyrazolo[3,4-d]pyrimidin-6-yl)thio)-N-((4-(methylthio)phenyl) 

carbamoyl)acetamide (9m) 

Yellow solid; yield: 88%; mp 236-238C; FTIR (ATR, cm-1) max: 3251.97, 3152.40, 2916.97, 1673.16, 

1578.09, 1541.67, 1492.36, 1313.17, 1222.84, 1152.68, 966.09, 801.32, 687.63, 665.54, 507.81; 1H-

NMR (600 MHz, DMSO-d6): δ 13.41 (s, 1H, NH), 12.21 (s, 1H, NH), 10.66 (s, 1H, OH), 10.08 (s, 1H, 

ArH), 7.94 (s, 1H, NH), 7.46 (d, J = 8.76 Hz, 2H, ArH), 7.24 (d, J = 8.52 Hz, 2H, ArH), 4.24 (s, 2H, 

CH2), 2.44 (s, 3H, CH3); 
13C NMR (100 MHz, DMSO-d6): δ 169.39 (C=O), 149.96, 134.83, 132.29, 

127.34, 120.24, 34.34 (CH2), 15.49 (CH3) ppm. 

4.2.4    N-((4-fluoro-2-methylphenyl)carbamoyl)-2-((4-hydroxy-1H-pyrazolo[3,4-d] pyrimidin-6-

yl)thio)acetamide (9n) 

Yellow solid; yield: 81%; mp 237-239C; FTIR (ATR, cm-1) max: 3230.66, 2822.22, 1684.11, 1598.02, 

1554.55, 1491.53, 1267.43, 1162.90, 1267.43, 1162.90, 867.32, 772.26, 675.14, 536.08; 1H-NMR (600 

MHz, DMSO-d6): δ 13.42 (s, 1H, NH), 12.24 (s, 1H, NH), 10.77 (s, 1H, OH), 9.97 (s, 1H, ArH), 7.93 

(s, 1H, NH), 7.80 (q, J = 4.82 Hz, 1h, ArH), 7.06 (dd, J = 9.48, 2.94Hz, 1H, ArH), 7.00-6.97 (m, J = 

4.06 Hz, 1H, ArH), 4.25 (s, 2H, CH2), 2.21 (s, 3H, CH3); 
13C NMR (100 MHz, DMSO-d6): δ 169.79 

(C=O), 159.17, 157.57, 150.26, 131.77, 131.11, 131.06, 123.26, 116.30, 112.15, 34.31 (CH2), 16.98 

(CH3) ppm. 

4.2.5    N-((2-chloro-4-fluorophenyl)carbamoyl)-2-((4-hydroxy-1H-pyrazolo[3,4-d] pyrimidin-6-

yl)thio)acetamide (9o) 

White solid; yield: 92%; mp 236-238C; FTIR (ATR, cm-1) max: 3231.76, 2871.85, 1681.96, 1595.75, 

1545.77, 1483.91, 1383.91, 1246.39, 1158.54, 1050.89, 862.59, 770.91, 697.93; 1H-NMR (600 MHz, 

DMSO-d6): δ 13.40 (s, 1H, NH), 12.25 (s, 1H, NH), 10.97 (s, 1H, OH), 10.56 (s, 1H, ArH), 8.18 (q, J 

= 5.00 Hz, 1H, ArH), 7.93 (s, 1H, NH), 7.44 (dd, J = 8.34, 2.94 Hz, 1H, ArH), 7.23-7.19 (m, J = 4.06 

Hz, 1H, ArH), 4.25 (s, 2H, CH2); 
13C NMR (100 MHz, DMSO-d6): δ 169.86 (C=O), 158.34, 156.71, 

150.06, 131.01, 130.99, 123.56, 122.96, 116.10, 115.92, 114.31, 114.17, 34.29 (CH2) ppm. 

