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Abstract 
The dynamic characteristic of transmission line conductors is very important in designing and 

constructing a new line or upgrading an existing one. This concept is an impediment to line 

design and construction because it normally determines the tension at which the line is strung 

and this in respect affects the tower height and the span length. Investigations into the 

phenomenon of mechanical oscillation of power line conductors have been extensively looked 

into by many researchers using concepts from mechanics and aerodynamics to try and predict the 

conductor dynamic behaviour. Findings have shown that precise prediction of conductor wind-

induced vibration is very difficult i.e. non-linearity. 

Over the years, various analytical models have been developed by researchers to try and predict 

the mechanical vibration of transmission line conductors. The first part of this dissertation 

considers the analysis of the model describing the transverse vibration of a conductor as a long, 

slender, simply supported beam, isotropic in nature and subjected to a concentrated force. The 

solution of this beam equation was used to obtain the conductor natural frequencies and mode 

shapes. Conductor self-damping was obtained by the introduction of both external and internal 

damping models into the equation of motion for the beam. 

Next, also using the same beam concept was the application of the finite element method (FEM) 

for the dynamic analysis of transmission line conductors.  A finite element formulation was done 

to present a weak form of the problem; Galerkin‟s method was then applied to derive the 

governing equations for the finite element. Assembly of these finite element equations, the 

equation of motion for the transverse vibration of the conductor is obtained.  A one dimensional 

finite element simulation was done using ABAQUS software to simulate its transverse 

displacement. The eigenvalues and natural frequencies for the conductors were calculated at 

three different tensions for two different conductors. The damping behaviour of the conductors 

was evaluated using the proportional damping (Rayleigh damping) model. The results obtained 

were then compared with the results from the analytical model and the comparison showed a 

very good agreement. 

An electrical equivalent for the conductor was developed based on the concept of mechanical-

electrical analogy, using the discrete simply supported beam model. The developed electrical 

equivalent circuit was then used to formulate the transfer function for the conductor. Matlab 

software was used to simulate the free response of the developed transfer function. 
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Finally, the experimental study was conducted to validate both the analytical model and the 

FEM. Tests were done on a single span conductor using two testing methods i.e. free and force 

vibration. The test results are valid only for Aeolian vibration. From the test results the 

conductor‟s natural frequencies and damping were determined. The experimental results, as 

compared with the analytical results were used to validate the finite element simulation results 

obtained from the ABAQUS simulation. 
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CHAPTER 1 

 

INTRODUCTION 
1.1 Background 
 

South Africa is presently experiencing power crises because the current generation capacity is 

less than the load. This has prompted the nation utility to increase the power output from all 

aspects of its operation. The power system in the country is divided into generation, transmission 

and distribution. The transmission networks are used to transfer power from the generation 

stations to the distribution networks. 

Economic and environmental pressure, coupled with the difficulty in acquiring lines right-of-way 

(servitude) has greatly influenced the design of overhead transmission lines. The pressure 

resulting from these conditions has necessitated the construction of long, high-capacity, high-

voltage transmission lines [1]. 

Transmission lines are designed to ensure availability, reliability of power, safety for the public 

and maintenance personnel and can be constructed at optimal cost. Lines in South Africa are 

designed to meet standards set in accordance with the code of practice described in the SABS 

document [2]. This code of practice specifies the minimum clearance of the conductor from the 

ground, public roads, railway lines as well as other power lines under varying weather conditions 

such as temperature and wind.  Based on these criteria; it is very expensive to construct a new 

line, upgrade or maintain existing ones. Hence, the cost of designing and constructing 

transmission lines continues to increase over the years. Overhead power lines usually consist of 

the following: steel towers, conductors, insulators and associated attachment hardware. 

The conductor whose function is to transfer power in power lines is considered to be the most 

expensive component. Therefore, its contribution towards the cost of the power line is 

significant. Conductor costs (material cost and installation costs) associated with the capital 

investment of a new over head power line contributes up to 40% of the total capital costs of the 

line [3]. Consequently, much attention has to be given to the selection of a conductor 

configuration to meet both present and predicted future load requirements. Transmission line 

components are usually exposed to dynamic forces (mechanical power) and motions. Out of all 

the line components, cables are normally susceptible to forces that cause both static and dynamic 

action due to its flexible structure.  The dynamic action is mostly caused by wind loading. 
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Probably no other large structure so continuously exposed to the forces of the wind has as much 

of its mass in such a highly flexible form [1][4]. This makes the line susceptible to the 

development of sustained cyclic conductor motions. The continuous exposure of conductors to 

mechanical power from wind can possibly lead to damage or fatigue failure of conductors and 

also to other line components. 

 
1.2 Motivation 
 

In utilities all over the world, power is normally transferred using overhead transmission lines 

from the generation stations, which are usually sited in remote areas and are connected to load 

centers which are a few kilometers to hundreds of kilometers away, passing through different 

terrains. This power is transferred by bare conductors. Bare conductors are non-insulated, and are 

made of numbers of aluminum stands with or without steel wires at the core. The conductors can 

withstand higher level of current compared to the insulated conductors of the same cross-

sectional area and this is why they are widely used in long-span transmission line. 

In transmission lines, the most important component used to convey power is the bare conductor 

and before it is put into service, the line designers have to ascertain its electrical properties, 

thermal limits, mechanical properties and other factors which affect the performance of the line. 

This process will help the line designers to design an optimal power line that will guarantee 

availability, reliability of power, safety to the public and maintenance personnel and will also 

meet the cost/benefit of constructing the line. 

 As the lines passes through various terrains, they are usually subjected to mechanical loading 

from wind which is dynamic in nature and also a function of the type of terrain [1].  Loading 

causes mechanical oscillations in the high-voltage transmission lines, and prolonged exposure of 

conductors to vibrations will eventually result in fatigue, fretting and other failure modes. 

 Over the years, numerous research projects have been conducted to try and understand the 

dynamic behaviour of conductors when subjected to mechanical loading from wind. 

Investigations into the phenomenon of mechanical oscillation of power line conductors have 

been extensively looked into using concepts from rigid body, analytical, fluid mechanics and 

aerodynamics to try and predict the conductor dynamic behaviour. Based on findings, the 

mechanical vibrations of a conductor when it receives loading from wind exhibits a complex 

dynamic and also the system response is non-linear. Thus, precise modeling of the dynamics 
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involved is difficult due to the fact that the behaviour of the system is non-linear. Therefore, in 

line with the above, there is a need to continue to study this form of conductor motion in order to 

be able to adequately predict the system response to some degree of accuracy, especially with 

respect to self-damping when subjected to the dynamic forces from wind.  

 The aims and objectives of this research project are: 

  To analyse  the  model describing the transverse vibration of bare conductors 

 To evaluate the self-damping capability of bare conductors 

 To evaluate the analytical model using finite  element analysis 

 To develop an electrical equivalence for the vibrating conductor  

 To verify experimentally the analytical model  

 
1.3 Research Question 
 

Based on the inference made in [5] in which it was stated that the accurate information on how to 

determine the power line self-damping capability is very important because it can be used to 

assess a method of estimating the maximum amplitude that occurs on the line.  Conversely, in 

the same report it was suggested that if the value of the conductor self-damping was small 

enough to be ignored, consequently the analysis of the principle modes of the undamped system 

could then also be used for the damped systems. However, the dynamic analysis of systems 

shows that the damping force of a system may be considered small as compared to mass and 

stiffness but its influence on the system‟s dynamic characteristic is very significant. Therefore, it 

is imperative to know the accurate amount of conductor self-damping before ignoring it or its 

contribution when carrying out dynamic analysis of power line conductors.    

In line with the above, the research question that needs to be answered is  

      

       “How can we effectively determine bare conductors‟ self-damping?” 

 

1.4 Hypothesis 

 
Wind-induced vibration, due to its catastrophic nature and engineering implication on power has 

led to extensive research work over the years. Ever since mechanical oscillation of power line 

conductors was noticed on transmission lines, investigations have been carried out by many 
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researchers. This has led to extensive studies using theoretical, field, and also from both outdoor 

and indoor vibration testing laboratory experimental studies to try and predict the conductor 

dynamic behaviour.  

Based on findings emanating from other researchers, various bodies, such as IEEE, Gigré, and 

IEC have come with standards in constructing power lines. These standards normally specify the 

stringing tension with respect to the conductor ultimate tensile strength (UTS) and also vibration 

absorber suitable for certain climatic conditions and the nature of the terrain. The main goal of 

this study is to determine damping of line conductors at tensions higher than that stipulated, as its 

string tension and also ascertain whether it is desirable to adopt a higher conductor tension than 

the one currently being used by line designers. Thus, this will help determine the conductor self-

damping at that tension and in respect help to ascertain its influence on the dynamic 

characteristics of the vibrating conductor. Conversely, this will help determine the type and 

amount of vibration absorbers (dampers) that will be needed on the lines. 

 

 1.5   Importance of This Study 
 

As highlighted above, standards are set by various bodies on the specific tension (as a percentage 

of its UTS) which the line should be strung. In accordance, designing an overhead line, 

transmission line engineers normally string the line conductor at 25% of its ultimate tensile 

strength for aluminium conductor steel reinforced (ACSR) conductors based on recommendation 

in the Gigré report on Aeolian vibration [6] and 20% of its ultimate tensile strength for Aero-Z 

conductors based on the recommendation in the IEC standard [7]. These standards have been 

adopted by line designers based on outcomes from years of research and experience with 

overhead lines. Based on this, it has been ascertained that using these standards; the dynamic 

loading from the wind can be curtailed thereby ensuring a good fatigue life for the conductor. 

In adopting these standards in designing a line, conductor self-damping capability is usually 

ignored. This is due to the fact that the self-damping by a conductor is assumed to be very small 

and also the value is not normally specified by conductor manufacturers. Thus, line design is 

normally done ignoring the contribution of conductor self-damping. However, if the conductor 

self-damping can be adequately ascertained, and also can be determined above the tension at 

which the lines are strung, by an increase of 5% above the value recommended above with 
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respect to its ultimate tensile strength i.e. 30% and 25% respectively.  This will result in reducing 

sag with the following implications: 

1) The line can be designed with a shorter tangential tower while the span length is kept the 

same. 

2) The line can be designed with longer span length while the height of the tower is still 

kept the same.  

The result will be a higher cost benefit on the part of power utilities both in designing and 

construction of new lines or upgrading existing lines. 

 
1.6 Dissertation Outline 
 

The background of this study has been elaborated on in this chapter. Chapter 2 gives the 

literature review of the mechanical vibration of systems with single degree-of-freedom (SDOF) 

and how the analysis of these systems can be used to describe conductor‟s mechanical vibrations 

when it receives loading from wind. Chapter 3 describes the analytical model describing the 

dynamic characteristics of bare conductors. Chapter 4 will be used for verification of the model 

using finite element method. Also in this chapter an electrical equivalence was also developed 

for the conductor. The aim of developing the conductor equivalent circuit is to provide an 

alternative in determining the conductor self-damping by means of electrical elements. Chapter 5 

will describe the procedure used to carry out tests in Vibration Research and Testing Centre 

(VRTC) in line with IEEE standard on conductor self-damping. Also results from vibration tests 

and finite element method were presented and analyses of the results done. In Chapter 6, 

concluding remarks and future scope of the study was discussed.  
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CHAPTER 2 

 

LITERATURE REVIEW 
 

2.1 Waves 
 

Waves are phenomena that are common to most aspects of our physical world and they are 

everywhere in nature. Based on the concept of physics, waves are created when an external 

energy (disturbance) is imposed on a system and this sets the system into back-and-forth 

vibrations about its equilibrium or rest position. When a wave is set up in a system, a pulse 

travels through the system continuously and periodically transporting energy away from the 

point the impulse was imposed on the system. Hence, waves are said to be an energy transport 

phenomenon in a medium without transporting the matter. 

There are basically two types of wave with regards to energy transportation; electromagnetic and 

mechanical. A mechanical wave is a wave that requires a medium to transport energy while an 

electromagnetic wave does not require a medium. Waves are usually described by the following 

properties: 

1) Amplitude (A) 

2) Wavelength (λ) 

3) Frequency (f) 

4) Speed or Velocity (V) 

5) Period (T)    

 The wave properties are illustrated using the diagram below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Graphical representations of wave motion and its properties 
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In the study of waves and vibration of systems, the vibration of the system is caused by the 

waves that travel through it and also the amplitude of vibration of the system is a function of the 

quantity of energy being transported through it i.e. the greater the energy the higher the 

amplitude of vibration of the system. Therefore, the quantity of energy that passes through the 

system determines the level of vibration.  

For a system, a vibrating body with varying wave properties as mentioned above will not have 

effects on the speed. But for any system experiencing change in tension, this change will affect 

the speed of the wave. This is because a change in tension will have effects on the system‟s 

material properties such as the system‟s stiffness and density and this ultimately affect the speed 

at which the wave travels through the system.  

In this study, the physics of waves is very important because the vibration of the system in focus 

is due to the transportation of energy through the system and analysis of the system will be done 

at different tensions. The varying of the tension of the system tends to have an effect on 

properties of the wave that travels through the system. As more energy is added to the system 

due to loading, the more energetic the vibration becomes. This can result to a phenomenon called 

resonance which will be discussed later in this chapter. This phenomenon is very important 

because some analysis that will be done in this study will be around the region in which it 

occurs.   

 

2.2 Mechanical Vibration 
 

Vibration is a fluctuating motion brought by fluctuating forces due to waves traveling through a 

system. The concept of vibration is a common phenomenon in mechanical systems and it is 

evidence in most systems in our physical world. Mechanical oscillation of a system is the motion 

about an equilibrium point and this oscillation may be periodic or non-periodic. The concept of 

vibration in any system may be beneficial, but in most cases it is a limiting factor in engineering 

design and careful design usually minimises unwanted vibrations. 

 

2.2.1 Linear and Non-linear Systems 
 

Vibrating mechanical systems can be analysed as either linear systems or non-linear systems. 

Linear systems vibrate in a periodic form and can be analysed using the superposition principle. 
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Therefore, the equations of motion are such that a linear combination of input to the system leads 

to the same linear combination of outputs (response) i.e. superposition principle. Examples of 

equations describing such systems are:- 

      

   0 kxxcxm                                                                                           ………………… (2.1) 

 0 x
g

l
x                                                                                              ………………… (2.2) 

Non-linear systems are systems that oscillate in a non-periodic manner and all properties of 

linear systems are violated by non-linear systems. Non-linearity in a vibrating system is due to its 

mass, stiffness, damping and geometry. For time invariant system, non-linearity can be of two 

types: non-linear damping and non-linear stiffness [8]. Modal analysis does not apply to non-

linear systems because it depends on super-position of solutions. Examples of equations 

describing non-linear systems are:- 

 

 032  xxxm                                                                                ……..……………. (2.3) 

0)1(2 2  kxxxcxm   (Van der Pol‟s equation)                            ….. ……………… (2.4) 

 

It worthwhile to note that vibrations experienced in any real physical systems are non-linear 

which therefore implies that the assumption of small angles of oscillation restricts the system to 

linear case as well as simplifies the problem. This concept will be used in all analysis in this 

study. 

 

2.3 Vibration Analysis 
 

In the area of vibration analysis, understanding the response of both simple and complex systems 

can be achieved by studying and analysing the simple mass-spring–damper models. The 

vibration of this form of system can be described by single-degree-of-freedom and also the 

excitation of the system can be brought about by a harmonic force, f, as shown in figure 2.2. The 

formulation of the equation of motion for this system and its analysis, the following will be used: 

 Based on Newton‟s second law of  motion, the force produced is proportional to the 

acceleration of the mass 
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 The force applied to the mass by the spring is proportional to the length the spring is 

stretched. The proportionality constant is the stiffness of the spring in (N/m) 

 The energy dissipated by the system is proportional to its velocity  (i.e. viscous damping) 

in (Ns/m)  

 The response of the system at t = 0 is 0x (initial displacement) and 0v (initial velocity) 

and are known as initial conditions. 

 

 

 
Figure 2.2 (a) Showing the mass-spring-damper system with one degree of freedom and 

figure 2.2 (b) showing its free body diagram 

 

2.3.1 Types of Mechanical Vibration 
 

The system of mass-spring-damper system shown in figure 2.2 can be used to analyse the 

following different types of mechanical vibrations usually experienced by vibrating systems. 

 

 Free vibration without damping 

 Free vibration with damping 

a b 

k c 

f 

Mass 

kx 

xm   

cx 

Mass 

x 
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 Forced vibration without damping 

 Forced vibration with damping. 

 

Free vibration without damping occurs when a mechanical system is set into vibration with an 

initial input and allowed to vibrate freely assuming damping is negligible and excitation force is 

zero i.e. c and f  equal zero.  

From figure 2.2, the equation describing the free vibration for the system is given as: 

0 kxxm     or  

02  xx                                                                                                 …….. ………. (2.5) 

 Where 
m

k
2

    and it is natural frequency for the system
 

 

The response of the system is given as 

 

)sin()(   tAtx                                                                                 ………………… (2.6) 

Where 


 00

2 vx
A


  and 

0

01tan
v

x
   

 

For free vibration with damping, the vibrating system has damping mechanism to dissipate 

energy which makes the initial amplitude decay with time.  

