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Abstract 
 

Social exchange underpins social structure and as such, social exchange theory has 

taken a central role in the field of social psychology. The study of exchange rules 

and how they interact with each other is an area within this theory that has not 

received much attention up until now. This study has aimed to study the exchange 

rules of fairness, reciprocity, self-interest, vicinity and ingroup favouritism within an 

interacting exchange network. Agent based computational modelling with a 

comparison to empirical data has been proposed as a novel method to uncover the 

process of exchange from the bottom up. The results of the study indicate that there 

exists no universal combination of exchange rules that can predict human behaviour 

in all settings. Exchange rules are adopted based on institutional norms as well as 

norms that emerge during interaction.  
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Chapter 1: Introduction 
 

Social exchange is an important component of interaction between individuals. Most 

people are likely to go through many exchanges in a single day. For this reason, the 

study of social exchange under the banner of social exchange theory has been at 

the forefront of social psychology for nearly half a century. Social exchange theory 

can be traced back to the early 20th century but was most notably introduced by 

George Homans in 1958. Homans (1958) was interested in the microprocesses of 

social exchange and how that led to the formation of macrosocial structure. He 

argued that individuals weigh up cost and rewards when deciding on potential 

exchanges. His assumption of rationality has been argued by many, yet the 

theoretical groundwork that he laid has held.  

Cropanzano and Mitchell (2005) highlighted the valid point that social exchange 

theory has great explanatory power for understanding human interaction but that it 

suffers from areas of conceptual ambiguity and a general lack of fully specified core 

conceptualisations. One area, according to Cropanzano and Mitchell (2005), that has 

suffered a great lack of research within the social exchange framework is the area of 

exchange rules. Exchange rules according to Meeker (1971) are the normative 

guidelines that direct decisions made by individuals in exchange situations.  

Drawing from recent empirical literature on the motivations behind exchange 

behaviour, this research has set out to resurrect the important groundwork that 

Meeker laid by proposing a reconceptualised model of social exchange with the 

specific exchange rules of reciprocity, ingroup favouritism, self-interest, fairness and 

proximity. A random giving exchange rule was added to these five in order to 

account for careless or uncertain decision making. 

Research on these exchange rules have largely been done one rule at a time or at 

most two (Cropanzano & Mitchell, 2005). This means that the expected interaction 

between these exchange rules has not been assessed.  

A potential reason for the shortage of research on the interaction of exchange rules 

is the methodological difficulties in studying the process of exchange. Computational 

agent-based modelling has been proposed in the current research as a methodology 

that can effectively model exchange behaviour from agent level decision making.  
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Using every combination between exchange rules at three levels of each rule, 729 

simulations were run in total. The results of the agent-based model have then been 

quantitatively compared to empirical data derived from human experiments in order 

to validate the simulated results. The particular exchange rules or combinations of 

exchange rules used in the most accurate simulations are used to indicate the 

particular exchange rules that were used by human participants in the laboratory 

experiment.  
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Chapter 2: Literature review 
 

 

Social Exchange Theory 
 

Social exchange theory, most notably defined by Homans (1958) is a theory that 

attempts to describe social structure as the product of microsocial exchanges 

between individuals. In this theory, it is assumed that individuals, when faced with a 

potential exchange, will calculate the costs and rewards of the exchange so as to 

maximise gains and minimize costs.  

The early work of Homans focussed on sub-institutional exchange processes and 

attempted to explain larger social structures as a product of microsocial behaviour 

(Cook, Cheshire, Rice, & Nakagawa, 2013). His claim was that emergent social 

phenomena can always be explained by attributes of individuals in interaction. His 

work was eventually deemed overly reductionistic as it did not take into account 

larger institutional influences that shape microsocial behaviour. In addition to this, it 

did not take into account the macrosocial phenomena that emerges from social 

interaction which simply cannot be reduced to the actions of individuals (Cook et al., 

2013). The work of Blau (1968) and Emerson (1976) evolved this theory to account 

for these shortfalls. 

Social exchange theory has gone on to explain dynamics within exchange networks 

such as power (structural inequality between groups or individuals), commitment, 

emotion and fairness considerations as a few examples of forces that shape 

exchange within networks (Cook et al., 2013). In short, larger cultural and contextual 

norms, as well as institutional forces, can shape exchange behaviour and the 

resulting emerged macrosocial structure.  

In the original conception of social exchange theory, rationality was assumed. This 

posits that individuals will make rational decisions regarding the outcomes of an 

exchange. Conflicting occurrences of irrational behaviour, such as revenge seeking 

where individuals incur a cost if it means getting back at another, led Meeker (1971) 

to argue against the assumed rationality that underpins exchange decisions. She 

argued for a far narrower conception of rationality whereby individuals are rational in 
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that they will evaluate consequences of an exchange but not necessarily aim for 

profit maximisation (Meeker, 1971). This thinking led to the theory of exchange as 

individual decisions guided by a framework of rules that are relied upon for making 

decisions regarding the mode of exchange.  

Rules of exchange  
 

Exchange relationships are formed by exchange, and for this exchange to take place 

there need be a set of rules that guide and govern exchange. These “exchange 

rules” are normative prescriptions for behaviour that guide the exchange process 

between individuals (Cropanzano & Mitchell, 2005). A simple example of an 

exchange rule, and the one most frequently relied upon in exchange research, is 

reciprocity. Reciprocity is a rule that influences an individual to return kind favours 

directed towards them during past exchange.  

Meeker (1971) argued that exchanges between individuals can be considered as 

individual decisions and that these decisions require a set of rules to guide decision 

making. In this logic, she specified six decision rules of altruism, ingroup gain, status 

consistency, competition and reciprocation. These rules are further elaborated on 

below. 

• Altruism can be defined as a decision rule that has the aim of rewarding 

another individual even if that means a complete cost to the giver.  

• Ingroup gain, as defined by Meeker (1971), is a rule that leads to the 

maximum reward for all individuals concerned. This can be thought of as a 

common storehouse of resources that individuals use as needed. This 

decision rule then does not include interpersonal exchange. 

• Status consistency is a rule that seeks to maintain the status that exists 

before the exchange begins. This decision rule then uses the logic of 

individual A having a higher payoff in an exchange than individual B if 

individual A has a higher status at the beginning of the exchange. 

• Competition is a rule that seeks the maximum difference in payoffs between 

individuals in an exchange. This can even mean a reduced reward for the 

giver if it means harming the receiver.  
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• Reciprocation is a rule that seeks to reward past acts of kindness. This rule 

maintains a cooperative set of exchanges.  

Meeker (1971) argues that these exchange rules are not mutually exclusive, and that 

more than one rule can be adopted at one time if they are in line with the particular 

goal structure. For example, an individual could adopt a rule of altruism and ingroup 

gain without any conflict between rules. A few questions are generated from 

Meeker’s framework, the first being; what contextual factors lead to combinations of 

decision rules being adopted? Another question that is highlighted is; what factors 

induce preference to one rule over another and what facilitates the shift from one 

rule to another?   

Answering these questions requires specific focus on the normative and structural 

context in which the interaction is imbedded. Exchange rules are either sanctioned or 

inhibited by a contextual or larger social norm. If we consider rationality that has 

been a popular assumption in social exchange theory, we would argue that an 

individual would seek the decision rule that would allow them the maximum payoff 

with little regard of the consequences for the exchange partner. This would be in line 

with the homo-economicus model which assumes pure rationality with no social 

constraints to profit maximisation. As discussed later in this review, this behaviour 

can exist, but is seldom seen empirically. One reason for this is that self-interest is 

often constrained by conflicting norms. For example, if in a certain context there 

exists a social norm that punishes selfishness, it would then force the individual to 

adopt an exchange rule that accrues the largest benefit without being deemed 

selfish. Using this logic, one could also logically conclude that a decision rule that is 

highly competitive would not be suitable in a context where fairness to the poor is 

highly esteemed. In this context, an individual would likely adopt an exchange rule 

that gives preference to giving to the poor. An exchange rule that fosters 

cooperation, such as reciprocity, may also be suitable in this context.  

The fundamental tension between rationality and exchange rules that are 

normatively prescribed by the context constitute an institutional force that will alter 

microsocial exchange as well as emergent macrosocial phenomena. The 

implications of the lack of research in this area are that competition between rules 
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under different circumstances are not fully understood, nor are the cases when 

multiple exchange rules are used in combinations.  

The current research is aimed at studying the process of exchange with focus on 

which exchange rules individuals adopt in different contexts. This research will focus 

on microlevel interindividual exchange and how this emerges into a larger social 

structure.  
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Toward a reconceptualised set of exchange rules 
 

Research on exchange rules has evolved substantially since Meeker’s original 

contribution, and a reconceptualised model is warranted. A large literature from the 

field of economics, sociology and social psychology has sought to understand the 

psychological motivations of exchange behaviour. This research has generally 

studied exchange rules in isolation. Though the empirical support for these 

mechanisms is given, the current research will aim to study how these interact with 

each other. Drawing on this literature, there has been much empirical evidence for 

reciprocity, ingroup favouritism, fairness or inequity aversion, proximity and self-

interest. The following section of the review will focus on detailing recent empirical 

support for each of these proposed exchange rules. 

Reciprocity 
 

Reciprocation in its essential form is the behavioural response by a recipient to an 

action targeted towards them. The response could be positive, such as a reward for 

kindness, or it could take a negative form which would entail punishment for an 

unkind action (Falk & Fischbacher, 2006). This section will outline the decision-

making process involved in reciprocation as well as outline the theoretical 

components of reciprocation in social exchange. 

Reciprocation is a fundamental component of social organisation and is a powerful 

driving force behind behaviour (Falk & Fischbacher, 2006). Gouldner (1960) goes so 

far as to argue that reciprocity is a universal mechanism that can be found in every 

culture. Gouldner (1960) in fact wrote the famous quote: 

“A norm of reciprocity is, I suspect, no less universal and important an element of 

culture than the incest taboo, although, similarly, its concrete formulations may vary 

with time and place.” (p. 171). 

The manner in which reciprocity presents itself and the determinates of how one 

should reciprocate will differ in different contexts and social spheres. The universal 

component of reciprocation as argued by Gouldner (1960) can be summarised in two 

basic rules; the first being that individuals should repay kind acts that have been 
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directed towards them, and the second being that individuals should not harm those 

that have acted kindly towards them. 

At this point it is necessary to distinguish two conceptually different forms of 

reciprocation. The first of these two, and indeed the more traditional understanding 

of reciprocation, is known as direct reciprocity. This type of reciprocity is a simple ‘tit 

for tat’ reciprocation, or, as Nowak and Sigmund (2005) quite succinctly define it; 

“you scratch my back and I will scratch yours” (p. 1).  

The second form of reciprocation is known as indirect reciprocity, and this is defined 

as the type of reciprocation where a receiver will not directly reciprocate to the giver, 

but to someone else. In this mode of reciprocation, a giver is likely to give to any 

agent that has been seen to help others in the past (Nowak & Sigmund, 1998). 

Indirect reciprocity is more focussed on reputation with the avoidance of negative 

consequences (Nowak & Sigmund, 2005).  

In the current research, focus is directed towards interaction between multiple 

exchange rules and mathematical tractability is of concern. For this reason, only 

direct reciprocity will be of focus. 

The best-known research on direct reciprocation is the work of Axelrod (1984), in 

which reciprocation was studied using the game ‘the prisoners dilemma”. This 

research will be briefly detailed below. 

The prisoner’s dilemma 
 

The prisoner’s dilemma is a simple game that entails two players. Each player has a 

choice of whether to cooperate with the other player or to defect. The players must 

choose their course of action without knowing what the other player will do. If player 

1 chooses to defect and player 2 chooses to cooperate, player one will have a higher 

pay off than if he/she had chosen to cooperate. The dilemma is introduced when 

both players choose to defect, if they select defection their payoff will be less than if 

they had cooperated. 

In order to study the emergence of cooperation through reciprocation, Axelrod 

developed a research design that took the form of a tournament. Participants were 

mostly professors from the fields of economics, mathematics, psychology and 
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sociology. Each participant was tasked with developing a rule that would be used to 

model strategies in the prisoner’s dilemma game. All strategies were able to use 

history in order to make future choices. Strategies submitted varied between highly 

complex rules that aimed at maximum long-term payoff to simple rules that mimicked 

the opponents previous move. Each participant was paired with an opponent in one 

condition, as well as a condition in which they would oppose a clone. For a 

theoretical baseline, the participant was also paired with a random strategy that 

randomly chose either to defect or to cooperate in each round. 

Two trials were held and in both trials the strategy “tit for tat” was the strategy that 

accrued the highest average number of points. This strategy was a simple rule that 

cooperated (didn’t defect) in the first round and then reciprocated in either a positive 

or negative way in every proceeding round. The success derived through this simple 

strategy was due to a few behavioural traits that it possessed. The first of these was 

that it was kind. This strategy would never be the player to defect first. It set a 

baseline of initial cooperation, but if crossed, it would be quick to punish by defecting 

in the subsequent round. Tit for tat was very forgiving, after its initial retaliation, it 

would forgive and forget all previous cheating. The forgiveness was a critical 

component to its success as it fostered and restored cooperation between players. 