4.2.6    2-((4-hydroxy-1H-pyrazolo[3,4-d]pyrimidin-6-yl)thio)-N-((4-methoxy-2-nitrophenyl)  

carbamoyl)acetamide (9p) 

Yellow solid; yield: 96%; mp 213-215C; FTIR (ATR, cm-1) max: 3433.23, 3132.91, 2945.11, 1693.03, 

1506.83, 1441.97, 1267.52, 1150.08, 1035.73, 831.13, 774.25, 527.88; 1H-NMR (600 MHz, DMSO-

d6): δ 13.57 (s, 1H, NH), 12.51 (s, 1H, NH), 11.47 (s, 1H, OH), 11.18 (s, 1H, ArH), 8.24 (d, J = 9.20 
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Hz, 1H, ArH), 7.94 (s, 1H, NH), 7.58 (d, J = 3.00 Hz, 1H, ArH), 7.36 (dd, J = 9.28, 3.00 Hz, 1H, ArH), 

4.22 (s, 2H, CH2), 3.82 (s, 3H, CH3); 
13C NMR (100 MHz, DMSO-d6): δ 169.27 (C=O), 154.97, 150.28, 

139.68, 125.21, 121.27, 108.86, 55.76 (CH3), 34.34 (CH2) ppm. 

4.2.7     N-((2-chloro-5-nitrophenyl)carbamoyl)-2-((4-hydroxy-1H-pyrazolo[3,4-d] pyrimidin-6-

yl)thio)acetamide (9q) 

Brown solid; yield: 81%; mp 214-216C; FTIR (ATR, cm-1) max: 3251.94, 3129.53, 2962.12, 1691.89, 

1659.73, 1565.17, 1344.81, 1227.89, 1150.27, 1060.79, 830.04, 738.55; 1H-NMR (600 MHz, DMSO-

d6): δ 13.39 (s, 1H, NH), 12.18 (s, 1H, NH), 11.23 (s, 1H, OH), 11.01 (s, 1H, ArH), 9.13 (d, J = 2.52 

Hz, 1H, ArH), 8.00 (s, 1H, NH), 7.94 (m, J = 3.84 Hz, 1H, ArH), 7.79 (d, J =8.88 Hz, 1H, ArH), 4.28 

(s, 2H, CH2); 
13C NMR (100 MHz, DMSO-d6): δ 170.30, 150.11, 146.44, 135.41, 130.01, 128.47, 

118.54, 115.01, 34.34 (CH2) ppm. 

4.2.8    2-((4-hydroxy-1H-pyrazolo[3,4-d]pyrimidin-6-yl)thio)-N-(phenylcarbamoyl) acetamide (9r) 

Brown solid; yield: 80%; mp 222-224C; FTIR (ATR, cm-1) max: 3244.88, 3140.28, 2976.12, 1700.27, 

1672.42, 1548.77, 1490.83, 1449.90, 1223.68, 1152.02, 948.72, 857.35, 760.69, 700.47, 532.97; 1H-

NMR (600 MHz, DMSO-d6): δ 13.41 (s, 1H, NH), 12.19 (s, 1H, NH), 10.65 (s, 1H, OH), 10.10 (s, 1H, 

ArH), 7.99 (s, 1H, NH), 7.49 (d, J = 8.04 Hz, 2H, ArH), 7.31 (t, J = 7.92 Hz, 2H, ArH), 7.08 (t, J = 7.44 

Hz, 1H, ArH), 4.25 (s, 2H, CH2); 
13C NMR (100 MHz, DMSO-d6): δ 169.49 (C=O), 150.03, 137.23, 

128.52, 123.41, 119.53, 34.39 (CH2) ppm. 

4.2.9 2-((4-hydroxy-1H-pyrazolo[3,4-d]pyrimidin-6-yl)thio)-N-(pyridin-2-ylcarbamoyl acetamide 

(9s) 

Brown solid; yield: 89%; mp 215-217C; FTIR (ATR, cm-1) max: 3160.39, 2981.81, 2865.05, 1729.62, 

1688.34, 1575.47, 1504.97, 1434.23, 1299.93, 1162.51, 778.15; 1H-NMR (600 MHz, DMSO-d6): δ 

13.40 (s, 1H, NH), 12.20 (s, 1H, NH), 10.92 (s, 1H, OH), 10.46 (s, 1H, ArH), 8.27 (t, J = 2.94 Hz, 1H, 

ArH), 7.91 (d, J = 8.34 Hz, 2H, ArH + NH), 7.80-7.77 (m, J = 4.33 Hz, 1H, ArH), 7.11-7.09 (m, J = 

3.92 Hz, 4.27 (s, 2H, CH2); 
13C NMR (100 MHz, DMSO-d6): δ 169.54 (C=O), 150.65, 149.82, 147.70, 

138.01, 119.17, 112.82, 34.60 (CH2) ppm. 