Also using figure 2.2, the equation for the system becomes  

    0 kxxcxm       

   

0)()(2)( 2  txtxtx                                                                       ………..………. (2.7) 

 Where δ 
m

c
  = 

m

c

2
 

The response of the system is given as 

 

)sin()(    tAetx d

t                                                                       …………………. (2.8) 
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Where 21  d , 
2

2

0

2

00 )()(

d

dxxv
A



 
  and 

00

01tan
xv

x d







   

 

A system is said to experience forced vibration without damping, with the assumption that the 

system damping is negligible. When the system is set into vibration by the application of an 

external force, the frequency of the vibration of the system is the same as the frequency of the 

driving force, but the magnitude of the vibration is strongly dependent on the dynamic 

characteristics of the mechanical system itself. 

Using figure 2.2, if the external force, f, which is harmonic in nature is applied, the equation 

describing the system becomes:-  

 

 tfkxtxm drsin)(      

 tFxx dr sin2                                                                              …… ………. (2.9) 

 

Where   dr  frequency of the driving force  

              F =
m

f
  

The response of the system is given as 

t
F

tAtx dr

dr




 cos)sin()(
2 

                                               …………….. (2.10a) 

or 

t
F

t
F

xt
v

tx
drdr










coscossin)(
22220

0



















          ….….……… (2.10b) 

  

For forced vibration with damping, when set into vibration by a harmonic force f, the amplitude 

decays with time.  

The equation of motion describing the system becomes      

 tfkxxcxm drsin     

 tFxxxm dr sin2                                                                 …………..…….. (2.11) 

Whose general response is give as 



12 
 

 

)cos()sin()( 



tXtAetx d

tn                                                ……………….. (2.12) 

 

Where 
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
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And  

   22
22

2  nn

F
X



  

 

2.3.2 Beats and Resonance 
 

For a system experiencing forced vibration without damping as shown in figure 2.2, as described 

by equation (2.8). As explained by the author [9], for such a system to maintain a constant-

amplitude, a force f, has to be applied that is harmonic in nature. As the frequency ( dr )   of the 

driving force is being varied, a condition is reached in which the frequency of the driving force 

approaches the natural frequency of the system (ω) and two very important phenomena occur. 

The first is the beats. 

Beats are rapid oscillations with slowly varying amplitude and they occur when the frequencies 

are slightly different. Applying the principle of superposition, the summation of their 

displacements at each instance with time equals to the total displacement at that time, as shown 

in figure 2.3 below.  
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Figure 2.3 Beats [9] 

The second is resonance and it occurs when the driving frequency dr  becomes exactly equal to 

the system‟s natural frequency ( = ω). When a system is at resonance, the system experiences 

oscillation which is an amplitude peak i.e. the amplitude of vibration becomes unbound as shown 

in figure 2.4. The frequency at which this occurs is called the resonance frequency. 

Figure 2.4 Forced response of a spring-mass system driven harmonically at its natural frequency 

[9] 

 

 

dr
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2.4 Damping 
 

Damping is the term used to define the non-conservative forces used by mechanical systems to 

dissipate energy. It is responsible for the decrease in amplitude with time as the system 

undergoes oscillation. In real-world systems there is an inherent mechanism, in which imposed 

external energy is removed from the system without which the system will continue to oscillate 

without coming to rest. 

There are three main types of damping present in any mechanical system: 

 

 Internal damping in which damping is caused by a microstructure defects, thermoelastic, 

effects of dislocation in metals etc. This form of damping can either be viscoelastic or 

hysteretic damping. 

 Structural damping, where damping occurs from rubbing friction or contact between 

different elements in a mechanical system. 

 Fluid damping, this occurs when a material is immersed in a fluid and there is relative 

motion between the material and the fluid, and the material is subjected to drag force 

resulting in damping. 

 

Using the mass-spring-damper systems with damping described in section 2.3.1, the solution to 

these equations depends on the amount of damping. Systems vibrating with some form of 

damping can be experiencing one of the following types of damping: 

 

 Critical damping: This occurs when the system no longer oscillates but returns to 

its equilibrium position without oscillation when it is displaced and released. 

 Over damping: In this condition the system does not oscillate, but returns to its 

equilibrium position more slowly than with critical damping. 

 Under damping: In this condition the system oscillates with steadily decreasing 

amplitude.  

In this study, the system that was analysed is an example of a system that experiences under-

damping but with very low inherent damping characteristics that made it prone to vibration. 

In analysing vibrating mechanical systems, several forms of damping models were available for 

modeling a particular mechanical device or structure. These are: 
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1) Viscous damping 

2) Coulomb damping 

      3) Hysteretic damping, solid damping or structural damping.  

It is common to study damping mechanisms by examining the energy dissipated per cycle under 

a harmonic loading. Often, force versus displacement curve, or stress versus strain curves are 

used to measure the energy lost and hence, determine a measure of damping in the system. 

                 Energy lost ΔE, per cycle is defined by 

 

                                          ΔE = dxFd                                                   ………….……….. (2.13)
 

Where dF  is the damping force  

 

2.4.1 Effects of damping  
 

The vibration of systems usually slows down and eventually dies out with the presence of 

damping. In modern engineering, damping is a design parameter because the amplitude of 

vibration will be determined by the amount of damping present in the system.  Reference [10], 

with relation to damping, gave the explanation of the effect of the other two parameters: mass 

and stiffness. This implies that to optimise any system for maximum damping consideration 

should be given to the variation of all three parameters invoved these are damping, mass and 

stiffness.  

For systems executing harmonic excitation, increasing damping will affect the response only 

while an increase in stiffness (increase in frequency) will result in a decrease in amplitude. Also 

change in mass of the system results in change in frequency but little or no change in the 

response of the system. 

 

2.4.2 Conductor damping 
 

Generally, any system or body that is subjected to mechanical vibration can damp-out energy in 

the following ways: 

Firstly, by internal damping where the damping is by internal friction at the molecular level due 

to microstructures- impurities, grain boundaries, etc in the system. Secondly, is by structural 

damping as a result of inter-strand friction (rubbing friction) and contact among different 
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components and assemblies of the system. Thirdly, by fluid damping where the relative motion 

between the wind and the body subjects the body to a drag force thereby returning the energy 

back to the wind.   

In transmission lines when conductors are exposed to transverse vibration by mechanical loading 

that is dynamic and harmonic in nature, conductors can damp out this energy by internal friction 

at the molecular level; by inter-strand friction within the conductor; by transference to clamps, 

dampers, spacers, spacer-dampers, and suspension assemblies; by transference to adjoining sub-

conductors (in the case of bundled conductors); or by return of energy to the wind. [1] [11] 

The internal energy losses at microscopic (molecular) level within the core and individual 

strands of the conductor are known as metallurgical or material damping [12]. When a conductor 

flexes, the strands of the conductor slip against each other; this relative motion generates 

frictional forces that provide damping [11]. The combination of these energy dissipative 

processes by a conductor is known as conductor self-damping.   

 

2.5 Conductor Mechanical Vibration 
 

In an overhead transmission line, conductors are used to transfer power from one point to 

another. When these conductors are exposed to nature‟s dynamic forces, they are set into 

vibration. Wind loading is the most common form of loading that causes mechanical oscillations 

of conductor in high-tension transmission lines. This form of dynamic motion includes those 

types that are repetitive or cyclic in motion and there are three major types of wind-induced 

conductor motion that affect the transmission lines. These are Aeolian vibration, Conductor 

galloping and Wake-induced vibration. It is important to note that this motion exhibited by a 

conductor when it is exposed to wind loading is a function of the following: 

a) Wind velocity 

b) Line tension 

c) Diameter of conductor 

d) Temperature 

e) Conductor self-damping 

f) Terrain  
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2.5.1 Strouhal and Scruton Numbers 
 

Strouhal [13] was the first person to describe the vortex-shedding phenomenon resulting from 

wind flowing across a stationary cylindrical structure. This phenomenon can be described by a 

non-dimensional number, known as Strouhal number. This number is given as: 

 

                        V

df
S s `                                                                     ………… …….. (2.14) 

  Where  

            fs  =  the frequency of vortex shedding 

            d  = the diameter of the cylindrical structure 

            V  = velocity of the smooth flow of wind. 

 

The Strouhal number is taken to be 0.185 to 0.2 for vibrating conductors 

The Scruton number [14] is another important parameter when considering vortex excitation of 

wind-induced vibrations of power line conductors. This number is given as: 

                    
2d

m
Sc




                                                                              ………………. (2.15) 

 

where 

         m             = is mass of cable per unit length (kg/m), 

         ζ             = damping as ratio of critical damping, 

         ρ             = air density (kg/m
3
), and 

         d             = cable diameter (m). 

  

This relationship shows that increasing the mass density and damping of the conductor, 

increases the Scruton number. Most types of wind-induced oscillation on a conductor tend to be 

mitigated by increasing the Scruton number because the amplitude of the conductor oscillations 

is inversely proportional to the Scruton number Sc. 

Therefore, increasing the mass and damping of the conductor increases the Scruton number and 

therefore reduces oscillation amplitudes. Thus, its value is a measure of the conductor damping 

when subjected to aerodynamic excitation (vortex shedding) at the Strouhal frequency.  
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2.5.2 Classification of Conductor Oscillation 
 

As mentioned earlier, there are three major types of wind-induced conductor vibration which 

are cyclic in nature that will affect the transmission lines conductors:  

1) Aeolian vibration 

2) Conductor galloping 

3) Wake-induced vibration 

 

2.5.2.1 Aeolian vibration 

 
Aeolian vibration [1][4] is caused by the flow of laminar (smooth) streams of wind over a 

conductor. Based on the research using the concept from fluid mechanics and aerodynamics, it 

occurs as the wind stream passes over the conductor, causing a formation of alternating vortices 

(eddies) behind. This creates vortex induced air pressure fluctuations in the downstream wake 

side of the conductor which tends to produce motion at right angle to the direction of the wind as 

shown in figure 2.6. Aeolian vibration is characterised by a frequency range which is usually 

between 3 and 200Hz and the vibration amplitude could be one conductor diameter peak-to-

peak. It occurs at low wind velocities between 1 to 7m/s.  

 
Figure 2.6 Aeolian vibration vortex formations [1] 



19 
 

2.5.2.2 Conductor galloping  
 

Conductor galloping [1][4] is a cyclic conductor oscillation that is common to areas that 

experiences snow. It is usually caused by ice deposited on the conductor, modifying its cross-

sectional circular shape to an asymmetrically-iced conductor surface as shown in figure 2.7 

below. As wind blows across the conductor, because the asymmetrically-iced conductor is 

aerodynamically unstable, conductor galloping does occur. It is a low frequency (from 0.1 to 

1Hz), high amplitude (± 0.1 to ±1 times the sag of the span) form of vibration and it is usually 

caused by a moderate, steady crosswind acting upon an asymmetrically iced conductor surface. 

Galloping takes one of two basic forms, standing waves and traveling waves or a combination of 

them.    

              
 

 
 

Figure 2.7 Asymmetric iced conductor [1] [4] 
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2.5.2.3 Wake-induced vibration 
 

Wake-induced vibration or bundle conductor oscillation [1][4] is associated with bundle 

conductors of a transmission line. It is caused by the aerodynamic shielding of leeward 

conductors by windward conductors. The vibration occurs in moderate to strong winds (range of 

7 to 18m/s) and it takes place when the wake from the windward line induces lower drag and 

creates lifting forces on the leeward line. Also because the bundle is held together by a spacer, a 

combination of motion can occur due to spacer effect. The wake-induced vibration is observed 

when the conductors are dry, but it also occurs during icy and rainy conditions. The major four 

bundle conductor oscillations are shown in the diagram below.  

Fig 2.8 Wake-induced vibration [1][4] 

 

The table in the next page gives a summary of the comparison of the three types of wind induced 

vibration normally experienced in overhead transmission lines 
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Table 2.1 Comparison of types of cyclic conductor motion [1] [4] 

 
Aeolian Vibration  Conductor Galloping  Wake-induced Oscillation  

Types of Overhead 

Lines Affected  
All  All  

Limited to lines with bundled  

conductors  

Approx. Frequency 

Range (Hz)  
3 to 150  0.08 to 3  0.15 to 10  

Approx. Range of 

Vibration Amplitudes  

(Peak-to-Peak) 

(Expressed in 

conductor  

diameters)  

0.01 to 1  5 to 300  

Rigid-Body Mode:  

0.5 to 80  

Sub span Mode:  

0.5 to 20  

Weather Conditions 

Favoring Conductor  

Motion  
   

Wind Character  Steady  Steady  Steady  

Wind Velocity  
1 to7m/s  

(2 to 15mph)  

7 to 18m/s  

(15 to 40mph)  

4 to l8m/s  

(10 to 40mph)  

Conductor Surface  
Bare or uniformly 

iced (i.e. hoarlrost)  

Asymmetrical ice deposit on  

conductor  
Bare, dry  

Design Conditions 

Affecting Conductor  

Motion  

Line tension, 

conductor  

self-damping, use of 

dampers, armor rods  

Ratio of vertical natural  

frequency to torsion natural 

frequency; sag ratio and sup-  

port conditions  

Subconductor separation, tilt of  

bundle, subconductor arrangement 

sub span staggering  

Damage  
   

Approx, time required 

for severe damage  

to develop  

3 months to 20 + 

years  
1 to 48 hours  1 months  to 8 + years  

Direct causes of 

damage  

Metal fatigue due to 

cyclic  

bending  

High dynamic loads  
Conductor clashing, accelerate ate 

wear in hardware  

Line components most 

affected  

by damage  

Conductor and shield 

wire  

strands  

Conductor, all hardware,  

insulators, structures  

Suspension hardware, spacers,  

dampers, conductor strands  
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2.6 Fatigue Failure 
 

Based on the early investigation by a German engineer named August Wöhler, he was able to 

establish that fatigue occurs if the alternating stress was only slightly less than the static stresses 

which would cause failure of the metal, and only a few cycles of loading were required to cause 

failure [15]. Fatigue of conductor is caused by dynamic stresses that result from alternating 

bending of the conductors where their motion is restrained. Fatigue is enhanced when both 

stresses and fretting increase with the amplitude of bending i.e. the greater the amplitude, the 

more quickly fatigue occurs. 

Fatigue failure of conductor and its associated line hardware in overhead line is the most 

common form of damage from wind induced vibration especially from Aeolian vibration. This is 

because this form of wind induced vibration produces several numbers of standing waves which 

induces bending stresses at points which motion is restrained and many million cycles can be 

accumulated. Hence, fatigue of conductor strands occurs at points where motion of a conductor 

is constrained against transverse vibration and its occurrence at these points is directly linked to 

the rigidity with which conductor motion is restrained [1][4]. These points include support 

location, suspension clamps, line hardware. 

To counter fatigue and other effects resulting from wind-induced vibration, during the design 

stage, vibration absorbers (dampers) are usually included. Example of a vibration absorber is the 

Stockbridge damper [4] shown below in figure 2.9, which has been proven to be very effective 

against Aeolian vibration. 
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CHAPTER 3 

 

ANALYTICAL MODELLING 
 

3.1 INTRODUCTION 
 

This chapter presents the methodology used in the study of wind-induced vibration experienced 

by conductors on overhead transmission lines. The concept that is addressed in this aspect of the 

study is divided into two phases: free and forced vibration. These include the explanation of the 

physical nature of the phenomenon as well as the analysis of the power line cable model as a 

beam, the finite element method equation formulation and the determination of bending stiffness 

for the conductor. 

 

3.2 PHYSICAL ASPECT AND MODELLING CONCEPT 
 

Generally, the solution to any engineering problem normally proceeds through four stages: first, 

a real-world problem is identified; second, with proper assumptions the problem is modeled; 

third, the model is analysed and last, the results are applied to the original physical problem. This 

process enables the prediction of the system response, thereby helping in developing a 

mechanism to find a solution to this identified physical problem. The first three stages in terms 

of the conductor experiencing transverse vibration will be applied in this chapter and in the next. 

The last stage will be addressed in chapter five. 

 In the physical world, wind-induced conductor oscillation can be caused by wind excitation and 

the loading which is distributed throughout the conductor span.  This can be reproduced in a 

wind tunnel experiment when the conductor is subjected to wind at varying conditions. Based on 

explanations given for experiments conducted in wind tunnels with regard to fluid–solid 

interaction reported in publications and in literatures by researchers and which detailed  

explanations can be found in references [1][2][4][13][16][17][18]. In these research publications, 

it was established that the wind that flows across the conductor in the horizontal plane will cause 

the conductor to vibrate in vertical plane perpendicular to the direction of the wind. In modeling 

the above as discussed earlier, contrary to what happened in the physical world and in wind 

tunnel experiments, in an indoor laboratory the vibration is assumed to be caused by an effective 
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or integrated wind loading that is concentrated at a point and this can produce the same effect as 

that of the distributed loading found in the real world as illustrated in figure 3.1 shown below. In 

the diagram, a single span conductor is exposed to a stream of wind in the horizontal plane. To 

analyse this form of vibration, the resultant force is assumed to be harmonic in nature, thus 

expressed as a single frequency sinusoidal force. This assumption is made because the input 

loading from vibrator (shaker) is set at fixed vibration frequency and this is allowed to vibrate or 

sweep across the conductor within a certain frequency range to determine the various conductor 

resonance frequencies.   