The research conducted by Axelrod (1984) clearly demonstrated the dramatic effect 

that reciprocity has in guiding behaviour in social settings. A limitation of this study is 

that reciprocity is studied in dyadic relationships. In real world situations, individuals 

have a far greater population of people that they are able to interact with. If an 

individual were to be faced with cheating in a larger group, it is likely that they would 

punish the opponent by taking their business elsewhere, thereby removing any 

chance of future interaction.  
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Increased wealth vs underlying intentions 
 

A factor of reciprocation that warrants discussion is the motivational factors when 

deciding on reciprocating. When evaluating a token exchange, there are two main 

factors that would lead to reciprocation, the individual would either base their 

response on the increased wealth or the perceived intentions of the generous giver 

(Falk & Fischbacher, 2006).  

The simpler of the two would be the increased wealth obtained through the token 

exchange. This could be a powerful determinate for reciprocation which would 

become more important as the receiving agent’s wealth decreases.  

The second factor would be the intentions behind the token allocation. This 

incorporates both the increase in wealth as well as the social meaning behind the 

giving. The interpretation of the intentions behind the token allocation will then prove 

to be a large deciding factor in whether or not to reciprocate (Keysar, Converse, 

Wang, & Epley, 2008). 

Recent empirical evidence has suggested that the perceived intentions of a helpful 

action from one individual to another has a large impact on the degree to which 

people are inclined to engage in direct reciprocity (Orhun, 2018). If the original giver 

is deemed to be self-interested and not altruistic in their behaviour, people are less 

likely to reciprocate.  

Ingroup favouritism 
 

Ingroup favouritism, the tendency to favour one’s own group and to discriminate 

against the outgroup, is a robust phenomenon in social exchange. Nearly a century 

of research has aimed to uncover and explain the determinants of this behaviour. In 

this section of the review, a brief overview of historical research will be discussed, 

following that, current research exploring ingroup favouritism will be reviewed. 

The realistic conflict studies had the aim of assessing the development of ingroup 

favouritism in response to competition for resources. It was hypothesised that 

competition for resources between groups would lead to participants discriminating 

against the outgroup and favouring the ingroup (Sherif, Harvey, White, Hood, & 
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Sherif, 1988). It was further hypothesised that this conflict could be reduced through 

cooperation.  

The experiment started with a formation phase where participants were placed into 

groups and were given goals that would foster cooperation between group members. 

This phase led to the formation of a common sense of group membership. The 

second phase introduced competitive activities with the promise of the winning group 

receiving a prize. The introduction of competition quickly led to outgroup derogation 

and a strengthening of ingroup favouritism. The groups became more cohesive and 

more polarized from each other.  

The study led by Sherif, Harvey, White, Hood, and Sherif (1961) was instrumental in 

demonstrating the effect that competition can have on a sense of group identity and 

ingroup favouritism. Tajfel, Billig, Bundy, and Flament (1971) argued that competition 

was not necessary for the formation of ingroup favouritism and discriminatory 

behaviour targeted towards the outgroup. Instead, they argued that the mere 

classification of a group and one’s membership in this group could lead to ingroup 

favouritism and discrimination towards the outgroup. Tajfel et al. (1971) successfully 

demonstrated this theory with the minimal group studies. 

In this pioneering study, Tajfel and his team used a novel method to introduce 

knowledge of one’s group with the most minimal salience. They set out to find the 

baseline condition upon which the social categorization and resulting ingroup 

intergroup discrimination would take place. In order to study ingroup favouritism with 

a minimal group setting, three criteria had to be enforced (Otten, 2016). Firstly, the 

categorization had to be arbitrary and the groups had to be new, meaning they may 

not have had any other previous experience with these group boundaries. Secondly, 

interaction had to be eliminated to remove extraneous variables such as 

reciprocation. Thirdly, self-interest had to be constrained in order to accurately 

measure ingroup favouritism instead of selfishness (Otten, 2016). Participants were 

requested to choose between two paintings and were then told that they were 

assigned to a group based on their choice. They were in fact randomly assigned to 

the two groups. Each participant in isolation used pen and paper tasks that consisted 

of a set of matrices in which they could allocate monetary rewards to either the 

ingroup or the outgroup, and in some cases, a proportion between both.  
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The results of the study indicated that the process of social categorization was 

adequate in producing discriminatory behaviour targeted towards the outgroup and a 

tendency to favour the ingroup. Tajfel (1970) originally postulated that ingroup bias 

emerges due to individuals having learnt, through social interaction, to favour the 

ingroup. When confronted with a novel group situation, individuals will then transfer 

this norm of ingroup favouritism into the new group. Thus, this hypothesis implies a 

generic and persistent norm of ingroup favouritism, a kind of innate psychological 

mechanism that is initiated with the most minimal suggestion of group belonging 

(Iacoviello & Spears, 2018). This hypothesis was later abandoned by Tajfel and 

replaced by the social identity theory which explained the emergence of ingroup 

favouritism being driven by a need for a positive self-concept derived from belonging 

to a group (Tajfel & Turner, 1979).   

Research conducted by Iacoviello and Spears (2018), aimed to revisit Henry Tajfel’s 

generic norm hypothesis by designing a study that investigated ingroup favouritism 

as a result of participants relying on a pre-existing norm of favouring the ingroup 

when faced with a novel and uncertain group, as well as a group in a naturalistic 

setting.  

The research was split into two separate studies, the first study was focussed on 

assessing attitudes and perceptions towards ingroup favouritism in a natural group. 

The second study had the same aim of assessing attitudes and perceptions but also 

assessed allocation behaviour within the minimal group paradigm.  

In study one, Participants were required to answer test items that used national 

political groups as the group to which participants may identify with. A measure of 

attitudes towards ingroup favouritism and the participants perceptions of norms that 

related to favouring the ingroup were obtained using tests within the self-

presentation paradigm. This is an attitude scale that firstly measures participants 

attitudes toward ingroup favouritism, and secondly measures how the norm of 

ingroup favouritism was perceived. In order to determine how participants perceive a 

norm, a series of test questions were given where they had to respond to all the 

items under three different conditions. The first condition required that participants 

answer all test items as they are. In the second condition, participants were given the 

instruction to answer all items in a manner that a reader would positively regard them 
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(self-enhancement). The third condition required participants to answer all items in a 

manner that a reader would negatively regard them (self-depreciation). This method 

allows researchers to distinguish whether a norm is promoted externally, if the self-

enhancement scores are higher, or promoted internally, if the self-depreciation 

scores are higher.  

The results of this first study indicate that participants perceive the generic ingroup 

norm as one that would promote ingroup favouritism (Iacoviello & Spears, 2018). 

This suggests that participants have a default norm, learnt through prior interaction, 

that prescribes ingroup favouritism in a new and uncertain group situation.  

The second study used a minimal group setting and assessed allocation behaviour 

as well as attitudes. Allocation matrices were used to assess allocation behaviour 

within groups and between groups.  

Each participant was given a set of six matrices in three conditions in which they 

could choose how to divide points between the ingroup and the outgroup. In the first 

condition, participants were requested to allocate points as they wished. The second 

condition requested participants to allocate points under self-enhancement 

instructions, and the third condition requested participants to allocate points under 

self-depreciation instructions (Iacoviello & Spears, 2018).   

The results of this second study indicate that individuals perceive ingroup favouritism 

to be the appropriate strategy when dividing points between the ingroup and the 

outgroup. This finding was true of both the perceptions towards the ingroup norm as 

well as biased allocation behaviour that benefitted the ingroup.  

In conclusion, a wealth of research demonstrates that ingroup favouritism has been 

found to be a robust phenomenon in social exchange when individuals are aware of 

their group membership. It has been argued by (Tajfel, 1970) that individuals have 

learnt through prior interaction in group settings that ingroup favouritism is the 

expected strategy, and thus a generic norm in which individuals infer onto new and 

uncertain groups. This theory has found support through recent research (Iacoviello 

& Spears, 2018). 
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Proximity 
 

Proximity can be simply defined as the geographical distance between two or more 

individuals. There exists empirical evidence to support the theory that the closer 

players are to each other, the more favourably they are expected to act towards 

each other. 

The study conducted by Huang, Shen, and Contractor (2013), is current research 

that aimed to assess the effects of spatial proximity, temporal proximity and 

homophily on collaborations with other players within a large online gaming network. 

The online game the researchers chose to focus their study on is EverQuest II. This 

is a large online gaming network with a population exceeding one hundred thousand 

players. EverQuest II is set up under a network of smaller servers that each host a 

population of players. Movement of individuals between servers is discouraged by 

implementing a financial fee. This results in fairly stable populations under each 

server. The described study selected a single server named GUK as a sample for 

the study.  

EverQuest II allows players to select groups and work collectively in order to achieve 

game objectives. In addition to this, the game allows players to partner with one 

other player to form a dyad in which they earn points in the game. The dependent 

variable in this study is the formation of a dyadic partnership with the criteria of two 

or more game objectives being achieved in the partnership.  

Players, when registering their memberships, are requested to give certain 

demographic data such as their address, zip code, gender and age. The 

independent variable geographic proximity, is calculated from the zip codes and 

were categorized as either being of the same zip code, short distance (less than 

50km), medium distance (50-800km) or long distance (more than 800km). 

The results indicate that geographic distance between players has a large and 

positive impact on forming collaborative ties with other players. Players within close 

physical proximity to each other had a significantly higher chance of forming 

partnerships than with those that were further away. An odds ratio shows that 

players that were within the same zip code of each other were 721 times more likely 

to enter into partnerships than those that were more than 50km apart. Players within 
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50km of each other were 21.5 times more likely to enter into partnerships than with 

those that were more than 50km apart. The relationship between partnership 

formation and proximity did not have a linear decline with a decrease in proximity. 

The medium distance of 50-800km had only 20% more impact on collaboration than 

the long-distance category of more than 800km.  

This study has been beneficial in demonstrating that geographic proximity has a 

powerful effect on collaboration with others. The emergence of cooperation in this 

study is expected to have arisen due to the potential for face to face interaction 

between players within the same city (Huang et al., 2013). With an increase in 

proximity, the challenges for face to face interaction grew dramatically.  

Huang et al. (2013), operationalised proximity as geographical or spatial distance. 

This could be thought of as the most basic understanding of proximity in a social 

setting (Kiesler & Cummings, 2002).  

It is assumed that the closer players are to each other, the more favourably they are 

expected to act towards each other. The advent of effective telecommunications and 

virtual environments has, however, forced a shift in the traditional conception of 

proximity in social functioning. The paradox of being physically distant from others 

but “feeling close” has become important to investigate, as the traditional importance 

of spatial distance has become less important with new technologies. Recent 

discussion around the issue of proximity and social exchange has highlighted the 

requirement to account for perceived proximity (Wilson, Boyer O'Leary, Metiu, & Jett, 

2008).  

As Wilson et al. (2008) argues, there are two core features that mediate the effect of 

perceived proximity. The first of these being communication; the intensity, depth, 

frequency and personal relatedness of the communication can all lead to increased 

perceived proximity. The second element that is important is identification. Wilson et 

al. (2008) uses identification to describe individuals identifying with shared traits that 

foster an increase in perceived proximity. For example, two females in an office of 

males may identify with each other’s femininity and ‘feel closer’ to each other. This 

process is fundamentally a social categorisation whereby individuals identify with an 

ingroup and consequentially perceive themselves to be closer to their fellow group 

members.  
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Exploring the idea of perceived proximity is however outside of the scope of the 

current study, and due to the fact that focus is kept to the interaction between 

multiple exchange rules, the current study will limit its attention to geographical 

proximity.  

Self-interest 
 

Self-interest can be defined as an action that only benefits the person involved. An 

easy example would be an individual that steals from the cash register, the action is 

goal oriented in that it will have a financial reward and it only benefits the thief. If the 

intention is to benefit more than the original actor, one could question if the action is 

purely self-centred or whether it has been influenced by other factors (Cropanzano, 

Goldman, & Folger, 2005).   

Self-interest can also be thought of as rationality whereby individuals make the most 

rational, profit maximising decision available to them. Rationality has often been 

assumed by economists as the dominant rule of exchange. The term homo-

economicus has been used to describe the type of person that would seek to 

increase their particular utility at the expense of others (Yamagishi, Li, Takagishi, 

Matsumoto, & Kiyonari, 2014).  

