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ABSTRACT 

During the past three decades, acquired immunodeficiency syndrome (AIDS) has 

become one of the major socioeconomic and worldwide health challenges.  The notorious 

causative agent of AIDS, namely Human immunodeficiency virus (HIV) has been studied 

in many research institutions around the globe.  The high replicative rate of the virus and 

recombination of a variety of viral strains complicate the treatment of AIDS.  The viral 

protease (PR) is vital for the propagation of the virus; and thus, is a major target in antiviral 

therapy.   

The efficacy of HIV-1 protease inhibition therapies is often compromised by the 

emergence of mutations in the protease molecule that reduces the binding affinity of 

inhibitors while maintaining viable catalytic activity and affinity for natural substrates.  The 

large-scale production of PR has been a problem for scientists due to the “manufactured” 

enzyme’s cytotoxicity, low yield, insolubility, and lowered activity.  Two recently 

discovered mutants of HIV-1 C-SA (South African subtype C), I36T↑T, and E35D↑G↑S 

showed almost the same catalytic activity as the wild type enzyme.  The first aim of this 

study was to establish a more efficient procedure to express and recover HIV-1 protease 

(C-SA) from inclusion bodies.  Furthermore, to study the interaction of nine FDA approved 

protease inhibitors with the two mutants using both quantitative and molecular 

techniques. 

 

Optimization of HIV-1 PR expression by means of various vectors, fusion tags, 

solubilisation methods is reported in this study.  Furthermore, the kinetics, inhibition, 

vitality values and thermodynamics of the mutants against the nine FDA approved 
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protease inhibitors (PIs) is reported.  The study also reports necessary conditions to 

crystalize the variants for structure elucidation.   

The highest expression of HIV PR was achieved when the pET32a vector (Trx tag) was 

employed.  A total of 19.5 mg of fusion protein was refolded of which 5.5 mg of active 

protease was obtained after cleavage with a high specific activity of 2.81 µmoles/min/mg.  

Darunavir and nelfinavir exhibited the weakest binding affinity, 155- and 95- fold 

decreases respectively, towards the I36T↑T variant.  The thermodynamic data showed 

less favourable Gibbs free binding energies for the protease inhibitors to this mutant than 

to the wild type.  Nelfinavir and atazanavir were the weakest inhibitors against the 

E35D↑G↑S as seen from the IC50, with values of 1401±3.0 and 685±3.0 nM respectively.  

Again, binding of all the drugs was less favourable for this mutant.   

 

This study gives solutions to the difficulty faced when expressing HIV-1 protease.  The 

study reported the best technique to recover HIV-1 protease from inclusion bodies as 

seen from the yield and specific activity.  Insertion mutations in the I36T↑T mutant results 

in the protease being resistant to most the PIs.  Again, the E35D↑G↑S double insertion 

was found to be multidrug resistant.  With respect to the mutant (I36T↑T), APV, LPV and 

RTV should be prescribed to patients as they are more effective inhibitors.  Only APV and 

RTV can still be prescribed for patients harbouring the E35D↑G↑S mutant.  This calls for 

the design or modification of the current medicines to fight these drug resistant forms.  

Future studies will focus on the design and synthesis of new inhibitors for these mutants.   
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CHAPTER ONE 

General Introduction and Overview 

1.1 Background 

During the past three decades, Acquired Immunodeficiency Syndrome (AIDS) has had a 

profound influence on socioeconomic and worldwide health challenges[1].  The Human 

Immunodeficiency Virus (HIV) which is the virus that causes AIDS has been broadly 

studied throughout many research institutions around the globe [2].  Research into 

genotypic characterization of the virus and antiretroviral (ARV) drug development are in 

are at the forefront of progress against this illness.  Studying the virus at this molecular 

level is a prerequisite and knowledge acquired from various studies has aided in drug 

development [3].  There are  approximately 35 million people living with the virus and 71% 

are in sub-Saharan Africa [4].  In South Africa, a population of about 7.1 million persons 

are living with HIV/AIDS with the province of KwaZulu-Natal having the highest 

prevalence [5].  Amid long-term treatment, statistics on ARV are inadequate.  In addition, 

statistics from sub-Saharan countries are further inadequate due to the cost of HIV 

research studies and numerous socioeconomic hurdles [6, 7].  This results in a heavy 

health burden, since many reports on drug resistance and genetic variation of HIV are 

increasing [8].  Figure 1 illustrate the live cycle of HIV-1 and as well as the major ART 

target areas. 

Reverse transcription of the viral genetic material (RNA) to DNA by the enzyme viral 

reverse transcriptase (RT) is required for the virus to thrive within a human host (Figure 

1).  Mutations present themselves often within the viral proteins which are antiviral drug 
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targets, due to the inability of RT enzymes to proof-read effectively and the elevated 

replication rate of HIV. 

Therefore, challenges to manufacture effective antiviral compounds continue to escalate 

[9].   

 

 

Figure 1:  The HIV life cycle and the major targets of HIV-1 drug therapy.  Stages in the life cycle 
are number 1-7 [10].  (Open access) 

Presently, there are six classes of anti-HIV drugs, namely; non-nucleoside RT inhibitors 

(NNRTIs), nucleoside RT inhibitors (NRTIs), protease inhibitors (PIs), integrase inhibitors, 

fusion inhibitors and entry inhibitors.  Both RT and PIs are favoured in treatment 

administrations and wide-ranging data are accessible which encompasses drug 
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resistance profiles of each therapeutic [4, 11].  Information regarding novel classes of 

inhibitors are lacking but diminished efficacies due to drug resistance mutations (DRMs) 

appear to be imminent.  Attempts to generate a potent HIV vaccine are in the pipeline 

and in the interim, major studies on HIV epidemiology are dependent on the data from 

RT and PIs.  Essentially, compared to other classes of ART, greater mutations are 

selected in response to PIs [12].  Proteases, including HIV-1 are encoded on the viral pro 

gene for all retroviruses.[13].  Along the replication cycle of HIV, gene products gag and 

gag-pol are translated as polyproteins [14, 15].  Thereafter, the virally encoded protease 

processes these proteins to obtain both structural proteins and crucial viral enzymes such 

as the protease itself [16, 17]. 

For almost 20 years, numerous studies on the structure and activity of HIV protease, 

protease drug-resistant variants and its interactions with inhibitors have been pursued.  

One ultimate goal is to eradicate the challenge of ever increasing HIV drug resistance 

[18].  Approximately 25 differing antiretroviral drugs (ARVs) are presently employed to 

combat HIV and AIDS [19].  The current prescribed AIDS therapy employs a cocktail of 

drugs from varying classes in what is termed a highly active antiretroviral therapy 

(HAART) [20].  The HIV protease serves as a target to nine of the 25 drugs.  These drugs 

belong to the previously stated class of protease inhibitors [21].  The study focuses more 

on HIV-1 protease and its inhibition, these are discussed in detail in the following sections.   

1.2 HIV Protease and Inhibition [9, 16, 20] 

HIV-1 protease is normally a homo dimeric protein with 99 amino acids per monomer 

(Figure 2).  The protease is responsible for an autoproteolytic release of the protease 

from the gag-pol fusion precursor protein and a subsequent processing of the gag and 
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pol proteins to yield the viral structural proteins.  This makes the enzyme a major target 

for HIV therapy.  A ribbon structure of the enzyme is shown in figure 2. 

 

 

Figure 2:  Structure of HIV-1 protease indicating the positions of extremely conserved regions 
(gold and black lettering), regions of natural variability in protease among the HIV-1 groups 
(M,N,O,and P (gray), and naturally conserved regions where key drug resistant mutations (DRMs) 
are selected under drug pressure (green).  Numbered red circles indicate the positions of major 
DRMs [22].  (open access) 

 

In 1995, when therapy became an option to use drugs to block the viral enzymes, 

protease and transcriptase, the initial PI emerged into clinical practice [11].  Incorporating 

PIs into antiviral therapy resulted in primary clinical advantages which include; extensive 

viral suppression, control and decreased morbidity and mortality for HIV infected 

individuals [23].  Inspired by the efficacy of the antiviral PIs, more studies were evoked to 

produce the next generation of inhibitors [18].  Unfortunately, the rise of drug resistance 

to PIs impaired the effectiveness of the therapeutic measures against HIV infections [24].  
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Novel HIV infections that convey drug resistant viruses into drug naïve patients reduce 

antiviral options and therefore the management of HIV infection is complex [10-12].  More 

mutations are provoked by PIs compared to any other class of ARV, due to their use over 

the years.  Within the PI class, drug resistance results in cross resistance to other drugs.  

The number of mutations and the type of mutation induced by PI determines the extent 

of cross resistance [13].   

Currently, ritonavir is employed as a pharmokinetic booster alone.  Ritanavir is 

responsible for boosting lopinavir/r, atazanavir/r, amprenavir/r and saquinavir/r which 

have poor pharmacokinetics and poor availability and are used as a first line therapy 

against HIV infection.  Unboosted nelfinavir, atazanavir and amprenavir are subprime 

alternative selections for first line treatment [25].  Recovery therapy for drug resistant 

mutants makes use of boosted lopinavir/r, tipranavir/r and darunavir/r.  Despite ritanavir 

boosted PIs, mutations still arise, and a PI may not be clinically effective due to their 

presence.  With regards to these challenges, it is imperative to study the mechanism of 

PI drug resistance at a molecular level.  The acquired knowledge could be a tool to design 

the next generation of inhibitors with enhanced efficacy against not only the wild-type HIV 

but also against drug resistant strains [18].  A summary of the nine FDA inhibitors is shown 

in Table 1.  Table one also shows common mutations and common side effects that 

normally arise when these PIs are employed.   
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Table 1:  Summary of common major drug resistant mutations and side effects that 
arise from the use of PIs [26-31]. 

Protease 
Inhibitor 

Major Drug resistant 
mutations 

Common Side Effect 

Atazanavir I50V, I84V and N88S Nausea, Diarrhoea, rash, stomach 
ache, lipodystrophy, liver toxicity 
diabetes, liver function, 
hyperbilirubinemia, headache, 
insomnia, vomiting, heartburn 

Darunavir I47V, I50V, I54ML, L76V and 
I84V 

Diarrhoea, Nausea, rash, stomach 
pain, vomiting, headache, fever, 
lipodystrophy, liver toxicity, diabetes 

Lopinavir V32I, I47VA, L76V, and 
V82AFTS 

Lipodystrophy raised liver enzymes, 
nausea, vomiting, abdominal pa 
vomiting, heartburn, raised lipids, liver 
toxicity, 

Ritonavir Now rarely given as sole 
inhibitor.   

Raised lipid levels 

Tipranavir I47V, Q58E, I74P, V82LT, 
N83D, and I84V 

Nausea, diarrhoea, vomiting, 
abdominal pain, tiredness,Headache, 
fever, lipid increases, flatulence, liver, 
abnormalities, rash, lipodystrophy, 
diabetes, liver toxicity 

Amprenavir I50V and I84V Burning or prickling sensation in arms 
or legs, fatigue, dry or itchy skin, 
increased thirst, increased hunger, 
increased urination, increased 
cholesterol and triglycerides 

Indinavir M46IL, V82AFT, and I84V Blood in the urine, sharp back pain just 
below the ribs 

Nelfinavir D30N, L90M Diarrhoea, Intestinal gas, redistribution 
or accumulation of body fat 

Saquinavir G48V, L90M Diarrhoea, nausea, vomiting, stomach 
pain, or tiredness 

 

With so much that has been said about the viral enzymes, recent focus has been directed 

towards the capsid as a new target for ART.  A novel capsid-targeting HIV drug was 

recently reported at a scientific meeting [32].  The new drug, GS-CA1, has shown highly 

antiviral potency in human peripheral blood mononuclear cells (EC50 = 140 pM) and is 
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effective against all HIV classes.  The drug is reported to be effective for up to 10 weeks, 

and clinical trials are reported to start in 2018 [33].   

Two mutants of the HIV-1 South African subtype C (C-SA) were recently discovered [26].  

The mutants did not respond well to all available protease inhibitors however, they 

responded to the subsequent reverse transcriptase inhibitors (RTIs):  efavirenz, d4t 

(stavudine) and 3TC (lamivudine).  This study encompasses these mutants in order to 

assess their functional characteristics for therapeutic measures.  The first mutant 

possesses a single amino acid substitution, and an insertion at position 36, i.e.  I36T↑T, 

with respect to the wild-type HIV-1 C-SA protease.  The other mutant comprise of 101 

amino acid residues per monomer and is designated as E35D↑G↑S (the upward arrows 

preceding an amino acid indicate that glycine and serine are inserted in position 35, 

respectively) [34].   

1.3 Cloning, Expression, Purification, and Characterization of Proteins [26, 27, 

29] 

The preparation of many identical DNA molecules comprising fragments from various 

sources lies at the core of recombinant DNA technology [35].  The formation of such 

molecules, called recombinant molecules, involves the incorporation of the sequence of 

interest into a vector capable of replication upon introduction into a host cell.  When the 

vector replicates within the host, so too does the sequence of interest (the insert).  Gene 

expression can result in protein production [36].  This occurs after DNA has been 

transcribed to messenger RNA (mRNA) [37], which is then translated into polypeptide 

chains.  These undergo post-translational modification, giving rise to proteins [38].  

Proteins are usually the targets of drug design.  To study the drug-protein interactions or 

https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Translation_(biology)
https://en.wikipedia.org/wiki/Polypeptide
https://en.wikipedia.org/wiki/Proteins
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just the characterization of a protein, it must be free from contaminants.  This brings forth 

the need for thorough purification.  The purification of proteins involves a series of 

processes to separate one or a few proteins from a complex mixture, usually cells, tissues 

or whole organisms [39].  Chromatographic techniques are normally used to achieve this.  

Depending on the nature of the protein one can decide which method to use [40].  After 

purification the protein of interest must be characterized.  Protein characterization 

involves creating a fingerprint or profile of a protein’s physical, biological, and chemical 

properties [41].  In recombinant DNA technology biological properties are used to 

characterize the protein (usually an enzyme) [42].  One major aspect of drug discovery is 

to understand enzyme kinetics.  This makes it easier to synthesize or design drugs.  