5    Biological activity protocol 

5.1    CDK and Abl kinase inhibition assays 
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CDK2/cyclin E and Abl kinases were produced in Sf9 insect cells via baculoviral infection and purified 

on a NiNTA column. The kinase reactions were assayed with suitable substrates (1 mg/mL histone H1 

for CDK2 and 500 µM peptide GGEAIYAAPFKK for Abl) in the presence of 15 or 10 µM ATP for 

CDK2 and Abl, respectively, 0.05 µCi [γ-33P]ATP, and the test compound in a final volume of 10 µL, 

all in a reaction buffer (60 mM HEPES-NaOH, pH 7.5, 3 mM MgCl2, 3 mM MnCl2, 3 μM Na-

orthovanadate, 1.2 mM DTT, 2.5 μg / 50 μl PEG20.000). The reactions were stopped by adding 5 µL of 

3% aq. H3PO4. Aliquots were spotted onto P-81 phosphocellulose (Whatman), washed 3× with 0.5% 

aq. H3PO4 and finally air-dried. Kinase inhibition was quantified using a FLA-7000 digital image 

analyzer. The concentration of the test compounds required to reduce the kinase activity by 50 % was 

determined from dose-response curves and recorded as their IC50.
 

5.2    Anti-proliferative (K-562 and MCF-7) activity assays  

The tumor cells (purchased from the American Type Culture Collection) were grown in DMEM 

medium supplemented with 10% (v/v) fetal bovine serum and L-glutamine (0.3 g/L) and were 

maintained at 37 °C in a humidified atmosphere with 5% CO2. For anticancer cytotoxicity estimations, 

104 cells were seeded into each well of a 96-well plate, allowed to stabilize for 20 h, and the test 

inhibitors were then added at different concentrations (ranging from 0.1 to 100 μM or to a solubility 

limit) in triplicate. Three days after addition of the inhibitors, calcein AM solution (Molecular Probes) 

was added. One hour later, fluorescence of cells was quantified using a Fluoroskan Ascent (Labsystems) 

reader and cytotoxic effective concentrations were calculated and expressed as IC50 values from dose-

response curves. Roscovitine and imatinib were used as reference drugs. 
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CHAPTER 7 

1    Summary and conclusion 

Cancer is a disease caused by an uncontrolled growth of abnormal cells.  Recent advancement in 

understanding the molecular mechanism of cancer and the factors causing it has deeply impacted in the 

innovation of cancer chemotharpy. Predominant efforts are being carried out in order to identify 

advanced treatments through enhanced imaging, molecular diagnostic approaches and improvements 

in prevention and chemotherapeutic organization. Every year the number people with cancer is 

drastically increasing world over. Thus, it is becoming imperative to investigate and discover new 

agents and targets for the treatment of cancer. 

Cyclin-dependent kinases (CDK/Cyclins) constitute a family of serine/threonine kinases that involve in 

the regulation of cell cycle progression, transcription by phosphorylating proteins involved in cell 

division. Twenty different CDKs have been reported in mammalian cells till date. Among them, CDK1, 

CDK2 and their associated Cyclins A, B, D, E are considered as bona fide cell cycle regulators. For 

example, formation of active complex composed of CDK2 and cyclin E enables pRb phosphorylation, 

activation of transcription factor E2F which and initiation of S phase of the cell cycle. CDK2 then also 

associates with cyclin A, governing continuous DNA replication and properly programed deactivation 

of E2F. Deregulations of CDKs or cyclins, as well as the loss of endogeneous inhibitory proteins, result 

in abrogation of cell cycle control, which is connected with development of tumors, thus CDKs are 

considered important targets for anticancer drugs. 

The aim of the present study was to design and identify newer potential anticancer leads by bioisosteric 

replacement of purine by pyrazolopyrimidines. There are almost five different structural isomers of this 

bicyclic system (pyrazolo[5,1-b]pyrimidines, pyrazolo[5,1-a]pyrimidines, pyrazolo[4,3-d]pyrimidines, 

pyrazolo[1,5-c]pyrimidines and pyrazolo[3,4-d]pyrimidines), which exists due to the varying position 

of nitrogen, degree of saturation or unsaturation, or the number of nitrogen’s on the pyrazole nucleus. 