Yamagishi et al. (2014) sought to identify individuals that met the behavioural traits 

of homo-economicus using the prisoner’s dilemma game as well as the dictator 

game. The games were played on computers and each participant was assured of 

anonymity. In the prisoner’s dilemma game, the participant was given a certain 

amount of money and they were tasked with the choice of whether to keep the entire 

endowment or to give it to their partner. This type of prisoner’s dilemma game is 

known as a binary prisoner’s dilemma. Participants were randomly assigned after 

each trial and each participant played three trials of the game. Participants had to 

decide whether they would give away their money or keep it based on the 

assumption that the first player had chosen to cooperate or defect. In order to 

accurately define participants with the behaviour of homo-economicus, the 

researchers used the choices that participants made when they assumed that the 

partners had cooperated. It is argued that strong motivations for reciprocation would 

be evident in the situation, but it is further argued that someone who fits the profile of 
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homo-economicus would not be affected by the motivation to reciprocate. An 

individual that is purely driven by self-interest would show no concern for fairness 

norms. The results of this experiment suggested that only a few participants kept 

their entire endowments. Only 16 percent of people kept their endowments 

consistently without sharing. 

The next game used in the research was the dictator game. Participants all played a 

one-shot dictator game, and then for the second trial, half of them were randomly 

assigned to recipients. The participants playing the role of dictator were allowed to 

choose between eleven amounts varying between zero and 1000 Yen and were then 

tasked to give their chosen amount to their partner. All participants were then asked 

to play six more games and they were assigned a different partner for each round.  

In these six rounds, participants chose a portion of the entire endowment to give. 

The portions were precalculated and ranged from 0-100% in ten percent increments. 

The results of this game showed that 15% of participants kept the entire endowment 

consistently. 

The result of this research showed that seven percent of participants, that is 31 out 

of 446, accurately fit the description of homo-economicus. These participants 

consistently acted in a way that maximised their own economic profit at the detriment 

of others. These participants acted consistently in both the prisoner’s dilemma and 

the dictator game.  While this research does not show a large portion of people that 

act in a purely self-centred manner, it does indicate that some people naturally 

pursue self-centred outcomes. The research did however highlight 28% of 

participants who consistently cooperated and gave an average of 50% of their initial 

amounts (Yamagishi et al., 2014). 

The research led by Yamagishi et al. (2014), sought to identify people that fitted the 

homo-economicus psychological profile. The term homo-economicus has often been 

used in a derogatory manner towards classical economists and has not been taken 

seriously by social researchers. While very few people fit the profile of homo-

economicus, one cannot deny their existence. 

Critique of the study would include the fact that fairness and self-interest were 

studied in isolation. Self-interest can be an ideological trait of an individual but it can 
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also be argued to be norm-induced behaviour, and this means that it can be 

strengthened or diminished in particular interactive contexts.  

The case for self-interest as a norm is also warranted, as argued by Miller (2001).  

Individuals may pursue self-interest when others around them begin acting in a self-

centred manner. Miller (2001) argues that people in a competitive situation may 

easily begin to act selfishly in fear that they may be exploited by others. The 

consequences of this is that evidence of self-interest behaviour in experiments can 

often be confused with motive. A focus of norms emerging through interaction could 

explain the sometimes-conflicting evidence gained in experiments.  

 

Fairness 
 

Fairness can be thought of as behaviour that is non-discriminatory and in opposition 

to self-interest. The particular type of fairness that is of focus in the current study can 

be accurately thought of as inequity aversion. Inequity aversion, as described by 

Bolton and Ockenfels (2000), as well as Fehr and Schmidt (1999), can be thought of 

as players seeking equitable outcomes by showing kind acts towards agents that are 

poor. It is kindness towards the ‘underdog’ as opposed to a purely self-interest-

based motivation behind giving that is of interest. This form of fairness is 

predominant when agents are desiring equitable outcomes.  

Fairness thought of as inequity aversion can be distinguished from reciprocity in that 

it is outcome orientated and is solely focussed on the wealth of each agent and the 

maintenance of equitable outcomes (Falk & Fischbacher, 2006). Reciprocity, on the 

other hand, is more focussed on evaluating an action in isolation and rewarding or 

punishing that particular action based on its outcome and motives (Falk & 

Fischbacher, 2006). 

The study led by Fehr and Schmidt (1999), had the sole aim of modelling fairness as 

inequity aversion in order to explore and hopefully explain the sometimes-confusing 

behaviour in social exchange that goes against the standard self-interest model. As 

argued by Fehr and Schmidt (1999), the definition of an agent who is inequity-averse 

is an individual who dislikes inequitable outcomes. The consequence of this 

definition is that the question is raised of how individuals judge outcomes as 
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equitable or inequitable. It has been argued that relative payoffs and the social 

comparison processes of individuals comparing their payoffs to others is important in 

judging the equality or lack thereof (Bolton & Ockenfels, 2000; Fehr & Schmidt, 

1999).  

The model developed by Fehr and Schmidt (1999), assumes the reference group 

upon which participants make social comparisons to be the other players in the 

experiment, and the equitable outcome to be determined by the pecuniary outcome 

of other agents.  

In the model, it was assumed that some participants were purely selfish and others 

displayed aversion to inequitable outcomes. Players were assumed to feel inequity if 

they were both worse off in monetary terms, as well as if they were better off than 

other players. Players were also assumed to be more affected by inequity if they 

were worse off than other players than if they were better off. Utility loss is measured 

in either the occurrence of advantageous or disadvantageous inequality. An 

individual will suffer more or lose more utility when the particular inequality is 

disadvantageous.  

Fehr and Schmidt (1999) applied their model successfully to the ultimatum game and 

the market game; these will be discussed below.  

The ultimatum game is a simple game where two players, a proposer and a 

responder, are required to split a payoff. The proposer is endowed with an amount of 

money and is required to split the amount with the responder. The proposer can 

suggest any split to the responder. The responder then has two available strategies; 

to accept or to reject the offer. If the responder accepts, the split is then performed 

as originally proposed, however, if the responder chooses to reject, then both 

proposer and responder receive zero. The ultimatum game has been demonstrated 

in many experimental settings and robust facts have emerged from these studies 

(Fehr & Schmidt, 1999). There are rarely proposer offers over 50% and equally rare 

are any offers below 20% with the majority of offers falling in the 40-50% range (Fehr 

& Schmidt, 1999). This means that proposers are mostly operating fairly. While 

proposers do seek profit maximisation, they are constrained by the responder’s 

ability to reject the offer which would lead to a loss from both parties.  
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The market game with competition allows a similar format to the ultimatum game, in 

that there is a single proposer, yet it differs in that there is more than one responder. 

The responders are in a competitive setting. This is a simple game that works as 

follows; a proposer will make an offer, and the responders will be faced with a choice 

of whether or not to accept the offer. If all responders reject the offer, they will all 

receive nothing. If a few responders accept the offer, a random draw will select one 

of the accepting responders to receive the payoff. The major finding under these 

conditions are that responders will accept very low offers, far lower than has been 

demonstrated by the ultimatum game. Inequality is assumed in this game, and as a 

consequence, participants have a great motivation to compete for any available 

resources. Inequity adverse participants are likely to attempt to grab anything 

available and turn the inequality into an advantageous form for themselves (Fehr & 

Schmidt, 1999). This finding demonstrates that competition quickly becomes 

dominant over any fairness norms if there is no way of punishing the wealthy 

proposer.  

The research conducted by Fehr and Schmidt (1999) has been valuable in 

explaining the evidence that is often in disagreement with the standard self-interest 

model. The research has demonstrated that fairness and cooperation are evident in 

the ultimatum game and that the inequity averse model better predicts behaviour 

than self-interest. It has also been demonstrated that although fairness norms exist, 

they are relatively weak when competition is included in the design. As demonstrated 

in the market game, a single player is unable to enforce equitable outcomes (Fehr & 

Schmidt, 1999).   

Fehr and Schmidt (1999) laid an important foundation of fairness being a contributing 

factor in the decision making of people allocating resources to others. Inequity 

aversion has been highlighted as the mechanism behind behaviour that contradicts 

the assumed self-interest model. 

In line with the hypothesis of people supporting the underdog, recent research by 

Schwaninger, Neuhofer, and Kittel (2018) aimed to investigate other-regarding 

behaviour in exchange networks with disadvantaged individuals.  

Most research aimed at negotiated exchange have used dyadic networks that were 

unable to assess how individual social value orientation would affect giving 
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behaviour to an individual with less structural power i.e. the underdog. The research 

by Schwaninger et al. (2018) sought to expand on the usual dyadic exchange 

experiments by adding a third member that had limited structural power in the 

negotiation.  

Two network conditions were used; the first being a triangular three node network 

which allowed equal communication between nodes, the second being a three-line 

network which allowed a central node to be connected to both nodes, who in turn 

were not connected to each other. These two different networks introduced different 

power structures. In the triangular network, power remained equal among nodes. 

The three-line network, however, introduced a strong power structure with the central 

node having a distinct structural advantage over the other nodes.  

Two further conditions were introduced which were inclusive treatment and exclusive 

treatment. Inclusive treatment allowed the third member, the ability to receive a 

portion of the payoff but was unable to enter into the negotiation. The exclusive 

treatment did not afford the third member the ability to receive a portion of the payoff.  

The inclusive network created an outlier and a potential underdog, as negotiations 

could only occur between two individuals at a time. This condition then provided the 

ability to measure fairness as the dyad that entered into negotiation had no 

obligation to offer any of the payoff to the third member.  

The experiment began with the measurement of the social value orientations for 

each participant. Social value orientation refers to an individual’s propensity towards 

being self-interested (proself) or equitable (prosocial) (Schwaninger et al., 2018).The 

rest of the experiment was laboratory based with all exchanges and communication 

being conducted though a computer interface. A series of exchanges were made 

under all conditions with a computerised random assignment of participants across 

conditions.  

In the inclusive treatment, a dyad decided on an outcome for all three members in 

the network. In the triangle condition, agreeing pairs kept an average of 11 points 

each for themselves. The portion of payoff to the third member is of theoretical 

interest to the study and was classified into three cases of social value orientations 

of the agreeing pairs. The first combination were two individuals that were prosocial, 

this pair gave an average of 4 points to the third member. The second combination 



29 
 

included one prosocial and the other being proself, this combination gave an 

average of 2 points to the third member. The third combination were two individuals 

that were proself, this pair gave an average of 1.1 points to the third member. 

The main finding of the study was that on average, dyads that agreed on 

distributions gave an average of ten percent to the excluded third member. It has 

been demonstrated that individual social value orientations play a role in the fairness 

of distributions of resources in an exchange network. These results show conclusive 

instances of inequity aversion in contradiction to the expected finding of no payoffs 

under the general assumption of self-interest (Schwaninger et al., 2018).  

 

Studying multilevel-emergence in the social sciences 
 

Thus far, the review has covered social exchange theory and its potential for 

explaining exchange behaviour. The particular gaps in the literature were then 

covered with specific focus on exchange rules. Following that, recent empirical 

support for the set of proposed exchange rules have been discussed. The following 

section has been devoted to the methodological difficulties in studying exchange 

behaviour and the macrosocial phenomena that emerge through interaction. Agent-

based modelling is argued to be a highly effective research tool that will allow the 

direct study of the exchange process from microsocial exchange between individuals 

to the resulting emergent phenomena that results from repeated interaction.  

Traditional social psychological research often focuses on macrosocial norms and 

systems that shape individual behaviour from the top down (Macy & Willer, 2002). 

There is great merit in this research as it has provided a theoretical base for many 

phenomena. A good example of top down research would be an experimental setting 

where a researcher measures the effect of an experimental condition on the 

individual participants. In this case, the emerged construct is measured, however the 

dynamic process by which it emerged is not assessed. 

Studying emergence from the bottom up has been studied in qualitative research, 

but until now has been difficult to study in quantitative research designs. This is due 

mainly to the lack of suitable research methods that are capable of directly studying 

emergence as a dynamic, temporal process (Kozlowski, Chao, Grand, Braun, & 
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Kuljanin, 2013). With the use of agent based computational models, researchers are 

able to endow virtual agents with a set of simple rules that will facilitate the 

simulation of complex social systems. The ability to demonstrate that a certain rule 

or combination of rules leads to emergent phenomena is the core objective of bottom 

up research using an agent-based model (Kozlowski et al., 2013). This bottom up 

approach allows researchers not only to measure the emerged construct, but also to 

focus specifically on the process and mechanisms of the emerging construct 

(Kozlowski et al., 2013). 

The following section has been devoted to describing agent-based modelling with 

examples of agent-based modelling being provided relating to their value as a 

research method for testing theory. 

 

Agent based simulations 
 

Agent based models are basic simulations of social interaction run through a 

computer interface. Agent based models are not confined to social life, they have 

been used to model traffic flow in cities (Chen & Zhan, 2008), pedestrian movements 

(Kerridge, Hine, & Wigan, 2001), avian flock patterns (Reynolds, 1987) and cell 

behaviour (Pogson, Smallwood, Qwarnstrom, & Holcombe, 2006) as a few 

examples. An agent-based model uses precise mathematical rules that guide an 

agent’s interaction with other agents. Due to the fact that there are none of the usual 

constraints attributed to sampling human participants, researchers are able to run an 

infinite number of replications with varying rules. Researchers can also include as 

many agents as they wish. The only constraint is the computing power available to 

the researcher.  