Enzyme kinetics, inhibition and thermodynamics is discussed in detail in the following 

section. 

1.4 Kinetics and Thermodynamics [43, 44] 

One of the most important features of enzymology is enzyme catalysis [43].  Fast reaction 

rates and specificity are characteristics of enzyme catalysis.  Enzyme specificity is defined 

as catalysis of unique or reactants by the enzyme while disregarding others.  In principle, 

enzymes (like most other catalysts) are responsible for lowering the Gibbs energy of 

activation by reducing the number of degrees of freedom of the reaction [45].  An 

intermediate is formulated with the reactants in the first step (pre-complex) in which the 

reactants are pre-organized in such a privileged position so that the rate of effective 

collisions is increased, followed by the release of the product(s).  Despite the catalytic 

mechanisms and kinetic energetics of the reaction, an enzyme cannot affect the relative 

enthalpies or the Gibbs energies for the reactants and products.  Only the rate of reaction 
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is increased until equilibrium, however the thermodynamic equilibrium constant is not 

affected.  The equations used in enzyme kinetics are discussed in detail next. 

1.5. Enzyme Inhibition [34, 46] 

Many drugs are designed to block/inhibit enzymes and help stop disease progression.  

Inhibition decreases the rate of enzyme catalysed reactions.  Inhibitors are classified as 

either reversible or irreversible [47].  For reversible inhibition, an equilibrium occurs 

between the enzyme and the inhibitor.  On the other hand, irreversible inhibition increases 

progressively over time.  The focus in this study is reversible inhibition as the FDA 

approved protease inhibitors are employ this mechanism of action.  Reversible inhibition 

is further divided into three categories, competitive, non-competitive, and uncompetitive 

(Figure 3) [48].  These are defined in terms of Michaelis-Menten equation as follows: 

 

Competitive  

V0  
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑚(1+
𝐼

𝐾𝑖
)+[𝑆]

  (only Km changes)    (equation 1) 

 

 

Figure 3:  Illustration of reversible Enzyme inhibition.  A, Competitive, Non-competitive and C 
Uncompetitive inhibition.   
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Non-competitive 

V0 = 
𝑉𝑚𝑎𝑥  

(1+
𝐼

𝐾𝑖
)

𝐾𝑚+[𝑆]

[s]  (Vmax changes)      (equation 2) 

 

Uncompetitive 

𝑣0 =

𝑣𝑚𝑎𝑥[𝑆]

(1+
𝐼

𝐾𝐼
)

𝐾𝑀

1+
1

𝐾𝐼

+ [𝑆] Both Vmax and Km changes    (equation 3) 

 

The next sections discuss the techniques used in enzymology.  The section gives deeper 

insight on both quantitative and molecular techniques used to study protein-protein, or 

protein drug interactions. 

1.6 Techniques used in Enzyme Kinetics and Inhibition[42, 45, 41, 45] 

There are various techniques that have been developed over the years for enzyme 

kinetics and inhibition studies.  Scientists often look for easy, quick, sensitive, reliable 

techniques when doing this type of research.  The most conventional technique employed 

is through the use light, i.e.  Spectrophotometers or spectrofluorimeters.  Further to that, 

more modern techniques include Isothermal Titration Calorimetry (ITC), Surface Plasmon 

Resonance (SPR), and Microscale Thermophoresis (MST). 
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1.6.1 Spectrophotometry/Spectrofluorimetry[ 42,44] 

Spectrophotometry can be used to determine enzyme kinetics and inhibition.  The 

enzyme is mixed with the substrate or drug, formation of products usually give rise to a 

change in the absorbance signal.  During inhibition, in many examples, the enzyme-

substrate interactions renders a decrease in absorbance.  The decrease is monitored with 

increasing drug concentration from which the inhibition constant Ki is determined [49].  

The inhibition constant is the linked to the Gibb’s free energy by equation 11:[48] 

G =-RTlnKi          (equation 4) 

Fluorescence quenching is also used to study the interaction of biomolecules in solution.  

It can be defined as a process which reduces the fluorescence intensity of a given 

molecule.  Various number of processes can lead to quenching, these include:  excited 

state energy transfer, complex formation and collision between enzyme and substrate.  

Fluorescence data can be evaluated using the Stern-Volmer equation, 

F0/F =1 + Kqτo[Q] = 1 + Ksv[Q]       (equation 5) 

Where F0 and F are the fluorescence signals with and without a quencher (Q) 

respectively.  Kq is the quenching rate constant of the bio-molecule, KSV is the Stern-

Volmer quenching constant, and זo (10−8 s) is the average lifetime of the fluorescent 

substance without any quencher.  When small molecules bind independently to a set of 

equivalent sites on a macromolecule, the equilibrium between free and bound molecules 

is given by the equation: 

log[(F0-F)/F] = logKb +nlog[Q]       (equation 6) 
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Where Kb an n are the binding constant and number of binding sites respectively.  The 

thermodynamic parameters existing in the system can be determined using the Van’t Hoff 

equation: 

InKb = (H/RT) + (S/R)        (equation 7) 

Here, K is analogous to the Stern Volmer quenching constant Ksv at corresponding 

temperature.  A plot of InK vs 1/T enables the determination of the thermodynamic 

parameters (H and S) from slopes and intercepts respectively.  The Gibs’ free energy 

can the determined from the relationship:   

G= H-TS.         (equation 8) 

Even though fluorescence is still widely used, it is now rapidly being replaced by more 

sensitive techniques such as ITC, MST and SPR.   

1.6.2 Isothermal Titration Calorimetry (ITC) [50] 

Researchers have been using this technique to determine binding affinities (Kd),binding 

stoichiometry (n) and enthalpy changes (H) of the interaction between two or more 

molecules in solution [50].  This is then used to calculate the other thermodynamic 

parameters, Gibbs’s free energy (G) and change in entropy (S) from the relationship 

[51]:  Figure 4 shows the graphical presentation of ITC and a typical ITC experiment. 

G= -RTlnKa
 

G = H-TS  
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Figure 4:  (A) Schematic presentation of the ITC instrument.  (B) Example of a typical ITC binding 
experiment [41].  (open access)  

Another label free technique used to assess binding of ligands to analytes (proteins) is 

Surface Plasmon Resonance.  This discussed in detail in the next section.   

1.6.3 Surface Plasmon Resonance Spectroscopy (SPR)[41, 42, 43] 

In the field of drug discovery, SPR is  a powerful technique as it is primarily used to study 

ligand binding interactions with proteins [52, 53].  The technique is free from labelling and 

permits measurement of real time quantitative binding affinities and kinetics for proteins 

associated with ligand molecules [54].  SPR employs an optical protocol for the 

measurement of an alteration in refractive index of the medium near a metal surface.  This 

technique involves the generation of surface plasmons on thin metal films and the internal 

reflection of light at a surface solution to generate an electromagnetic film or an 

evanescent wave that expands a short distance (approximately 300 nm) into the solution 

(see Figure 5).  BIAcore™ technology are the major developers of SPR. 
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Figure 5:  Graphical presentation of the basic SPR for determining the interaction of an analyte to 
a receptor molecule.  A, SPR experimental set up based on BIAcore™ technology, B, and C , 
Typical binding experiment in SPR [54].  (Open access) 

 

As mentioned before both SPR and ITC are label free.  In Microscale Thermophoresis 

the analyte must have a fluorescent label.  This is discussed in the next section. 

1.6.4 Microscale Thermophoresis (MST)[44 ,45] 

MST functions by measuring biomolecular interactions quantitatively and is centred on 

the direct movement of small molecules within a temperature gradient (thermophoresis) 

The movement is dependent on the charge, size, conformation, or hydration shell of the 
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molecule.  Therefore, it has been described as the most sensitive technique employed 

thus far.  The technique involves an infrared laser that stimulates a temperature gradient.  

The assigned movement of the molecules through a temperature gradient is monitored 

and quantified via the attachment of fluorophores (Figure 6) [55].   

Within MST experiments, the change in temperature, T in space conduces to the 

deficiency of solvated biomolecules in the domain of increased temperature, measured 

by the Soret coefficient ST:  Chot/Ccold = exp (-STT).  With constant buffer conditions, 

thermophoresis examines the size, charge and solvation entropy of the molecule.  The 

change in temperature of protein and protein-ligand varies significantly [56], due to the 

ligand impelling changes in size, charge and solvation energy.  The advantage of MST is 

that despite the insignificant alteration of size or charge of protein by ligand binding, it can 

monitor the binding-induced changes in the solvation entropy [55].  Furthermore, MST 

allows rapid and quick analysis of high affinity interactions with Kds down to 1 pM and can 

be used as an analysis tool for binding modes, stoichiometries and protein folding and 

unfolding [57]. 
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Figure 6:  Graphical illustration of MST instrumentation and experiment.  A, MST instrument, B, 
An illustration of MST optics.  A model of MST signal.  D,  A presentation of MST binding 
experiment  [57] (open access). 

All the techniques discussed thus far fall under quantitative analysis.  The next sections 

will focus on molecular analysis.  A brief overview of two techniques under molecular 

techniques, Protein crystallography and Nuclear Magnetic Resonance Spectroscopy 

(NMR) are presented next. 

1.7 Protein Crystallography [58, 59] 

X-ray crystallography is the main method used to solve the 3D structure of proteins.  X-

ray was discovered by Wilhen Conrad Rontager in 1895 [55].  The first 3D structure of 

was solved using this technique in 1958.  X-ray crystallography accounts for 87 % of 

protein 3D structures reported so far [56].  The steps in protein crystallography are 

illustrated in figure 7.  Although crystallography of proteins is well understood, it still 

difficult to predict conditions in which a protein will crystalize.  Thus, the approach is still 
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to coarse-screen a wide range of chemical conditions such as buffer type, temperature, 

pH, protein concentration (normally 3 to 20 mg/ml), detergents if , precipitants (organic 

solvents, salts, and polymers), presence or absence of divalent cations, and additives, in 

the hope of obtaining a few hits [60].  Screens are also available commercially, where 96 

conditions are available in a 96 well plate format.  Recently there have been advances 

where by crystallization robots are used aliquot nanolitre volumes into crystallization 

trays.  The trays are then kept at constant temperatures where images are taken daily by 

crystal recognition software.  Current 3rd generation synchrotron sources together with 

quick and reliable X-ray detectors has revolutionized macromolecular crystallography for 

the collection of diffraction data.  The availability of software such as Collaborative 

Computational Project  Number 4 (CCP4) and PHENIX [61, 62] now help in solving 

structures from data reduction through phasing and electron density map calculation, map 

interpretation, structure refinement and even depositing to PDB (Protein Data Bank) [60].  

Crystallography is very important in the design of new protease inhibitors (structure based 

design) [63].  Protein crystallography remains the most widely used technique for 

structural elucidation.    

 

Figure 7:  Steps in protein X-ray structure elucidation [60] 
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The section below discusses the other technique used in molecular analysis of proteins.  

1.8 Protein Labelling and NMR Spectroscopy [59, 60, 61, 62, 63] 

Labelling of proteins with isotopes is a very important way to simplify overlapped spectra 

by either diluting the NMR active nuclei or allowing the resonances to be separated in 

multiple dimensions.  15N labelling of proteins is the easiest and most cost-effective form 

of protein labelling.  This is achieved by expressing the proteins bacteria grown in minimal 

media, with 15N NH4Cl or NH4(SO4)2 as the sole nitrogen source [64, 65].  Spectra of the 

proteins prepared this way are then recorded using a standard solution-NMR HSQC 

(heteronuclear single quantum coherence) experiment.  An HSQC experiment is a 2D 

experiment which was first described as 1H to 15N system but also involves 1H and 13C 

[66].  It involves the transfer of magnetization from the proton to the second nucleus (13C 

or 15N).  In this type of experiment protein folding can be assessed [67].  Furthermore, if 

the protein is comparatively small, less than 150 amino acids, the 1H and 15N NOESY and 

15N-TOCSY experiments can be used to assign the backbone resonances [68].  15N 

labelled proteins are also used for titration with ligands or other protein with which it forms 

complexes [69].  This is useful as kinetic parameters (inhibition constants) and 

thermodynamics of the inhibitor can be determined.  This is useful as it helps researchers 

to modify the ligands in cases of drug resistant mutations.  This makes 15N labelling and 

NMR spectroscopy a powerful tool in pharmaceutical research 
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1.9 Aims and Objectives 

The overall aim of this study was to establish a more efficient procedure to express and 

recover South African Subtype C (C-SA) HIV-1 Protease from inclusion bodies.  

Furthermore, to study the interaction of nine FDA approved protease inhibitors with the 

two mutants using both quantitative and molecular techniques. 

1. Introductory background of the study. 

2. To optimize the expression, solubilization, recovery of HIV-1 protease from 

inclusion bodies by exploring the use of different fusion tags and solubilization 

methods. 

3. To assess the effect of the I36T↑T mutant on protease inhibitor binding, by means 

of enzyme kinetics, inhibition and fluorescence quenching. 

4. To assess the effect of the E35D↑G↑S mutant on protease inhibitor binding, by 

means of enzyme kinetics, inhibition and fluorescence quenching. 

5. To find necessary conditions crystalize the mutants optimize expression in 15N 

minimal media  

6. Overall conclusion of the research outcome. 
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1.10 Thesis Outline 

The thesis is presented in a paper format in which each chapter is dedicated to 

addressing one or two research questions.  In the first and the last chapters, a general 

introduction and an overall conclusion are provided, respectively, for the entire study.  

The outline is therefore highlighted. 

Chapter 1:  Introductory background, and where the main direction of the study is 

highlighted. 

Chapter 2:  Optimized procedure for recovering South African Subtype C (C-SA) HIV-1 

Protease from inclusion bodies. 

Chapter 3:  I36T↑T Mutation in South African Subtype C (C-SA) HIV-1 Protease 

Significantly Alters Protease-Drug Interactions 

Chapter 4:  Kinetic and Thermodynamic Characterization of HIV-Protease inhibitors 

against E35D↑G↑S mutant in the South Africa HIV-1 Subtype C Protease. 