Single Span Transmission 

line Conductor

Wind Loading

Point Loading into the  Conductor

Fig 3.1. Shows the conductor wind loading in the physical world and the point loading 

concept used in modeling.
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3.3 Conductor Input Power (Wind Loading)
 

 

In the real world, the vibration of a conductor is caused by vortex formation as the wind flows 

across the conductor and this effect is known as Koman effect. For Aeolian vibration, the  

frequency of vibration is calculated using strouhal fomula as given by equation (2.14). 

Investigations into this fluid–dynamic excitation force causing this form of oscillation has been 

done using wind tunel experiments [17][18]. Findings from these experiments have  helped 

produce an emperical formulae to calculate the wind input force and this is specific for a 

particular conductor. Based on these findings, reference [4] provides empirical formulae to 

calculate the wind input power to the conductor. 

The exitation of a conductor in an indoor testing  laboratory is different compared to that done in 

the wind turnel which tends to produce the same excitation similar to that of the real world 

scenerio (distributed loading). In the indoor testing laboratory, a concentrated force, F, is used to 

cause the conductor to oscillate and this will replicate the same effect as the distributed force 

which a conductor in wind turnel experiment or in the physical world would be subjected to.  

This point loading is simulated with a shaker (vibrator) in the laboratory and  inputing this force 

to the conductor as modeled by damper-spring system attached to the conductor illustrated  in 

fugure 3.2  shown below.  

             
 

 

Figure 3.2 (a and b).The mass-spring-damper model for Shaker-Conductor flexible link 

connection 

b a 
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The flexible link connection is used in the laboratory to connect the shaker and the conductor is 

modeled with the stiffness and the damping as shown above. Figure 3.2a represents the actual 

physical model in which not all the power is transferred from the vibrator to the conductor. Due 

to the negligible energy that is lost as well as the complication caused by the presences of the 

damping constant with regard to its phase shift, it is then assumed that no power is lost between 

the vibrator and the conductor. Thus, setting the damping constant to zero, then transforming the 

model to a pure spring coupling shown in figure 3.2b. This model will be used to calculate the 

input force for a single span conductor or determine the amount of force impacted by the shaker 

to the conductor. 

 

3.4 Concepts of Bare Conductor Modeling 
 

 Conductor vibrations have been a subject of intensive studies for a long time. Over the years, 

various analytical models have been developed by researchers and used to try and predict the 

mechanical vibration of transmission line conductors.  These developed models are either based 

on modeling the conductor as beam or taut string.  Also the beam or string model is either 

considered a continuous or lump mass.  The taut string model of the vibrating conductor neglects 

the bending stiffness of the cable that is known to have some effect on the dynamics of the 

conductor.  

 In this study, the modeling of the transverse (flexural) vibration of a bare conductor is done 

using the concept of bending vibration of a beam. This concept also considers the beam to be a 

distributed-parameter (continuous or infinite-dimensional) systems i.e. mass of the system is 

considered to be distributed throughout the structure as a series of infinitely small elements. 

Hence, when there is vibration, each of these infinite numbers of elements move relative to each 

other in a continuous manner [9]. To understand the concept of bending vibration of a beam, see 

appendix A for the derivation of simple beam equation also known as the Euler-Bernoulli 

equation. 

From literature, most researchers‟ model the conductor as beam clamped at both ends i.e. rigidly 

fixed and permits no motion. In [19] it was pointed out that this assumption was only valid for 

earth wires. In transmission lines, the conductors are attached to suspension insulators which 

permit some degree of motion in the longitudinal direction. Hence, based on the above inference, 
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the transverse vibration of the conductor was modeled as a long, slender, simply supported beam, 

isotropic in nature and subjected to a concentrated force. 

3.4.1 The Equation of Motion 

The equation of motion of a conductor using the beam as explained above, experiencing 

transverse vibration has been investigated by many researchers and authors. Figure 3.3 shows the 

static profile of the beam, sag by a given tensile force, S, that can be approximately determined 

by the parabolic curve subjected to wind loading. From this profile, the wind loading is assumed 

to be a concentrated force, f (x, t), with a single harmonic frequency and this is used as the basis 

to model the transverse vibration of transmission line conductor 

The formulation of the equation of motion is based on the following assumptions [12]: 

 Uniformity  along the span (length) and slender (thin Beam theory) 

 Conductor is regarded as a solid, cylindrical body composed of linear, homogeneous 

physical properties throughout its cross-sectional area i.e. tension, flexural rigidity, cross-

sectional area assumed uniform throughout the conductor. 

  Such that the plane of symmetry of the beam is also the plane of vibration so that 

rotation and translation are decoupled. Hence, the deformation will be small that the 

shear deformation is much smaller than the transverse displacement and also the slope of 

line of the tangent to the conductor  that is ∂y(x, t)/∂x<<1 

 

 Wind loading

X

Z

Y

F (x,t)

θ

S

θ

S

Gravity

Fig 3.3. Static profile of the simply supported beam subjected to  wind 

dynamic loading and the loading is assumed to be an equivalent 

concentrated force F(x ,t) with the same resultant effect as the wind

L
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Based on the above assumptions, the equation of motion of a conductor with axial loading 

(tensioned at both ends) as described in research publications in terms of wind-induced vibration 

experienced by transmission lines conductors as a beam, documented in publications[5][20][21] 

[22] is given as 
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Where  

           E  = young modulus 

            I  = area moment of inertia 

EI         = flexural rigidity or conductor bending stiffness 

  S           = the tension (axial loading) 

   ρ   = the conductor density 

   y (x, t)   = transverse displacement position x, time t 

     A  = the cross-sectional area 

F(x, t)   = the external force 

 

Substituting the conductor mass per unit length, Am   
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Expressing this equation for the transverse vibration in dimensionless form as expressed in 

reference [12] 
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If expressing the following dimensionless form as  
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Also expressing the excitation in Dirac delta function, then equation (3.2) becomes 
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Where g                is the gravitational constant,  

            γ                is  the conductor weight per unit length (i.e. mg), 

           F(X,τ)         represents the net, transverse force per unit length acting on the conductor,  

           Fn(τ)           represents the nth concentrated force acting transversely on the conductor at    

                              location  Xn 

           δ(X-Xn)          represents the Dirac delta function 

 

3.4.2 Solution to the Equation of Motion 
  

The solution to equation (3.1), whose general solution is assumed to be the same as Euler-

Bernoulli equation, see appendix A. The particular solution to this equation of motion of a 

conductor modeled as a beam with axial load, S experiencing transverse vibration, ignoring the 

external force and damping can be obtained as a series of product of two functions. 

Using separation of variables 

)()(),( tTxXtxY                                                                               …………….. (3.4) 

Where the normalized functions X(x) is mode shapes for equation and it satisfy the orthogonality 

condition 

Hence substituting into equation 3.1 results in two equations given as follows  
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   and 2  is the constant which equate the variable of x and t 
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Assuming that xZexX )(  equation 3.4 becomes 
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                             ……………… (3.7) 

 

0xZe  Therefore   0224  ASEI  
 

In relation to the general solution of the Euler-Bernoulli equation, the solution to the above 

equation becomes  

   

 
EI

AEISS

2

))((4
,

22

22 
  

 

  
EI

AEISS

2

)(4
,

22 
    

 

The values of , and    are the solutions for the general equation describing the transverse 

vibration of the conductor and because a conductor is an example of distributed-parameter 

systems which has infinite number of solutions. Thus , and    is   indexed to be   n and  n   

respectively                  
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Where  nn f 2  

 

To find the infinite natural frequencies of the conductor (distributed system) is by solving 

equation (3.1), assuming that the mode shape is the same as the pinned-pinned beam eigenfunction 

(mode shape) and no external force. 
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3.5 Analytical Modeling of Conductor Self-damping  
 

To model the damped equation of motion for bare conductor is by inserting damping model(s) 

into the partial differential equation i.e. equation (3.1) of the beam pinned at both ends. 

Reference [23] gave the explanation of the various damping mechanism that can be found in 

cantilever beams with tip mass at the free end and how it can be used to evaluate the various 

contribution each make to the total damping of the beam. In a similar manner, the damping 

models were incorporated into the beam equation of motion based on the analysis of the two 

types of damping mechanism found in a vibrating conductor as  explained in section 2.4.2 and 

also on the concept proportional damping in which external and internal damping were 

distinguished as explained by the authors [20] [21]. In modeling conductor damping, the 

following concepts were used: 

 

 The conductor inter-strand motion and fluid damping (both form the external damping) of 

the conductor is proportional to its velocity and it is represented by viscous damping 

model. 



32 
 

 The internal damping is proportional to the rate of strain in the conductor.                                                                                                                                                                                                                                                                                                                                                                                                                                

Incorporating the above into equation (3.1), the equation describing the damped model for the 

conductor becomes  
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 Where  

           β and C are damping constant parameters. 

The above equation is the equation of motion for the vibrating conductor with the presence of 

axial load (tension) S, with viscous air damping (external) and strain rate of damping (internal). 

The strain rate damping is also called Kelvin-Voigt damping. Thus, the above equation is simply 

the damped equation of motion for the conductor. 

 

3.5.1  Free Vibration  
 

The above equation for modeling the conductor self-damping can be used to analyse its free 

vibration where the forcing function becomes zero as given below  
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Using the separation of variables of equation (3.4), equation (3.14) becomes 
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 Comparing equation (3.15) with equation (2.7) 
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The solution to the temporal equation (3.15) becomes 

 

 



teAT d

t

n
nn sin1       

Or 

 tBtBeT dd

t

n
nn 

cossin 21 


                                                                   ……………. (3.16) 

 

Where 21   nd    

 

The response will be  

   







1

1 sinsin),(
n

d

t

l

xn
teAtxy nn




 

Or 

  







1

21 sincossin),(
n

dd

t

l

xn
BtBetxy nn




                                           ……………. (3.17) 

 

 

 



34 
 

3.5.2 Forced Vibration 
 

When a transmission line conductor is exposed to loading on the field from wind, the actual 

system represents a distributed loading on the entire span of the conductor. As mentioned before, 

this is simulated as point loading where the force is assumed to concentrate at a point. Evaluation 

of the actual response of the conductor to this specific excitation can be achieved by solving the 

equation of motion for the damped case i.e. equation (3.13) with the excitation function present. 

This will help determine the dynamic stress for a range of inputs, for example harmonic motion.   

Solving equation (3.13) with the driving force using the separation of variable of equations (3.4) 
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Comparing equation (3.18) with equation (2.11) 
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3 .6 Bending Stiffness, EI Value 
 

Most researchers in this area of wind-induced vibration tend to adopt a constant bending stiffness 

value for vibrating (ACSR) conductor based on the recommendation by Cigrè Study Committee 

[6]. This value is chosen such that the effective bending stiffness EIeff  is a constant value 

between the minimum and maximum values of bending stiffness. But in reference [24] the 

author presented the concept of how the EI value varies with the length along the conductor and 

on this basis, the EI value of the conductor then depends on conductor bending curvature. Also 

from his findings, the EI value varies non-linearly with wire helical geometry, interlayer friction 

and slip during bending.  

Due to the fact that the linear concept is used in this study, the constant bending stiffness value 

was used for the ACSR conductor.  

The equations to calculate for both the maximum and minimum bending stiffness for ACSR 

conductors can be found in references [4] [6] [24]  

The minimum value (EImin) is obtained by considering the conductor as a bundle of individual 

wires free to move relative to each other 

The calculation of EImin is given as:  

 

4 4

64 64

s a
min s s a a

d d
EI n E n E
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                                                                ……………… (3.19) 

 

Wherein:  

sn and an  = number of strands of steel and aluminium, respectively 

sE and aE  = modulus of elasticity of steel and aluminium  

sd and ad  = diameter of steel and aluminium strands  

 

The maximum value (EImax) is obtained by considering the conductor as a bundle of individual 

wires unable to move relative to each other due to contact pressure 

In the computation of EImax, the displacement of each strand from the conductor axis must be 

considered according to the formula:  

 

Ix       = Ic + AD
2
                                                                           ………………….. (3.20) 
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Where  

          Ix       = moment of inertia about new axis  

          Ic        = moment of inertia about original axis  

          A        = area  

         D        = distance between original and new axes  

 

For the strands within a given lay of the conductor, the distance D may be computed as the sine 

of the angle as shown in the diagram.  

 

 

The moment of inertia for each strand in a given lay becomes: 
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Hence, the calculation of EImax is given as: 

 

 

EImax=                    
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The first conductor used for analysis in this study is the ACSR conductor with code name Tern 

which consists of the steel wires at the core and aluminum wires at the outer layers. The 

calculation of this maximum bending stiffness is given in appendix B as well as its physical 

properties as obtained from Aberdare Power cables Catalogue [25]. For both the analytical 

analysis and the finite element simulation of the transverse vibration, the value of the constant 

bending stiffness that was used is that for calculated maximum bending stiffness value. This 

value is chosen in line with the recommended value for bending stiffness suggested in [26] for a 

vibrating ACSR conductor.  

The second conductor used for this study is the Aero-Z conductor and physical properties for the 

conductor, were obtained from referene [27] and the details are given in  table-B-2  in appendix 

B. This conductor consist of two parts; the round wires at the core and the z-shaped wires that 

form the outer layers. For this conductor, because the exact value for the Young‟s modulus can 

be found in [27], the value for the bending stiffness can easily be calculated. To obtain the value 

of the bending stiffness the following process was used with regards to the moment of inertia.  

For the round wires that constitute the centre  wire and the next two inner layers, equation (3.22) 

was used to calculate for the moment of inertia, while for the region of the z-shaped wires, the 

assumption was made in which the two z-shaped wire layers were combined and treated as a 

hollow circular solid. Combining  the above  resulted to the equation given as 

 

EI = EIx + EIzs = E(Ix +Izs)                                                                              ………………(3.24) 

 

Where Ix =
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The calculated value for the bending stiffness of the Aero-z conductor is given in appendix B.  
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CHAPTER 4 

 

MODEL VERIFICATION: FINITE ELEMENT ANALYSIS AND 

ELECTRICAL EQUIVALENCE 
 

4.1 Discrete Modeling 
 

As indicated in chapter 3, in which the conductor transverse vibration was modeled as a bending 

vibration of a beam and also considered to be a distributed parameter model, the same concept 

was used for the finite element method (FEM) but the beam was considered a lump mass model. 

Carrying out the finite element analysis (FEA), involves converting this distributed model to its 

equivalent lump mass model. Hence, by discrete modeling of conductor vibration means 

converting distributed mass to its equivalent lump mass by a method known as discretisation.  

The finite-element discretise model of the pinned-pinned (simply supported) beam which is 

made up of its finite element is shown in figure 4.1 below. This model was used for the finite 

element analysis of conductor transverse vibration. The modeling of the dynamic behaviour of 

the conductor will involve the use of both the static properties such as stiffness with the dynamic 

properties such as mass, damping and dynamic loading to try and predict its response. 

 

4.1.1 Discretisation of the Domain into Finite Elements 
 

FEA begins with formulation of domain for the discretise finite element model; the finite 

element formulation consideration assumes a domain limited to geometry and time. The domain 

of the conductor is given as (0, l) which is divided into n number of  finite elements mesh of 

equal space as shown below in figure 4.1 and the conductor masses are lump at the nodes 

ELEMENT 1 ELEMENT 2 ELEMENT nELEMENT(n-1)

11 yu 

21 y 42 y 42 y 53 y nn y2221   nn y221   nn y

12  nn yu 
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
nn

yu 
321 


nn

yu 
53 yu   

53 yu   
75 yu 

422   nn y

522   nn yu

 

 

Figure 4.1 The discretise model of beam 
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This model shown in the previous page will be used for the finite element equation formulation 

and also in the analysis of the system equation. 

 

4.2   Finite Element Analysis 
 

The concept of finite element method (FEM) has provided opportunities for the development of 

procedures for the evaluation of both static and dynamic systems problems. This method is a 

computational technique that can be employed to evaluate both the static and the dynamic 

responses of systems. Although, a conductor is a continuous system, to evaluate the analytical 

model describing its transverse vibration using the FEM method involves discretising the system 

into finite elements in order to obtain the equation for each. Assembling these finite element 

equations, including the boundary conditions, was then used to formulate the equation of motion 

for the system. This resultant equation is obtained as the equation of inertial, stiffness, and 

applied force in matrix and vector forms. To obtain the damping force in vector form, for 

mathematical convenience, the mechanisms of the damping models are included in the global 

finite element equation obtained by assembly of these equations for the finite elements. This was 

used to evaluate the total damping of the system or the system‟s self-damping. 

Using concepts from system dynamics and vibration modal analysis, the mass, stiffness and 

damping matrices for the system will then be used to solve for the required system parameters 

such as mode shapes, modal frequencies and damping. Hence, using these parameters for the 

vibrating conductor, its dynamic response can then be determined and analysed. 