Pyrazolo[3,4-d]pyrimidine scaffold was substituted with various five/six membered heterocycles to 

yield novel multifarious pyrazolo[3,4-d]pyrimidine derivatives. This research work resulted in 71 novel 

derivatives as CDK2 inhibitors and  the novel desired structures were  confirmed by  thin layer 

chromatography (TLC), infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (1H, 13C 

NMR), and high resolution mass spectrometry (HRMS). These compounds were evaluvated for their 

inhibitory activity against CDK2 and Abl kinase enzymes as well as for their anti-proliferative activity 

(K-562 and MCF-7 cell lines). The pharmacological activity data indicated that the designed some 
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compounds were explicably active against CDK2 enzyme. Thus indicating that the pyrazolo[3,4-

d]pyrimidine neucleus as potential building block in further desigining newer anticancer agents.  

In chapter 2, we have extensively performed literature assessment on pyrazolo[1,5-a]pyrimidine for its 

various reported pharmacological activities. From our literature search, it was quite evident that 

pyrazolo[1,5-a]pyrimidine is a privileged scaffold, which was evident from the its marketed drugs 

(zeleplon, indiplon, dinaciclib, dorsomorphin, etc.) that have this scaffold. In addition, several research 

groups worldwide have exploited this scaffold as a building block for developing drug-like candidates 

with broad range of medicinal properties such as anticancer, CNS agents, anti-infectious, anti-

inflammatory, CRF1 antagonists and radio diagnostics etc. Apparently, there were no concised review 

article on pyrazolo[1,5-a]pyrimidine and its application in medicinal chemistry. Thus we envisaged in 

writing a review on pyrazolo[1,5-a]pyrimidine and its derivatives describing its biological properties 

with special emphasis on structure-activity relationship (SAR) studies. This work was published as a 

review article in European Journal of Medicinal Chemistry journal published in 2017, volume 126 

and page number 298 to 352. https://doi.org/10.1016/j.ejmech.2016.11.019. 

 

Similarly in chapter 3, we have performed comprehensive literature survey on another exploited 

scaffold that is pyrazolo[4,3-d]pyrimidine which has demonstrated numerous pharmacological 

activities particularly, anti-cancer, anti-infectious, phosphodiesterase inhibitors, adenosine antagonists 

and cytokinin antagonists etc. This extensive review unveils the synthetic and pharmacological diversity 

with special emphasis on structural variations around pyrazolo[4,3-d]pyrimidine scaffold indicating the 

medicinal worthiness of pyrazolo[4,3-d]pyrimidine framework. This review was published in 

Bioorganic and medicinal chemistry journal, 2017, https://doi.org/10.1016/j.bmc.2017.10.012. 

 

In chapter 4, inspired by the biological significance of pyrazolopyrimidine isomers, we synthesized  

novel derivatives of pyrazolo[3,4-d]pyrimidine by attaching aromatics at C-4 position through -NH 

linkage and phenethyl & pentane functional groups at C-6 via sulphur linkage by effectual synthetic 

route. This strategic synthetic scheme was more pragmatic in producing decent yields (75-95%) of final 

compounds. Synthesis of novel derivatives was achieved by nucleophilic substitution reaction of 

compound 4-chloro-6-(phenethylthio)-1H-pyrazolo[3,4-d]pyrimidine (6a), 4-chloro-6-(pentylthio)-

1H-pyrazolo[3,4-d]pyrimidine (6b)  with various appropriately substituted anilines at C-4 position as 

depicted in scheme 1 of chapter 4. Structures of synthesized compounds were characterized by spectral 

data (IR, 1H NMR, 13C NMR and HRMS). Laboratory of Growth Regulators, Palacky University, 

Slechtitelu 27, 78371, Olomouc, Czech Republic, performed anticancer screening against CDK2 & Abl 

kinase inhibitors and K-562 & MCF-7 human cancer cell lines. Compounds 8, 11 and 36 having 2-

chloro, 3-nitro and 4-methylthio aniline groups at C-4 respectively displayed significant enzymatic 

https://doi.org/10.1016/j.ejmech.2016.11.019
https://doi.org/10.1016/j.bmc.2017.10.012
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inhibitory activity against CDK2 (IC50 = 5.1 µM, 7.8 µM, 8.8 µM) and Abl (IC50 = ˃25 µM, ˃12.5 µM, 

˃25 µM) as well as prominent anti-proliferative effects against K-562 and MCF-7 cancer cell lines with 

IC50 value ranging from 19.2 to 27.4 µM. Further, the in silico molecular docking studies displayed 

good binding interactions and the binding energies were in agreement with the observed SAR as well 

as experimental results as discussed in chapter 4. This work This review was published in Bioorganic 

Chemistry journal, 2018, https://doi.org/10.1016/j.bioorg.2018.02.030. 