Chapter 5:  Crystallization and 15N labelling of the Wildtype and the two Mutant HIV-1 

Proteases for Structural Studies 

Chapter 6:  Overall conclusion on the research outcome 
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Abstract 

HIV-1 is an infectious virus that causes acquired immunodeficiency syndrome (AIDS) and 

it’s one of the major causes of the deaths worldwide.  The production of HIV-1 protease 

(PR) at large scale has been a problem to scientists due to its cytotoxicity, low yield, 

insolubility, and low activity.  HIV-1 C-SA protease has been cloned, expressed, and 

purified previously, however, with low recovery (0.25 mg/L).  Herein we report an optimal 

expression and solubilisation procedure to recover active HIV-1 C-SA protease enzyme 

from inclusion bodies.  The HIV protease was expressed in seven different vectors 

(pET11b, pET15b, pET28a pET32a, pET39b, pET41b and pGEX 6P-1).  The highest 

expression was achieved when the pET32a vector (Trx tag) was employed.  A total of 

19.5 mg of fusion protein was refolded of which 5.5 mg of active protease was obtained 

after cleavage.  The free protease had a high specific activity of 2.81 µmoles/min/mg.  

Interestingly the Trx-fusion protein also showed activity closer (1.24 µmoles/min/mg) to 

that of the free protease suggesting that pET32a vector (Trx tag) expressed in BL21 (DE3) 

pLysS provides a quicker way to obtain HIV-1 protease. 
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1 Introduction 

HIV-1 infection is mainly transmitted through direct contact to infected bodily fluids.  About 

39 million people in the world are living with HIV [1].  If HIV is left untreated, the virus can 

progress to full blown AIDS, and has resulted to about 25.8 million deaths [2-4].  HIV/AIDS 

is a disease people must possibly will have to live with for the rest of their lives [1, 5].  

However, due to the nature of the virus new mutations always develop leading to drug 

resistance [6].  It is therefore of key importance to know the clinical effectiveness of 

existing drugs against new mutants.   

The HIV protease (PR) structure and its drug-resistant variants  have been studied for 

nearly 20 years in order to combat the challenges of AIDS antiviral therapy and the 

evolution of HIV drug resistance [7].  Currently about 25 different antiretroviral drugs 

(ARV) have been approved for HIV [8].  The prescribed HIV treatment  incorporates a 

combination of drugs from different classes in highly active antiretroviral therapy (HAART) 

[9].  Among the approved drugs, nine of them target HIV protease [10].  Recombinant 

HIV-1 PR is used for screening new inhibitors.  Scientists have been trying to optimize 

the production of this protein and to explore other hosts for the expression of the PR 

enzyme.  These includes the used different promoters and fusion tags, or codon 

optimization and various bacterial host strains and the use of different expression media 

[11, 12].  Volente et al recently made developments in the production optimization of this 

enzyme.  The employed the use of the use Glutathione S Transference tag fusion tag and 

managed about 2 mg/L of culture [20].  The recovery was a bit lower that the 4mg/L 

recently reported by Nguyen et al [19]. 



Page | 28  
 

We have previously reported [13]  a procedure where we cloned, expressed, and purified 

C-SA HIV protease.  The vector that was used in that case was pGEX-6P-1 [13].  The 

protease was characterized and verified by LC-MS sequencing.  Though the purity was 

high, recovery was low (0.25 mg/L), which then prompted us to further optimise 

expression and purification.   

In this study were report a procedure that gives the highest recovery of HIV-1 C-SA 

protease from inclusion bodies.  This protease was cloned with seven different vectors 

and the best vectors were chosen.   
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2 Materials and Methods 

2.1 Materials 

All reagents were purchased from Sigma Aldrich, unless stated different.  All pET vectors, 

enterokinase kit and E. coli BL21 were purchased from Novagen (USA).  PGEX-6P1 and 

Gstrap columns were purchased from GE Health Care.  (Sweden).  HRV 3C protease 

and His-Pur cartridges were bought from Thermo Fisher Scientific. 

2.2 Cloning of HIV-1 protease and protein expression 

The HIV-1 protease gene (having Q7K to avoid autocatalysis) from previous work [13] 

was amplified with specific primers and cloned to the respective vectors.  For pET11b, 

15b and 28b NdeI and XhoI restriction sites were used.  For pET32b, 39b and 41b NcoI 

and XhoI sites were, and lastly BamHI and XhoI were used for pGEX 6P-1.  The amplified 

genes and their respective vectors were then restricted and purified.  These were then 

ligated and transformed into BL21 (DE3) pLysS using a heat shock method [13, 14].  

Transformed cells were plated in antibiotic selection plates and grown overnight at 37°C.  

Positive clones were screened using colony PCR and further by restriction digestion and 

plasmid DNA sequencing.  The E. coli cells harbouring HIV-1 plasmids were grown at 

37ºC in LB medium with antibiotics (100 μg/ml ampicillin and 25 μg/ml chloramphenicol 

for pET11b, 32b (His and Trx-tag), 15b (His-tag) and pGEX 6P-1 (GST-tag), 34 µg/mL 

kanamycin and 25 µg/ml chloramphenicol for pET28b (His-tag), pET41b (His and GST-

tag) and pET39b (His and DbsA-tag).  The overnight culture was diluted 100-fold in Luria 

broth containing the respective antibiotics and grown for approximately 3 hours at 37ºC.  
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When optical density at 600 nm of the culture reached 0.4-0.5, IPTG was added to a final 

concentration of 1.0 mM.  The cultures were grown for 4 hours, cells harvested by 

centrifugation at 5 000 x g, 30 minutes, 4ºC and stored at -20ºC. 

2.3 Inclusion body isolation and solubilization optimization 

The pellet was re-suspended in 50 mM Tris pH 8 containing 1 mM 

phenlymentanesulfonlyl fluoride (PMSF), thereafter sonicated on ice to liberate the cell 

contents, followed by centrifugation at 14000 x g.  The pellet comprised of the expressed 

proteins as inclusion bodies was washed again with the same buffer but this time with 1% 

triton.  The final pellet was re-suspended in 10 mL of three different solubilisation 

conditions.  Two of these were mild solubilisation procedures, and they comprised of the 

following, procedure one had 50 mM Tris, pH12, 2M urea, the second one contained 50 

mM Tris pH 8, 3 M urea and 30% trifluoroethanol.  The third solubilization procedure 

(denaturing) had 50 mM Tris pH 8, 8 M urea and 2 mM dithiothreitol (DTT).  These three 

homogenized samples were then allowed to stand at room temperature for 1 hour.  The 

proteins solubilized under mild conditions were then quickly refolded by 10-fold dilution 

with refolding buffer (50 mM Tris, pH 8, 5% sucrose and 2 mM DTT).   

2.4 Purification 

GST (Protease expressed in pGEX 6P-1) fusion protein was purified as described 

previously [13].  Briefly, purification was done using an AKTA purifier 100-950 (GE Health 

Care).  Partial purification was carried out using a Hitrap QFF (5 mL) anion exchange 

column (GE Health Care) and the GST-HIV-PR was eluted using a 0 – 1 M NaCl gradient.  
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The bound proteins were then desalted using a Hiprep desalting column (GE Health Care, 

USA).  Further purification was performed using a GSTrap affinity column (GE 

Healthcare, USA).  The GST tag was then removed by overnight digestion at 4 ⁰C with 

precision protease (Thermo Scientific).  All contents were loaded back into the GSTrap 

affinity column and HIV-1 PR was collected in the unbound fraction, then refolded and 

stored at -70 ⁰C. 

Fusion proteins from pET32a and pET39b were also purified by affinity chromatography, 

but using a His Pur Cobalt column, 5 mL, (Thermo Scientific).  The column was first 

equilibrated with a 10-column volume of equilibration/wash buffer (50 mM Na2PO4, pH 

7.5, 300 mM NaCl, 5 mM imidazole.  Samples (20 mL) were then loaded onto the column 

using a sample pump.  The column was washed with 5 column volumes of the same 

buffer.  Bound proteins were then eluted using elution buffer (50 mM Na2PO4, pH 7.5, 

300 mM NaCl, 150 mM imidazole).  Purity of the eluted fraction was verified by SDS 

PAGE.  The samples were then refolded by removing urea slowly by dialysis.  The fusion 

proteins were then cleaved using enterokinase cleavage capture kit (Novagen) according 

to the manufacture’s protocol.  Following cleavage, the enterokinase was removed from 

the mixture using the same kit.  The remaining mixture was now containing Trx and HIV-

PR was then loaded back to the His-Pur cobalt column.  Free pure HIV-PR was collected 

in the flow through.  The purified protease was confirmed by SDS-PAGE, Western blot 

and LC-MS-TOF (Central Analytical Facility, University of Stellenbosch); data provided in 

the supplementary materials.  Protein quantification for pure free HIV-PR was achieved 

by measuring absorbance at 280 nm and the concentration was calculated using Beer-
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Lamberts law.  The extinction coefficient used was 24 480 M-1cm-1.  Absorbance at 340 

nm was subtracted from the 280 nm absorbance to account for protein aggregation. 

2.5 Enzyme activity 

The enzyme activities of the fusion protein and the free HIV-PR were measured  following 

the breakdown of the HIV-1 fluorogenic substrate, Abz-Arg-Val-Nle-Phe(NO2)-Glu-Ala-

Nle-NH2 as previously reported [13, 15].  Hydrolysis of the HIV-1 fluorogenic substrate 

was monitored by a decrease in absorbance at 300 nm.  The specific activity for both the 

fusion protein and free PR were calculated.  All enzyme catalytic activity assays were 

done using a Jasco V-630 spectrophotometer.  The effect of pH and temperature on the 

purified enzyme was also determined.   
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3 Results  

3.1 Cloning of HIV-1 protease and protein expression 

The HIV-PR genes were successfully cloned to the seven vectors (Figures S1, S2 and 

S3).  The HIV-PR was then expressed in each different vector as either fused or non-

fused protein.  All the vectors used have a T7 promoter except for pGEX 6P-1 which uses 

a tac promoter.  A summary of the expression results is presented in Table 1.  The best 

results were obtained when pET32b was used (Figure S4).  The expression was higher 

for pGEX 6P-1 compared to pET39b, which was also high.  Vectors pET11b, 15b, 28b 

and 41 showed the lowest expression of the HIV-PR.  Expression in these vectors was 

only detected through western blot as nothing was visible with SDS-PAGE. 

3.2 Inclusion body isolation, solubilization and purification 

Inclusion bodies from the three selected vectors were solubilized using the three 

procedures as described in the methods section.  A summary of the solubilisation results 

is shown in Table 2.  The fusion proteins were then purified using affinity chromatography 

as described in the methods section.  High recovery was obtained after refolding from 

pET32a.  There was high aggregation (seen as white precipitate) observed from the other 

two vectors.  Again, pET32a gave the highest concentration of free PR (approx.  5.5 mg/L) 

after cleavage.  A summary of the recovered PR is also presented in Table 2.  As pET32a 

rendered the best results, further characterization was performed using proteins from this 

vector.  Figure 1 shows a chromatogram of Trx fusion protein and protein profile.  The 

protein fusion protein was purified with a single step purification procedure. 
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Table 2:  Optimizing expression of HIV-PR in seven different vectors 

Vector Promoter Tag Comment 

pET11b T7 Promoter No tag Low expression level.  Difficult in 

purification  

pET15b T7 Promoter His-N-Terminus Very low expression, only 

detected through western blot 

pET28b T7 Promoter His N and C Terminus Very low expression, only 

detected through western blot 

(Figure S4) 

pET32b T7 Promoter Trx, His N and C 

terminus 

High Expression level.  High 

purification yield.  Highly 

recovery after refolding 

pET39b T7 Promoter DbsA N terminus, His N 

and C terminus 

Fair Expression.  High 

Purification yield.  Low recovery 

after refolding 

pET41b T7 Promoter GST N terminus, His N 

and C terminus 

Low expression level.  Only 

detected through Western blot 

(Figure S6) 

pGEX-6P-1 Tac Promoter GST N Terminus High Expression Level.  Low 

recovery due to aggregation 
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Figure 1:  Purification of Thioredoxin (Trx) fusion protein using affinity chromatography.  The 
solubilized inclusion bodies were loaded onto a His Pur cobalt column previously equilibrated with 
50 mM NaPO4, 300 mM, NaCl and 5 mM imidazole.  Unbound proteins were washed out with 2 
column volumes of the same buffer and bound proteins were eluted with same buffer but with 0-
250 mM imidazole gradient.  The y-axis represents absorbance at 280nm, x-axis represent the 
fractions collected.  The green line represents imidazole gradient.  Purity was verified using SDS-
PAGE.  A; chromatogram showing bound and unbound fractions.  B; SDS-PAGE of the collected 
fractions, MMW; Molecular weight marker; 1 crude protein, 2 unbound protein, 3 (A13), 4 (A15), 
5 (B14) are bound proteins. 

3.3 Enzyme activity  

We also assessed whether the fusion protein (Trx-HIV-PR) has activity against the 

synthetic substrate.  These results are presented in Figure 3.  The experiment was 

performed using constant substrate concentration and increasing enzyme concentration.  

The fusion protein showed almost the same activity as the free PR though slightly lower.  

The free HIV PR had a specific activity of 2.81 µmoles/min/mg compared to 1.24 

µmoles/min/mg for the fusion protein.   
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Table 3:  Protein recovery from the three solubilisation procedures. 