The solution to the resultant or the global equation of the system can be accomplished by using 

the numerical integration method such as those developed in references [28] [29] [30] to directly 

solve the equation. The numerical method that was used for the FEM is the Galerkin‟s method. 

Using concepts from analytical mechanics, matrix and vector, and vibration, these system 

parameters obtained was then used to carry out analysis on the response of the system within a 

range in line with the analytical model describing the same system. 

   

 

4.2.1 Semi-discrete FEM 
 

Some physical phenomena can be described by differential equation that relates certain quantities 

to their derivatives with respect to time and space variables. Conductor transverse vibration is an 

example of such practical problems in which the position and time dimensions have to be 
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considered.   The method of finite element approximation of this type of time dependent equation 

(time dimension) is the semi-discrete method. In this method the time dimension is approximated 

by finite difference and for accuracy with respect to time a higher-order approximation is used 

i.e. cubic polynomial. To this regard the finite element interpolation functions as time dependent 

such that u is approximated by  
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4.3 Finite Element Formulation 

 
The development of the computational technique used to analyse the transverse vibration of 

power conductors starts with the finite element formulation. This involves the formation of the 

equation for a finite element from the discretise model of the conductor. The basic idea of the 

finite element formulation is to linearise the weak form of the equation of the problem and solve 

this equation for the finite elements discretised domain. The weak form or weak formulation of 

the problem is usually derived from the principle of virtual work. Therefore, for the conductor, 

the finite element formulation will be to transform the partial differential equation of motion into 

its variational form and then determine the approximate solution using variational method.  

 
 

4.3.1 Weak Formulation 

   
The weak formulation for the power line cables is obtained by transforming the equation of 

motion describing the conductor transverse vibration into its integral form using the test function 

of equation (4.1) and equation (4.2). Thus, using the Galerkin‟s method (method of weighted 



41 
 

residual or variational method) [31] [32] [33], the finite element formulation for the system can 

then be developed in integral form. Then, by applying the Galerkin‟s variational principle to this 

time dependent problem and considering the boundaries conditions, the finite element model 

equation was obtained. The weak formulation for the equation of motion was formulated using 

cubic displacement fields with respect to time because of the degree of freedom of the model.   

 

The equation for the transverse vibration as given by equation (3.1): 

 

 

 

Where tFtxf dsin),(   

 

The homogenous part of the equation is given as 
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The homogenous part is transformed into 
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Using the same boundary and initial conditions used for the analytical analysis as given below.  
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The weak formulation for the semi-discrete finite element method can be obtained as follows. 

Firstly by multiplying equation (3.1) by the finite element interpolation functions defined by 

equation (4.1) to obtain 
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The weak formulation is then obtained by carrying out the integration by parts twice on equation 

(4.4) and taking into account the finite-element discretise model shown in figure 4.1, which 

define the number of finite element in the system domain. 

 

Hence, the resultant equation is obtained as 
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Where   is the element domain 

 

From the weak formulation above, the equations for the finite element in terms of the stiffness, 

mass matrices and force vector are given as: 
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From equation (4.2), given that  
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Then equation (4.6) becomes 
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4.4 The System Matrix 
 

The system or the global matrix is usually obtained by the assembly of finite element equations 

define by equations 4.7 (a, b and c). In assembling all of the finite elements equations requires 

the satisfaction of the boundary conditions and from the diagram of the discretise domain (figure 

4.1), to satisfy the boundaries conditions of the simply supported beam i.e. 021221   nn yyyy   

Thus, global matrix will be in the form:- 

 

                                                                            ……………….. (4.8) 

 

    and [K] represent the system (or structure) stiffness matrix  

{y} is the system displacement vector 

[F (t)] represents the system force vector 

 

4.4.1 Numerical Computation for Natural frequencies 
  

Finding the natural frequencies for the system is by making force vector in the above undamped 

equation equal zero.  

 

Equation (4.8) becomes 
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Then      tjeyty  )()( 2   
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This result to eigenvalues problem as given  
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2
          = λ 

               ω           = natural frequencies 

                λ           = eigenvalues 

 

4.4. 2. Numerical Computation for Damping 
 

The formulation of the damping matrix for the conductor vibration was also based on the concept 

explained in section 2.4.2 which was also used in the formulation of the conductor damped 

equation in section 3.5. Hence, using equation (3.13) and also applying the Galerkin‟s method, 

the weak form of the equation becomes  
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To obtain the damping matrix that conforms to the linear concept used for this study, the non-

linear element is removed by simply equating the time partial differentiating variable to equal 

one.  

This then results in damping equation for the finite element as 
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Substituting equation (4 a and b) into equation (4.12), the damping matrix equation becomes 
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Incorporating the above equation into equation (4.8), the damped equation for the system 

becomes 

 

                                                                          ………………. (4.14) 

 
Where [D] is the damping matrix 

 
4.4.3 Evaluation of Damping 
 

The evaluation of the amount of damping from the system was done by the comparison of the 

damping matrix of equation (4.13) to the proportional damping developed by Rayleigh.  

The proportional damping equation is given as  

 

D =  M + * K                                                                                          ……………….. (4.15) 

 

D‟ =  *I  + * ф       and    D‟ = U
T
DU                                                     ……………….. (4.16) 

 

Where  

             and *  = real scalar constants  

                       *I         = identity matrix  

                       U         = the orthonormal matrix of eigenvector 

                       ф         = the diagonal matrix of eigenvalues 
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The value of the damping ratio can be evaluated using the proportional damping, which is given 

as 

           δ =  
     *   

 

   
                                                                ……………….. (4.17) 

 
The values of   and * are usually evaluated using the values of natural frequencies obtained 

from experimental results. 

 

In comparing equation (4.15) with equation (4.13) 

 

                    = 
 

  
   and   *  = 

E


 

In chapter 3, it was stated that conductor self-damping is a contribution of the internal damping 

modeled by Kelvin-Voigt damping model and external damping due to fluid to drag and inter-

strand motion, modeled by viscous damping. Based on the classical work done by H.H Cudney 

and D.J. Inman [34], in which the values for each damping model and a combination of the both 

models were evaluated for a quasi-isotropic pultruded cantilever beam.  

For the first case is the internal damping or the strain-rate damping, in this case damping is 

proportional to the mass matrix and from equation (4.15), *  equal to zero. Thus, the 

percentage of the critical damping is inversely proportional to the natural frequency of each 

mode. This will give decreasing damping as their frequencies increase. 

 

           δ =  
     *   

 

   
     =    



   
                                                  ………………. (4.18) 

    

Where * = 0                                    

 

The second case is for the damping from fluid drag and inter-strand motion; the damping is 

proportional to the stiffness matrix and from equation (4.15),   equal to zero. Recognizing that 

the higher modes of vibration damp out quickly, this form of damping is proportional to 

frequencies in normal modes.   

 

      

Hence         δ = 
     *   
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*   

 
                                       ………………. (4.19) 

        

    Where     = 0                          
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The third case is the combination of both viscous and strain-rate damping which were evaluated 

by equation (4.15) to determine the total damping from the system. 

The evaluation of the damping constants  and * was done by the least squares method also 

known as the pseudo-inverse routine. 

 To determine the estimated value for parameter    when * = 0, is by finding the least-square 

solution to  
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 Also the value for *  when   = 0 is obtained by                        
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For the values of both  and *  is evaluated by 
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4.5 Electrical Equivalence: Electrical Equivalent Circuit 

 
Although the transverse vibration of conductor is an example of a mechanical system that is 

dynamic in nature, the understanding and analysis of its dynamics can also be achieved by 

developing and analysing its electrical equivalence. The electrical equivalence is developed 

using the mechanical-electrical analogy, from which a corresponding equivalent circuit of the 

mechanical vibration of the conductor is obtained. 

The electrical equivalence has the advantage that it can be constructed easily from which the 

results can be conveniently obtained and analysed to predict the system‟s dynamic response.  

This is based on the fact that much work has been done with respect to dynamics of electrical 

circuit especially in the area of resonance. Thus, results obtained from the equivalent circuit 

analysis can be used to determine the system parameters like natural frequencies, mode shapes 

and damping of mechanical systems. Also the mechanical-electrical analogy can help in further 

understanding the complex nature of the conductor‟s dynamic characteristics. 

The conductor is a continuous model, but its electrical equivalence is developed from its lump-

mass or discrete model similar to that of FEM. The discrete model of mass-spring–damper 

system of the equivalent continuous model of the pinned-pinned beam is shown in figure 4.2 (a 

and b) below. In this model, the first few modes of vibration are used to model the system 

response as shown in figure 4.2b, with the resultant force from the wind loading, perpendicular 

to the beam that produces the vertical oscillation. To develop the electrical equivalent, three 

degrees of freedom of the lump mass was used to describe the system response and the geometry 

of its domain of the lumped mass model is used to derive the equation of motion for the system.  

 

 

 

 

 

 

 

 

 

 

 

(a) 

Wind loading resultant force in the vertical direction 

0 L 
x 

Beam pinned (supported) at both ends 
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(b) 

Fig 4.2 (a) Distributed model of a simply supported beam (b) its equivalent lump-mass model 

 

In line with the concept mentioned in chapter 3, with regards to figure 4.2b, because it is 

assumed that the distributed loading on the conductor will have a resultant effect at a point, F1, 

thus F2, and F3   are equal to zero.  

 

Employing Newton‟s laws of motion, the equation for the discrete system will be in the form  

 
                                                       ……..…. (4.23a) 

 

 

                                                                                                                                            
…                                                                                                   ……..…. (4.23b) 

 

                                                       …….….. (4.23c) 

 
 

To obtain the differential equation in electrical form from equation of motion for the mechanical 

system is done by using the electrical analogies for mechanical systems listed in table 4.1. There 

are generally two types of mechanical- electrical analogies [35, 36]: 

  

1. The voltage –force or mass-inductance analogy and  

2. The current –force or mass capacitance analogy 

 

In general, the following rule is used for developing an electrical equivalent circuit for 

mechanical systems. If the forces act in series in the mechanical system, the electric elements 
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representing these forces are put in parallel. Forces in parallel are represented by elements in the 

series in the electric circuits [35]. 

The table 4.1 below shows the analogies that exist between mechanical systems and electrical 

systems in terms of voltage-force analogy and current-force analogy. 

 

Table 4.1 Mechanical-electrical analogies [35]   

Mechanical Systems Electrical systems 

 Voltage-force Analogy Current-force Analogy 

D'Alembert's principle Kirchhoff‟s voltage law Kirchhoff‟s current law 

Degree of freedom Loop Node 

Force applied Switch closed Switch closed 

 Force F, (N) Voltage v, (volt) Current  I (ampere) 

  Mass m,(Kg) Inductance L, (henry) Capacitance C (farad) 

  Displacement x, (m) Charge q, (coulomb) Φ = ∫vdt 

Velocity   , (m/s) Loop current I, (ampere)   Node voltage v (volt)  

Damping c, (Ns/m) Resistance R(ohms)  Conductance 1/R (mho) 

 Spring k, (N/m) 1/Capacitance 1/C (1/farad)  1/Inductance 1/L (1/henry) 

Coupling element Element common to two loop Element between nodes 

  
From table 4.1, using the voltage-force or mass-inductance analogy and comparing this with the 

mechanical equation, the electrical equivalent differential equations will be in the form given 

below 

 

  
   

  
                       

          
 

  
                                                                                                                               

                                                                                               ………..…. (4.24a) 

  
   

  
                       

 

  
             

          

1c3i3dt=0                                                                                …………. (4.24b) 

 

  
   

  
                

 

  
             

             

                                                                                     ……..……. (4.24c)     
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Based on Kirchhoff‟s voltage law and using electrical differential equation given above, the 

resultant electrical equivalent circuit for the vibrating conductor was constructed as shown in fig 

4.5 below. 

L1 L LR

R RR
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C CC

1 1 2

2

2

3

3

3

4

4
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Fig 4.5. Equivalent electrical circuit for a vibrating conductor
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4.6 The Input-Output Model 
 

The input-output model for the circuit above is derived by using the sets of electrical differential 

equations used to form the system electrical circuit i.e. equations (4.29 a, b and c). The model is 

derived by applying Kirchhoff‟s voltage law to these sets of differential equations. 

The damping was evaluated from the system‟s equivalent circuit based on the assumption that 

the total damping experience by the system as a result of the input voltage V1 is the output 

voltage across resistor, R4.  

Taking the Laplace transform of the above equation 
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Rearranging   
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Putting in matrix form it becomes 
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Where    a11   =                     
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     D    =     
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      D1    =     
         

       

       

    

 

 

 

      D2   =      

         
       

     

    

 

 

     D3    =     
           
       
     

  

 

 

Using Creamer rule 

 

          
   

 
       

    

         
   

 
       

 

         
   

 
       

 

The output voltage across R4 is given as 

 

     )    =     R4 I3(s)                                                                                     ……………….. (4.27)     

 

 

But   I3(s)   =  
              

                               
                      …….………….. (4.28) 
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Hence, the transfer function for the electrical equivalent circuit will be given below as 

 

 

       

      
  =  

         

                             
                         ……………….. (4.29) 

 

By defining the conductor‟s equivalent circuit resistance, capacitance and inductance in terms 

conductor characteristics 

 

    
 

 
 

 

             

    
 

  
 

 

    
 

 
 

 

Where   K   = stiffness of the conductor 

             M   = the mass of the conductor 

              c     = the damping constant 

                  = electromechanical factor 

              m   = 1, 2 3 4 

 

The transfer function developed above was implemented in Matlab software with the calculated 

circuit element equivalents as defined above and the result of the simulation is presented in 

Chapter 5 
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CHAPTER 5 

 

TESTING AND RESULTS 
 

5.1    Vibration Research and Testing Centre (VRTC) 
 

In verifying the analytical model analysed in chapter 3, experimental studies (vibration tests) 

were conducted. These tests were conducted at the Vibration Research and Testing Centre 

(VRTC) situated at the University of KwaZulu-Natal Westville Campus. The VRTC was set-up 

in 2004 in partnership between Eskom and the University of KwaZulu-Natal. The centre which 

is an indoor testing facility is aimed at testing and carrying research on power line conductors 

with regard to mechanical vibration. The VRTC laboratory facilities used for testing were 

designed, developed and constructed in line with the guideline provided in IEEE standard [37]. 

The laboratory consists of: 

 A testing facility and a tunnel with temperature control, shown in figure 5.1 

 A constant tension loading device  

 A span–85m single conductor shown in figure 5.1 

 A shaker–electro-dynamic in operation which is used to provide the input power to the 

conductor as shown in figure 5.3 

 A control system which is used to analyse the output from the test facility  

 

Because the VRTC is an indoor testing facility, tests conducted at the centre were used to 

simulate the wind-induced vibration on conductors that occurs in the real world. This is then 

used as the bases of comparison and predicts what actually occurs in real transmission lines. The 

tests that were conducted at the centre for this study were used mainly to determine the self 

damping capability of conductors according to the procedures described in IEEE standard on the 

Measurements of Conductor Self-damping [38]. Also based on the experimental data was the 

evaluation of dynamic stiffness of the conductor.   
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Figure 5.1 Facility tunnel and single span conductor at the VRTC 

 
5.2 Methods of Testing 
 

At the VRTC, the experiments that were carried out are on single span conductors as shown 

above. These were used to analyse and understand the conductor dynamic characteristics. For 

this purpose, two types of testing were done with the aim of verifying the analytical model. 

These are: free and forced vibrations. 

 

5.2.1 Free vibration testing 
 

The free vibration of a conductor is the natural response of the conductor to some form of impact 

or displacement and the amplitude of vibration decay with time due to damping. For this test the 

impact on the conductor was done using the impact hammer shown in the figure 5.2 below 
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Fig 5.2 Impact hammer 

 

To evaluate the amount of damping from the conductor experiencing this form of vibration, the 

least square method [39] was used and the description of how this method was developed from 

log decrement techniques is given in appendix C 

 

5.2.2 Forced vibration testing 
 

The forced vibration of the conductor was done to obtain its response when the conductor is 

subjected to a repetitive forcing function. This caused the conductor to vibrate at the frequency 

of the excitation.  For forced vibration test, it is assumed that the effective loading input that 

causes the conductor oscillation is concentrated at one point on the conductor.  The excitation by 

this concentrated force is duplicated by a force at a single point (point loading), and this source 

of loading was simulated by the aerodynamic shaker. For this method of testing, a sweep test 

(resonance frequencies search) was done for frequency range between 6Hz and 50Hz for the 

Tern conductor and 5Hz and 50Hz for the Aero-Z conductor. The conductor damping was 

determined for each mode using the bandwidth method [40], also the description of this method 

is given in appendix C.  

  

5.2.2.1 Methods of forced vibration testing  
 

Two methods were employed for forced vibration testing at the VRTC in order to evaluate the 

conductor response and are explained in IEEE standard on power dissipation from conductors 

with respect to Aeolian vibration [37]. The two methods of forced vibration testing that were 

explained are the power method and the standing wave method.  
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The power method in which the conductor is forced into resonance by an electro-dynamic 

shaker and the power input into the system was determined directly from the product of the 

excitation force and the resulting velocity at the point of application of the load. This represents 

the power dissipated by the conductor, provided the two quantities are sinusoidal and are in 

phase with each other. It assumes also that the losses at the terminations are small compared 

with the dissipation within the conductor. The power method also permits the mechanical 

resistance per unit length of the conductor to be determined directly from the ratio of the force to 

the velocity. 