In chapter 5, as a continued effort in synthesizing pyrazolo[3,4-d]pyrimidine inspired anticancer 

compounds (CDK2 and Abl kinase inhibitors), pyrazolo[3,4-d]pyrimidine with different substituted 

heterocyclic moieties at C-4 position through ester linkage and phenethyl, pentane and hexane 

functional groups at C-6 via sulphur linkage for their anticancer activity. Diverse novel compounds of 

4,6-disubstituted pyrazolo[3,4-d]pyrimidine derivatives (5a-5h, 6a-6d and 7a-7c) were synthesized by 

efficient and adaptable synthetic route (scheme 1) as described in chapter 5. These compounds were 

well characterized by IR, 1H, 13C NMR, and HRMS. Laboratory of Growth Regulators, Palacký 

University, Slechtitelu 27, 78371, Olomouc, Czech Republic, evaluated obtained compounds for their 

in vitro anticancer activity against CDK2 & Abl kinase inhibitors and K-562 & MCF-7 human cancer 

cell lines. From the tested series, compounds 5a (CDK2: IC50 = 8.8 µM) and 6c (CDK2: IC50 = 6.8 µM) 

displayed significant enzymatic inhibitory activity and prominent anti-proliferative effects against K-

562 and MCF-7 cancer cell lines with IC50 value ranging from 18.9 to 89.3 µM. In addition, the binding 

energies of the best active compounds were in agreement with the experimental data and supported the 

SAR studies as discussed in chapter 5. This work has been communicated for publication in Chemical 

Biology and Drug Design. 

 

Finally, in chapter 6, as an ongoing endeavour in synthesizing pyrazolo[3,4-d]pyrimidine inspired 

anticancer compounds, we have synthesized phenylcarbamoyl acetamide fused pyrazolo[3,4-

d]pyrimidines. Compounds 9a-9s were synthesized with diverse structural variations by simple and 

effective synthetic route as described in chapter 6. Several phenylcarbamoyl acetamides (8a-8s) were 

efficiently synthesized and used for synthesis of desired final derivatives. All the final compounds were 

well characterized by IR, 1H, 13C NMR and HRMS, thus conforming their formation. In vitro anticancer 

screening was performed at Laboratory of Growth Regulators, Palacký University, Slechtitelu 27, 

78371, Olomouc, Czech Republic. For all the synthesized molecules from this series, IC50 values could 

not be measured due to solubility limit (IC50 ˃12.5 µM or ˃25 µM) as described in chapter 6. The 

overall finds suggest the significance of hybridisation to achieve fused pyrazolopyrimidines as 

anticancer agents. The manuscript for this work has been drafted and is ready for communication to an 

appropriate peer reviewed international journal.  

 

2    Future work 

https://doi.org/10.1016/j.bioorg.2018.02.030
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A comprehensive literature review and the anticancer activity data of the synthesized molecules 

displayed the significance of the pyrazolo[3,4-d]pyrimidine scaffold. However, one of the drawbacks 

of these molecules was the solubilty, which could have affected their activity profile. For better 

pharmacological activity, bioavailability, and efficacy profiles further design and optimization of 

pyrazolo[3,4-d]pyrimidine based molecules is needed. This could be achieved by carefully substitution 

of hydrophilic and charged bioactive moieties at various positions of the pyrazolo[3,4-d]pyrimidine 

scaffold through efficient synthetic methods. In parallel, 3D-QSAR-based pharmacophore models 

could be generated form the available dataset molecules and validated using the test set ligands. Thus, 

ligand-based virtual screening of the best pharmacophore model against drug-like database (ZINC, 

Maybridge, Chembridge and NCI) can be performed to identify new set of anticancer hits which can 

also be considered for strategic chemical synthesis. Further, molecular docking studies (structure-based 

drug design) can also offer comparatively enhanced solutions for optimization of anticancer leads. Thus, 

the presented work will contribute existing literature on pyrazolo[3,4-d]pyrimidine scaffold and assist 

in developing novel class of pyrazolo[3,4-d]pyrimidine based anticancer compounds as potential drug 

candidates. 
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