Applications such as Netlogo have simplified the task of building agent-based 

models which has, in turn, opened up the research method to many researchers. 

The first step in building a model is to develop rules that the agents will use in their 

interaction. The most commonly supported stance with developing rules is to keep it 

as simple as possible. The phrase “keep it simple, stupid” is often referenced when 

deciding on model parameters. The basic idea is to use as few simple rules as 

possible, and to slowly add rules or adapt them to create the emergent phenomenon. 
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The most obvious benefit to keeping it as simple as possible is that it reduces the 

complexity in developing the model. More importantly though, complex macrosocial 

phenomena do not necessarily stem from complex cognition in individuals. As 

argued by Macy and Willer (2002), humans follow simple heuristics, norms, social 

habits and moral codes. These, in a sense, are simple rules that often lead to highly 

complex emergent patterns in real life.  

In order to accurately simulate an emerged phenomenon, it is important to be sure 

that chosen rules are sufficient to produce the outcome that is observed empirically. 

Epstein (1999) discussed the issue of generative sufficiency where a set of rules 

need to be sufficient in reproducing the macrophenomenon even if replicated a 

number of times. Attention need also be focussed to the fact that even if a rule or a 

particular combination of rules leads to the emergence of an observed phenomenon 

equivalent to what is empirically observed, it does not necessarily mean that these 

are the rules that are at play. They are simply candidates which require further 

investigation. The method of comparing the generated macro-structure to that of 

human data with the use of inferential statistics proves generative sufficiency of the 

rules underlying the agent-based model (Epstein, 1999). 

A illustrative example of a study that used simple rules to generate an emergent 

phenomenon was the study led by Reynolds (1987) that aimed to replicate the 

flocking behaviour of birds in flight. The three rules used to direct the autonomous 

agents were simple:  

• Agents should not occupy the same space as another agent or foreign object. 

This was to avoid collisions with other agents.  

• Agents should move at the same speed as each other as well as travel in the 

same direction. 

• Agents should be cohesive and attempt to remain close while not intruding on 

the personal space of other agents. Each agent would desire to be centred, 

yet is constrained by the rule of collision avoidance.  

Agents where then placed across a grid. Immediately, agents followed the centring 

rule and all converged to one area. The group avoided collisions with each other so 

all agents occupied their own space with relatively even spaces around each agent. 
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The group quickly became polarized following the same direction and speed as each 

other (Reynolds, 1987).  

This study is a powerful example of how agent-based modelling can uncover the 

simple rules that lead to emergent phenomenon. An important demonstration is that 

agents are modelled as autonomous beings that do not rely on a centralised 

authority to guide interaction. As Macy and Willer (2002) have clearly pointed out, 

neither the flock nor individual birds were modelled, the focus was to model their 

interaction with each other.  

It is important to note however, that just because a set of rules have led to a 

particular emerged phenomenon, does not mean that there are no other rules or 

explanations for the emergence. The decision of which particular parameters (rules) 

that need to be manipulated should be driven by theory. Agent based modelling is a 

powerful tool for exploring microsocial interactions and their resulting emerged 

phenomena, but without theoretical grounding, the results would be meaningless. In 

order to maintain a culture of good science, researchers must use theoretical and 

empirically proven parameters (Macy & Willer, 2002).  

Using theory driven parameters in an agent-based model affords researchers with 

another powerful advantage, and that is the ability to test theoretical assumptions 

behind emergence. A good example of modelling being used to test theory is the 

early study on attractiveness and couple formation by Kalick and Hamilton (1986).  

It was long theorised that potential mates were chosen based on how well they 

matched their own attractiveness level, this was known as the matching hypothesis 

(Kalick & Hamilton, 1986). Evidence in studies that focussed on this area soon failed 

to support this view, and it was argued that people tend to choose the most attractive 

partner possible (Walster, 1970; Walster, Aronson, Abrahams, & Rottman, 1966).  

Kalick and Hamilton (1986) devised an agent-based model in order to study the 

agent level goals of couple formation. A simple model was created where three 

simulations were run testing the two argued mechanisms for mate selection. In the 

first simulation, the rule was set for agents to select partners based on the highest 

possible attractiveness score. The second simulation used a rule where agents 

would choose the best matching partner to their own attractiveness score and the 



33 
 

third simulation relied on a combination of matching and finding the most attractive 

mate.       

The model was a simple rule-based procedure and is detailed below. Two thousand 

agents were created with 1000 being male and 1000 being female. Each agent was 

then assigned an attractiveness score ranging between 1 and 10. Both attributes of 

gender and attractiveness were permanently affixed to each agent for the duration of 

the simulation. Agents were then randomly paired for a date and they were then 

faced with a decision of whether to accept or reject their partner. The decision was 

made based on the attractiveness of the partner in relation to the agents own 

attractiveness. In order for the couple to be successful, both agents had to make the 

decision to accept their partner. Once a successful couple had been formed, they 

were removed from the dating pool. 

The results showed that when agents were given the rule of finding the most 

attractive partner, an intercouple correlation of .55 was found which matches what 

has been empirically observed. The simulations that included matching combined 

with an attractiveness rule had correlations that exceeded what has been empirically 

observed (Kalick & Hamilton, 1986). An explanation for this is that highly attractive 

couples tend to form early in the experiment and are then removed from the dating 

pool. With an increase in time, the attractiveness of the remaining agents drops 

along with the attractiveness of the resulting couples (Smith & Conrey, 2007). The 

authors argue that the results must be cautiously interpreted as measurement error 

in past empirical research was evident whereas in the models, this factor was 

absent. In addition to this, the simulation with the rule of seeking the most attractive 

partner led to an increase in intracouple correlation over time. Kalick and Hamilton 

(1986) argue that this trend supports findings that casual couples are weakly 

correlated in this regard, with more serious couples being more highly correlated. 

The results of this simulation suggest that attractiveness seeking is more important 

than the favoured matching hypothesis (Kalick & Hamilton, 1986) 

The use of agent-based modelling for simulating macrosocial structures from agent 

level interaction is well demonstrated, yet the process of comparing these 

simulations to real life data has yet to be done effectively. Typically, agent-based 

models have been qualitatively compared to empirical data which leaves the 
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researcher with the responsibility to ensure that simulated outcomes sufficiently 

resemble real life behaviour (Silverman, 2018). Consequently, this places great 

constraints on the usefulness of simulations to explain real life behaviour. If one’s 

wish was to specify the rules that lead to birds flocking, in a culture of good science, 

we would need to quantitatively validate the results instead of making a subjective 

judgement of whether or not the results simply look like flocking behaviour.  

In the current study, the aim has been to tease apart and study the relative 

importance of multiple exchange rules in different contexts. In order to validate the 

simulated results of this study, a quantitative metric was required. A laboratory-

based study of social exchange was used in order to quantitatively compare the 

outcomes of the simulation to actual human exchange decisions. The method of 

comparison was achieved automatically by uploading empirical data into the 

simulator with an output data file that specified the comparison between the 

empirical data to that of actual human exchange decisions.  
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Chapter 3: Methodology 
 

 

Research design 
 

Section 1: Virtual Interactive Application (VIAPPL) research design 
 

In the current study, an agent-based model was used to replicate the bottom up 

emerged behavioural patterns observed in the human VIAPPL experiments. The 

VIAPPL studies have been outlined below, following this, the agent-based model has 

been described.  

The VIAPPL study by Durrheim, Quayle, Tredoux, Titlestad, and Tooke (2016) was 

developed to study social exchange behaviour within an interacting exchange 

network over time. The study used an experimental setting where participants were 

stationed at computers with no face to face interaction. The participants were 

allocated a number of tokens at the start of the game and were instructed to allocate 

a token every round to either one of the fourteen players. The experiment was run 

over forty rounds with the recorded decision of each participant’s allocation to either 

themselves or to another specific person within the network. Figure 1 graphically 

represents the interface that participants used to interact with one another. The 

following information was available on each players screen; the players wealth, the 

wealth of each participant within the network, the accumulative wealth of each group 

and the progress of the game indicated by the round number.  

In order to test how network structure and existing norms influence exchange 

behaviour, two experimental conditions were introduced. The first condition was the 

minimal group situation which introduced visible group identity and the second 

condition was wealth inequality. These two conditions both had a corresponding 

control condition where no manipulation of group identity or inequality of wealth was 

introduced. These four conditions were fully crossed in a factorial design and four 

replications were run for each condition. Table 1 illustrates the VIAAPL design with 

the number of replications per condition. The two experimental conditions, visible 

group identity and inequality, have been described in more detail below. 
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Figure 1: The VIAPPL game depicting a token allocation 

 
Note. This figure depicts the interface from the perspective of the 6th player as denoted by the bold black outline 

of the 6th avatar. The arrow indicates the decision of the 6th player to allocate a token to the 2nd player. The 

experimental condition depicted here is an equal status group condition.  

 

Table 1: Replication table for the human games 
 

 
 

Equality Inequality 

Group 
condition  

4 4 

Individual 
condition 

4 4 

 

The group condition was introduced by randomly assigning participants into two 

groups. Participants were not aware of the random assignment and were told that 

they were assigned to particular groups based on their choice in a categorization 

task. Participants were requested to choose between two paintings, one having been 

painted by Klee and the other by Kandinsky, and were placed into the respective 

groups. The participants were aware of their group membership by the colour of their 

avatar on the play screen. A set of experiments were also run with an individual 

condition in which players were not aware of their group membership. In the 
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individual condition, participants were not aware of their group membership as all 14 

players had the same colour avatars.  

An inequality condition was introduced where participants were given unequal 

starting token balances. In the group and individual conditions under inequality, there 

existed a high and low status group with one of the groups having been allocated 30 

tokens while the other was given 10. In the group and individual conditions under 

equality, each participant was allocated 20 tokens.  

These two conditions were introduced in order to study the effects that different 

contexts have on exchange behaviour. The data from these human games were 

collected in 2014 by the Department of Psychology on the University of KwaZulu-

Natal Pietermaritzburg campus.   

 

Section 2: Game simulator 
 

An agent-based model was developed to uncover the agent level decision making 

that led to the emerged results obtained in the VIAPPL data. 

The simulator used in this research has been programmed in Netlogo (Wilensky, 

1999). Netlogo is a popular interface used for modelling complex interaction over 

time (Tisue & Wilensky, 2004). It is praised for its simplicity which affords beginning 

modellers the ability to program simple models in order to research human 

behaviour. Netlogo was chosen for the fact that it was a simple environment in which 

to program the simulation and that it is able to accept data input in the form of a .csv 

file.  

The simulator is designed in such a way that it is fed with a single row of data at a 

time, sequencing throughout the entire game. The simulator reads a row of data, 

representing the starting conditions for round 1. It then simulates play based on the 

starting conditions and the game rules defined by the sliders. It then reads the 

starting conditions for round 2 of the human game and continues this process until it 

reaches 40 rounds. A data file is automatically created in the beginning of the 

simulation with the data from each round written as the simulator progresses 

throughout the 40 rounds. Each row of data details the results of the simulated round 
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alongside a comparison with the human round. It was then possible to compare the 

outcomes of human and simulated play after each round. Figure 2 graphically 

represents the comparison process between the human games and the simulated 

output.  

Figure 2: Simulator comparison procedure 
 

 

The simulator, like the human game, is set up with fourteen virtual agents and is 

graphically represented in a circular format (See the comparison between the 

VIAPPL game (Figure 1) and the game simulator (Figure 3)). The representation will 

change based on whether the simulation includes a group condition or individual 

condition. In the group condition, agents have been coloured blue and white in an 

alternate order. In the individual condition, all agents are coloured white. Token 

allocations are represented graphically as arrows between agents and as a circle in 

the event of self-allocation.  

The independent variables namely, vicinity, fairness, reciprocity, self-interest, 

random and ingroup favouritism are manipulated using a set of sliders that range 

Agent-based model 
predicts round 1 moves 

A Scaled Prediction 
Likelihood is created that 
specifies how close the 
model predicted human 

moves 

Empathy scores for each 
agent ranked from 1-14 
and entered into each 
column of the Empathy 

Matrix 

Data from round 1 written 
in comparison data file 

Round 2 human data read 
from data file 

Round 1 human data read 
from data file 
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from zero to one hundred. Using one particular combination of the six independent 

variables will result in one game of forty rounds. The simulator has also been 

programmed to be able to run multiple combinations of the independent variables in 

one simulation. This is executed by setting a range for each variable between zero 

and one hundred and then specifying the increments to which each variable should 

increase after each game.   
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Figure 3: Screenshot of the game simulator 

 

The token exchanges are depicted as the red lines between human figures, an arrow gives indication of the direction of giving. The circles represent instances of self-giving. 