Vector Solubilizing method Total fusion 
protein from 1L 

Fusion protein 
refolded (%) 

Total HIV-PR 
(mg) in 1L 

pET32a (His 
and Trx) 

50 mM Tris, pH 8,8 
M Urea 

50 mM Tris, pH 12, 
2 M Urea 

50 mM Tris, pH 
8,30% TFE, 3M 

Urea 

23.0 mg 
 

22.8 mg 
 

20.2 mg 

44 
 

49 
 

49 

4.10 
 

5.50 
 

4.30 

pET39b (His 
and DbsA) 

50 mM Tris, pH 8, 8 
M Urea 

50 mM Tris, pH 12, 
2 M Urea 

50 mM Tris, pH 
8,30% TFE, 3M 

Urea 

4.0 mg 
 

3.4 mg 
 
 

3.2 mg 

10 
 

16 
 
 

13 

0.20 
 

0.30 
 
 

0.22 

pGEX 6P-1 
(GST) 

50 mM Tris, pH 8,8 
M Urea 

50 mM Tris, pH 12, 
2 M Urea 

50 mM Tris, pH 
8,30% TFE, 3M 

Urea 

12.0 mg 
 

10.0 mg 
 
 

9.0 mg 

2 
 
5 
 
 
5 
 

0.15 
 

0.20 
 
 

0.23 

 

The free HIV-PR obtained after enterokinase cleavage showed a single band of 11 kDa 

on SDS-PAGE, Figure 2.  These was also confirmed by the LC-MS-TOF results (Table 

S1) 

 

Figure 2:  SDS-PAGE of free HIV-PR.  This was achieved after dialysis of the fusion protein, which 
was the cleaved using enterokinase.  Lane 1 Molecular weight marker, Lane 2 HIV-PR.   
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Figure 3:  Comparing activities of Trx-fusion protein, free HIV-PR and control PR purified 
previously [13].  This was determined following the hydrolysis of the synthetic substrate (Abz-Arg-
Val-Nle-Phe-(NO2)-Glu-Ala-Nle-NH2) in 50 mM sodium acetate and 100 mM NaCl (pH 5) and 
37°C (n = 3). 

To confirm whether the purified protease possesses the same properties as reported in 

literature, the optimum pH and temperature were determined.  The optimum pH and 

temperature pH were found to be 5 and 37°C respectively.  This is presented graphically 

in Figure 4.   

 

Figure 4:  Determination of optimum pH and optimum temperature for the free HIV-PR.  The 
experiment was performed using the synthetic substrate (250 µM) and 2 µM of enzyme at varying 
pH and temperature.  A; optimum pH, B; optimum temperature.  The optimum pH and temperature 
pH were found to be 5 and 37°C respectively (n = 3).  
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4 Discussion 

HIV-1 protease production at large scale is difficult because of its cytotoxicity, insolubility, 

low yield, and low activity [16, 17].  Over the past 20 years, scientists have attempted to 

overcome this problem by using several expression systems containing different 

promoters, fusion tags with by using various hosts and media [18].  In this study, we 

employed several vectors and three solubilisation procedures.  Four of the seven vectors 

used showed very low expression.  This could be due to cytotoxicity of the PR which was 

not suppressed by the fusion tags on the vectors.  The protease was fairly expressed as 

a DbsA fusion protein as seen from Table 2.  Again, recovery was also low when the three 

solubilisation procedures in this study were used.  These results are in agreement with 

what was reported by Nguyen et al.  [19].  The expression in the pGEX 6-P1 vector was 

very high, PR was expressed as a GST fusion protein.  Since the protein was expressed 

as inclusion bodies, refolding was required before loading to the Gstrap column.  In this 

case, 90% of the protein was lost due to aggregation.  GST is reported to form disulfide 

bonds which makes refolding difficult.  Cleavage with the precision protease was also not 

effective.  The overall yield was 0.25 mg/L, which was low.  Volente et al. also reported 

high expression in pGEX-6P-1 but low recovery yield [20].   

Table 2 indicates that the highest expression and recovery was obtained when Trx 

(pET32a) fusion tag was employed.  This is the highest recovery of HIV-1 protease 

reported from inclusion bodies.  The recovery is a 22-fold increase of what we have 

previously reported  for HIV-1 C-SA [13].  This procedure appears to solve the difficulties 

associated with expression, purification, and recovery of HIV-1 PR and will also be 

applicable to other strains.  The recovery of HIV-PR we are reporting is better than the 
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reported for subtype B (2.0 mg/L) by Volente et al. and 4.0 mg/L from Nguyen et al. [19, 

20].  Again, the PR have better specific activity (2.81µmoles/min/mg) compared to 1.19 

µmoles/min/mg reported by the former [17], and even better than the method we 

previously reported (2.02 µmoles/min/mg) [13].     

Trx is an intracellular thermostable E .coli protein with a molecular weight of 12 kDa and 

is highly soluble [21].  Trx has been reported to increase solubility in recombinant protein 

expression by taking advantage of its intrinsic oxido-reductase activity which aid in the 

reduction of disulfide bonds through thio-disulfide exchange [21].  This explains the high 

recovery even when either of the three solubilisation procedures were used.  There was 

very low aggregation when the protein samples were refolded.  Interestingly the Trx fusion 

protein had almost the same activity as the free HIV-1 PR.  Trx is also useful in 

crystallization of certain target proteins [22].  Its rigid connection to the target protein 

blocks conformational heterogeneity facilitating crystallization [21].  This will provide an 

easy and rapid way of crystallizing new HIV-PR mutants.   
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5 Conclusion 

We have shown in this study that Trx is the best fusion tag for the expression of HIV-1 

protease.  This brings a solution to the issue of aggregation observed in other expression 

systems.  Another interesting result is that the fusion protein possesses almost the same 

activity as the free HIV-PR.  Again, the fusion, in theory, should allow for crystallization of 

new HIV-1 PR mutants. 
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Abstract 

The efficacy of HIV-1 protease inhibition therapies is often compromised by the 

emergence of mutations in the protease molecule that reduces the binding affinity of 

inhibitors while maintaining viable catalytic activity and affinity for natural substrates.  In 

the present study, we used a recombinant HIV-1 C-SA protease and a recently reported 

variant for inhibition (Ki, IC50) and thermodynamic studies against nine clinically used 

inhibitors.  This is the first time that binding free energies for C-SA PR and the mutant are 

reported.  This variant protease harbours a mutation and insertion (I36T↑T) at position 36 

of the C-SA HIV-1 protease and did not show a significant difference on the catalytic effect 

of the HIV-1 protease.  However, the nine clinically-approved HIV PR drugs used in this 

study demonstrated weaker inhibition and lower binding affinities toward the variant when 

compared to the wild-type HIV-1 protease.  All the protease inhibitors, except Amprenavir 

and Ritonavir exhibited a significant decrease in binding affinity (p < 0.0001).  Darunavir 

and Nelfinavir exhibited the weakest binding affinity, 155- and 95- fold decreases 

respectively, toward the variant.  Vitality values for the variant protease, against the seven 

selected protease inhibitors, confirm the impact of the mutation and insertion on the South 

African HIV-1 subtype C protease.  This information has important clinical application for 

thousands of patients in Sub-Saharan Africa.   
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1 Introduction 

The protease (PR) enzyme is encoded in the gene of all retroviruses, including HIV-1 [1].  

During the replication cycle of HIV, gag and gag-pol gene products are translated as 

polyproteins [2, 3].  These proteins are subsequently processed by the virally-encoded 

protease to yield structural proteins  of the virus core, together with essential viral 

enzymes, including the protease itself [4, 5]. 

The importance of HIV-1 protease in the viral life cycle has made it one of the essential 

targets of antiviral therapy [6].  Protease inhibitors (PIs) were introduced into clinical 

practice in 1995-1996 and together with the application of highly active antiretroviral 

therapy (HAART) caused a decreased mortality and prolonged the life of infected 

individuals.  However, the selection pressure of a virostatic leads to rapid selection of 

mutations in viral enzymes that are resistant to a specific inhibitor.  Viral protease variants 

that are resistant to PIs have been observed in more than half of the 99 residues of the 

HIV-1 protease [7].  The rapid development of PR variants resistant to protease inhibitors 

may be explained by the natural variability (i.e. polymorphisms) that occur in the virus and 

the dynamic nature of viral replication present in infected patients [8, 9].  There are two 

different mutation types that take place in the HIV-1 protease [10].  The first occurs in the 

active site of the PR and is termed a primary resistance mutation and directly influences 

the binding of a PI[11].  The second type is referred to as a secondary resistance mutation 

and occurs at sites distal from the binding cleft.  The latter type influences PI binding 

indirectly by impacting on subdomain flexibility of the PR molecule or mutations that occur 

outside the PR coding region.  Mutations of this type alter the amino acid processing sites 
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of the Gag-Pol polyprotein and increase the capability of variant PRs to process viral 

polyproteins at the sites[10]. 

Structure-based design of drug molecules is of great importance in the search for 

potential novel drugs[12].  Resistance of HIV to antiretroviral drugs is one of the most 

common causes for therapeutic failure in people infected with the virus [13].  Thus far, no 

single antiretroviral drug combination can completely shut down viral replication and the 

emergence of HIV drug resistance usually follow these treatments [14].  Evolving 

knowledge of drug resistance is crucial to effectively develop novel therapeutics for 

patients infected with HIV [15].  In our study, we assessed the effect of a mutation at 

codon 36 and an insertion (at the same position) [16] in the South African subtype C (C-

SA) HIV-1 PR on the binding capacity of the nine commonly used PIs.  The mutation and 

insertion present in this PR is indicated as I36T↑T, where the upward arrow preceding the 

amino acid threonine indicates an amino acid insertion after codon 36 and is referred to 

as the variant PR in this paper and is shown in figure 1.  The variant was discovered in a 

HIV-1 positive mother who participated in a PMTCT (Prevention of Mother-To-Child 

Transmission) cohort.  The patient received treatment with the following reverse 

transcriptase inhibitors (RTIs):  efavirenz, d4t (stavudine) and 3TC (lamivudine).  

Interestingly, the patient was completely drug-naïve with respect to protease inhibitors 

[16] 
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Figure 8.  A ribbon representation of the wild type C-SA HIV protease (A) and I36T↑T variant (B).  
Shown in yellow is the aspartic residues (Asp 25/25').  The insertion is shown in red.  The green 
spheres are other amino acid mutations found in this variant protease.  The figures were created 
using UCSF Chimera version 1.9 [17]. 

The variant protease together with the wild type C-SA HIV protease were cloned, purified 

and characterized [18].  The purified variant protease possessed similar catalytic ability 

as the wild type [18].  We have previously reported a computational model of the I36T↑T 

variant protease [16].  Our model predicted that all of the protease inhibitors exhibited 

reduced Gibb’s  free binding energies for the variant I36T↑T than the wild type PR [16].  

To confirm the findings from our computational model, the Gibbs free binding energies of 

all nine commercially approved protease inhibitors compounds were for the first time 

experimentally determined for C-SA and I36T↑T. 
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2 Results and Discussion 

2.1 Enzyme kinetics 

A summary of the enzyme kinetic parameters of HIV-1 protease wild type and variant is 

shown in Table 1.  The variant PR, I36T↑T, showed a decreased (Km) toward the synthetic 

substrate (Abz-Arg-Val-Nle-Phe(NO2)-Glu-Ala-Nle-NH2) [19] and increased catalytic 

efficiency (higher kcat/Km) compared to the wild type PR (Table 1).  The greater catalytic 

efficiency when compared to the wild type PR, is attributed to the higher turnover number 

(kcat).   

Table 1:  Enzyme kinetic parameters of the wild type C-SA protease and the I36T↑T 
variant protease using a synthetic substrate (Abz-Arg-Val-Nle-Phe (NO2)-Glu-Ala-Nle-
NH2) (n = 3). 

 

This will result in faster replication cycles as processing of viral proteins occur at an 

increased rate and thus increased viral load that could lead to a more rapid progression 

to AIDS.  This data is consistent with our previous study and follows the same trend [19].   

The Ki values of PIs against the wild type calculated from Equation 2 are shown in Table 

2.  From the table, the PIs can be divided into three groups (more effective, effective, less 

effective).  ATV, IDV, APV, RTV and the DRV were the most effective ones against the 

wildtype and all had Ki values of less than 200 pM.  ATV showed the tightest binding of 

Parameter Wild type  I36T↑T 

Km (µM) 129.0± 3.0 103.0±3.0 

kcat (s-1) 1.08±0.00 1.29±0.01 

kcat/Km (µM-1s-1) 0.008±0.000 0.013±0.003 
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all the inhibitors with a Ki value of 78±5 nM.  NFV and SQV can be classified as effective 

and had Ki values of 330±82 and 350±14 respectively.   

Table 2:  A summary of Ki and IC50 values for the wild type C-SA PR (n = 3). 

Protease Inhibitor Ki (pM) IC50 (pM) 

ATV 78 ± 5 81± 4 

IDV 140 ±1 1,070 ± 8 

APV 160± 4 1,070 ± 4 

RTV 170 ± 5 3,400± 6 

DRV 190±6 3,000±1 

NFV 330±8 2,000 ± 41 

SQV 350 ±10 790 ± 1 

LPV 470 ± 14 780 ± 5 

TPV 510 ± 32 1,600 ± 21 

 

LPV and TPV were the less effective inhibitors against the wild type.  Overall, the 

inhibitors had a better binding against the wild type C-SA protease.  IC50 values (Table 2) 

for all the inhibitors were less than 4000.0 pM against the wild type confirming the 

observed Ki values.  Both the Ki and IC50 values are within the same range as reported 

for C-SA and other HIV-1 proteases [20-22].  A summary of the Ki values for the variant 

protease is shown in table 3.  Again, from the table, the PIs can be classified into three 

groups, (effective, somewhat effective, and not effective).  APV, RTV and LPV are 

classified as effective.  They had Ki values of 160±3, 190±2, 560±1 pM respectively.  IDV 

and ATV were somewhat effective and had Ki values of 980±2 and 1,300±88 pM 

respectively.  TPV, SQV, DRV and NFV were not effective against the variant.  All these 

inhibitors had Ki values above 20,000 pM. 
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Table 3:  A summary of Ki and IC50 values the variant protease.  The ratio of variant to 
wild type is shown in parenthesis (n = 3). 