 

The standing wave method in which the power transfer P1 from the vibration generator towards 

the ends of the span at any particular node i.e. node 1, is derived from the inverse or the 

reciprocal of the standing wave ratio that is the ratio of the nodal and antinodal amplitudes and 

is given as follows  

P1= 








Y

aV
Sm 1

2

2
 

Where 

        Tm     = the wave or characteristic impedance (At very high frequencies this may be  

                         modified due to the effect of the stiffness of the conductor.) 

        
1a

Y
       = standing wave ratio 

        V         = single amplitude velocity at antinode 

         S         = conductor tension 

         m        = conductor mass per unit length  

 

Then the power dissipated between two nodes 1 and 2 is simply 

           

    P = P1 – P2 

 
5.2.2.2 Shaker conductor connection 
 

The shaker-conductor connection for the forced vibration tests was by the flexible link 

connection as shown figure 5.3. This arrangement was used because it has the advantage of 

separating the conductor resonance from that of the shaker thereby decoupling them from each 

other. This set-up helps in setting the conductor alone into resonance for the purpose of 
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determining its resonance frequencies, conversely helping in ascertaining the amount of damping 

only from the vibrating conductor.  

 

 
                     

Figure 5.3 Shaker-Conductor flexible link connection 

 

 

 

Note:  

1. Before carrying out any test on the conductor, the conductor was initially strung to a 

tension 40% of the UTS, for ACSR and 30% of the UTS for the Aero-Z. Then the 

conductors were allowed to relax for 3 days before the test was done.                                                                                                                                                                                     

2. For both forms of testing: the free and the forced vibration, the point of impact and 

loading was at 1.2m from the load cell end for both conductors. 

3. Two accelerometers where used for this study and they were placed at half (1/2) and at 

one-eight (1/8) of the span length from the load cell side of the conductor.  

4. Also for both forms of testing, tests were done for tensions 19.96KN, 24.74KN and 

29.64KN which are 20%, 25% and 30% of the UTS respectively for the case ACSR. 

While for Aero-Z the tests were done at 22.52KN, 30.02KN and 37.53KN which are 

15%, 20% and 25% of the UTS respectively. 

5. For both the free and the forced vibration test, the PUMA analyser [41] was used. 
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5.3 Results 

For the experiential study conducted on the indoor single span conductor, two forms of testing 

were carried out: free and forced vibrations according to the explanation given in section 5.2. 

These were done for two conductors: the ACSR-Tern and the Aero-Z conductors. The results of 

the laboratory experiments for both testing methods and for the two conductors are given below.   

Next, the results also presented are that from the finite element simulation using ABAQUS 

which was also done at the three different tensions with the same values used in the experimental 

studies for both conductors. 

Finally, result for the free response was obtained from the simulation for the transfer function 

developed from the electrical equivalent circuit for the vibrating conductor.   

 

5.3.1 Experimental Results for Free Vibration: Tern Conductor 

 

For the experimental studies done on Tern conductor, the graphs below are the free vibration 

responses for Tern conductor at tensions of 20% UTS-19.64KN, 25% UTS-24.64KN and 30% 

UTS-29.71KN. The two tables accompanying each graph are used to evaluate the conductor 

damping using the least square method. The first table is used to evaluate damping for the first 

decay region and second table for the second decay region for each graph and they are labeled 

first decay and second decay respectively. Also for each tension used, two graphs are presented 

to evaluate the conductor damping labeled graph 1 and graph 2 respectively.  
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Fig 5.4 Free vibration for Tern conductor at 20% UTS-19.64KN (graph 1) 

 

Table 5.1 Using the least square method to calculate damping for 20% UTS (first decay)  
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 16.224 2.7865 0 0 0 

2 14.823 2.6962 1 2.6962 1 

3 11.924 2.4786 2 4.9571 4 

4 9.732 2.2754 3 6.8263 9 

Sum  10.2366 6 14.4795 14 

The log-deg = 0.1751 and zeta = 0.0279 

 

Table 5.2 Using the least square method to calculate damping for  20% UTS Tern (second decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) j-1  LN(Y)( j-1) (j-1)
2 

1 12.624 2.5356 0 0 0 

2 13.423 2.5970 1 2.5970 1 

3 10.024 2.30450 2 4.6099 4 

4 8.032 2.0834 3 6.2503 9 

Sum  9.5210 6 13.4572 14 

The Log-deg = 0.1649 and zeta = 0.0262 
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Fig 5.5  Free vibration for Tern conductor at 20% UTS-19.64KN (graph 2) 

 

 

 

Table 5.3 Using the least square method to calculate damping for 20% UTS-Tern (first decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 8.245 2.1096 0 0 0 

2 7.623 2.0311 1 2.0312 1 

3 5.949 1.7832 2 3.5664 4 

Sum  5.9240 3 5.5976 5 

The log-deg = 0.1392 and  zeta = 0.0259 

 

Table 5.4 Using the least square method to calculate damping for 20% UTS-Tern (second decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 7.245 1.9803 0 0 0 

2 6.823 1.9203 1 1.9203 1 

3 4.899 1.5890 2 3.1781 4 

Sum  5.4896 3 5.0984 5 

The log-deg = 0.1956 and  zeta = 0.0311 
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Figure 5.6 Free vibration for Tern conductor at 25% UTS-24.47KN (graph 1) 

 

Table 5.5 Using the least square method to calculate damping for 25 %UTS-Tern (first decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 20.176 3.0045 0 0 0 

2 18.483 2.9169 1 2.9169 1 

3 16.987 2.8324 2 5.6649 4 

4 12.755 2.5459 3 7.6378 9 

Sum  11.2997 6 16.2120 14 

 

The log-deg = 0.1460 and zeta = 0.0232 

   

 

Table 5.6 Using the least square method to calculate damping for 25% UTS-Tern (second decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 17.276 2.8493 0 0 0 

2 15.983 2.7715 1 2.7715 1 

3 13.97 2.6369 2 5.2738 4 

4 10.855 2.3846 3 7.1539 9 

Sum  10.6424 6 15.1992 14 
 

The log-deg = 0.1529 and zeta = 0.0243 
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Figure 5.7 Free vibration for Tern conductor at 25% UTS-24.47KN (graph 2) 

 

 

Table 5.7 Using the least square method to calculate damping for 25% UTS-Tern (first decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 24.624 3.2037 0 0 0 

2 23.249 3.1463 1 3.1463 1 

3 18.637 2.9251 2 5.8503 4 

Sum  9.2751 3 8.9966 5 

The log-deg = 0.1393 and zeta = 0.0222 

 

Table 5.8 Using the least square method to calculate damping fo 25% UTS-Tern (second decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 22.417 3.1098 0 0 0 

2 18.983 2.9435 1 2.9435 1 

3 21.087 3.0487 2 6.0973 4 

4 13.655 2.6141 3 7.8423 9 

Sum  11.7161 6 16.8832 14 

The log-deg =   0.1382 and zeta = 0.0219 
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Figure 5.8 Free vibration for Tern conductor at 30% UTS -29.71KN (graph 1) 

 

Table 5.9 Using the least square method to calculate damping for 30% UTS-Tern (first decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 17.444 2.8590 0 0 0 

2 16.809 2.8219 1 2.8219 1 

3 14.737 2.6904 2 5.3807 4 

Sum  8.3713 3 8.2026 5 

The log-deg = -0.0843 and zeta = 0.0134 

 

Table 5.10 Using the least square method to calculate damping for 30% UTS-Tern (second 

decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 16.124 2.7803 0 0 0 

2 15.223 2.7228 1 2.7228 1 

3 13.924 2.6336 2 5.2672 4 

4 12.732 2.5441 3 7.6324 9 

Sum  10.6809 6 15.6224 14 

The log-deg = 0.0798 and zeta = 0.0127 
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Figure 5.9 Free vibration for Tern conductor at 30% UTS-29.71KN (graph 2) 

 

Table5.11 Using the least square method to calculate damping for 30% UTS-Tern (first decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 13.276 2.5860 0 0 0 

2 12.683 2.5403 1 2.5403 1 

3 11.487 2.4412 2 4.8824 4 

4 9.855 2.2880 3 6.8639 9 

Sum  9.8554 6 14.2866 14 

The log-deg = 0.0993 and zeta = 0.0158 

 

Table 5.12 Using the least square method to calculate damping for 30% UTS-Tern (second 

decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 12.524 2.5276 0 0 0 

2 12.023 2.4868 1 2.4868 1 

3 11.324 2.4269 2 4.8538 4 

4 9.732 2.2754 3 6.8263 9 

Sum  9.7168 6 14.1669 14 

The log-deg = 0.0817 and zeta = 0.0130 
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5.3.2 Experimental Results for Forced Vibration (Sweep Test): Tern 

Conductor 
To determine the dynamic response for the conductor, a sweep test was conducted for the Tern 

conductor. The graphs shown below are the forced vibration (sweep test) for Tern conductor at 

tensions 20% UTS-19.64KN, 25%UTS-24.64KN and 30%UTS-29.71KN. The table 

accompanying each graph is used to record the first ten resonance frequencies and also the 

evaluation of the conductor damping at each mode using the bandwidth method.  

 
Figure 5.10 Forced vibration for Tern conductor at 20% UTS-19.64KN 

 

Table 5.13 Showing Resonance frequencies and calculation for damping using bandwidth 

method 
Resonance 

frequency 

Rf  

Acceleration 

a(G) a/√2 

Half- 

Power 

F1  

Half- 

Power 

F2  

Bandwidth 

∆f  

quality 

factor 

Q  

damping 

factor 

δ 

6.39 3.910 2.7648 6.16 6.89 0.73 8.7534 0.0571 

7.21 6.010 4.2498 6.87 7.58 0.71 10.1549 0.0492 

8.61 7.970 5.6357 8.27 8.87 0.60 14.2167 0.0352 

10.13 8.190 5.7913 9.83 10.38 0.55 18.4182 0.0271 

12.92 9.080 6.4206 12.68 13.29 0.61 21.1803 0.0236 

14.02 6.130 4.3346 13.77 14.39 0.62 22.6129 0.0221 

16.99 6.290 4.4477 16.69 17.44 0.75 22.6533 0.0221 

17.70 6.470 4.5750 17.47 18.14 0.67 26.4179 0.0189 

19.21 6.640 4.6952 18.87 19.66 0.79 24.3165 0.0206 

21.82 6.670 4.7164 21.35 22.29 0.94 23.2128 0.0215 
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Figure 5.11 Forced vibration for Tern conductor at 25%UTS-24.47KN 

 
Table 5.14 Showing Resonance frequencies and calculation for damping using bandwidth 

method 

Resonance 

frequency 

Rf 

Acceleration 

a(G) a/√2 

Half- 

Power 

F1 

Half- 

Power 

F2 

Bandwidth 

∆f 

quality 

factor 

Q 

damping 

factor 

δ 

6.78 5.210 3.6841 6.54 7.22 0.68 10.0441 0.0498 

8.22 6.850 4.8437 7.88 8.62 0.74 11.1081 0.0450 

9.82 8.270 5.8478 9.51 10.11 0.60 16.2000 0.0309 

12.13 8.680 6.1377 11.87 12.51 0.64 18.9531 0.0264 

14.83 9.040 6.3923 14.36 15.24 0.88 16.8523 0.0297 

16.81 6.010 4.2498 16.38 17.12 0.74 22.7162 0.0220 

18.24 6.460 4.5680 17.93 18.71 0.78 23.3846 0.0214 

19.27 6.880 4.8649 19.02 19.85 0.83 23.2169 0.0215 

21.61 6.910 4.8862 21.21 22.07 0.86 25.1279 0.0199 

23.52 7.080 5.0064 23.21 24.12 0.91 25.8462 0.0193 
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Figure 5.12 Forced vibration for Tern conductor at 30% UTS-29.71KN 

 

 
Table 5.15 Showing Resonance frequencies and calculation for damping using bandwidth 

method 
Resonance 

frequency 

Rf  

Acceleration 

a(G) a/√2 

Half- 

Power 

F1  

Half- 

Power 

F2  

Bandwidth 

∆f  

quality  

factor  

Q  

damping  

factor  

δ 

7.46 3.106 2.1963 7.19 7.79 0.60 12.4333 0.0402 

9.09 5.653 3.9973 8.85 9.48 0.63 14.4286 0.0347 

11.43 6.270 4.4336 11.08 11.78 0.70 16.3286 0.0306 

13.67 7.770 5.4943 13.17 14.03 0.86 15.8953 0.0315 

15.74 8.640 6.1095 15.38 16.23 0.85 18.5176 0.0270 

17.41 9.210 6.5125 17.03 17.71 0.68 25.6029 0.0195 

18.10 10.000 7.0711 17.71 18.39 0.68 26.6176 0.0188 

19.22 10.480 7.4106 18.88 19.69 0.81 23.7284 0.0211 

21.07 10.610 7.5025 20.59 21.41 0.82 25.6951 0.0195 

23.26 10.880 7.6934 22.92 23.73 0.81 28.7160 0.0174 
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5.3.3 Experimental Results for Free Vibration: Aero-Z Conductor 
 

Similar to Tern conductor, the same free vibration test was also done for Aero-Z conductor. The 

results are presented in a format similar to that of the Tern conductor.  

 
Figure 5.13 Free vibration for Aero-Z conductor at 15%UTS-22.52KN (graph 1) 

 
Table 5.16 Using the least square method to calculate damping for 15% UTS-Aero-Z (first  decay) 

Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 6.524 1.8755 0 0 0 

2 4.823 1.5734 1 1.5734 1 

3 4.240 1.4446 2 2.8891 4 

4 2.843 1.0449 3 3.1348 9 

Sum  5.9384 6 7.5973 14 

The log-deg = -0.2262 and zeta = 0.0417 

 

Table 5.17 Using the least square method to calculate damping for 15% UTS-Aero-Z (second decay) 

Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 6.124 1.8120 0 0 0 

2 5.023 1.6140 1 1.6140 1 

3 3.781 1.3301 2 2.6602 4 

4 2.909 1.0679 3 3.2038 9 

Sum  5.8243 6 7.4780 14 

The log-deg = -0.2517 and zeta = 0.0400 
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Figure 5.14 Free vibration for Aero-Z conductor at 15% UTS-22.52KN (graph 2) 

 

Table 5.18 Using the least square method to calculate damping for 15% UTS-Aero-Z (first  

decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 9.920 2.2946 0 0 0 

2 7.763 2.0494 1 2.049369 1 

3 5.785 1.7553 2 3.510537 4 

Sum  6.0992 3 5.559906 5 

The log-deg = -0.2696 and zeta = 0.0429 

 

Table 5.19 Using the least square method to calculate damping for 15% UTS-Aero-Z (second 

decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 8.720 2.1656 0 0 0 

2 6.663 1.8966 1 1.8966 1 

3 4.995 1.6084 2 3.2169 4 

Sum  5.6706 3 5.1134 5 

The log-deg = -0.27859 and zeta = 0.0443 
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Figure 5.15 Free vibration for Aero-Z conductor at 20% UTS-30.02KN (graph 1) 

 

Table 5.20 Using the least square method to calculate damping for 20% UTS-Aero-Z (first  

decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 14.324 2.6619 0 0 0 

2 13.823 2.6263 1 2.6263 1 

3 8.0924 2.0909 2 4.1819 4 

4 9.532 2.2547 3 6.7640 9 

5 6.272 1.8361 4 7.3444 16 

Sum  11.4700 10 20.917 30 

The log-deg = -0.2023 and zeta = 0.0322 

 

Table 5.21 Using the least square method to calculate damping for 20% UTS-Aero-Z (second 

decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 13.324 2.5896 0 0 0 

2 12.4823 2.5243 1 2.5243 1 

3 10.484 2.3499 2 4.6997 4 

4 7.732 2.0454 3 6.1361 9 

5 4.972 1.6038 4 6.4153 16 

Sum  11.11292 10 19.7754 30 

The log-deg = -0.24504 and zeta = 0.0390 
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Figure 5.16 Free vibration for Aero-Z conductor at 20% UTS-30.02KN (graph 2) 

 

 

Table 5.22 Using the least square method to calculate damping for 20% UTS-Aero-Z (first  

decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 15.342 2.7306 0 0 0 

2 13.823 2.6263 1 2.6263 1 

3 12.202 2.5016 2 5.0033 4 

4 7.732 2.0454 3 6.1361 9 

Sum  9.9039 6 13.7657 14 

The log-deg = -0.2180 and zeta = 0.0347 

 

Table 5.23 Using the least square method to calculate damping for 20% UTS-Aero-Z(second 

decay)  
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 14.018 2.6403 0 0 0 