The numbers next to the agents represent the wealth in the number of available tokens for each corresponding agent. To the left of the image, a set of sliders are designed to 

set the weightings for each factor. These sliders are automatically controlled when the range sliders (to the right of the image) are used. The ‘Range of weights’ function sets 

the minimum weighting for each factor as well as the maximum weight. The increment sliders control the increments of increase in weightings for each round. The simulation 

as depicted here is set up to simulate every combination of all 6 factors at 3 levels of 0, 50 and 100.
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Model of social exchange 
 

In the development of the agent-based model, it was necessary to formulate a 

mathematical model in order to model exchange in the VIAPPL setting. The model 

was developed in a collaboration with the school of psychology and the school of 

mathematics, statistics and computer science of the University of Kwazulu-Natal 

(Durrheim et al., 2013). 

In order to model exchange behaviour, a single matrix for each modelled behavioural 

construct was used. These matrices were summed to form a final matrix termed the 

Empathy Matrix. The Empathy Matrix was a 14 x 14 matrix that represented the 

computed likelihood that each agent would give their token to each of the 14 agents 

in the game. The simulator depicted in Figure 3 used the highest likelihood to make 

the eventual allocation decision. It was necessary to calculate wealth in each round 

and the change in wealth at the end of each round, two vectors were used to 

accomplish this. The notation and vectors have been described below, following that, 

the matrix calculations have been explained (unless stated otherwise, all matrix 

calculations have been demonstrated with 𝑁𝑁 = 4).  

 

The participants modelled as agents are labelled  𝑝𝑝1,𝑝𝑝2,𝑝𝑝3,𝑝𝑝4 … … , 𝑝𝑝𝑁𝑁. In the 

current study, both the human games and simulations: 𝑁𝑁 = 14. 

The wealth of the participants in the beginning of each round (𝑟𝑟) is defined by the 

vector; 

𝑊𝑊(𝑟𝑟) ≔ {𝑤𝑤1,𝑤𝑤2,𝑤𝑤3,𝑤𝑤4, … … … ,𝑤𝑤𝑁𝑁} 

Where 𝑤𝑤𝑖𝑖  is the wealth of participant 𝑝𝑝𝑖𝑖  for  𝑖𝑖 ∈ [1 −𝑁𝑁]. 

 

A vector to calculate the change in the wealth of each participant is defined as;  

𝐶𝐶(𝑟𝑟) ≔ {𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4, … … … , 𝑐𝑐𝑁𝑁} 

Where 𝑐𝑐𝑖𝑖  is the change in wealth of participant 𝑝𝑝𝑖𝑖  for  𝑖𝑖 ∈ [1 − 𝑁𝑁]. 
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Each change in wealth, 𝑐𝑐𝑖𝑖 can be a value in the range -1 (in the case that participant 

𝑝𝑝𝑖𝑖  gave his token away and received no token) and 𝑁𝑁 − 1 (in the case that there 

was self-giving as well as every other participant allocating their token to participant 

𝑝𝑝𝑖𝑖). One exception is the situation where a player has spent all their tokens and so 

has none to give away. In this case, the numeral would be set to zero. In the case 

where 𝑁𝑁 = 4, we could assume an example where, 𝑊𝑊(5) ≔ {10, 16, 0,14}. If 𝑝𝑝1 gave 

their token to 𝑝𝑝3, 𝑝𝑝2 gave to 𝑝𝑝1, 𝑝𝑝4 gave to 𝑝𝑝3 and 𝑝𝑝3 self-gave; the change 

vector for the end of round 6 would be 𝐶𝐶(6) ≔ {0,−1, 2,−1}. The wealth vector for 

beginning of the next round would then change to 𝑊𝑊(7) ≔ {10, 15, 2,13}.  

 

Empathy Matrix  
 

The Empathy Matrix developed by Durrheim et al. (2013) is a tool for summarizing 

the decision rules that form the behaviour of the simulated agents. The matrix, in an 

𝑁𝑁 ×  𝑁𝑁  form, determines the likelihood that each participant would receive a token 

from every participant, including themselves (in the main diagonal) in each round. 

The Empathy Matrix is formulated by the matrix sum of six different matrices, namely 

the Fairness Matrix, Reciprocity Matrix, Ingroup favouritism Matrix, Self-interest 

Matrix, Vicinity Matrix and Random Matrix. Each of these matrices represent an 

exchange rule. 

• The Fairness Matrix allows the operationalisation of the exchange rule to 

allocate a token to the poorest participant. 

• The Reciprocity Matrix allows the operationalisation of the exchange rule to 

reciprocate a token that was given in the previous round. 

• The Ingroup favouritism Matrix allows the operationalisation of the exchange 

rule to give a token to favour the ingroup. 

• The Self-interest Matrix allows the operationalisation of the exchange rule to 

give a token to oneself. 

• The Vicinity Matrix allows the operationalisation of the exchange rule to 

favour one’s neighbours when deciding on who to give a token to. 
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• The Random Matrix allows the operationalisation of uncertainty in human 

decision making. 

Each of these matrices have 𝑁𝑁 rows and 𝑁𝑁 columns, where 𝑁𝑁 is the number of 

participants. In the Empathy Matrix, the columns specify the givers while the rows 

specify the receivers. Thus, for each particular column, there are 𝑁𝑁 possible 

receivers (the giver inclusive) if self-giving is allowed; otherwise there are 𝑁𝑁 − 1 
possible receivers (i.e. excluding the giver). Each time a token is given, a possible 

receiver with the largest value in a column will receive the token.  Each participant 

gives a token per round to either themselves or to another participant. The Empathy 

Matrix is recalculated at the beginning of each round.  

In order to illustrate the mechanics of the Empathy Matrix, a simple example is given 

below;  

 

𝐸𝐸(𝑟𝑟) = �

𝐸𝐸1,1 𝐸𝐸1,2 … 𝐸𝐸1,14
𝐸𝐸2,1 𝐸𝐸2,2 … 𝐸𝐸2,14
… … … …
𝐸𝐸14,1 𝐸𝐸14,2 … 𝐸𝐸14,14

� 

  

In the example matrix 𝐸𝐸, each entry, 𝐸𝐸𝑖𝑖,𝑗𝑗, is a value that acts as an intercept 

between a giver and receiver. A givers perspective would be a particular column with 

𝑁𝑁 rows. If the entry, say 𝐸𝐸1,2, were the highest value in column 2, this would mean 

that 𝑝𝑝2 would desire to allocate a token to 𝑝𝑝1. Likewise, If the entry, 𝐸𝐸14,3, were the 

highest value in column 3, then 𝑝𝑝3 would desire to allocate a token to 𝑝𝑝14. 

Fairness Matrix 
 

The Fairness Matrix allows the operationalisation of the decision to allocate a token 

to the poorest participant. The Fairness Matrix is calculated by ranking the 

participants according to their wealth. A fairness value, say 𝐹𝐹𝑖𝑖𝑖𝑖 ,  is assigned to each 

participant from the poorest to the richest. The value of 𝐹𝐹𝑖𝑖𝑖𝑖  must be in the range zero 
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and one (i.e. 𝐹𝐹𝑖𝑖𝑖𝑖  ∈ [0, 1].). The ranking allows the poorest players to be favoured 

to receive a token. These fairness values are then entered into the matrix with the 

assumption that all participants will give the same value to each participant in the 

game.  

The Fairness Matrix is calculated as follows: Rank the participants based on their 

wealth. A participant with the highest number of tokens is ranked the highest 𝑟𝑟ℎ while 

a participant with the least number of tokens is ranked the lowest 𝑟𝑟𝑙𝑙 . The highest 

rank is 1 while the lowest possible rank is 𝑁𝑁. If there are one or more ties in the 

ranking, then  𝑟𝑟𝑙𝑙 ≤  𝑁𝑁. 

Calculate each 𝐹𝐹𝑖𝑖𝑖𝑖  using the formula 𝑟𝑟𝑖𝑖𝑖𝑖/ 𝑟𝑟𝑙𝑙 . Note that 𝑟𝑟𝑖𝑖0 =  𝑟𝑟𝑖𝑖1 = ⋯ = 𝑟𝑟𝑖𝑖𝑖𝑖 =

𝑟𝑟𝑖𝑖     ∀ 𝑖𝑖 ∈ {0,1, … ,𝑁𝑁} 

If 𝑁𝑁 = 4, and we consider the wealth vector used above, 𝑊𝑊(5) ≔ {10, 16, 0,14}, 

the matrix values would then be entered as follows:  

 

𝐹𝐹(5) =  �

3 3 3 3
1 1 1 1
4 4 4 4
2 2 2 2

� 

 

 

If there is a tie in the number of tokens that two or more players have, they would be 

assigned the same fairness value and the values would decrease normally. If the 

participants were ranked according to the wealth vector of round 5, (𝑊𝑊(5) ≔

{10, 8, 8,14}) the Fairness Matrix values would be entered as follows; 

 

 𝐹𝐹(5) =  �

2 2 2 2
4 4 4 4
4 4 4 4
3 3 3 3

� 
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The values in the Fairness Matrix have then been normalised to range between 0 

and 1. This is achieved by dividing each value by the highest value in the particular 

column. If the wealth vector 𝑊𝑊(5) ≔ {10, 8, 8,14} is used, the matrix with 

normalised values would be entered as follows; 

 

𝐹𝐹(5) =  �
0.5 0.5 0.5 0.5
1 1 1 1
1 1 1 1

0.75 0.75 0.75 0.75

� 

 

Reciprocity Matrix 
 

The Reciprocity Matrix is calculated by referring back to the previous round. If 

𝑝𝑝1 were to give their token to 𝑝𝑝4 then, in the following round, it would be assumed 

that 𝑝𝑝4 would feel a desire to reciprocate. If two participants gave a token to 𝑝𝑝4 in 

the previous round, it is assumed that he/she would desire to allocate a token to 

both players. 

A reciprocity value, 𝑅𝑅𝑖𝑖𝑖𝑖, is equal to 1 if participant 𝑖𝑖 gave a token to participant 𝑗𝑗 in 

the previous round, otherwise 𝑅𝑅𝑖𝑖𝑖𝑖   =  0. The Reciprocity Matrix changes after each 

round. 

As an illustration, let us assume that in round 3, 𝑝𝑝4 gave their token to 𝑝𝑝2,  𝑝𝑝1 gave 

their token to 𝑝𝑝3, 𝑝𝑝2 gave their token to 𝑝𝑝1 and 𝑝𝑝3 gave their token to 𝑝𝑝1. In the 

following round, the values in the Reciprocity Matrix are entered as follows;  

 

𝑅𝑅(4) =  �

0 0 1 0
1 0 0 0
1 0 0 0
0 1 0 0

� 
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Self-interest Matrix 
 

Self-interest is modelled quite simply with the main diagonal having 1’s in the entries. 

The self-interest value, 𝑆𝑆𝑖𝑖𝑖𝑖,  is equal to 1 if 𝑖𝑖 =  𝑗𝑗, otherwise 𝑆𝑆𝑖𝑖𝑖𝑖  =  0. The Self-

interest Matrix remains constant throughout the game.  

The Self-interest Matrix is illustrated below; 

 

  𝑆𝑆 = �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

� 

 

Vicinity Matrix 
 

The Vicinity Matrix has been explained based on the game situation with 𝑁𝑁 = 4. The 

placement of the participants within the game is graphically represented below. 

 

 

 

 

 

 

A vicinity value, 𝑉𝑉𝑖𝑖𝑖𝑖, is a reflection of the distance between two participants, 𝑖𝑖 and 𝑗𝑗.  

1) For each participant, the Netlogo function is used to calculate the distance 𝑑𝑑𝑖𝑖𝑖𝑖 

between participant 𝑃𝑃𝑖𝑖  and another participant 𝑃𝑃𝑗𝑗, where 𝑖𝑖 and 𝑗𝑗 are integers 

that represent the sequence number of a participant.  

 

1 

2 

3 

4 
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2) The distances in (1) are used to form a distance matrix showing the distance 

from a participant (matrix column) to another participant (matrix row).  

 

Note that the distance from a participant to itself is zero. Also 𝑑𝑑𝑖𝑖𝑖𝑖 =  𝑑𝑑𝑗𝑗𝑗𝑗 . In 

the given game situation of 𝑁𝑁 = 4, it should be observed that 𝑑𝑑1,2  ≅  𝑑𝑑1,4.  

Assume this value to be 1 and  𝑑𝑑1,3 = 2.  

 
 

𝑑𝑑 = �

0 1 2 1
1 0 1 2
2 1 0 1
1 2 1 0

� 

 
 

The values in the distance matrix 𝑑𝑑 are then normalised to obtain 𝑉𝑉 in the range   

0 ≤  𝑉𝑉𝑖𝑖𝑖𝑖 ≤ 1 . This is done by dividing the entries in each column by the maximum 

distance, 𝑑𝑑, in that column. The value obtained is then subtracted from 1. This is 

calculated by the formula below. 