Protease inhibitor Ki (pM) IC50 (pM) 

APV 160±3 (1) 1,300±30 (1) 

RTV 190±2 (1) 5,900±80 (1.7) 

LPV 560±1(1.2) 7,100±2 (9) 

IDV 980±2 (6.8) 8,150±74 (7.6) 

ATV 1,340±88 (17.2) 19,400±60 (24) 

TPV 20,560±30 (40.2) 114,100±300 (73.6) 

SQV 21,900±30 (63) 154,100±300 (196.6) 

DRV 29,300±10 (155) 161,100±700 (53.9) 

NFV 30,900±41(95) 196,900±340 (99) 

 

Almost all the inhibitors showed a decreased binding to the variant when compared to the 

wild type.  A ratio of Ki values (variant/wild type) is shown in brackets in Table 3.  The 

trend observed against the wild type is different from that of the variant.  APV and RTV 

showed a decrease in binding affinity but it was not significant when compared to the wild 

type (p = 0.4353 and p = 0.5898).  A 17-fold increase in Ki was observed when ATV was 

also used against the variant than that of the wild type, (Table 3).  NFV and DRV showed 

the weakest binding of all the PIs used in the experiment with a 95- and 155-fold decrease 

respectively when compared to the wild type. 

IC50 values for all the inhibitors against the variant are shown in Table 3.  The variant 

protease also showed increased IC50 values when compared to wild type.  RTV and APV 

were better inhibitors against the variant and their IC50 values were close to the wild type 

(Table 3).  Again, DRV and NFV exhibited the highest IC50 values against the variant 

compared to the other drugs with 54- and 99-fold changes, respectively (Table 3).  A 
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graphical presentation of DRV IC50 is shown in Figure 2.  The variant protease required 

a higher concentration of DRV (161,100±700 pM) to reduce the catalytic activity to less 

than 50 % than the wild type (3,000±100 pM).   

 

Figure 2:  Graphical presentation of IC50 determination using DRV.  The experiment was 
performed at 37 °C using 50 nM of enzyme, 250 µM substrate, and increasing concentration of 
inhibitor (0 - 60 nM for wild type and 0 - 300 nM for the mutant.  The experiments were done in 
triplicates and results were presented as mean ± standard deviations.  A, wild type and B the 
mutant I36T↑T (n = 3). 

All the IC50 values were much higher than the respective Ki values which are expected 

according to the literature [23].  IC50 always is higher than Ki, because IC50 = Eo/2 + Ki 

(app).  Kuzmič et al., 2000 also emphasize that Ki values on the biochemical assays 

provide the intrinsic molecular measure of potency of the inhibitors, however, IC50 values 

cannot and IC50 values are perfectly good for cell-based assays.  Therefore, emphasis 

should be given to Ki values.  In this study though, IC50 values follow the same trend as 

observed from the Ki values and can as well be grouped the same way as the Ki values.   

The vitality values which predict the therapeutic effect of a given protease inhibitor toward 

the variant against the wild type were calculated based on Equation 3 and the results are 

shown in Figure 3.  A large vitality value indicates that the variant is resistant to that 
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specific drug.  High vitality values were observed when DRV and NFV were used, with 

2.28 and 2.27 log vitality respectively.   

 

Figure 3:  Vitality values for the I36T↑T protease in comparison to the wild type C-SA HIV-1 
protease with respect to the seven inhibitors. 

TPV and SQV had log vitality values of 2.05 and 1.89 respectively.  Thus, the above drugs 

(TPV, SQV, DRV and NFV) should not be prescribed to patients with this variant PR.  The 

log vitality value of IDV was found to be 0.93 which was the fifth highest.  ATV was the 

closest to IDV and had a log vitality value of 0.780.  These drugs may still be prescribed 

for the variant PR.  The last three drugs, RTV, APV and LPV are suitable drugs for clinical 

treatment of the variant PR as they have log vitality values of 0.079, 0.079 and 0.149, 

respectively. 
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2.2 Quenching and Thermodynamics 

Inhibitor binding thermodynamics of variant I36T↑T were compared to those of WT 

protease employing kinetics and fluorescence quenching.  The tryptophan fluorophore 

molecules [24] within HIV-1 protease, especially those that are close to the active site 

behave as intrinsic quenchers and decrease the quantum yield of fluorescence.  The two 

tryptophan residues of HIV-1 protease are not uniformly exposed to water; Trp-6 is closer 

to the active than Trp-42 (Figure S1), as can be judged from the three-dimensional 

structure of the enzyme [24] and we expect that residue to be more affected by the 

inhibitors. 

In this study, the addition of each inhibitor to the HIV-1 proteases resulted in fluorescence 

quenching with linear Stern-Volmer plots (Figure 4), and allows for the estimation of 

Stern-Volmer quenching constants (Ksv) from the slope of the linear regression (Eq.4) 

[25].  The greater the quenching, the larger the Ksv value.  The Stern Volmer quenching 

constants follow the same trend as the kinetic data for both the wild type and mutant.  

ATV was the best inhibitor for the wildtype with Ksv value of 114 µM-1.  APV was the best 

inhibitor for the variant with a Ksv value of 81 µM-1.  TPV was revealed as the weakest 

binding result against the wild type, and SQV was the poorest for the mutant.  

Differentiation between static and dynamic quenching is temperature dependent and 

because the values of Ksv increased with increasing temperature, this pointed (as 

expected) towards a dynamic quenching mechanism (Figure 4), (Table 4).   



Page | 54  
 

 

Figure 4:  Examples of Stern-Volmer plots for fluorescence quenching of WT (A) and the variant 
I36T↑T in 50 mM sodium acetate buffer (pH 5) containing NaCl (1 M) in a final volume of 100 µl 
when treated with Amprenavir at different temperatures,[293 K];[298 K];[303 K];[310 K] (n = 3). 

 

Table 4:  Stern-Volmer quenching constants (Ksv) at 298 K for both wild type (WT) and 
variant (36T↑T) interacting with nine PIs (n = 3). 

 Ksv (µM-1) at 298K Ksv (µM-1) at 298 K 

Protease Inhibitor WT I36T↑T 

 

ATV 110±2 70±2 

IDV 95±5 750±2 

APV 87±2 81±2 

RTV 83±1 41±1 

DRV 82±9 51±3 

NFV 76±2 56±2 

SQV 69±4 22±5 

LPV 57±12 29±9 

TPV 48±10 37±4 

 

To elucidate the interactive forces between the nine inhibitors and the wild type and 

variant HIV protease, temperature-dependent thermodynamic parameters for the 
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interaction between the ligand and enzymes were calculated per the Van’t Hoff equation 

(Equation 5) and shown in Figure 5. 

 

Figure 5:  Examples of Van’t Hoff plots for the determination of thermodynamic data (H and S) 
for the interaction of the protease inhibitor, Amprenavir, with HIV-1 protease at different 
temperatures.  (A) Wild Type (B) Variant I36T ↑T (n = 3). 

A summary of the thermodynamic parameters (G, H, -TS) are shown in table 5.  The 

inhibitors are listed in alphabetical order.  The thermodynamic data for the wildtype follow 

the same trend as the kinetic data, within the previous groupings.  ATV was the best 

inhibitor against the wild type with G value of -14.4±1.7 kcal/mol followed IDV with a G 

value of 14.0±1.3 kcal/mol.  LPV and TPV were the worst inhibitors against the wild type 

with G values of -13.2±2.1 and -13.2±1.0 kcal/mol respectively.  All the reactions were 

entropy driven as judged from the large negative values.  The H was positive in all but 

one of the inhibitors, TPV. 
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Table 5:  A summary of experimental thermodynamic parameters for the nine 
commercially available HIV PR inhibitors (n = 3). 

 PARAMETER 

DRUG PROTEASE ∆G (kcal/mol) ∆H (kcal/mol) -T∆S(kcal/mol) 

APV WT -13.9±2.0 4.4±1.9 -18.3±2.0 

I36T↑T 

 

-13.9±1.8 13.3±2.0 -27.2±2.8 

ATV WT -14.4±1.7 7.4±0.5 -21.7±0.6 

I36T↑T 

 

-12.6±1.0 20.4±2.4 -33.0±2.4 

DRV WT -13.8±0.7 10.5±0.2 -24.3±7.4 

I36T↑T 

 

-10.7±0.7 3.7±0.7 -14.3±0.8 

IDV WT -14.0±1.3 4.3±0.8 -18.2±0.9 

I36T↑T 

 

-12.8±1.2 10.4±0.7 -23.2±0.8 

LPV WT -13.2±2.1 19.8±4.0 -33.0±4.3 

I36T↑T 

 

-13.1±1.3 12.0±2.0 -25.7±2.4 

NFV WT -13.5±3.0 1.4±0.1 -14.9±1.1 

 I36T↑T 

 

-10.7±0.9 4.8±0.3 -15.5±1.8 

RTV WT -13.9±0.3 9.5±2.1 -23.4±2.1 

I36T↑T 

 

-13.8±0.8 7.4±1.5 -21.1±1.5 

SQV WT -13.4±1.4 7.0±1.0 -20.4±1.0 

I36T↑T 

 

-10.9±1.3 15.0±2.3 -25.7±2.0 

TPV WT -13.2±1.0 -6.1±0.2 -7.2±0.9 

 I36T↑T 

 

-10.9±0.2 -9.0±0.1 -1.9±0.1 

 

Table 5 also shows the thermodynamic data for the variant, also in alphabetical order.  

The data is also in agreement with the kinetic data and can be grouped as was in the 

previous data.  APV was the best inhibitor against the variant with a G value of -13.9±1.8 

kcal/mol.  NFV was the worst inhibitor against the variant with a G value -10.7±0.9 

kcal/mol.  The reaction was also entropy driven for the inhibitors except for TPV.  TPV 

had an entropy value -1.9±0.0 that was the least of all the inhibitors.  The H was positive 

for all the inhibitors except once again for TPV. 
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For both the wild type and the variant G was negative.  The G values were more 

negative for the wild type compared to the variant, meaning all nine inhibitors were more 

effective against the wild type enzyme.  This was expected as the kinetic data showed 

that the inhibitors bind tighter to the wild type than the variant.   

Significantly, the values for APV remained very close for both the wild type and variant.  

The range of experimental results obtained here were close to those reported for C-SA 

protease and other HIV-1 strains [26, 27].  The observed trend of all nine inhibitors is in 

agreement with our computational model data [16].   

For PR in HIV it has been reported that the substrate is more amenable to changes 

induced by mutations at the active site being able to maintain significant affinity [28, 29].  

However, inhibitor results associated with such mutations, have yielded poor responses 

[30, 31] , rendering most of the PIs ineffective. 

In this study, the changes are in the hinge region as shown in Figure 1 and are not in the 

active site.  Drug resistance is usually demonstrated when the IC50 values increase to 

over 20,000 pM.  From our results APV, RTV, LPV and IDV appear to be able to maintain 

their efficacy for the C-SA and mutant variant.  TPV, DRV are reported to have a best 

binding affinity against HIV-1 subtype B PR with ∆G values -14.6 and -15.0 kcal/mol 

respectively [26].  In our study, they generally showed the worst results with values of -

13.2 and -13.8 kcal/mol respectively but they followed the same trend.  SQV, NFV and 

ATV also fall within the potential drug resistant parameters.  In previous work protease 

resistance to SQV has been shown to result from G48N and L90M mutations, which are 

non-active site mutations [31, 32].  These mutations are not present in the variant we are 

studying (I36T↑T) yet we still observed poor binding to SQV.   
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We propose that the decreased binding affinity for all inhibitors is the result of a 

conformational change to the binding pocket.  This change has been brought about by a 

long-range effect of the alterations in the hinge region of the enzyme.  In our study ATV 

was the best inhibitor against the wild type (14.3±1.7 kcal/mol), interestingly this is the 

same value reported for subtype B [26].  APV was found to be effective against subtype 

B, C-SA and the mutant to almost equal degree, implying that it is still a viable drug.   
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3 Conclusion 

Several experimental techniques were employed to assess the effect of a mutation and 

an insertion in HIV-1 C-SA protease.  The enzyme kinetic data revealed that the variant 

enzyme maintained its proteolytic capacity.  Thermodynamic data showed a reduction in 

Gibb’s energy, meaning the mutant enzyme binding to inhibitors was less favourable, 

indicating that in a clinical environment the efficacy of currently available PIs would be 

significantly reduced.  All inhibitors exhibited good activities and should be prescribed for 

patients infected with C-SA.  With respect to the mutant, APV, LPV and RTV should be 

prescribed to patients as they are more effective inhibitors.  The changes for this variant 

occur in the hinge region of the enzyme, it would be of interest to compare these results 

to variants that arise from mutations in the binding site, but this is the first full evaluation 

of the nine FDA approved protease inhibitors for this sub-species. 
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4 Materials and Methods 

4.1 Protein overexpression and purification 

Protein overexpression was performed as described previously [18].  Briefly, HIV-1 C -

SA PR and the variant I36T↑T PR were cloned into pGEX-6P-1 (GE Health Care, USA) 

vector and expressed in E. coli BL21 (DE3) cells harbouring a pLysS plasmid (Novagen, 

USA).  The bacterial cells were harvested by centrifugation after a four hour IPTG 

induction period.  The cells were re-suspended in ice-cold buffer A (10 mM Tris-HCl, 5 

mM EDTA, 1 mM PMSF, pH 8) and ruptured by sonication.  The lysate was centrifuged 

at 14 000 x g.  The pellet was washed with buffer A containing 1% Triton X-100 and 

centrifuged at the same speed for 20 minutes.  The pellet, containing inclusion bodies, 

and re-suspended in buffer B (10 mM Tris-HCl, 5 mM EDTA, 8 M urea, 5 mM DTT, pH 8) 

and kept at room temperature for 1 hour.  The presence of a glutathione transferase 

(GST) - tagged protein was verified by SDS-PAGE and western blot analyses using GST 

antibodies.  Protein purification was carried out using an AKTA purifier 100-950 (GE 

Health Care) Partial purification was carried out using a 5 mL Hitrap QFF cation exchange 

column (GE Health Care) and the protein of interest was eluted using a 0 – 1 M NaCl 

gradient.  The eluted samples were desalted with using a Hitrap desalting column (GE 

Health Care, USA) Further purification was performed using a GSTrap affinity column 

(GE Healthcare, USA).  The GST tag was then removed by overnight digestion at 4 ⁰C 

with precision protease (Thermo Scientific).  All contents were loaded back onto the 

GSTrap affinity column and HIV-1 PR was collected in the flow through, refolded and 

stored at -70 ºC until further use.  All protease inhibitors were acquired from Aspen 

Pharmacare. 
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4.2 Enzyme kinetics studies 

The enzymatic activity of the wild type and variant HIV-1 C-SA PRs was measured   by 

following the hydrolysis of the HIV-1 fluorogenic substrate, Abz-Arg-Val-Nle-Phe(NO2)-

Glu-Ala-Nle-NH2 as previously reported [18].  Hydrolysis of the HIV-1 fluorogenic 

substrate was characterized by a decrease in absorbance at 300 nm.  The catalytic 

properties (Km, kcat, and kcat/Km) of the PRs were calculated.  The enzyme kinetics 

parameters were determined under Michaelis-Menten reaction conditions (see Equation 

1) and Lineweaver-Burk plots were constructed from the data.  All enzyme catalytic 

activity assays were performed on a Jasco V-630 spectrophotometer. 