2 12.920 2.5588 1 2.5588 1 

3 8.700 2.1633 2 4.3266 4 

Sum  7.3624 3 6.8854 5 

The log-deg = -0.2385 and zeta = 0.0379 
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Fig 5.17 Free vibration for Aero-Z conductor at 25% UTS-37.53KN (graph 1) 

 

Table 5.24 Using the least square method to calculate damping for 25% UTS-Aero-Z (first  

decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 19.024 2.9457 0 0 0 

2 18.423 2.9136 1 2.9136 1 

3 14.224 2.6549 2 5.3099 4 

4 10.832 2.3825 3 7.1475 9 

Sum  10.8970 6 15.3710 14 

 The log-deg = -0.1948 and zeta = 0.0310 

 

Table 5.25 Using the least square method to calculate damping for 25% UTS-Aero-Z (second 

decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 16.724 2.8168 0 0 0 

2 15.823 2.7615 1 2.7615 1 

3 13.224 2.5820 2 5.1641 4 

4 9.402 2.2409 3 6.7228 9 

Sum  10.4013 6 14.6483 14 

The log-deg = -0.1907 and zeta = 0.0303 
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Fig 5.18 Free vibration for Aero-Z conductor at 25% UTS-37.53KN (graph 2) 

 

 

Table 5.26 Using the least square method to calculate damping for 25% UTS-Aero-Z(first  

decay)  
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 22.141 3.0974 0 0 0 

2 19.232 2.9565 1 2.9565 1 

3 15.120 2.7160 2 5.4320 4 

Sum  8.7699 3 8.3885 5 

The log-deg = -0.1906and zeta = 0.0303 

 

 

Table 5.27 Using the least square method to calculate damping for 25% UTS-Aero-Z (second 

decay) 
Integer 

j 

Amplitude(mm) 

Y LN(Y) (j-1) LN(Y)( j-1) (j-1)
2 

1 16.524 2.8048 0 0 0 

2 14.823 2.6962 1 2.6962 1 

3 13.924 2.6336 2 5.2672 4 

4 11.732 2.4623 3 7.3870 9 

5 7.072 1.9561 4 7.8246 16 

Sum  12.55307 10 23.1749 30 

The log-deg = -0.1903 and zeta = 0.0307 
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5.3.4 Experimental Results for Forced Vibration (Sweep test): Aero-Z 

Conductor 
 

 
Fig 5.19 Forced vibration for Aero-Z conductor at 15% UTS-22.52KN     

 

Table5.28 Showing Resonance frequencies and calculation for damping using bandwidth method 
For 15% UTS Aero-Z 
Resonance 

Frequency 

Rf 

 

Acceleration 

a(m/s
2
) 

 

a/√2 

Half- 

Power 

F1 

Half- 

Power 

F2 

Half- 

Power 

F2 

quality 

factor 

Q 

damping 

factor 

δ 

5.63 7.960 5.6286 5.48 5.95 0.47 11.9787 0.0417 

7.23 4.960 3.5073 7.00 7.59 0.59 12.2542 0.0408 

8.85 6.770 4.7872 8.65 9.53 0.88 10.0568 0.0497 

10.26 8.050 5.6923 9.76 10.54 0.78 13.0256 0.0384 

13.28 10.600 7.4954 12.83 13.76 0.93 14.2796 0.0350 

14.63 10.810 7.6439 13.94 14.97 1.03 14.2039 0.0352 

16.30 10.650 7.5308 15.95 16.82 0.87 18.7356 0.0267 

17.39 12.330 8.7187 16.79 17.67 0.88 19.7614 0.0253 

18.81 12.030 8.5066 18.19 19.03 0.84 22.1548 0.0226 

20.04 12.820 9.0652 19.54 20.52 0.98 20.4490 0.0245 
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Fig 5.20 Forced vibration for Aero-Z conductor at 20%UTS-30.02KN 

 

Table 5.29 Showing Resonance frequencies and calculation for damping using bandwidth 

method for 20% UTS Aero-Z 
Resonance 

Frequency 

Rf 

 

Acceleration 

a(m/s
2
) 

 

a/√2 

Half- 

Power 

F1 

Half- 

Power 

F2 

Half- 

Power 

F2 

quality 

factor 

Q 

damping 

factor 

δ 

6.46 6.760 4.7801 6.21 6.78 0.57 11.3333 0.0441 

8.23 7.290 5.1549 8.04 8.67 0.63 13.0635 0.0383 

10.09 8.070 5.7064 9.87 10.49 0.62 16.2742 0.0307 

12.41 9.250 6.5408 11.63 12.39 0.76 15.8026 0.0316 

14.83 12.060 8.5278 14.31 15.25 0.94 15.7766 0.0317 

16.70 12.610 8.9167 16.21 17.22 1.01 16.5347 0.0302 

18.11 13.150 9.2985 17.83 18.97 1.14 15.9737 0.0313 

19.49 13.330 9.4258 18.93 20.36 1.43 13.7692 0.0363 

21.43 12.930 9.1430 20.74 21.92 1.18 18.1610 0.0275 

23.30 13.920 9.8430 22.69 24.06 1.37 17.0073 0.0294 
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Fig 5.21 Forced vibration for Aero-Z conductor at 25%UTS-37.53KN 

 

Table 5.30 Showing Resonance frequencies and calculation for damping using bandwidth 

method for 25% UTS Aero-Z 
Resonance 

Frequency 

Rf 

 

Acceleration 

a(m/s
2
) 

 

a/√2 

Half- 

Power 

F1 

Half- 

Power 

F2 

Half- 

Power 

F2 

quality 

factor 

Q 

damping 

factor 

δ 

7.21 6.960 4.9215 6.98 7.33 0.35 20.3714 0.0245 

9.16 7.090 5.0134 8.96 9.41 0.45 20.3556 0.0246 

12.57 8.570 6.0600 10.92 11.49 0.57 19.5965 0.0255 

14.21 10.450 7.3893 12.99 13.67 0.68 19.4265 0.0257 

16.24 10.060 7.1136 14.82 15.74 0.92 16.5652 0.0302 

17.91 10.810 7.6439 16.82 17.83 1.01 17.1386 0.0292 

19.82 13.050 9.2278 18.71 19.98 1.27 15.2126 0.0329 

21.37 13.730 9.7087 20.66 22.02 1.36 15.7132 0.0318 

23.43 14.030 9.9208 22.67 23.82 1.15 20.3739 0.0245 

25.47 13.120 9.2773 24.96 26.32 1.36 18.7279 0.0267 
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5.4   Finite Element Analysis (FEA) Results 
  

The finite element analysis modeling of transmission lines conductor simulation can be found in 

[27], in which the simulations of conductor vibrations were done using ABAQUS software. 

Similarly, in this study ABAQUS software was also used for the conductor vibration simulation 

but only for Aeolian vibration. Thus, finite element analysis for the mechanical oscillation for 

transmission line conductors was simulated using the code for beam properties.  The values for 

physical properties of the test conductors used for the simulation are found in table-B-1 and 

table-B-2 in appendix B.  

In simulating conductor vibration using ABAQUS, the eigenvalues were searched and computed 

in the frequency range for both conductors. For the Tern conductor, the first ten natural 

frequencies for the  conductor between the frequency ranges of 6 to 50Hz were obtained and are 

recorded in table 5.33 in comparison to the values obtained for the analytical model at tensions 

20%, 25%, and 30% of its UTS. Similar simulations were also done for the Aero-z conductor but 

for the frequency ranges of 5 to 50Hz at 15%, 20% and 25% of its UTS. The results also in 

comparison with the values obtained from the analytical model are recorded in table 5.34.  

To compute the damping constants that were used for these simulations was by the derived 

equation (4.22) in relation to experimental values. Thus, using the experimental resonance 

frequencies values, the least squares method (pseudo-inverse routine) was used to compute the 

damping constants using Matlab. The values obtained were then used as proportional damping 

constants in ABAQUS to simulate the conductor vibration for damping.  

The ABAQUS simulation results for the eigenvalues and the natural frequencies for both 

conductors are presented in appendix D. 
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Table 5.31. Showing comparison Natural frequencies values obtained from the analytical mode 

and FEA for Tern conductor 

 
 

 

 

 

Mode 

Natural  Frequency (Hz) 

20% UTS 

Natural Frequency (Hz) 

25% UTS 

Natural Frequency (Hz) 

30% UTS 

Analytical 

Model 

FEA Exp. 

value 

Analytical 

Model 

FEA Exp. 

value 

Analytical 

Model 

FEA Exp. 

value 

 
9 6.394 

 

6.406 6.39 7.114 

 

6.754 6.78 7.911 

 

7.380 7.46 

 
10 7.110 

 

6.957 7.21 7.909 

 

7.387 8.22 8.796 

 

8.067 9.09 

 
11 7.829 

 

7.501 8.61 8.707 

 

8.008 9.82 9.68 

 

8.741 11.43 

 
12 8.549 

 

8.038 10.13 9.506 

 

8.619 12.13 10.569 

 

9.400 13.67 

 
13 9.272 

 

8.568 12.92 10.308 

 

9.216 14.83 11.458 

 

10.044 15.74 

 
14 9.997 

 

9.610 14.02 11.111 

 

9.802 16.81 12.350 

 

10.673 17.41 

 
15 10.725 

 

10.121 16.99 11.917 

 

10.375 18.24 13.244 

 

11.285 18.10 

 
16 11.455 

 

10.626 17.70 12.725 

 

10.935 19.27 14.140 

 

11.881 19.22 

 
17 12.188 

 

11.124 19.21 13.537 

 

11.481 21.61 15.039 

 

12.461 21.07 

 
18 12.925 

 

11.614 21.82 14.351 

 

12.015 23.52 15.941 

 

13.567 23.26 
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Table 5.32   Showing comparison Natural frequencies values obtained from analytical model and 

FEA for Aero-Z conductor 

 
 

 

 

 

Mode 

Natural  Frequency (Hz) 

15% UTS 

Natural Frequency (Hz) 

20% UTS 

Natural Frequency (Hz) 

25% UTS 

Analytical 

Model 

FEA Exp. 

Value 

Analytical 

Model 

FEA Exp. 

Value 

Analytical 

Model 

FEA Exp. 

Value 

 

8 6.385 

 

5.646 5.63 7.372 

 

6.515 6.46 8.243 

 

7.281 7.21 
 

9 6.922 

 

6.311 7.23 7.985 

 

7.280 8.23 8.923 

 

8.969 9.16 
 

10 7.698 

 

6.961 8.85 8.878 

 

8.028 10.09 9.920 

 

9.781 12.57 
 

11 8.475 

 

7.595 10.26 9.773 

 

8.757 12.41 10.918 

 

10.571 14.21 
 

12 9.255 

 

8.211 13.28 10.669 

 

9.465 14.83 11.918 

 

11.335 16.24 
 

13 10.037 

 

8.810 14.63 11.569 

 

10.515 16.70 12.920 

 

12.071 17.91 
 

14 10.822 

 

9.387 16.30 12.470 

 

10.813 18.11 13.923 

 

12.778 19.82 
 

15 11.610 

 

9.943 17.39 13.373 

 

11.449 19.49 14.929 

 

13.455 21.37 
 

16 12.401 

 

10.477 18.81 14.280 

 

12.058 21.43 15.938 

 

14.099 23.43 
 

17 13.195 

 

10.988 20.04 15.188 

 

12.640 23.30 16.949 

 

14.709 25.47 
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5.5  Equivalent circuit results 
  

To simulate the transfer function for the electrical equivalent circuit developed in chapter 4 for 

the vibrating conductor, the equivalent parameters for the electrical circuit in equivalence to its 

mechanical parameters have to be obtained. From [9] the value of the unit transverse stiffness of 

a pinned-pinned beam of modulus E, area moment of inertia I and unit length  , for a load 

applied at a point a, from its end is given as 

 

   
    

        
                                 

   

With the unit length  = 21.25m and a =1.2m 

  

The values of the mass per unit length of both conductors are given in table-B-1 in appendix B, 

using the dimensionless numbers as defined by the author [36] and simply using the assumed 

scale factor of one to obtain the corresponding electrical equivalent values. To determine the 

values for the resistance in equivalent damping was by iterative process. This process was used 

to obtain the values of resistance which in equivalence corresponds to the damping value for free 

vibration of 20% UTS of Tern. Using these electrical equivalent values obtained, the transfer 

function for the impulse response for the circuit was simulated using Matlab and the result is 

shown in figure 5.22 below.   

 To simulate the impulse response that corresponds to 25% and 30% UTS, a linear relationship 

was adopted in which the stiffness increases with increase in tension. Damping was evaluated by 

the assumption that change in resistance of the conductor is a function of temperature.    
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Figure 5.22 Impulse responses for the transfer function 

 

The same concept was also used to simulate the impulse response for Aero-Z conductor but at 

15%, 20% and 25% of its UTS 

 
5.6 Analysis of Results 
 

In studying the vibration of a body, the actual reproduction of the test is very difficult; however in any test 

conducted, the vibration test results are always specific for a particular excitation. This study conducted 

with regards to wind-induced vibration experienced by power line conductor is of threefold, done with 

respect to the two forms of vibration: free and forced. 

The first is the analysis of the analytical model describing the transverse vibration of conductors. 

This involved analysing the developed analytical model of the transverse vibration of a 

conductor as a simply supported beam i.e. flexural rigidity of the conductor was not is ignored. 

Although, this model was used to predict the transverse vibration of the conductor, the fact was 

that a precise model was very difficult due to the non-linear response of the conductor. In some 

literature [17][18], the experiments conducted were done in wind tunnels in which the concept of 
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fluid-solid interaction was used to determine wind loading on the conductor which distributed 

along the conductor span length. This aspect was not covered in this study instead the loading 

was assumed to be a point loading and this input force was provided by a shaker. This model was 

used to obtain the conductor natural frequencies and its associated mode shapes. The values of 

the ten natural frequencies for the analytical model for both conductors at the three different 

tensions are presented in tables 5.31 and 5.32. Also obtained is conductor self-damping equation. 

This was achieved by incorporating two damping models into the equation of motion of the 

conductor.  

The second was the development of finite element method (FEM) and the electrical equivalence using 

mechanical-electrical analogy, for the conductor and compared with data obtained from experimental 

results (natural frequencies). The FEM entailed the formulation of global equation for the conductor. The 

single span length conductor was developed and implemented on a computer program using ABAQUS 

software. The program was simulated using beam properties and the system damping was simulated by 

using proportional damping.  The constant damping values were calculated using equation (4.22) and the 

values was used for the simulations.  The computer program was used to simulate the response of the 

conductor and the mode of vibration was limited to the vertical plane. From the computer program 

simulations the values for the natural frequencies were obtained. Table 5.31 and table 5.32 showed the 

comparison between the natural frequencies obtained from the analytical model and that from the FEA. 

Comparing the results, there was a good agreement between the analytical and the FEM frequencies for 

the two conductors done at the three different tensions. Also both tables are also used to compare the 

values of the resonance frequencies obtained from resonance search test. In comparison the first few 

lower modes tend to be close to both the analytical and FEM values but as the mode number increase 

there were deviations and the deviations also increases as the mode increase.  

Also obtained was the development of the electrical analogy for the power line conductor. Due to the fact 

that the model for the finite element method and electrical equivalence were dimensionally equal, similar 

results were obtained from both methods. The impulse response was obtained by the simulation using 

Matlab, and the calculation for damping was by using the ratios of decaying amplitudes. The results were 

in good agreement with the experimental results for free vibration.      

 The final aspect of this study was the experimental verification of the analytical model. The experimental 

data available for verification was for Aeolian vibration.  The verification experiments were done on the 

84.6m span conductor at three different tensions for the two conductors used for the experimental testing.  

The laboratory results have shown that conductor vibration is characterised by a high mode 

density and a narrow bandwidth. For the free vibration test, a time history domain was used to 
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present the capture system‟s response due to the impact loading. This was then used to calculate 

the amount of damping from the system, while for the forced vibration test; a frequency history 

domain was used to determine the resonance frequencies for the system caused by excitation 

from the sinusoidal force. Based on these values, the amount of damping for each mode was 

calculated.   

For the free vibration test, the average value for damping for Tern at 20% UTS, 25% UTS and 30% UTS 

were 0.0278, 0.0229 and 0.0137 respectively. Similarly, for Aero-Z conductor, the average value for 

damping at 15% UTS, 20% UTS and 25% UTS were 0.0422, 0.0360 and 0.0305 respectively. 

In chapter one, besides this study seeking to gain more understanding into the mechanism of wind-

induced vibration, the main goal was the determination of self-damping of the conductor and this 

prompted the research question. This intention has been achieved and a methodology established for the 

determination of conductor self-damping. In this vain, this process will help to determine at a particular 

stringing tension, the conductor self-damping capability and to ascertain whether the value for damping at 

that particular tension should be ignored or not.  This will also helped in determining the type and number 

of vibration absorber that will be required to counter the effect of dynamic loading in order to keep the 

conductor safe. It has been highlighted through the literature reviewed in chapter two that some 

parameters were particularly important as related to the Scruton number, to the prediction of the response 

of a system to some form of excitation. Some of these parameters are mass density and damping. From all 

aspects of the study, for Tern conductor it was noticed that the conductor damping value decreases as the 

axial tension was increased. Due to this very low inherent damping at higher tension greater than the 

recommended UTS value, the conductor tends to be more prone to mechanical oscillation.  For Aero-Z 

conductor, it was observed that at higher tensions greater than the recommended UTS tension value, the 

damping value was okay to the string line. But stringing of this conductor is done at lower tension based 

on the less capability of the conductor to withstand both the dynamic loading and the static tensile stress 

due to the absent of steel in the conductor.  