 

𝑉𝑉𝑖𝑖𝑖𝑖 =  1 −  𝑑𝑑𝑖𝑖𝑖𝑖 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
  ( 𝑑𝑑𝑖𝑖𝑖𝑖 ≠ 0 ) 

 

𝑉𝑉 = �

0 0.5 0 0.5
0.5 0 0.5 0
0 0.5 0 0.5

0.5 0 0.5 0

� 

 

Note: If  𝑑𝑑𝑖𝑖𝑖𝑖 = 1.5; 𝑉𝑉𝑖𝑖𝑖𝑖 = 1 − �1.5
2
� = 0.25 which implies that the distance 𝑑𝑑𝑖𝑖𝑖𝑖 =

1 is preferred to 𝑑𝑑𝑖𝑖𝑖𝑖 = 1.5. In general, the farther the distance between participants, 

the less desirable it would be to allocate a token. As the vicinity between players 

never changes, the matrix remains constant throughout the game. 



48 
 

Ingroup favouritism Matrix 
 

The Ingroup favouritism Matrix has been explained in reference to the game situation 
where 𝑁𝑁 = 4. The colour of the dots in this figure represent each participant’s group 
membership. 

 

 

 

 

 

 

 

A group value, 𝐺𝐺𝑖𝑖𝑖𝑖, is equal to 1 if participant 𝑖𝑖 is in the same group with 

participant 𝑗𝑗, otherwise 𝐺𝐺𝑖𝑖𝑖𝑖 =  0. 

The Ingroup favouritism Matrix, as in the case with the Vicinity Matrix, remains 

constant throughout the game.  

As an illustration, the values of the group matrix for 𝑁𝑁 = 4 are entered as follows 

 

𝐺𝐺 = �

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

� 

Random Matrix 
 

The Random Matrix uses random entries in order to operationalise uncertainty in 

human decision making. The Random Matrix is calculated using Netlogo’s random-

float function. A random value in the range of 0 and 1 is assigned to each row in 

each column in the matrix with equal probability. The Random Matrix changes at 

each round of the game.  

1 

2 4 

3 



49 
 

As an illustration, a Random Matrix for 𝑁𝑁 = 4 is shown below; 

 

𝑅𝑅𝑅𝑅(4) =  �
0.54 0.78 0.55 0.22
0.99 0.87 0.91 0.30
0.50 0.73 0.10 0.8
0.56 0.01 0.01 0.09

� 

 

Computing the Empathy Matrix 
 

The sum of the six matrices above are used to create the Empathy Matrix (Durrheim 

et al., 2013). If we consider round 6 with the wealth vector of 𝑊𝑊(5) ≔

{10, 16, 0,14} and when in round 5, 𝑝𝑝1 gave a token to 𝑝𝑝3, 𝑝𝑝3 gave to 𝑝𝑝2, 𝑝𝑝2 gave 

to 𝑝𝑝1 and 𝑝𝑝4 gave to 𝑝𝑝2. The Empathy Matrix for round 6 would be calculated as 

follows; 

 

𝐸𝐸(6) = 𝐹𝐹(6) + 𝑆𝑆 + 𝑉𝑉 + 𝑅𝑅𝑅𝑅(6) + 𝐺𝐺 + 𝑅𝑅(6) 

 

�

0.75 0.75 0.75 0.75
0.25 0.25 0.25 0.25

1 1 1 1
0.5 0.5 0.5 0.5

�  +   �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�  + �

0 0.5 0 0.5
0.5 0 0.5 0
0 0.5 0 0.5

0.5 0 0.5 0

�   +

 �

0.54 0.78 0.55 0.22
0.99 0.87 0.91 0.30
0.50 0.73 0.10 0.8
0.56 0.01 0.01 0.09

�  + �

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

� + �

0 0 1 0
1 0 0 0
0 1 0 0
0 1 0 0

�   

 

𝐸𝐸(6) = �

𝟑𝟑.𝟐𝟐𝟐𝟐 2.03 𝟑𝟑.𝟑𝟑 1.47
2.74 3.12 1.66 1.55
2.5 𝟑𝟑.𝟐𝟐𝟐𝟐 3.1 2.3

1.56 2.51 1.01 𝟐𝟐.𝟓𝟓𝟓𝟓

�    
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In this example, the agents that received tokens are indicated by the bold entries in 

the matrix. 𝑝𝑝1 self-gave, 𝑝𝑝2  gave a token to 𝑝𝑝3, 𝑝𝑝3 gave a token to 𝑝𝑝1  and 𝑝𝑝4 self-

gave. The change vector for the end of round 6 would then be 𝐶𝐶(6) ≔ {1,−1, 0,0}. 

The wealth vector for the end of round 6 (beginning of round 7) would then be 

𝑊𝑊(7) ≔ {11, 15, 0,14}. 

In addition to simply adding the six matrices together, each matrix can be weighted 

in order to increase or decrease the influence that the particular factor has on the 

Empathy Matrix. The ability to weight each factor in different combinations provides 

the ability to determine which psychological theory is most important in matching the 

modelled data to that of the human experiments.  

 

The Empathy Matrix  𝐸𝐸, is then calculated as below: 

𝐸𝐸𝑖𝑖𝑖𝑖  = 𝑓𝑓𝑓𝑓 ∗ 𝐹𝐹𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠 ∗ 𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑣𝑣 ∗ 𝑉𝑉𝑖𝑖𝑖𝑖 +  rd𝑤𝑤 ∗ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 + 𝑔𝑔𝑔𝑔 ∗ 𝐺𝐺𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑟𝑟 ∗ 𝑅𝑅𝑖𝑖𝑖𝑖   

Where: 

𝑓𝑓𝑓𝑓 is the Fairness weight 

𝑟𝑟𝑟𝑟 is the Reciprocity weight  

𝑔𝑔𝑔𝑔 is the Ingroup Favouritism weight 

𝑠𝑠𝑠𝑠 is the Self-interest weight 

𝑣𝑣𝑣𝑣 is the Vicinity weight 

𝑟𝑟𝑟𝑟𝑟𝑟 is the Random weight
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In order to illustrate this, the example of the wealth vector for round 5, 𝑊𝑊(5) ≔

{10, 16, 0,14} has been used. In round 5, 𝑝𝑝1 gave a token to 𝑝𝑝3, 𝑝𝑝3 gave to 𝑝𝑝2, 𝑝𝑝2 

gave to 𝑝𝑝1 and 𝑝𝑝4 gave to 𝑝𝑝2. The weights have been set as; 𝐹𝐹 = 5, 𝑆𝑆 = 5,𝑉𝑉 =

5,𝑅𝑅𝑅𝑅 = 5,𝐺𝐺 = 10,𝑅𝑅 = 10. The Empathy Matrix would then be calculated as 

follows; 

 

5 × �

0.75 0.75 0.75 0.75
0.25 0.25 0.25 0.25

1 1 1 1
0.5 0.5 0.5 0.5

�  + 5 ×   �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�  + 5 ×

�

0 0.5 0 0.5
0.5 0 0.5 0
0 0.5 0 0.5

0.5 0 0.5 0

� + 5 ×  �

0.54 0.78 0.55 0.22
0.99 0.87 0.91 0.30
0.50 0.73 0.10 0.8
0.56 0.01 0.01 0.09

�  + 10 × �

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

� +

10 × �

0 0 1 0
1 0 0 0
0 1 0 0
0 1 0 0

�   

        �
3.75 3.75 3.75 5.75
2.5 2.5 2.5 2.5
5 5 5 5

2.5 2.5 2.5 2.5

� + �

5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5

� + �

0 2.5 0 2.5
2.5 0 2.5 0
0 2.5 0 2.5

2.5 0 2.5 0

� +

           �

2.7 3.9 2.75 1.1
4.95 4.35 4.55 1.5
2.5 3.65 0.5 4.8
2.8 0.05 0.05 0.45

� + �

10 0 10 0
0 10 0 10

10 0 10 0
0 10 0 10

� + �

0 0 10 0
10 0 0 0
0 10 0 0
0 10 0 0

�  

 

𝐸𝐸(6) = �

𝟐𝟐𝟐𝟐.𝟒𝟒𝟒𝟒 10.15 𝟐𝟐𝟐𝟐.𝟓𝟓 9.35
19.95 21.85 9.55 14
17.5 21.15 20.5 12.3
7.8 𝟐𝟐𝟐𝟐.𝟓𝟓𝟓𝟓 5.05 𝟏𝟏𝟏𝟏.𝟗𝟗𝟗𝟗

�  

 

 

In this example, 𝑝𝑝1  self-gave, 𝑝𝑝2   gave to 𝑝𝑝4, 𝑝𝑝3 gave to 𝑝𝑝1  and 𝑝𝑝4 self-gave. 

Reflecting back to the wealth vector for round 5, 𝑊𝑊(5) ≔ {10, 16, 0,14}, it is noted 
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that although 𝑝𝑝3 had the desire to give a token to 𝑝𝑝1  they had no available tokens 

and were unable to give the token to 𝑝𝑝1. The change vector at the end of round 6 

would be 𝐶𝐶(6) ≔ {0,−1, 0,1}. The wealth vector at the end of round 6 (the 

beginning of round 7) would be updated to 𝑊𝑊(7) ≔ {10, 15, 0,15}. 

 

Comparing fit between simulator and human play 
 

Predicted Rank (PR): 
 

The empathy scores for each agent are ranked in each column of the Empathy 

Matrix to represent the preferred order of allocating tokens. Each rank is a number in 

the range [1:𝑁𝑁] where 𝑁𝑁 is the number of participants (𝑁𝑁 = 14 in the current 

study). The number of ranks is equal to the number of unique values and will range 

between 1 and 𝑁𝑁 if all the values in the Empathy Matrix are unique. An agent ranked 

1 is preferred over all other agents. Generally, an agent ranked 𝑋𝑋 is preferred to an 

agent ranked 𝑌𝑌 (where 𝑋𝑋 <  𝑌𝑌). If there are one or more ties between agents, the 

token is given to the player with the lowest wealth. If they both have the same 

wealth, a random choice is made. 

 

As an example, the Empathy Matrix for round 6 would be ranked as follows; 

This is the Empathy Matrix before ranking.  

 

𝐸𝐸(6) = �

𝟐𝟐𝟐𝟐.𝟒𝟒𝟒𝟒 10.15 𝟐𝟐𝟐𝟐.𝟓𝟓 9.35
19.95 21.85 9.55 14
17.5 21.15 20.5 12.3
7.8 𝟐𝟐𝟐𝟐.𝟓𝟓𝟓𝟓 5.05 𝟏𝟏𝟏𝟏.𝟗𝟗𝟗𝟗

� 
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This is the same matrix ranked in order of giving preference. 

 

𝐸𝐸(6) = �

1 4 1 4
2 2 3 2
3 3 2 3
4 1 4 1

�  

 

These ranks are then compared to the exchanges that occurred in the human 

experiments and are used to calculate the scaled prediction rank. This comparison is 

made by comparing the actual allocation made by each of the human agents with the 

vector of ranks in the output column for the corresponding simulated agent. For 

example, in 𝐸𝐸(6) above, if human player 1 (represented as column 1) self-gave, the 

simulator would have predicted the outcome correctly.  

Instead of measuring fit in terms of a binary decision (accurate or inaccurate 

prediction), scaled prediction ranks were used to estimate the degree of accuracy. A 

simulated decision would obtain a higher accuracy score if the human agent 

allocated to player ranked 2 than to player ranked 14.  

 
Scaled Prediction Rank (SPR): 
 

By scaling the predicted rank, a numerical value of how close the model is to a 

correct prediction can be specified. The scaled prediction rank is a value in the range 

0 and 1 inclusive (0 <=  𝑆𝑆𝑆𝑆𝑆𝑆 <=  1), and is calculated as follows;   

 

𝑆𝑆𝑆𝑆𝑆𝑆 =  {1 −  [ (𝑃𝑃𝑃𝑃 −  1) / (𝑁𝑁 −  1) ] } 

 

Thus, a value of 1 implies that the agent ranked 1 actually received a token in the 

real game while a value of 0 implies that the agent that received a token was ranked 

𝑁𝑁 (the last). The closer an 𝑆𝑆𝑆𝑆𝑆𝑆 is to 1, the better the prediction. The scaled 

prediction score for the ranks 1 to 14 are displayed in table 1 below. These vary on a 
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scale from 0 to 1 with a mean of (M = 0.5, SD = .31). An Average Scaled Prediction 

rank, calculated as 𝑆𝑆𝑆𝑆𝑆𝑆/𝑁𝑁, is calculated per round and specifies the prediction 

accuracy of each round.  

 

Table 2: Scaled prediction ranks 
 

1 1 
2 0,923077 
3 0,846154 
4 0,769231 
5 0,692308 
6 0,615385 
7 0,538462 
8 0,461538 
9 0,384615 
10 0,307692 
11 0,230769 
12 0,153846 
13 0,076923 
14 0 

 

Simulator procedure 
 

Data from the human games were fed as a single data set into Netlogo which ran 

one row at a time through the entire game. A description of the human game has 

been given followed by a description of the procedure for each simulation. Following 

this, a description of the comparison data has been laid out.  

A total of sixteen human games were used to compare against the simulator (See 

Table 1 for a graphical representation of replications). There were four experimental 

conditions with 4 games per condition. 