V = Vmax[S]/(Km +[S])       (Equation 1) 

In equation 1, [S] is the substrate concentration, Km is the Michaelis constant and Vmax is 

the maximum velocity of the enzyme. 

4.3 Inhibition studies 

The reaction rates were obtained at 37 °C by measuring the rate of fluorogenic substrate 

hydrolysis using 50 nM of each purified PR (wild type and variant) in 50 mM sodium 

acetate, 0.1 M NaCl, pH 5.0 in the presence of the chromogenic substrate (0 - 250 µM).  

Nine FDA approved PIs were used in this study, Atazanavir (ATV) Indinavir (IDV), 

Amprenavir (APV), Ritonavir (RTV), Darunavir (DRV), Nelfinavir (NFV), Saquinavir 

(SQV), Lopinavir (LPV), Tipranavir (TPV).  The inhibitor concentrations used were 0 - 10 

nM.  The Ki values were estimated using a competitive inhibition equation (Equation 2) 

according to Williams et al. [33]. 
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V = 
𝐕𝐦𝐚𝐱[𝐒]

𝑲𝐦(𝟏+
[𝐈]

𝑲𝒊
)+[𝐒]

        (Equation 2) 

[I] is the inhibitor concentration, Km is the Michaelis constant, Ki is the inhibition constant, 

V and Vmax are the velocity and the maximum velocity of the enzyme, respectively. 

4.4 Determination of the vitality values 

In order to compare the relative selective advantage of the variant I36T↑T PR over the 

wild type PR, in the presence of an inhibitor and based on their catalytic efficiency values, 

the vitality value (V) was determined using Equation 3 [34].  This value predicts the 

therapeutic effect, or advantage, of a given protease inhibitor over another. 

Vitality (V) = (Ki .  kcat/Km)MUT/(Ki .  kcat/Km) WT    (Equation 3) 

4.5 Thermodynamic studies 

Thermodynamic studies were performed according to Padayachee and Whiteley, 2013 

[25].  Spectrofluorometric studies were conducted on a Jasco V-630 spectrofluorometer 

(Jasco International Co., LTD, Japan).  These studies enabled us to determine whether 

any tertiary structural changes were induced in each HIV-1 PR.  The reaction was 

followed by monitoring the interaction between each protease inhibitor and each purified 

enzyme.  Tryptophan residues were selectively excited at 295 nm thus serving as a local 

probe of the immediate environment of tryptophan residues in the HIV-1 PR molecules.  

The emission wavelength of the tryptophan residues was monitored at 482 nm.  The 

inhibitor concentration (1 L) was increased incrementally and added to HIV-1 PR (5 L) 
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in solution.  The initial stock of inhibitor concentration (2 µM) was made up in 50 mM 

sodium acetate, 0.1 M NaCl, pH 5 (protease assay buffer) in a final reaction volume of 

100 L.  The solution with enzyme and inhibitor was incubated for 1 minute, after which 

the change in fluorescence was monitored.  A decrease in fluorescence at increasing 

concentrations of inhibitor (2, 5, 10 nM), was indicative of inhibitor quenching by the 

tryptophan fluorophores on the enzyme.  All fluorescence quenching experiments were 

performed at four different temperatures (293 K, 298 K, 303 K and 310 K).  Various 

thermodynamic parameters were calculated using Equations 4 and 5, which are derived 

from the Stern Volmer and Van’t Hoff graphical plots, respectively, as shown in the 

following equations:   

F0/F = 1 + Ksv[Q]        (Equation 4) 

lnKsv = - (H/RT) + (S/R)       (Equation 5) 

where F0 and F are the florescence intensities in the absence and presence of a 

quenching agent; respectively, Ksv is the Stern-Volmer constant, [Q] is the concentration 

of quencher (drug), H is the enthalpy, S is entropy, R is the gas constant and T is the 

absolute experimental temperature in kelvin (K). 

The nine but one (TPV) FDA-approved PIs used in this study are all competitive inhibitors 

[21].  For pure competitive inhibition, the Ki of a drug is equal to the Kd, The Gibbs free 

binding energy (∆G) is, therefore, calculated from Equation 6 [34]. 

∆G = RTlnKi         (Equation 6) 
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4.6 Statistical analyses 

The results are presented as the mean ± standard deviation.  The significance value was 

set to 0.05 and data were analysed using an unpaired t-test.  GraphPad Prism 7 software 

program was used in the data analysis [35]. 
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Abstract 

Resistance of HIV to antiretroviral drugs is one of the most common causes for 

therapeutic failure in people infected with HIV-1.  Herein, we report the effect of nine FDA 

approved protease inhibitor drugs against a new HIV-1 subtype C mutant protease, 

E35D↑G↑S.  The mutant has five mutations, ED35, I36G, two insertions at position 38 S 

and L, and D60E.  Kinetics, inhibition constants, vitality, Gibbs free binding energies are 

reported.  The E35D↑G↑S variant showed a decreased affinity for substrate and low 

catalytic efficiency compared to the wild type.  There was a significant decrease in the 

binding of seven FDA approved protease inhibitors against the mutant (p < 0.0001).  

Amprenavir and ritonavir showed the least decrease, but still significant reduced activity 

in comparison to the wildtype (4 and 5 folds respectively, p = 0.0021 and 0.003 

respectively).  Nelfinavir and atazanavir were the worst inhibitors against the variant as 

seen from the IC50, with values of 1401±3.0 and 685±3.0 nM respectively.  The 

thermodynamics data showed less favourable Gibbs free binding energies for the 

protease inhibitors to the mutant than to the wild type.   
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1 Introduction. 

The Human Immunodeficiency Virus (HIV) is a retrovirus from the Retroviride family and 

is responsible for Acquired Immune-Deficiency Syndrome (AIDS), which was first 

reported in 1981 [1].  This infection is controlled by the use of antiviral drugs which helps 

reduce the mortality and morbidity as well as promote increased patient life expectancy 

[2]. 

Protease inhibitors (PIs) are one class of antiviral drugs that target an essential viral 

enzyme, HIV-1 protease [3-5].  The role of HIV-1 protease in the processing of Gag and 

Gag-Pro-Pol polyproteins into building blocks for individual proteins essential for viral 

maturation, has made it one of the major targets for drug development [6].  There are 

currently nine FDA approved protease inhibitors [7], originally designed for type B HIV PR 

[8].  These inhibitors represent the most potent anti-AIDS drug reported to date and are 

essential components of the highly active antiretroviral therapy (HAART) [9].  HAART is 

credited with significantly lowering AIDS related deaths, and is currently implemented to 

the whole world as the standard care for HIV-AIDS treatment [9]. 

The emergence of drug resistant mutants in the HIV-PR has become a huge problem with 

the increased failure of HAART [10, 11].  Newly infected patients are infected with 

resistant strains, which are an added challenge in the treatment of HIV infections [12].  

Herein we report the effect of a variant protease in the South African HIV-1 subtype C PR 

on the binding capacity of the nine commonly used PIs.  The variant has the following 

mutations; ED35, I36G, two insertions at position 35 (S and L), and D60E and is referred 

to as E35D↑G↑S with the upward arrows showing positions of insertions[13].  The variant 

was discovered in a HIV-1 positive mother who participated in a PMTCT (Prevention of 
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Mother-To-Child Transmission) cohort.  This mutant was discovered from different patient 

reported by Lockhat et al. and Maseko et al. 2017(Lockhat et al., 2016, Maseko et al., 

2017).  This mutant is also different from the I36TT mutant as bears to insertions 

compared to just one from the former.  The patient received treatment with the following 

reverse transcriptase inhibitors (RTIs): efavirenz, d4t (stavudine) and 3TC (lamivudine).  

Interestingly, the patient was completely drug-naïve with respect to protease inhibitors 

[14].   

The variant protease together with the wild type C-SA HIV protease were cloned, purified, 

and characterized[13].  The purified variant protease possessed weaker catalytic activity 

compared the wild type [13]. 
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2 Results 

2.1 Kinetic parameters 

The kinetic Michaelis constant was found to be 128.6± 1.0 and 198.0±1.0 µM for the wild 

type (C-SA) and the mutant (E35D↑G↑S) respectively.  The lower Km for the wild type 

means that the wildtype exhibited higher affinity for the substrate than the mutant.  The 

turnover numbers were determined from the slopes from Figure 2 and was found to be 

1.067±0.003 and 0.446±0.001 s-1 for the wildtype and the mutant respectively.  Again, the 

wildtype exhibits an increased catalytic efficiency (kcat/Km) compared to the mutant.  This 

can be attributed by that fact that Km for the wild type was lower than that of the mutant. 

 

Figure 9:  Determination of enzyme turn-over number.  Linear curves for determining the turn-
over number (kcat) of the wild-type and the variant.  Turn-over number was determined from the 
slopes of the plots.  The experiments were performed at 37°C in 10 mM sodium acetate buffer, 
0.1 M sodium chloride, pH 5.0, at substrate concentration of 250 µM.  The experiments were 
conducted in triplicates and the data is reported as the mean ± SD (n = 3). 

2.2 Inhibition studies. 

A summary of the inhibition by the nine FDA approved PIs is shown in Figure 2.  The 

figure shows the logarithmic Ki values for both the wild type and the mutant.  For the wild 
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type, all the inhibitors exhibited negative log Ki values meaning all the inhibitors had Ki 

values less than 1.0 nM.  ATV was the best inhibitor (log Ki = -1.11) against the wild type 

as seen from Figure 2.  TPV was the poorest inhibitor (log Ki = -0.29) against the wild 

type.  Overall, all nine inhibitors are effective against the wild type.  For the mutant, only 

two inhibitors (APV and RTV) exhibited negative log Ki values.  The other seven inhibitors 

showed weaker binding to the mutant, and the log Ki values of these seven inhibitors were 

positive.  ATV, which showed the best inhibition (log Ki value of -1.11) against the wild 

type and yet the second weakest drug against the mutant with a log Ki value of 2.16.  NFV 

was the worst inhibitor against the mutant with a log Ki value of 2.24.  A graphical example 

of Ki determination is shown in figure S2. 

 

Figure 2:  Inhibition constants of the wild type C-SA and the mutant in a logarithmic scale.  The 
wild type (C-SA) is shown in green, and mutant (E35D↑G↑S) in blue (n = 3). 

The IC50 values for the two enzymes are summarised in Table 1.  IC50 values for the wild 

type are all better than 4.0 nM.  This means that all the drugs are much more effective 

against the wild type than against the mutant.  For the mutant APV and RTV were the 

only effective inhibitors with reasonable IC50 values (4.1±0.3 and 7.1±0.4 respectively).  

All the other inhibitors exhibited IC50 values above 30 nM.  Again, ATV and NFV were the 
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worst inhibitors against the mutant with IC50 values of 685.0±3.0 and 1401.0±3.0 nM 

respectively.  This data agrees with the Ki data. 

Table 1.  A summary of IC50 values for the wild type C-SA protease and the mutant (n = 
3). 

Inhibitor WT IC50 (nM) E35D↑G↑S IC50 

(nM) 

Fold 

Change 

(Mutant/WT) 

  

APV 0.81±0.04 4.1±0.05 5   

ATV 1.07±0.08 685.0±3.0 686   

DRV 1.07±0.04 154.10±2.0 154   

IDV 3.44±0.06 33.56±1.0 10   

LPV 2.99±0.01 51.67±0.8 17   

NFV 1.99±0.05 1401.0±3.0 704   

RTV 0.78±0.01 7.1±0.40 9   

SQV 0.77±0.05 114.10±1.2 148   

TPV 1.55±0.02 202.70±2.6 130   

2.3 Vitality 

Log vitality values are shown in Figure for the E35D↑G↑S mutant protease with the 

corresponding inhibitor using the wild type as reference enzyme.  The E35D↑G↑S mutant 

showed low vitality values for APV and RTV displaying log vitality values of 0.362 and 

0.30 respectively.  IDV and LPV had log vitality values close to 1.0.  ATV showed the 

highest vitality value, meaning the mutant was resistant against ATV.  DRV, SQV, NFV 

and TPV with all had log vitality values around two.   
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Figure 3:  Log vitality values for the E35D↑G↑S mutant protease with respect to the nine inhibitors 
using wild type as a reference. 

2.4 Quenching and thermodynamics 

Thermodynamic parameters were calculated from the Stern Volmer and Van’t Hoff plots 

(Figures S3 and S4).  From these plots ∆H and ∆S values for each drug were calculated.  

∆G values were calculated from the Ki values from Equation 3.  A graphical presentation 

of the ∆G values for both the wild type and the mutant is shown in Figure 4.  For the wild 

type, ATV was the best drug with a ∆G value of -14.35 kcal/mol.  TPV displayed slightly 

weaker binding to the wild type with a ∆G value of -13.19 kcal/mol.  All the thermodynamic 

reactions were entropy driven as judged from the big negative (favourable) values.  The 

∆H was positive (unfavourable) for all the inhibitors except for TPV. 

For the variant, APV and RTV showed the best binding with ∆G values of -13.12 and -

12.96 kcal/mol respectively.  The other seven inhibitors showed weaker binding to the 
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mutant as seen from Figure 4.  Again, all reactions were entropy-driven.  The ∆H values 

were also positive for the mutant except for TPV. 