Hence, from this analysis it was established that Aero-z conductor has a higher damping capacity 

compared to Tern and this was confirmed in all aspects of this study. Therefore, in this study the values of 

the conductor self-damping were determined using shorter span indoor conductor. 

So far in this study, two methods of damping identification have been developed to enable in the 

estimation of dynamic action of Aeolian vibrations on overhead transmission lines. For the 

experimental studies, the free vibration present results for the damping values for the system at 

three different tensions while forced vibration present the damping values at the resonance 

frequencies also at the same three different tensions for free vibration. Both results show that the 
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damping decreases as the cable tension was being increased. In section 2.4.2, the various 

damping mechanisms in a vibrating conductor were explained. The explanation stated that 

damping can be caused by relative motion between conductor strands and also between the 

conductor accessories. Thus, this form of damping is caused by the frictional force that exist due 

motion relatively between each strand and also between members like the clamps, dampers, 

spacers, spacer-dampers, and suspension assemblies. As the axial tension was being increased 

the inter-strand motion was highly being restricted. This consequently led to the reduction in 

damping from this damping mechanism.  

For the other means, this is material damping which has to do with the conductor property i.e. the 

conductor stiffness. As the tension was also increased, the conductor stiffness was also increased 

which invariably led to reduction in damping. Section 3.5 explains how these two mechanisms 

have been modeled in order to determine the conductor damping: viscous and material damping 

models respectively. 

The experimental and finite element results have also shown the great influence of both cable 

tensioning and stiffness and it was noticed that damping tend to decrease as the axial tension was 

being increased in both cases.  In the mathematical model in section 3.5, these mechanisms were 

model in relation to the damping parameters βI and C. These parameters tend to servers as the 

means to determine the contribution of both damping mechanism to the total damping at various 

tensions. Because, the foregoing analysis in this study lacks some important issues which can be 

addressed by conducting more investigations, on the bases of the findings with regards to further 

investigations, then these damping constants can then be used to ascertain the contributions of 

each damping mechanism to the total damping as the cable tension is being increased or varied.   

Hence, further studies need be carried out and also some form of non-linear concepts introduced. The 

outcome can then be used in analysis of actual transmission lines to determine how best they agree. This 

will involve, using these generated responses for the analytical model for the system, finite 

element simulation and experiment data from the laboratory and compared with data from actual 

transmission lines. Based on the comparison between these responses and that on the real 

overhead power lines, conclusions can then be drawn on how self-damping occurred and how it 

can be incorporated into transmission lines design and construction.   
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CHAPTER 6 

 

CONCLUSIONS AND RECOMMENDATIONS 

 
6.1     Conclusions 
 

From the research study, as well as the tests conducted and compiled in this report and also from 

the inferences drawn based on analysis done in the last chapter, the following were established 

from the theoretical (analytical) model, finite element method, and experimental study 

 

 Natural Frequencies of the vibrating conductor increases with the increase in the 

axial tension of the conductor. 

  Damping decreases with the increase in tension. 

  

 In comparison there was close agreement of the values of the natural frequencies and 

damping obtained in theoretical, FEM and that from the laboratory experiments.  

 The parameters obtained from the above, to some degree of accuracy can be used to 

predict the response of conductors to wind loading. 

 

The main objective of this report was the evaluation of bare conductor self-damping. In this 

study, two methods were used to evaluate damping at different tensions: free and forced 

vibration.  The experimental data showed that self-damping of Aero-Z conductor is higher than 

that of Tern conductor. However, because Tern has higher resistances to structural failure due to 

the presence of steel, stringing at higher tension is recommended. 

 

  

6.2      Recommendations   

 From results compiled in this study it could be observed that in order to improve future research 

relating to this area of wind-induced vibration some modifications are needed. Some of them are 

as follows: 
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  In all aspects of this study ranging from analysis of the analytical model, finite element 

analysis, and electrical analogy, the linear concept was used. This concept is actually 

contrary to what happens to conductors when they are exposed to the dynamic forces of 

nature like wind. In the real world, conductor response is non-linear; therefore to 

improve on the conductor modeling some concept of non-linearity should be introduced.   

 Also in modeling structural damping the viscous damping model was used in this study. 

The hysteresis or dry or coulomb model should be considered in order to improve on the 

accuracy of the value of this type of damping. This is because these forms of damping 

models can help represent in terms of non-linearity with regard to modeling damping. 

  Boundary conditions in both analytical models and FEA and effect of end termination 

should also be examined to improve on the accuracy of results.  

 With respect to axial loading, at the lower tension the wind power input into the conductor does 

not exceed the power loss. As the tension is increased, the input power tends to exceed the power 

loss from the conductor. Therefore, based on the outcome of study, the ability to evaluate self-

damping of bare conductors can determined. However, further study could be done to determine 

the critical point in which the conductor damping (power loss) balances the input power at a 

given tension. This process will help determine the types and amount of damper needed on the 

line in order to prevent damage that could be caused by the conductor oscillation.    

Further study could also be done to ascertain and developed a method that can be used to obtain 

a value for bending stiffness which varies along the conductor length in the area of finite element 

analysis. This can then be used to formulate a computer program that can be used as a design 

parameter for designing transmission lines. 

Finally, because of the experimental data available, verification of the analytical model was done 

for Aeolian vibration only. Similarly, these three concepts covered in this study should also be 

extended to the analysis of wake-induced vibration. 

All the above areas for future study will form the basis of my PhD studies.  
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Appendix A: Derivation of the Simple Beam Equation: Euler-Bernoulli 

Equation  

(The Simple Beam Theory) 

 
The beam is an example distribute-parameter system and such system has infinite number of 

natural frequencies. For this kind of system, when there is vibration, each of these infinite 

numbers of elements moves relative to each other in continuous manner. Vibration of a beam in 

the perpendicular direction to the length is often referred to transverse vibration or flexural 

vibration.  

 Deriving the flexural vibration of a uniform beam shown in figure 3.1 with cross-

sectional area A, flexural rigidity EI, material density ρ, and length L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig A-1 A Uniform Beam. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-2   Differential Element of the Beam 
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Considering small element with length dx as shown in figure 3.2 which is subject to an external 

force f(x, t) 

 

 

Where M is the bending moment   

            Q is the shear force 

             F is the applied force 

From mechanics of materials 
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Summation of force in the y-direction 
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Summation of moment about z-axis
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Because dx is assumed to be small, then (dx)
2
 is assumed to be almost zero 
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Substituting Eq (3.3) into Eq (3.2) 
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Dividing through by dx and substituting Equation (3.1) into Equation (3.4)  

 

),(
),(

)(
),(

)(
2

2

2

2

2

2

txf
x

txy
xEI

xt

txy
xA 





















                                      …………….. (A5) 



94 
 

If EI(x) and A(x) are assumed constant and no external force applied f(x, t) = 0 then Eq (A5) 

becomes 

 

4

4
2

2

2 ),(),(

x

txy
C

t

txy









                                                                    ……………… (A6) 

 

Where C is the wave speed for the beam and is given as 

 

      C =
A

EI


 

 

Note: Equation (A6) is the free vibration for the beam, also known as Euler-Bernoulli equation.  

             

The solutions to equation (A6) of a simple beam require four boundary conditions and two initial 

conditions to solve the free wave equation. Using separation-of-variable where the solution is 

assumed in the following form 

 

                    )()(),( tTxXtxY                                                           ………………. (A.7) 

Then Equation (3.6) becomes  
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Where ω² is the separation constant  

The right hand side of eq (3.8) becomes  
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This is the temporal equation and because the beam perform a harmonic vibration with time, 

the solution of equation is 

 

tBtAtT  cossin)( 11                                             ……………… (A.10) 

  The constants A1 and B1 are determined from the initial conditions of the equation.  

Also the left hand side of equation (3.8) becomes 
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This is known as spatial equation  
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that m

2 
  = ±j ,  

2
  

  

Therefore X(x) = C1sinx ,  + C2cos , x                                                    ………………. (A.13) 

 

Also if (m
2
 – 2 ) =0, then m

2
   =   2

, 
it implies that m

2 
= ± 2  

Therefore X(x) =
 
C3sinh x +C4cosh x 

 

Hence, the general solution becomes 

 
 
X(x) = C1sin x + C2cos x +C3sinh x +C4cosh x                             …..................... (A.14) 

 

The constants C1, C2, C3 and C4 are determined from the boundary conditions. 

 

To determine the natural frequencies and mode shapes for the transverse vibration of a simply 

supported or pinned at both end ends as shown below with the four boundary conditions 

 

 

Substituting these boundary condition into equation (3.14) 

 

At x = 0   and X"(0) = 0 

 

     C1 + C3 = 0 

At x = 0 and X″ (0) 

 

     C1 - C3 = 0 

Therefore C1 = C3 = 0 

 

Then eq (3.14) becomes 

 

X(x)   =   C2cos x +C4cosh x                                                                 ..……………… (A.15) 

At x= L    and     X (L) = 0 

 

      X (L) =   C2cos L +   C4cosh L 

 

At x= L and X″ (L) = 0 

 

  X (L) = C2cos L - C4cosh L 

Hence X(x) = C2sin L - C4sinh L = 0 
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Based on the fact that sinh L ≠ 0 C4 =0. Then equation (3.14) becomes 

 

 

              X(x)   =   C2sin x                                                                ………………… (A.16) 

 

But since C2sinhλL = 0 and C2 ≠ 0 and because X(x) will be zero for values of x then  
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Appendix B:   Physical Properties of Test Conductors 

Code name: Tern [25] 

Conductor type – aluminum conductor steel reinforced (Stranded) (ACSR) 

Conductor properties: 

Diameters: O. Dia - 27 mm, Core dia– 6.75 mm 

Stranding number & wire diameters:  

Aluminium: 45, 3.37 mm 

Steel: 7, 2.25 mm 

Cross section:                                                                         

Aluminium: 402.58 square millimeters 

Steel: 27.83 square millimeters 

Total: 430.32 square millimeters 

Mass per unit length: 1.334 kg/m 

 
Fig B-1 Tern Conductor 

 

Table –B-1Physical Properties for Tern Conductor 

Quantity   Unit 

Radius of conductor  0.014 m 

Total cross-sectional area 431.60       m
2
 

Conductor density 3090.82 kg/m
3
 

Conductor Span length 84.6 m 

Conductor Chord Length 85.0 m 

Conductor mass per length 1.334 Kg/m 

Poisson‟s ratio 0.33  

Maximum bending stiffness 1350 Nm
2
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To calculate for the maximum and minimum bending stiffness values for Tern. 

Given: 

Ea = 6.895          Nm
2 

Es = 20.68         Nm
2 

 

Using equation 5.1 and values of young modulus for steel and aluminium given above, the 

minimum EI value is given as 

EImin =                 
              

  
                 

              

   
 

EImin  =  21.47Nm
2
  

 

The value for maximum bending stiffness for Tern is calculated using equation 5.4 and analysis 

is given in table 5.1 

 

The table is used to calculate the EImax  for Tern conductor 

 Steel Aluminiun 

n 1 6 9 15 21 

d 0.00225 0.00225 0.00338 0.00338 0.00338 

R 0 0.00225 0.005065 0.008445 0.011825 

E 2.07E+11 2.07E+11 6.90E+10 6.90E+10 6.90E+10 

I 1.26E-12 6.79E-11 1.09365E-09 4.8961E-09 1.33102E-08 

EI 2.60E-01 1.41E+01 7.54E+01 3.38E+02 9.18E+02 

 

EImax = 1350Nm
2 
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Code name: 445-A3F-26 [27] 
Conductor type – Aero-Z 

Conductor properties: 

Diameters: O. Dia – 26.10 mm, Core dia– 14.5 mm 

Stranding number & z-wires diameters:  

Round aluminiun wires: 19, 2.9 mm 

Z-shape aluminun wires 42, 2.9mm 

Cross section:                                                                         

Total aluminium: 461.73 square millimeters 

Mass per unit length: 1.284 kg/m 

 

 
 

Fig B-2 Aero-Z Conductor 

 

Table-B-2 Physical Properties for Aero-Z (445-A3F-261) Conductor 

Quantity   Unit 

Radius of conductor  0.01305 m 

Young‟s  Modulus  5.4        N/m
2 

Total cross-sectional area 461.73       m
2
 

Conductor density 2780.85 kg/m
3
 

Conductor Span length 84.6 m 

Conductor Chord Length 85.0 m 

Conductor mass per length 1.284 Kg/m 

Poisson‟s ratio 0.35  

Bending stiffness 1198.8 Nm
2
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To calculate the bending stiffness for the Aero-Z conductor using equation (3.25) from chapter 3 

given below  

EI = EIx + EIzs = E(Ix +Izs)                   

 

Where Ix =
     

 
 
  

 
     

       

         Izs   
    

    
  

  
       

The table below is used to for Ix   

n 1 6 12 

d 2.90E-03 2.90E-03 2.90E-03 

R 0 2.90E-03 5.80E-03 

I 3.47231E-12 1.88E-10 1.38E-09 

 

  Ix    = 1.57        Nm
2
 

Calculating for Izs =     
                  

 
               

  
    = 2.0612       m

4 

Give  E = 5.4           

Therefore      
 

EI = 5.4                   2.0612      ) 
 

EI = 1198.8Nm
2 
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Appendix C: DAMPING MEASUREMENT 

Measurement of Damping: Free Vibration [39] 
To measure the damping of a system experiencing free vibration, with decaying amplitude at the 

completion of one cycle of vibration as shown in the diagram below.   

 

 
 

Considering t1 and t2 to be the times corresponding to the first and second peak, denoted the peak 

displacement x1 and x2 respectively, and the ratio 

 
  

  
   

     

     
     

                     

                    
    

                     

                   
        ………..C1 

 

 From the plot above of the response x (t) as a function of time,            represents the 

exponentially decay function and             

 

  

  
   

                   

                          
    

                  

               
                               ………….C2 

 

  

  
                

     
  

     

   

      
 

                 …………..C3 

 

In view of   the exponential form of the right side of the equation (C3), then taking the natural 

logarithm on both sides, it becomes 

 

         
  

  
   

   

      
                                       ...………….C4 

Where δ is known as the logarithmic decrement, solving for the damping factor 
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                         ……………C5 

 

 

The damping factor, such that        equation (C5) yields directly 

 

    
 

  
                                    … ………..C6 

 

The damping factor    can be determine more accurately be developing the least square method 

from the log decrement techniques. To develop this technique is by measuring the values the 

displacements of the decaying amplitudes at two different times separated by a given number of 

periods. Letting     and       be the peak displacements corresponding to the times    and      , 

where j is an integer. Taking the ratio of any two consecutive peak displacement, not only for 
  

  
 , we conclude that  

  

    
   

    

    
 

  

    
    

   

       

 

 

   

    

       

                              .. …………C7 

 

     
 

         
  

 

 
  

  

    
  

 

                                                                                               ……………. C8 

 

On semilog paper, a plot Inxj versus j of equation base on equation C8 has a straight line with the 

slope    

  
To determine the damping factor for the measurement of peak amplitudes of          of a 

vibrating lightly damped system 
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From the above diagram, the equation of the straight line is expressed as 

 

                                                                                                                 ……………...C9 

   

 

Where    corresponds to      , a to     and b to      

The sum of the squares of the difference as the error is given as  

 

              
  

                    
  

                                               …………….C10 

 

To minimize the error, we write 

 

 
   

  
                          

                                                          …………….C11a 

 
   

  
                          

                                                           .....………….C11b 

 

Equations (C11) represent two algebraic equations in the unknown a and b, which can be written 

in the more explicit form 

 

    
  

          
 
                   

 
                                                           ……………C12 

 

    
 
                  

 
                                                                                ……………C13     

 

Solving for a and b simultaneously from equations C12 and C13 from the above equations, 

where a corresponds to     and b to     . Hence, the damping constant can then be obtained 

using equation (C5) 
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Measurement of Damping: Forced Vibration [40] 
The bandwidth method of damping measurements based on frequency-response. Consider the 

frequency-response function magnitude given in the diagram below of an oscillatory system with 

some form of damping. The peak magnitude (amplification factor, Q) is given by equation for 

low damping.  