Running the simulations 
 

During the setup of the particular simulation, a dataset from the VIAPPL experiments 

conducted in 2014 were selected, converted to .csv format and uploaded into 

Netlogo. Parameters were then set up to define the particular simulation and to 
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match the experimental conditions of the human game. The first step in setup is to 

define how many tokens each agent is given to start with. This was matched to the 

human game that was selected for the simulation. In the games that did not include 

an inequality condition, agents were allocated 20 tokens at the start of the game. 

When inequality was included in the human game, half of the agents were allocated 

10 tokens with the other half receiving 30 tokens.  

The second step was to define the weighting for each factor. In the current study, 

each of the six simulation factors were set to range between zero and one hundred. 

Increments of increase were set at fifty. The simulator would then run 40 rounds with 

one combination of factors and then run through every possible combination of the 

six factors with the three levels of 0, 50 and 100. The six factors with 3 levels 

resulted in 729 combinations of factor weightings. Each combination was repeated 

over 40 rounds. 

One problem encountered with the simulator set to run these combinations was that 

when all factors were set to zero, a perfect predicted score was returned. Upon 

investigation it was revealed to be a mathematical problem that prevented this 

particular combination from being used. If the six matrices were all ranked zero, (the 

coefficients all being zero) upon multiplying, the values in the matrix became zero. 

During ranking, agents were given an equal rank of 1 and this returned a perfect 

predicted rank for each agent. A simple solution was to remove the condition where 

all factors were set to zero.  

 

Data output 
 

The data produced by the simulator detailed the comparison between the selected 

human experiment and the prediction derived from the Empathy Matrix (see Table 

4). A round summary sheet was produced in excel that gave a summary of the 

predictions and comparisons for all 14 agents in each round. Each row supplied the 

following information;  

• The experiment identifier, which was a code that identified a particular game 

with the experimental conditions used.  
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• The trial and round number for each row of data was then displayed.  

• The factor weightings (simulator conditions) for each round were displayed, 

the percentage of correct predictions and the average scaled rank.  

• The measures of how well the model predicted the moves of the human game 

were displayed as the ‘percent correct’ variable and the ‘Average Scaled 

Prediction’.
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The data produced by the simulator provides a mean of all 14 predictions in each round. The dependent variable ‘Average 
Scaled Prediction’ is visible here in column H. The factor weightings are visible in columns I through N. 

Table 3 : Comparison data 
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The “Percent Correct” variable seen in column E of Table 4 is a measurement of how 

accurately the model has predicted human moves. The scope of measurement that 

this variable provides is limited as it only counts the number of perfectly predicted 

exchanges per round. The number of perfectly predicted exchanges out of a 

maximum of 14 is then displayed as a percentage.  

The variable “Average Scaled Prediction” was selected as it provided a more 

accurate measure of the model’s performance. The model predicts each human 

participant’s move from 1 (perfect prediction) to 14 (furthest ranked participant from 

the participant that actually received the token). This variable then provided a 

method that quantified how close the model was to predicting human moves.  

The Average Scaled Predictions for each round were calculated by firstly, identifying 

the particular agent to whom each player made an allocation. Secondly, determining 

the corresponding likelihood score. Thirdly, computing the average of the likelihood 

scores across all 14 players for each round. This measure then provided an overall 

average score of predictive accuracy for each round.    

 

Data analysis 
 

Descriptive statistics 
 

A table of means of the dependent variable “Average Scaled Prediction” with each 

factor in isolation to each other was created using the “tapply” function in R (Team, 

2014). This function allows a mean of the dependent variable to be calculated in 

reference to each level of a particular independent variable. 

 
Multi-level model 
 

The output data obtained from the simulator is hierarchical in nature, having games 

nested within experimental conditions. The assumption of independence is violated 

with this hierarchical data and consequently analytical methods such as analysis of 

variance would be inappropriate. The appropriate choice for hierarchical data sets is 
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multi-level modelling (Quené & Van den Bergh, 2004). Multi-level modelling is a 

robust procedure that can handle moderate violations of homoscedasticity and 

sphericity. This analysis, compared with a repeated measure ANOVA provides more 

power in estimating the effects. 

Researchers usually seek to accurately account for the influence that a selected 

independent variable has on the dependent variable. A danger to the interpretation 

of the results can occur when unexplained extraneous factors have an effect on the 

dependent variable and account for some of the variance. These random factors 

often do not have any theoretical interest yet it is important to account for these 

factors and the degree to which they influence the dependent variable (Albright & 

Marinova, 2010).  

Using standard analysis of variance models with hierarchical data can lead to 

unrealistic parameter estimates as the errors between units in a level are likely 

correlated (Albright & Marinova, 2010). In order to assess the correlation between 

level 2 conditions (games), an interclass correlation coefficient was calculated. In this 

case of the current study, the intraclass correlation coefficient was 0.06 at the game 

level. This means that 6% of the variance in the dependent variable can be 

explained by variance between the mean scores of games. An advantage for the use 

of multilevel modelling is that it would be able to account for this random variance 

and allow a more precise inference of the fixed effects (Quené & Van den Bergh, 

2004). 

The Netlogo simulator was coded to be able to run every possible combination of the 

six modelled exchange rules at three levels of 0, 50 and 100 for each human game. 

Every time the Netlogo simulator was run, a human game was uploaded and the 

simulator then ran a simulation for each combination of exchange rules at the three 

levels of weightings. A human game consisting of 40 rounds multiplied by 6 factors 

at three levels (40 × 36) resulted in a round summary sheet with 29160 rows of 

data. Each row of data was a summary of one round of play. The 40 rounds of data 

where the factor weightings were set to zero were removed which then resulted in a 

simulator output of 29120 rows of data. In order to analyse all of the simulations 

under one analysis, it was necessary to collate the sixteen datasets into one data set 
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that could be imported into R. The data were then analysed using the “lme4” 

package in R (Bates, Mächler, Bolker, & Walker, 2014). 
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Chapter 4: Results 
 

 

The results chapter is separated into four components. The first section addresses 

the question: Is prediction accuracy different over the six simulator conditions? The 

second section describes the multi-level model. The third section addresses the 

question: Do the simulator conditions lead to different levels of prediction accuracy 

over the four experimental conditions? Finally, the fourth section addresses the 

question: Which combination of simulator factors best predict human decision 

making in the four experimental conditions? 

 

Section 1: Effects of simulated factors in isolation across 16 games 
 

The primary aim of this section is to answer the question of whether prediction 

accuracy is different across simulated conditions. In order to achieve this, 

simulations had to be run for one factor at a time with all other factors excluded. This 

meant that only one factor contributed towards the Empathy Matrix in each 

simulation. Each factor was tested at two weightings of 50 and 100 with all other 

factors set to zero. The simulations were repeated over all 16 human games.  

Figure 4 represents the means for the dependent variable, Average Scaled 

Prediction, for each simulator condition at each level of weighting over 16 games. 

The error bars represent the standard deviation of the accuracy score for each factor 

weighting.  
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Figure 4: Mean prediction accuracy with factors in isolation 

 

The expected value for the dependent variable “Average Scaled Prediction” is the 

mean of the 14 predicted ranks (see Table 2) which is (M = .50, SD = 0.31). This 

means that if ranks were allocated randomly between 14 agents, the likelihood of an 

agent receiving any particular rank would be 0.5. This value then provides a 

theoretical baseline where in the case where every move was random, the expected 

value would be 0.5.   

As seen in Figure 4, the random weight at weight 50 (M = .49, SD = 0.08) and weight 

100 (M = .50, SD = 0.08) is equal to the expected value. This provides assurance 

that the methodology is sound and that a meaningful prediction would range 

between .5 and 1. The random factor, as it is not effectively modelling human 

behaviour was removed from the model in order to gain theoretically meaningful 

results from the simulations.  

Average Scaled Prediction Means with Factors in Isolation 

Random Fairness In-group bias Reciprocity Vicinity Self-interest
Mean at weight  50 0,499399 0,7563273 0,9749227 0,9700721 0,526262 0,9382126
Mean at weight  100 0,5003005 0,7557692 0,9540865 0,9700721 0,526262 0,9382126

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

Average Scaled Prediciton Means With Factors In Isolation

Mean at weight  50 Mean at weight  100

Random Fairness In-group bias Reciprocity Vicinity Self-interest
0,49 (SD=0,08) 0,76 (SD=0,13) 0,97 (SD=0,01) 0,97 (SD=0,01) 0,53 (SD=0,08) 0,94 (SD=0,01)
0,50 (SD=0,08) 0,76 (SD=0,13) 0,95 (SD=0,08) 0,97 (SD=0,01) 0,53 (SD=0,08) 0,94 (SD=0,01) 

 

Average Scaled Prediction Means with Factors in Isolation 
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The vicinity factor at weight 50 (M = .53, SD = 0.08) and weight 100 (M = .53, SD = 

0.08) had a poor effect on prediction accuracy. The fact that these factors lead to 

prediction accuracy of around .5 implies that they are of very little theoretical 

importance in modelling human decision making in the VIAPPL games. These 

results provide rationale for removing these two factors from the agent-based model. 

It is expected that the exclusion of these two factors would lead to greater sensitivity 

in the final multi-level model analysis. 

The factors that led to the highest prediction accuracy were ingroup favouritism, 

reciprocity and self-interest. Reciprocity in both weights of 50 and 100 yielded a 

prediction accuracy of (M = .97, SD = 0.01). The standard deviations for reciprocity 

are very low which means that there is little variation in individual scores from the 

mean. This may indicate that reciprocity is a reliable factor in the agent-based model. 

Ingroup favouritism was more accurate at weight 50 (M = .97, SD = 0.01) than at 

weight 100 (M = .95, SD = 0.08). The standard deviation at weight 50 was much 

lower than at weight 100 which may indicate that ingroup favouritism, at weight 50, is 

more reliable with less variation between scores. Self-interest at both weights of 50 

and 100 led to a prediction accuracy of (M = .94, SD = 0.01). The standard 

deviations for both weights of self-interest were low which indicates that it is a 

reliable factor relative to the other factors. Fairness was less accurate than 

reciprocity, self-interest and ingroup favouritism and had a mean prediction accuracy 

of (M = .76, SD = 0.13) at both weights of 50 and 100. 

The reason fairness has a lower accuracy score to the higher scoring factors is due 

to the way fairness has been operationalised. Note that in Figure 3, the accuracy 

scores for ingroup favouritism, reciprocity and self-interest are in the range of .92 

and 1 (between rank 1 and 2). These high values, in comparison with fairness, are 

due to the fact that the measure of ingroup favouritism, reciprocity and self-interest 

are binary outcomes. Agents either gave to their ingroup or not, they either self-gave 

or they did not, and they either reciprocated or they did not. When these binary 

factors were used in a simulation without a factor that had more than two possible 

outcomes, the Average Scaled Prediction would be limited to the range between 

ranks 1 and 2. Fairness has a much larger variance with all 14 players being 

possibilities, therefore the ranks can have a maximum range of 14. The scale of the 

measure of accuracy dramatically increases when fairness is included and when this 



64  

factor is removed, the scale becomes far smaller. This effect has made comparisons 

between these simulations misleading.  

The standard deviation for self-interest was relatively high in comparison to these 

higher scoring factors. This may indicate that self-interest in addition to being a lower 

scoring factor, is less reliable with more variation between scores.   

The simulations were then run including every combination of fairness, ingroup 

favouritism, reciprocity and self-interest as contributors to the deciding Empathy 

Matrix. The removal of the random factor along with the proximity factor reduced the 

size of the resulting data considerably. With 4 factors at 3 levels (34) the total 

number of combinations were reduced to 81. The condition with every factor set to 

zero was removed which led to 80 combinations repeated over 40 rounds for each of 

the sixteen human games. The resulting data set then amounted to 51,200 round 

level comparisons. 
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Section 2: Multilevel model  
 

The dependent variable, Average Scaled Prediction, is a value between 0 and 1. 

Due to the fact that the expected value is .5, any meaningful results lie in the range 

between .5 and 1. This resulted in the dependent variable being negatively skewed. 

This pattern violated the assumption of normality for conducting a multi-level 

analysis. In order to proceed with the analysis, the data were transformed using an 

arcsine transformation (see Figure 5 and 6).  

 

 

One consequence of using a transformation to satisfy the assumption of normality is 

that the original scale of the dependent variable is lost (Lo & Andrews, 2015). 

Interpretation then becomes difficult as one cannot relate the new values to the 

original scale. Two methods were used in order to combat this problem, firstly a 

second analysis was run with the original untransformed variable which would supply 

beta regression coefficients in the original scale. These coefficients were reported in 

Figure 6: Histogram of the dependent 
variable Average Scaled Prediction 

Figure 5: Histogram of the dependent 
variable Average Scaled Prediction after 
transformation 
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conjunction with the coefficients from the transformed data. Secondly, a table is 

provided with the original scaled prediction ranks with the arcsine transformed 

equivalents in a corresponding column (see table 5). This table then visualises the 

comparable transformed dependent variable to the original scale.  