 

Figure 4: Gibbs free binding free energy of the E35D↑G↑S protease and the wild type C-SA HIV 
protease.  The wild type is represented in blue whilst the E35D↑G↑S is in red.   

To compare the effect of the mutations in the binding of PIs with the wildtype ∆∆G, ∆∆H 

and -T∆∆S values were calculated and are presented in Table 2.  The values are the 

difference between the wild type and the mutant (mutant–wild type).  From the table, it is 

seen that there was an overall decrease in the binding energies against the mutant.  APV 

and RTV showed less change in the binding with ∆∆G values of 0.80 and 0.93 kcal/mol 

respectively.  NFV and TPV showed the most decrease in binding with ∆∆G values of 

4.63 and 4.10 respectively.  There was no observable trend in the ∆∆H and -T∆∆S values.  

The Ki ratios in Table 2 show that the nine drugs had weaker binding to the mutant.   
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Table 2.  A comparison of the difference (mutant-wildtype) between the inhibition 
constants and thermodynamic parameters of the wild type (C-SA) and the mutant 
(E35D↑G↑S). 

Inhibitor Ki Ratio ∆∆G ∆∆H -T∆∆S 

APV 4 0.80 12.9 12.1 

ATV 1828 4.6 3.1 -1.5 

DRV 560 3.9 2.1 -1.8 

IDV 20 1.9 -0.1 1.8 

LPV 12 1.6 -13.1 14.7 

NFV 532 4.1 2.3 -1.8 

RTV 5 0.9 6.8 5.8 

SQV 215 3.3 2.9 0.4 

TPV 292 3.7 3.2 -7.1 
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3 Discussion  

The hinge region (residues 35-42 and 57-61) of the HIV-1 protease is closely associated 

with stability and movement of the flap region [15].  The flap region undergoes substantial 

movement allowing for substrate/inhibitor (open conformation) and form key interactions 

during binding of substrate/inhibitor (closed conformation) [16].  The flaps are required to 

display flexibility.  However, increased flexibility may reduce substrate processing and 

binding of PIs.  From the kinetic data (Figure 1), it was observed that the variant had a 

low affinity for substrate and reduced catalytic efficiency.  This observation is in contrast 

with what was observed in the I36T↑T mutant we recently reported[17].  The I36T↑T 

mutant showed increased affinity for substrate and increased catalytic activity [17].  Both 

mutants (I36T↑T and E35D↑G↑S) are in the hinge region but they show different 

properties.  E35 in HIV-PR maintains long range interactions within the PR polypeptide 

chain [18].  A study by Naicker et al.  showed that the E35-R57 salt bridge (ion pair) is 

absent in both monomers of the C-SA HIV PR [15].  They further showed that the R57 in 

C-SA PR adopts a different rotamer from that of R57 in the subtype B PRs, resulting in 

the absence of a salt bridge.  Interestingly the mutant studied here, also experience an 

E35D mutation, suggesting that it also does not have an E35-R57 salt bridge.  The salt 

bridge controls movement and decrease the flexibility of the flaps [18].  The E35D 

mutation was reported to induce reduced binding affinities to PIs [8, 15].  The mutant 

being studied here showed reduced affinity for the nine FDA approved PIs as seen from 

the Ki and thermodynamic data.  Interestingly the wild type was still susceptible to the PIs.  

The behaviour of the mutant could be caused by the E35D mutation.  The mutant in this 

study though having different properties when compared to the previously reported 

mutant (I36T↑T) [17], they both showed weaker binding to PIs. 
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M36I (present in the wild type) is reported to regulate the size of the binding cavity of the 

protease and influence the shape of the active site [19].  This mutation is related to NFV 

and other PIs by complementing other mutations [19, 20].  The wild type only contains 

only the M36I polymorphism.  The 36th residue interact with residues located near the 

active site [19].  Mutations in this position results in the change in conformation of the 

binding pocket [19].  This polymorphism does not cause resistance on its own.  This 

explains why the drugs were still effective against the wild type.  Binding of the nine 

protease inhibitors to the wild type in this study was in the same range for reported other 

non-C HIV-1 proteases.  The variant we are studying contain an I36G mutation and 

showed weaker binding to NFV and had the worst IC50 result (Table 2 and Figure 4) with 

respect to this drug.  Overall, the mutant showed reduced binding to all the nine drugs.  

We propose that I36G together with the other mutations in E35D↑G↑S caused the 

reduced binding energies of the PIs.   
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4 Conclusion 

The effect of the insertions and mutations in the C-SA HIV-PR was studied.  The mutant 

(E35D↑G↑S) showed decreased affinity for the substrate.  Binding to the nine FDA 

approved inhibitors was also significantly reduced for the mutant.  APV and RTV can still 

be prescribed for patients with this mutant as their IC50 values are less 10 nM.  The other 

seven drugs are much less effective.  Further studies need to be done to further explain 

why the variant exhibit reduced binding affinities.   
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5 Materials and Method 

5.1 Protein expression and purification 

Protein expression was performed as reported previously[13].  Briefly C-SA HIV protease 

and mutant E35D↑G↑S were cloned in pGEX-6P-1 and expressed in E. coli BL21 (DE3) 

pLysS.  Cells were harvested 4 hours after IPTG induction by centrifugation (8 000 x g).  

Cells were then re-suspended in ice cold buffer A (10 mM Tris HCl, 5mM EDTA, 1mM 

PMSF) ruptured by sonication and lysate was spun at 14 000 x g.  Pellet was washed 

with buffer A with 1 % triton and again spun at same speed for 20 min.  Pellet containing 

inclusion bodies was re-suspended in buffer B (10 mM Tris-HCl, 5 mM EDTA, 8 M urea, 

5 mM DTT) and kept at room temperature for 1 hour.  Presence of GST tagged protein 

was verified by SDS-PAGE and western blot using GST antibodies.  Protein purification 

was carried out using AKTA 100-950 (GE Health Care).  Partial purification was carried 

out using a Hitrap QFF cation exchange column (5 mL GE Health care) and the protein 

of interest was eluted using a NaCl gradient (0 - 1 M NaCl).  Eluted samples were then 

desalted with using a Hitrap desalting column.  Further purification was then carried using 

a GSTrap affinity column.  GST tag was the removed by digestion with prescission 

protease overnight at 4 °C.  All contents were then loaded back on a GSTrap affinity 

column and HIV protease was collected in the flow through, refolded and stored at -70 °C 

until further use.  The purified proteases were confirmed by SDS-PAGE, Western blot 

and LC-MS-TOF (Central Analytical Facility, University of Stellenbosch).   
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5.2 Kinetic parameters 

Enzymatic activity of the HIV-1 C-SA and mutant (E35D↑G↑S) protease was measured 

by following the hydrolysis of the HIV-PR chromogenic substrate, Lys-Ala-Arg-Val-Nle-

nPhe-Glu-Ala-Nle-NH2 as reported before [13, 17].  The substrate resembles the 

conserved protease cleavage site, KARVL/AEAM [8] between the capsid protein and the 

nucleocapsid p2 in the Gag-polyprotein precursor.  Hydrolysis of the HIV chromogenic 

substrate was characterised by the decrease in absorbance at 300 nm.  Catalytic 

properties such as the Km,  kcat, and kcat/Km of the proteases were determined [8].  All 

catalytic activity assays were performed using a Jasco V-630 spectrophotometer. 

5.3 Inhibition studies 

Inhibition constants, Ki, for the inhibitors (Amprenavir, APV; Atazanavir, ATV; Darunavir, 

DRV, Indinavir, IDV; Nelfinavir, NFV; Lopinavir, LPV; Ritonavir, RTV; Saquinavir, SQV; 

Tipranavir, TPV) against E35D↑G↑S were obtained at 37 °C.  This was done by 

monitoring the rate of chromogenic substrate hydrolysis using 2 µM protease in 50 mM 

sodium acetate, 0.1 M NaCl, pH 5, and (0 - 250 µM) substrate in increasing amounts of 

inhibitor (0 - 10nM). 

5.4 Vitality 

For comparing the relative selective advantage of a given protease mutant over the wild 

type in the presence of an inhibitor, the catalytic efficiency of the mutant must be included 

in the calculations.  This is done by introducing the term ‘vitality’ which is a measure of 
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resistance.  Vitality, v, is defined as v = (Ki/Kcat/Km)MUT/(Ki/Kcat/Km)WT and predicts the 

therapeutic effect of a given protease inhibitor. 

5.5 Quenching and Thermodynamics 

Quenching experiments were performed according to the method reported by Maseko et 

al [17].  Spectrofluorometry was used to determine structural changes induced in HIV 

protease by the interaction of the inhibitors with the purified enzymes using Jasco V-630 

spectrofluorometer (Jasco International co., LTD, Japan).  The excitation wavelength was 

fixed at 295 nm, the wavelength at which tryptophan absorbs and the emission 

wavelength measured was at 482 nm.  The change in fluorescence of a solution was 

monitored over 10 minutes, as increasing concentrations of inhibitors were added to a 

reaction mixture of HIV protease in 50 mM sodium acetate, 1 M NaCl, pH 5 in a final 

volume of 100 L.  All fluorescence quenching experiments were performed at 4 different 

temperatures (293 K, 298 K, 303K, 310K).  The following equations are applicable [21]. 

F0/F = 1 + KsvQ        (Equation 1) 

lnKsv = - (H/RT) + ( S/R)      (Equation 2) 

Where F0 and F are the florescence in the absence and presence of quencher, Ksv is the 

Stern Volmer constant, Q is the quencher (drug), H is the enthalpy, S is entropy, R is 

the gas constant and T is the experimental temperature. 

∆G = RTlnKi         (Equation 3) 
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5.6 Statistical analysis 

Experiments were done in triplicates and results were presented as the mean ± standard 

deviation.  Significance was set to 0.05 and the data was analysed using unpaired t-test.  

GraphPad Prism 7 software program was used [22].   
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CHAPTER FIVE 

Crystallization and 15N labelling of the Wildtype and two Mutant HIV-1 Proteases for 

Structural Studies  

1 Brief Introduction 

This short chapter reports cloning of the inactive form of the wild type HIV PR and the two 

mutants.  As the quantitative (enzyme kinetics and inhibition) data of the proteases is now 

available it would be interesting to understand structurally how the drugs interact with the 

specific residues in the enzyme.  The active site (Asp 25) was replaced with asparagine, 

and a mutation was employed [1].  The mutations do not affect the overall structure of the 

enzyme [1].  As crystallography and NMR studies take a significant period of time, the 

mutations, particularly D25N, help avoid autocatalysis [2].  The proteins were then purified 

in bulk for crystal growth and 15N labelled for future NMR studies. 

2 Materials and Methods 

2.1 Proteins expression  

Synthetic genes encoding the 99,100 and 101 amino acids for the inactive wild type and 

inactive mutants WTPRD25N, I36T↑TPRD25N and E35D↑G↑SPRD25N were obtained from 

Genescript (USA).  A TEV site was added in the N-terminus to facilitate His-tag removal 

and cloned in pET302 Champion vector (Thermo Scientific) flanked by EcoRI and XhoI 

sites, and transformed into E. coli BL-21 DE3 [3].  Expression was performed in Luria 

Bertani medium or in minimal medium for isotope labelling using IPTG induction.  15N 

ammonium chloride was used as the sole nitrogen source for isotopic labelling in M9 

minimal media [4]. 
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2.2 Protein purification 

The expressed proteins were purified using affinity chromatography.  Briefly, the cells 

from 1 L of culture were harvested by centrifugation at 8000 x g.  The cell pellet was then 

the dissolved in ice cold buffer A (50 mM Tris, pH 8, 1.0 mM TCEP, 1 mM PMSF) and 

then sonicated in ice.  The mixture was then clarified by centrifugation at 14 000 x g.  

About 40 % of the HIV-1 protease was found in the soluble fraction, thus the supernatant 

was used to purify the enzymes.  The crude supernatant was loaded to a His trap cobalt 

5 column connected to the AKTA system (GE Health Care, Sweden) previously 

equilibrated with 5 column volumes of buffer B (50 mM Na2PO4, pH 7.4, 5 mM 

imidazole,300 mM NaCl.  The column was then washed with two column volumes of the 

same buffer to remove unbound proteins.  Bound proteins were using a liner imidazole (0 

- 150 mM) gradient in buffer C (50 mM Na2PO4, pH 7.4, 150 imidazole, 300 mM NaCl).  

The proteins were then dialyzed to remove imidazole, the His tag was removed by TEV 

digestion.  The cleavage mixture was then loaded back on to the column to remove the 

TEV and His tag.  Pure tag-protease was collected from the flow through.   

2.3 Far-UV circular dichroism of the WTPRD25N, I36T↑TPRD25N and 
E35D↑G↑SPRD25N HIV-1 proteases 

Far-UV (250 - 190 nm) CD spectra arising from peptide bond absorption was used to give 

information about the backbone secondary structures of the wild-type and mutant 

proteins.  The experiments were performed using 10 μM protein concentrations in 10 mM 

sodium acetate buffer, pH 5 (Figure 1).  CD spectra for WTPRD25N, I36T↑TPRD25N and 

E35D↑G↑SPRD25N variant proteins were recorded from a Jasco model J-810 
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spectropolarimeter using a cuvette of 2 mm path length at 20 °C.  Replicate scans were 

obtained at a 0.1 nm data pitch, 0.1 nm bandwidth and a scan speed of 50 nm/min.  

Spectra were averages of 10 scans with the baseline or buffer control subtracted from 

250 to 190 nm in 0.1 nm increments [5].   

2.4 Crystallization of protein.   

A total of four crystallization screens from Molecular dimension™ were used to determine 

conditions for crystal growth [6].  Each screen contains 96 conditions.  The screens were, 

(1) PACT, a pH, Anion, Cation crystallization trial devised to test pH within a PEG/Ion 

screen, (2) Index, (3) MIDAS, a Modern Intelligent Dynamic Alternative Screen and is 

based on alternative polymeric precipitants, (4) ProPlex, formulated for the crystallization 

of Protein comPlexes [7].  Equal volume (0.1 µL of protein (4 mg/ml in 10 mM sodium 

acetate containing 1 mM TCEP) and reservoir solution from each screen in a 96 well plate 

format was mixed, and the plates were then sealed and kept at 16 °C in a crystallization 

robot.  Crystal growth was monitored daily.  Crystals started appearing after 4 - 7 days 

(Figure 2).  These were then used as seeds for growing crystals in a bigger volume using 

the hanging drop method. 