 
 

       
  

 

    
       

 
       

    
 

  
                                                                           ..…………..C14 

 

  
 

  
                                                                                                                     …………….C15 

 

For           is obtained below using equation C14. By definition    and    are the roots 

of the equation 
  

 

    
       

 
       

    
 

  
   

 

     
                                                                   ………..... C16 

 

 for  . Equation C16 can be expressed in the form 

 

              
               

                                                            ………..... C17 

 

This is a quadratic equation in  , having roots    
  and    

  which satisfy  

 

       
         

          
    

        
   

                               
 

Consequently, 
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 and 

  
   

            
     

 

It follows that                            

 

       
     

     
                    

           
                  ………..... C18 

 

 For small   (in comparison to 1), we have 

 

        
          

 

Hence,  

       
        

     
  

or, for low damping 

  

                                                                                                                    .………..... C19 

 

 From equation C19 it follows that the damping ratio can be estimated from the bandwidth using 

the relation 

 

   
 

 

  

  
                                                                                                     .………..... C20 

 

For a body with multiple degree of free freedom with widely spaced resonance, for such body 

with ith mode, the damping ratio is given by 

 

     
 

 

   

  
                                                                                                   ..………..... C21  
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Appendix D: ABAQUS results for the simulation for both Tern and 

Aero-Z conductors0 

 

1 

Abaqus 6.9-2 Date lS-Aug-2010 Time 17:36:41 
For use at university of Kwazulu - Natal under l1cense from Dassault Systemes or 

its subsidiary. 

Analysis of Tern conductor at 20% of its UTS STEP 3 INCREMENT 
1 

TO determine the natural frquencies of the conductor TIME COMPLETED IN THIS 
STEP 0.00 

S T E P 3 CAL C U L A T ION 0 F E I G E N V A l U E S 

, ° , NATURA L F R E QUE N C I E S 

TO determine the natural frquencies of the conductor 

THE LANClOS EIGENSOLVER IS USED FOR THIS ANALYSIS 
Abaqu$ WILL COMPUTE UNCOUPLED 

STRUCTURAL AND ACOUSTIC MODES 
ALL EIGENVALUES IN THE SPECIFIED RANGE WILL BE 
HIGHEST FREQUE NCY OF INTEREST 
LOWEST FREQUE NCY OF INTEREST 
MAXIMUM NUMBER OF STEPS WITHIN RUN 
SLOCK SIZE FOR LANCZOS PROCEOURE 
THE EIGE NV ECTORS ARE SCALED SO THAT 

EXTRACTED 
50.000 
6.0000 

35 
7 

THE LARGEST DISPLACEMENT ENTRY IN EACH VECTOR IS UNITY 
INI TIAL STRESS AND DISPLACEMENT EFFECTS ARE INCLUDED IN THE STIFFNESS MATRIX 

THIS IS A LINEAR PERTURBATION STEP. 
ALL LOADS ARE DEFINED AS CHANGE IN LOAD TO THE REFERENCE STATE 

LARGE DISPLACEMENT THEORY WILL BE USED 

M E M 0 , , EST I MAT , 
PROCESS FLOATI NG PT MINIMUM MEMORY MEMORY TO 

OPERATIONS REQUIRED MINIMIZE I/O 
PER ITERATION (MBYTES) (MBYTES) 

1 5 . 14E+004 20 28 

E I G E N V A L U E ° OT , OT 

MOO' '0 EIGENVALUE FREQUENCY GENERALIZED MA" 

(RAD/TIME) (CYCLES/TIME) 
9 1547 . 0 39.331 6.406 79 . 811 

10 1728 . 6 41.576 6 .957 79 . 382 

11 1899.9 43.587 7.501 79. 34' 

12 2056. 6 45.350 8.038 78.987 

13 2194 .6 46.847 8.568 80.765 

" 2309. 3 48.055 9.610 78.826 

15 2396.1 48.950 10.121 78.597 

16 2450.2 49.499 10.626 78.758 

17 4558.1 67.514 11.124 79.634 

18 5788.2 76.080 11.616 80.969 
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Tern_conductor@25%UTS 
1 

Abaqus 6.9-2 Date 15-Aug-2010 Time 17 :23:51 
For use at university of Kwazulu-Natal under license from Dassault systemes or 

its subsidiary. 

Analysis of Tern conductor at 25% UTS STEP 3 INCREMENT 
1 

To determine the first 10 natural frequencies 
STEP 0.00 

TIME COMPLETED IN THIS 

S T E P 3 CAL C U L A T ION 0 F E I G E N V A L U E S 

FOR NAT U R A L F R E QUE N C I E S 

To determine the first 10 natural frequencies 

THE LANCZOS EIGENSOLVER IS USED FOR THIS ANALYSIS 
Abaqus WILL COMPUTE UNCOUPLED 

STRUCTURAL AND ACOUSTIC MODES 
ALL EIGENVALUES IN THE SPECIFIED RANGE WILL BE EXTRACTED 
HIGHEST FREQUENCY OF INTEREST 50.000 
LOWEST FREQUENCY OF INTEREST 6.0000 
MAXIMUM NUMBER OF STEPS WITHIN RUN 35 
BLOCK SIZE FOR LANCZOS PROCEDURE 7 
THE EIGENVECTORS ARE SCALED SO THAT 

THE LARGEST DISPLACEMENT ENTRY IN EACH VECTOR IS UNITY 
INITIAL STRESS AND DISPLACEMENT EFFECTS ARE INCLUDED IN THE STIFFNESS MATRIX 

THIS IS A LINEAR PERTURBATION STEP. 
ALL LOADS ARE DEFINED AS CHANGE IN LOAD TO THE REFERENCE STATE 

LARGE DISPLACEMENT THEORY WILL BE USED 

M E M 0 R Y EST I MAT E 

PROCESS FLOATING PT MINIMUM MEMORY MEMORY TO 
OPERATIONS REQUIRED MINIMIZE I/O 

PER ITERATION (MBYTES) (MBYTES) 

1 5.14E+004 20 28 

E I G E N V A L U E o U T PUT 

MODE NO EIGENVALUE FREQUENCY GENERALIZED MASS 

(RAD/TIME) (CYCLES/TIME) 

9 1689.0 41. 097 6.754 80.829 

10 1921.0 43.830 7.387 79.790 

11 1921.1 43.830 8.008 79.756 

12 2145.0 46.3l4 8.619 79.397 

l3 2145.0 46.3l4 9.216 79.390 

14 2355.6 48.534 9.802 79.339 

15 2355.6 48.534 10.375 79.325 

16 2547.5 50.473 10.935 78.933 

17 2547.5 50.473 11.481 78.872 

18 2715.7 52.112 12.015 80.665 
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Tern-conductor-30% 

AbaQus 6.9-2 

'" 
Date 09-1un-2010 Time 10:49:43 

TIME COMPLETED IN THIS STEP 0.00 

AbaQus 6.9-2 
For use at university of Kwazulu-Natal under 

oate 09-1un-2010 Time 10 :49:49 
license from Dassault Systemes or 

its subsidiary. 
Analysis of Tern condunor at 30%UTS STEP 3 INCREMENT 1 
TO determine the natural frrequencies of the conductor TIME COMPLETED I N THIS 

STEP 0.00 

S T E P 3 CAL C U L A TID N o , E I G E N V A L U E 5 

, 0 , NAT U R A L FREQUENCIES 

To determine the natural frrequencies of the conductor 

THE LANCZOS EIGENSOLVER IS USED FOR THIS ANALYSIS 
Abaqu5 WILL COMPUTE UNCOUPLED 

STRUCTURAL AND ACOUSTIC MODES 
ALL EIGENVALUES IN THE SPECIFIED RANGE WILL BE 
HIGHEST FREQUENCY OF INTEREST 
LOWEST FREQUENCY OF INTEREST 
MAXIMUM NUMB ER OF STEPS WITHIN RUN 
8LOCK SIZE FOR LA NCZOS PROCEDURE 
THE EIGENVECTORS ARE SCALED SO THAT 

EXTRACTED 
50.000 
6.0000 

35 , 
THE LARGEST DISPLACEMENT ENTRY IN EACH VECTOR IS UNITY 

IN ITIAL STRESS AND DISPLACEMENT EFFECTS ARE INCLUDED IN THE STIFFNESS MATRIX 

THIS IS A LI NEAR PERTURBATION STEP. 
ALL LOADS ARE DEFINED AS CHANGE IN LOAD TO THE REFERENCE STATE 

LARGE DISPLACEMENT THEORY WILL BE USED 

M E M 0 , , EST I M" 
, 

PROCESS FLOATI NG PT MINIMUM MEMORY MEMORY TO 
OPERATIONS REQUIRED MINIMIZE I/O 

PER ITERATION (MBYTES) (M8YTES) 
1 8.06E+004 20 29 

E I G E N V , CO , OUT P "' 
'''''' '0 EIGE NVALUE FREQUENCY GENERALIZED "''' 

(RAO/TIME) (CYCLES/TIME) 
9 2150.3 46.371 7.3802 76.627 

10 2569.4 50.689 8 .0674 74.910 

11 3016.3 54.921 8 . 7410 " . ,<0 

12 3488.5 59.063 9.4002 n. 801 

13 3982.9 63.110 10.044 7S. <03 

" 4497.0 67.060 10.673 7<. 338 

15 5027.9 70.908 11.285 ". '" 16 5573.1 7<. 653 11.881 ". 199 

17 6129.8 78. 29J 12.461 " . 15< 

18 7266.4 85 . 243 13.567 " .834 



109 
 

 

Aero-Z-conductor-15~S 

Abaqus 6.9-2 Date 09-lun-Z010 TiMe 12:34:52 
For use at University of Kwazulu-Natal under license fro.. Dassault systemes or 

its subsidiary. 

Analysis of Aero- z conductor at 15~TS STEP 3 INCREMENT 
1 

TO determine the natural frequencies of the conductor 
THIS STEP 0.00 

TIME COMPLETED IN 

S T E P 3 CALCULATION o , E I G E N V A L U E S 

NATURAL FREQUENCIES 

TO deterMine the natural frequencies of the conductor 

THE LANCZOS EIGENSO!.VER IS USED FOR THIS AKALYSIS 
Abaqus WILL COMPUTE UNCOUPLED 

STRUCTURAL AND ACOUSTIC MODES 
ALL EIGENVALUES IN THE SPECIFIED RANGE WILL BE 
HIGHEST FREQUENCY OF INTEREST 
LOWEST FREQUENCV OF INTEREST 
MAXIMUM NUMBER OF STEPS WITHIN RUN 
BLOCK SIZE FOR LANCZDS PROCEDURE 
THE EIGENVECTORS ARE SCALED SO THAT THE LARGEST 

VECTOR 
IS UNITY 

EXTRACTED 
50.000 
5.000 

35 , 
DISPLACEMENT ENTRY IN EACH 

INITIAL STRESS AND DISPLACEMENT EFFECTS ARE INCLUDED IN THE STIFFNESS MATRIX 

THIS IS A LINEAR PERTURBATlOH STEP. 
ALL LOADS ARE DEFINED AS CHANGE IN LOAD TO THE REFERENCE STATE 

PROCESS 

MODE NO 

8 , ,. 
11 

n 

11 

" 
15 

16 

" 

LARGE DISPLACEMENT THEORY WILL BE USED 

ME'" 0 , , EST I ,n , 
FL()oI.TING PT MINI_ MOIClII.Y MEMORY TO 
OPERATIOHS REQUIRED MINIMIZE I/O 

PER ITERATION (MBYTES) (MBYTES) 

8.06E+004 2. 29 

E I G E N V A L U E 0" " " 
, 

EIGENVALUE FREQUENCY GENERALIZED 

(RAD/TIME) (CYCLES/TIME) 

1258.9 35.480 5.6469 63.343 

1572.5 39.654 6.3112 63.005 

1912.9 43.737 6.9609 64.265 

2277 .1 47.719 7.5948 62.975 

2661. 8 51. 592 8.2112 62.747 

3063.4 55.H8 8.8089 65.448 

3478.4 58.978 9.3866 63. 3" 
3903.1 62.475 9.9432 62 m 
4333.8 65.831 1. m 62.380 

4766.7 69.041 1. '88 62.326 

~" 
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Aero-z-conductor-20UTS 

Abaqus 6.9-2 
For use at university 

its subsidiary. 

Date 09-Jun-2010 Time 16:13:30 
of Kwazulu-Natal under license from oassault Syst emes or 

Analysis of Areo-Z conduct or at 2~ of its UTS 
INCREMENT 1 

TO determine the natural frequencies of the conductor 
THIS STEP 0.00 

STEP 3 

TIME COMPLETED IN 

S T E P 3 CALCULATIO N O F E I G E N V A L U E S 

FOR N ATURAL FREQUE N CIES 

To determine the na t ural frequencies of t he conductor 

THE LANCZOS EIGE NSOLVER I S USED FOR THIS ANALYSI S 
Abaqus WILL COMPUTE UNCOUPLEO 

STRUCTUAAL AND ACOUSTIC ...oDES 
ALL EIGENVALUES IN THE SPECIFI ED RANGE WIll BE 
HIGHEST FREQUENCY OF INTEREST 
LOWEST FREQUENCY OF INTEREST 
MAXIMUM NUMBER OF STEPS WITHIN RUN 
BLOCK SIZE FOR LANCZOS PROCEDURE 
THE EIGE NVECTORS ARE SCALED SO THAT 

EXTAACTED 
50 .000 
5.000 
lS , 

THE LARGEST DISPLACEMENT ENT RY IN EACH VECTOR IS UNITY 
INITIAL STRESS AND DISPLACEMENT EFFECTS ARE I NCLUOED IN THE STIFFNESS MATRIX 

THIS IS A LINEAR PERTURBATION STEP . 
ALL LOADS ARE OEFINED AS CHANGE IN LOAD TO THE REFERENCE STATE 

PROCESS 

1 

MODE NO 

, 
, 
" U 

12 

13 

" 
" 
" 
" 

LARGE OISPLACEMENT THEORY WILL BE USED 

MEMORY 

FLOATING PT 
OPERATIONS 

PER ITEAATIDN 

EST I MAT E 

MINIMUM MEMORY 
REQUIRED 
(MBYT ES) 

MEMORY TO 
MINIMIZE I/O 

(MBYTES) 

8.06E+004 20 

E I G E N V A L U E OUTPUT 

EIGENVALUE 

1675.8 

2092.S 

2544 .5 

3027.5 

3536.9 

4067.9 

4615.6 

5174.9 

5740. 4 

6307. 4 

(RAO/TIME) 

40.937 

45.744 

50. 443 

55.023 

59 471 

6]. 780 

67.938 

71.937 

75.766 

79. 419 

FREQUENCY 

(CYCLES/TIME) 

6.5153 

7. 2804 

8.0282 

8.7571 

9. 4652 

10.151 

10.813 

11.449 

12.058 

12.640 

29 

GENERALIZED MASS 

63.349 

63.014 

64.217 

62.973 

62.759 

65. 457 

63.342 

62 489 

62 417 

62.329 
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Aero-z-conductor-25%UTS 

Abaqus 6.9-2 Date 09-Jun-2010 Time 16:49:26 
For use at university of Kwazulu-Natal under license from Dassault Systemes or 

its subsidiary. 

STEP 3 
INCREMENT 1 

TO determine the natural frequencies of the conductor 
THIS STEP 0.00 

TIME COMPLETED IN 

S T E P 3 CAL C U L A T ION 0 F E I G E N V A L U E S 

FOR NATURAL F R E QUE N C I E S 

TO determine the natural frequencies of the conductor 

THE LANCZOS EIGENSOLVER IS USED FOR THIS ANALYSIS 
Abaqus WILL COMPUTE UNCOUPLED 

STRUCTURAL AND ACOUSTIC MODES 
ALL EIGENVALUES IN THE SPECIFIED RANGE WILL BE 
HIGHEST FREQUENCY OF INTEREST 
LOWEST FREQUENCY OF INTEREST 
MAXIMUM NUMBER OF STEPS WITHIN RUN 
BLOCK SIZE FOR LANCZOS PROCEDURE 
THE EIGENVECTORS ARE SCALED SO THAT 

EXTRACTED 
50.000 
5.000 

35 
7 

THE LARGEST DISPLACEMENT ENTRY IN EACH VECTOR IS UNITY 
INITIAL STRESS AND DISPLACEMENT EFFECTS ARE INCLUDED IN THE STIFFNESS MATRIX 

THIS IS A LINEAR PERTURBATION STEP. 
ALL LOADS ARE DEFINED AS CHANGE IN LOAD TO THE REFERENCE STATE 

LARGE DISPLACEMENT THEORY WILL BE USED 

M E M 0 R Y EST I MAT E 

PROCESS FLOATING PT MINIMUM MEMORY MEMORY TO 
OPERATIONS REQUIRED MINIMIZE I / O 

PER ITERATION (MBYTES) (MBYTES) 

1 8 . 06E+004 20 29 

E I G E N V A L U E o U T P U T 

MODE NO EIGENVALUE FREQUENCY GENERALIZED MASS 

(RAD/TIME) (CYCLES/TIME) 
8 2092 . 6 45.745 7.2806 63 . 343 

9 2612.4 51.111 8.1346 63.010 

10 3175.8 56 . 354 8.9690 64.179 

11 3777.5 61.461 9.7818 62.931 

12 4411.5 66.419 10.571 62.758 

13 5071.9 71. 218 11.335 65.452 

14 5752.2 75.843 12.071 63.335 

15 6446.0 80.287 12.778 62.470 

16 6624.5 81 . 391 12 . 954 63.275 

17 7146.7 84.538 13.455 62.359 
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