3 Results 

3.1 Far UV-CD 

Circular dichroism was used as a probe to compare the secondary structure of the 

proteins.  Far-UV CD (250 - 190 nm) spectra is shown in Figure 1 and it is shown that the 

proteins exhibited a minimum of about 216 nm, typical for predominantly β-sheet content. 
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Figure 10:  Far-UV circular dichroism spectra of the WTPRD25N and E35D↑G↑SPRD25N HIV-1 proteases.  
The data from 10 runs were collected from 250 nm to 200 nm and averaged.  Experiments were 
performed in 10 mM sodium acetate buffer, pH 5, containing 10 μM protein solutions. 

3.2 Protein crystallization 

Out of the four screens performed, crystals were obtained from only one (INDEX) 

condition number 30, which contains a solution of 0.1 M sodium chloride, 0.1 M Bis Tris 

pH 6.5 and 1.5 M ammonium sulfate.  An image of the solution and crystals are shown in 

Figure 2. 
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Figure 2:  Crystals obtained from of the C-SA HIV-1 protease.  Crystals appeared in 7 to 10 days 
in the INDEX screen which has a solution of 0.1 M sodium chloride, 0.1 M Bis Tris pH 6.5 and 1.5 
M ammonium sulfate. 

4 Future Perspective 

In future, these crystals will be optimized, harvested and taken for three-dimensional 

structural determination of the variants.  This will hopefully give a deeper understanding 

of the interactions involved between the C-SA proteins and inhibitors. 
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CHAPTER SIX 

Overall conclusion of the research outcome 

1. Conclusion  

HIV-1 is one of the highly studied viral infections worldwide [1, 2].  Many of these studies 

are based on the molecular understanding of the virus and are aimed at improving drug 

design to help reduce the spread of the virus within its host.  HIV reverse transcriptase, 

integrase and protease are important HIV enzymes and also the predominant drug targets 

[3, 4].  The design of drugs inhibiting these enzymes is necessary for blocking the 

replication of the virus and has formed part of the mainstream research for over two 

decades [5].  As mentioned previously, the protease is responsible for the proteolytic 

cleavage of the Gag and Gag-Pol polyproteins, required for the development of mature 

virion proteins [6].  So therefore, blocking or inhibiting this enzyme stops the replication 

of the virus, and studies on this enzyme date back to over two decades [7]. 

In this chapter the summation of the thesis is presented.  Provided in the first chapter is 

a general background review and the life cycle of HIV-1.  It also brings forth more on the 

problem statement and emphasis was placed on HIV protease inhibition and resistance.  

The chapter also highlights briefly a new highly potent HIV-1 drug that targets the viral 

capsid offering 95 % inhibition for up to 10 weeks, as well as an overview of quantitative 

and molecular techniques used in enzymology. 

Chapter 2 reports an efficient procedure for recovering of HIV-1 protease from inclusion 

bodies.  It also provides solutions to the difficulties that are often faced by researchers 
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when expressing this enzyme.  The HIV-1 protease was cloned into seven vectors 

containing fusion tags to optimize expression and solubility.  Expression of the PR with 

larger fusion tags is key (GST, TRX) as it resulted in better expression compared to 

untagged or using His-tag only.  Though GST had greater expression, the recovery yield 

was low due to high aggregation, with only about 0.2 mg/L of active PR recovered.  Trx 

was the best fusion tag to recover the enzyme with about 5 mg/L of culture with a high 

specific activity.   

The next phase of this study (Chapter 3) was aimed at investigating the effect of I36T↑T 

insertion mutation in the protease on the efficacy of nine FDA approved inhibitors.  The 

mutant showed a higher affinity to the natural substrate as seen from the lower KM.  

Generally, the nine inhibitors showed weaker binding to the mutant as compared to the 

wild type.  The thermodynamics data revealed a reduction in Gibb’s energy, meaning the 

mutant enzyme binding to inhibitors was less favourable, indicating that in a clinical 

environment the efficacy of currently available PIs would be significantly reduced.  This 

data is consistent with our computational studies as the theoretical binding of inhibitors 

followed the same trend [8].  With respect to the I36T↑T mutant, APV, LPV and RTV can 

still be prescribed to patients harbouring this mutant as they are more effective inhibitors.   

Chapter 4 reports on the interaction between the double insertion mutation (E35D↑G↑S) 

and the nine FDA approved inhibitors.  Interestingly this mutant had shown slightly lower 

affinity for the natural substrate (high KM) compared to the wildtype enzyme.  Binding of 

the nine PIs was significantly reduced for the mutant compared to the wildtype.  Nelfinavir 

and atazanavir were the weakest inhibitors against the variant as seen from the IC50, with 
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values of 1401±3.0 and 685±3.0 nM respectively.  For patients harbouring this mutant 

APV and RTV can still be prescribed as they rendered the best inhibition.   

Chapter five provides necessary information on the conditions required to crystalize these 

proteins.  The crystal appeared after 7- 10 days of incubation in a solution of 0.1 M sodium 

chloride, 0.1 M Bis Tris pH 6.5 and 1.5 M ammonium sulfate.  The expression of the 

proteases was also optimized in 15N minimal media for future NMR studies.   

Future studies will involve optimization of crystal growth for diffraction and structure 

elucidation.  These will be done in both the absence and presence of protease inhibitors.  

The crystallography data will be supplemented with NMR studies of the 15N labelled 

proteins.  It will give a deeper insight on how the two mutants interact with specific 

residues within the protease molecule.  The information will be used for designing new 

inhibitors for these mutants.  Again, mutants that are resistant to most PIs could prove to 

be an excellent prototype to design inhibitors that overcome drug resistance induced by 

distal mutations. 
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APPENDIX 

1 Supplementary Information for Chapter Two 

Optimized procedure for recovering HIV-1 protease (C-SA) from inclusion bodies 

Sibusiso B Masekoa, Deidre Govendera, Thavendran Govendera, Tricia Naickera, Johnson Linb, 

Glenn E.M.  Maguireac, Gert Krugera.  * 

 

 

Figure S1:  Agarose gel electrophoresis of amplified HIV-PR gene.  Each band correspond to an 
amplification of the HIV-PR gene using vector specific primers. 
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Figure S2:  Confirmation of clones from each of the seven vectors used.  Plasmid from each of 
the clones were isolated and restricted to with the specific restriction enzymes. 

 

 

Figure S3:  Sequence alignment of HIV-PR gene with sequencing data.  T7 promoter primers 
were used to sequence the multiple cloning site in order to confirm successful cloning.   
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Figure S4:  SDS PAGE and western blot confirming expression in pET28a.  A, SDS-PAGE, B 
western blot, MWM, Molecular weight marker 1, induced sample and 2 uninduced sample 

 

 

Figure S5:  SDS PAGE and western blot confirming expression in pET32a.  A, SDS-PAGE, 

B western blot,  
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Table S1:  Protein fragments obtained from LC-MS-TOF 

Protein Fragments from sequencing 

Accession 
Number 

Description Score Molecular 
Weight(kDa) 

Q73368 Gag-Pol polyprotein 744 161.4 

Q75002 Gag-Pol polyprotein 196 162.1 

B3CJR9 Protease and reverse 
transcriptase 

587 67.3 

H6SH68 Polyprotein 498 56.9 

V6BSA8 Protease and reverse 
transcriptase 

573 65.6 

 

 

Figure S6:  SDS-PAGE showing protein expression in pET41b.  MWM, molecular weight marker, 
1 uninduced sample,2 induced sample 
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2 Supplementary Information for Chapter Three 

I36T↑T Mutation in South African Subtype C (C-SA) HIV-1 Protease Significantly 

Alters Protease-Drug Interactions 

Sibusiso B Masekoa, Eden Padayacheea, Thavendran Govendera, Yasein Sayedb, Gert Krugera*, 

Glenn E.M Maguireac, Johnson Lind.   

The figure below shows the positions of the tryptophan within the HIV-1 C-SA protease 

 

Figure S1.  Figure 1.  A ribbon presentation of Wild type C-SA HIV protease (A) and I36T↑T 
mutant (B).  Shown in yellow is the aspartic residues (Asp 25.25’) Insertion mutations are shown 
in pink.  The red spheres are amino acid mutations.  Tryptophan 3 residues are shown in blue 
(created using UCSF Chimera version 1). 
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Inhibition studies 

 

Figure S2:  Inhibition (Ki) of the protease activities of wild type [A] and I36T↑T [B] by APV.  The 

reaction mix contained an increasing substrate concentration (0 - 250 M); Protease enzyme (50 

nM), protease inhibitor (0 - 10 nM) in a 96-well plate with a total volume of 100 µL (n = 3).   
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Table 3:  Stern Volmer quenching constants (Ksv) at different temperatures for both wild 

type (WT) and mutant (36T↑T) 

 

  

Temp. 293 K 298 K 303 K 310 K  293 K 298 K 303 K 310 K 

APV Ksv (nM-1) ATV Ksv (nM-1) 

WT 0.0436 
±0.0042 

0.0867±0.002 0.08724 
±0.0091 

0.0885 
±0.0426 

WT 0.1040 
±0.0066 

0.1140 
±0.0021 

0.1420 
±0.0037 

0.1720 
±0.0311 

I36T↑T 
 

0.0217 
 
±0.0050 

0.0805±0.0018 0.08514 
 
±0.0055 

0.0861 
 
±0.0199 

I36T↑T 
 

0.0454 
 
±0.0074 

0.0704 
 
±0.0227 

0.1400 
 
±0.0354 

0.1820 
 
±0.0021 

 

DRV 293 K 298 K 303 K 310 K IDV 293 K 298 K 303 K 310 K 

WT 0.0287 
±0.0075 

0.0822±0.0094 0.0813 
±0.0028 

0.1490 
±0.0060 

WT 0.0067 
±0.0237 

00.0949±0.087 0.0933 
±0.0154 

0.1090 
±0.0220 

I36T↑T 
 

0.0484 
±0.0038 

0.0508±0.0028 0.0648 
±0.0036 

0.0683 
±0.0033 

I36T↑T 
 

0.0450 
±0.0107 

0.0747±0.0021 0.0605 
±0.0166 

0.0883 
±0.0164 

 

LPV 293 K 298 K 303 K 310 K RTV 293 K 298 K 303 K 310 K 

WT 0.0384 
±0.0161 

0.0572±0.0121 0.1490 
±0.0216 

0.1700 
±0.0158 

WT 0.0805 
±0.0086 

0.0828±0.001 0.1072 
±0.0015 

0.1730 
±0.0364 

I36T↑T 
 

0.0208 
±0.0282 

0.0287±0.0086 0.1390 
±0.0272 

0.1730 
±0.0147 

I36T↑T 
 

0.0356 
±0.0085 

0.041±0.001 0.0795 
±0.0200 

0.1030 
±0.0021 

 

TPV 293 298 303 310 SQV 293 K 298 K 303 K 310 K 

WT 0.0384±0.01 00.0484±0.01 0.1072 
±0.0015 

0.1730 
±0.0364 

WT 0.0408 
±0.0017 

0.0686±0.0042 0.0669 
±0.0120 

0.0819 
±0.0011 

I36T↑T 
 

0.0156 
±0.0085 

0.0366±0.0004 0.0795 
±0.0200 

0.1030 
±0.0021 

I36T↑T 
 

0.0106 
±0.0033 

00.0217±0.005 0.0711 
±0.0033 

0.0933 
±0.0018 

NFV 293 298 303 310 NFV 293K 298K 303K 310K 

 I36T↑T 
 

0.0484 
±0.0038 

0.0561±0.002 0.0648 
±0.0036 

0.0683 
±0.0033 

WT 0.0450 
±0.0107 

0.0759±0.002 0.0605 
±0.0166 

0.0883 
±0.0164 
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3 Supplementary Information for Chapter Four 

Kinetic and Thermodynamic Characterization of HIV-Protease inhibitors against 

E35D↑G↑Smutant in the South Africa HIV-1 Subtype C Protease. 

Sibusiso B Masekoa, Eden Padayacheea, Thavendran Govendera, Yasien 

Sayedb,Glenn EM Maguireac, Johnson Lind ,Hendrik G Krugera* 

 

Figure S1.  A ribbon representation of the wild type C-SA HIV protease (A) and E35D↑G↑Svariant 
(B).  Shown in yellow is the aspartic residues (Asp 25/25').  The insertions are shown in pink and 
tryptophan in blue.  The red spheres are other amino acid mutations found in this variant protease.  
The figures were created using UCSF Chimera version 1.9 [1]. 
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Figure S2:  Inhibition (Ki) of the protease activities of wild type[A] and E35D↑G↑S[B] by RTV The 

reaction mix contained an increasing substrate concentration (0-250 M); Protease enzyme (50 
nM), protease inhibitor (0-10 nM) in a 96-well plate with a total volume of 100 µL (n = 3).   

The Ki values were estimated using a competitive inhibition equation (Equation 1) 

according to Williams et al.  [2]. 

 

V = 
𝐕𝐦𝐚𝐱[𝐒]

𝑲𝐦(𝟏+
[𝐈]

𝑲𝒊
)+[𝐒]

        (Equation S1) 

[I] is the inhibitor concentration, Km is the Michaelis constant, Ki is the inhibition constant, 

V and Vmax are the velocity and the maximum velocity of the enzyme, respectively. 
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Figure S3:  Examples of Stern Volmer plots for fluorescence quenching of WT (A) and the mutant 
E35D↑G↑Sin 50 mM Sodium Acetate buffer (pH 5) containing NaCl (1M) in a final volume (100 
µl) when treated with Ritonavir at different temperatures (n = 3).   

 

Figure S4:  Van’t Hoff plots for the determination of thermodynamic data (H and S) for the 
interaction of the protease inhibitor, Ritonavir with HIV protease at different temperatures.  (A) 
Wild Type (B) Mutant E35D↑G↑S (n = 3). 
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