 

Table 4: Arcsine transformed prediction ranks 
 

 
Predicted 
Rank 

Predicted Rank 
(Arcsine) 

1 1 1.5707963267949 
2 0.923077 1.17600540709518 
3 0.846154 1.00872681246447 
4 0.769231 0.877636780375781 
5 0.692308 0.76468260426419 
6 0.615385 0.662874311600265 
7 0.538462 0.568610847986836 
8 0.461538 0.479728117409841 
9 0.384615 0.394790703033131 
10 0.307692 0.312766398560729 
11 0.230769 0.232867941087265 
12 0.153846 0.154459442784397 
13 0.076923 0.0769990635051488 
14 0 0 

Note. The scaled prediction rank is the value that is obtained by comparing the human players move to that of the simulated 

agent. Predicted rank 1 refers to a perfect prediction where an agent move has perfectly matched that of the human participant. 

 
Model building 
 

Since the data were hierarchical in nature, required attention was given to the 

specific nesting structure. The data were structured with games being nested within 

experimental conditions. Therefore, a null model was built with a random intercept at 

the game level. The intraclass correlation coefficient was 0.06 which meant that 6% 

of unexplained variance was the game level. This amount of random variance is not 

extremely high however it is high enough to justify the use of a multilevel model.  

The next model built was a model with the random intercept at the game level with 

the simulator factors and experimental factors added. This model proved a better fit 

than the null model. 
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The third model was built with three-way interactions between each simulator factor 

and the two experimental conditions of groups and inequality. This model was 

theoretically motivated as it would allow the observation of the relative importance of 

each exchange rule under each of the four experimental conditions. This model 

proved to be a better fit than the null model and the model with main effects. Table 6 

displays the comparisons between the three models.  

Table 5: Model Comparisons 
 

Model 
Name 

Model Description BIC Significance test 

Null model Intercept only -20145  
Main 
effects 

Null + Reciprocity + Fairness+ Self-
interest + Group 

-71668 χ2(10) = 51631.1, p < 
0.001 

Interaction 
effects 

Main + 
Individual.Group*Equality.Inequality 
+ all 3-way interactions of 
Individual.Group*Equality.Inequality 
BY Reciprocity, Fairness, Self-
interest and Group. 

-79669 χ2(25) = 8272.8, p < 
0.001 

 
It should be noted that the model including three-way interactions has a much lower 

BIC value than the null model and the model with main effects. This lower BIC value 

indicates a better fit to the data. The Chi-square test for the final model (χ2(25) = 

8272.8, p < 0.001) indicates that the difference is significant.  

The intercept for the final model with three-way interactions was (β = 1.302, SE = 

0.015, p < .001). For interpretation, the intercept for the same model with the 

untransformed dependent variable is (β = 0.983, SE = 0.010, p < .001). This can be 

considered the expected mean for the dependent variable, Average Scaled 

Prediction. Thus, the expected mean of the variable Average Scaled Prediction 

is .98.  

The beta coefficients for each fixed effect represent the increase or decrease that 

would be observed in the expected score (the intercept) of the dependent variable 

with a one unit increase in the predictor, with all other predictors held constant 

(Albright & Marinova, 2010).  The ANOVA summary table (Table 7) of fixed effects is 

displayed below. The summary table for the comparisons between categories can be 

found at Appendix 1.  
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Table 6: Multilevel model with three-way interactions 
 
Type III Analysis of Variance Table with Satterthwaite's method 

Fixed effects: Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 
Individual.Group 0.01 0.01 1 16 0.7491 0.3995443 
Equality.Inequality 0.04 0.04 1 16 3.4715 0.0808969 . 
Reciprocity.weight 0.37 0.19 2 51184 15.1555 2.630e-07 *** 
self.Interest.weight 14.51 7.26 2 51184 593.2612 < 2.2e-16 *** 
Group.Weight 15.49 7.75 2 51184 633.2602 < 2.2e-16 *** 
Fairness.weight 1264.43 632.21 2 51184 51683.6841 < 2.2e-16 *** 
Individual.Group:Equality.Inequality 0.33 0.33 1 16 26.8503 9.088e-05 *** 
Individual.Group:Reciprocity.weight 0.02 0.01 2 51184 1.0030 0.3668016 
Equality.Inequality:Reciprocity.weight 0.53 0.27 2 51184 21.7849 3.491e-10 *** 
Individual.Group:self.Interest.weight 5.76 2.88 2 51184 235.4504 < 2.2e-16 *** 
Equality.Inequality:self.Interest.weight 11.90 5.95 2 51184 486.5757 < 2.2e-16 *** 
Individual.Group:Group.Weight 25.36 12.68 2 51184 1036.4657 < 2.2e-16 *** 
Equality.Inequality:Group.Weight 18.60 9.30 2 51184 760.3994 < 2.2e-16 *** 
Individual.Group:Fairness.weight 0.96 0.48 2 51184 39.0571 < 2.2e-16 *** 
Equality.Inequality:Fairness.weight 19.16 9.58 2 51184 783.0238 < 2.2e-16 *** 
Individual.Group:Equality.Inequality:Reciprocity.weight 0.22 0.11 2 51184 9.0507 0.0001175 *** 
Individual.Group:Equality.Inequality:self.Interest.weight 0.12 0.06 2 51184 5.0152 0.0066398 ** 
Individual.Group:Equality.Inequality:Group.Weight 1.36 0.68 2 51184 55.7155 < 2.2e-16 *** 
Individual.Group:Equality.Inequality:Fairness.weight 23.77 11.88 2 51184 971.5869 < 2.2e-16 *** 

Note. *p<0.1; **p<0.05; ***p<0.001.   

Note. The p-values for main effects and interactions are mostly significant. This effect is likely attributable to the large 
sample size. 
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Section 3: Effects of simulated factors across experimental conditions.  
 

The primary aim of this section is to answer the question: In which experimental 

condition does each simulator factor lead to higher prediction accuracy? The 

necessity of this analysis is due to the fact that human exchange behaviour differs 

under the various experimental conditions. We therefore expected theoretically 

interesting interactions to occur between the simulator conditions and the four 

experimental conditions.  

In order to interpret these three-way interactions, it was necessary to create 

visualised representations of the interactions. Three-way interaction graphs were 

created from the final multi-level model using R’s predict function to calculate the 

mean model predictions and their standard errors. The “ggplot2” function was then 

used to create graphs that depicted these interactions (Wickham, 2016).The points 

in each graph represent the mean model predictions in each weighting of the 

independent variable. These means were created by calculating the average 

prediction accuracy over the entire dataset. The error bars represent the standard 

errors of the predictions. 
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Figure 7: Three-way interaction between the group condition, the inequality condition 
and the manipulation of the ingroup favouritism weighting. 

Note. F (2, 51184) = 55.72, P = < 0.001 
The interaction between ingroup favouritism with the group and inequality conditions, 

when weighted at 50, had a statistically significant effect on prediction accuracy in 

comparison to simulations with ingroup favouritism weight set to zero (β = 0.023, SE 

= 0.005, p < .001). Ingroup favouritism weighted at 100 was also statistically 

significant accuracy in comparison to simulations with ingroup favouritism weight set 

to zero (β = 0.051, SE = 0.005, p < .001). For interpretation, the coefficients from the 

analysis with the untransformed dependent variable are given. Ingroup favouritism at 

weight 50 was (β = 0.015, SE = 0.003, p < .001) and at 100 was (β = 0.030, SE = 

0.003, p < .001). This means that at weight 50, the predicted mean would 

increase .015 for every one unit increase in ingroup favouritism weight with all other 

independent variables held constant. At weight 100, the increase would be .030.   

It is noted that in both individual conditions, increasing the weighting of ingroup 

favouritism leads to reduced prediction accuracy. This is a logical and expected 

outcome as group membership was not visible to the human participants. An 

interesting note is that the individual condition under the inequality condition leads to 
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a lesser reduction in accuracy than the individual condition under equality. A 

potential explanation for this could be that in the inequality condition, though groups 

were not visible, there existed a high and low status group visible by each 

participant’s token balance. This could have led to a weaker process of social 

categorisation which subsequently led to ingroup favouritism.   

The equal status group condition led to reduced prediction accuracy with an increase 

in ingroup favouritism weighting. The accuracy scores under this condition are high 

as seen by the relative position of the data points on the y-axis. The decrease in 

prediction accuracy leads us to the conclusion that another factor is responsible for 

this accuracy. The results of analysis 3 confirm that reciprocity in this condition was a 

more important factor in predicting human moves (See Figure 12). As ingroup 

favouritism was reduced, reciprocity was able to become more evident.  

The weighting of ingroup favouritism under the unequal group condition led to an 

increase in prediction accuracy. This means that ingroup favouritism was a powerful 

determinate of the decision making in token allocation.  
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Figure 8: Three-way interaction between the group condition, the inequality condition 
and the manipulation of the reciprocity weighting 

F (2, 51184) = 9.05, P = < 0.001 
 

The interaction between reciprocity with the group and inequality conditions, when 

weighted at 50, did not have a statistically significant effect on prediction accuracy in 

comparison to simulations with reciprocity weight set to zero (β = -0.008, SE = 0.005, 

p = 0.10760). Reciprocity weighted at 100 did however have a significant effect on 

the dependent variable in comparison to simulations with reciprocity weight set to 

zero (β = -0.020, SE = 0.005, p < .001). For interpretation, the coefficients from the 

analysis with the original dependent variable are given. Reciprocity at weight 50 was 

(β = -0.006, SE = 0.003, p = 0.4440) and at 100 was (β = -0.012, SE = 0.003, p 

< .001). 

The weighting of reciprocity has, in most conditions, resulted in very little difference 

in prediction accuracy. It is noted that the weighting of reciprocity in the individual 

inequality condition, leads to an increase in prediction accuracy.  

 



73  

Figure 9: Three-way interaction between the group condition, the inequality condition 
and the manipulation of the fairness weighting 

 
Note. F (2, 51184) = 971.58, P = < 0.001 

The interaction between fairness with the group and inequality conditions, when 

weighted at 50, had a statistically significant effect on prediction accuracy in 

comparison to simulations with fairness weight set to zero (β = -0.176, SE = 0.005, p 

< .001). Fairness weighted at 100 was also statistically significant in comparison to 

simulations with fairness weight set to zero (β = -0.191, SE = 0.005, p < .001).  For 

interpretation, the coefficients from the analysis with the original dependent variable 

are given. Fairness at weight 50 was (β = -0.123, SE = 0.003, p < .001) and at 100 

were (β = -0.131, SE = 0.003, p < .001). The beta coefficients are far larger than 

most of the three-way interactions reported. The coefficients are negative which 

indicates a reduction in prediction accuracy. 

The fairness factor as had negative effect on prediction accuracy over all four 

experimental conditions. The fairness factor, when weighted in all four experimental 

conditions, leads to a reduction in prediction accuracy. The prediction accuracy as 

noted on the y-axis, drops from 1.2 to under 1 on the arcsine transformed scale 

(please refer to Table 5) when fairness is introduced. This means that with fairness 
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excluded, the average rank falls between position 1 and 2 and when fairness is 

included, the rank drops to position 4. This effect is attributable to the previously 

discussed problem of fairness being mathematically disadvantaged in comparison to 

the three other decision rules with binary outcomes.  

 

Figure 10: Three-way interaction between the group condition, the inequality 
condition and the manipulation of the self-interest weighting 

 
Note. F (2, 51184) = 5.02, P = 0.0066398 

The self-interest weighting, when weighted at 50, had a statistically significant effect 

on prediction accuracy in comparison to simulations with self-interest weight set to 

zero (β = 0.013, SE = 0.005, p < .001). Self-interest weighted at 100 was also 

statistically significant in comparison to simulations with self-interest weight set to 

zero (β = 0.013, SE = 0.005, p < .001).  For interpretation, the coefficients from the 

analysis with the original dependent variable are given. Self-interest at weight 50 

was (β = 0.005, SE = 0.003, p = 0.05337) and at 100 were (β = 0.006, SE = 0.003, p 

= .05227). These coefficients are small which indicates that self-interest did not 

make a large impact on prediction accuracy.  
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The weighting of self-interest had a positive effect on prediction accuracy in the 

individual condition with inequality. This finding suggests that self-giving was 

common in the human game and the higher the weighting in the agent-based model, 

the more the data matched that of the human game. In the remaining three 

conditions, the weighting of self-interest led to a decrease in accuracy, an interesting 

note is the difference between these three conditions. The weighting of self-interest 

in the group condition without inequality had the largest difference in prediction 

accuracy. Self-interest weighted in this condition reduced accuracy. The fact that 

self-interest reduced accuracy to this extent suggests that self-giving was not 

common in the human games under this experimental condition. The measured 

prediction accuracy in this condition is likely attributable to another factor. The 

reduction in weighting of self-interest allowed the better predicting factor to be more 

evident.   
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Section 4: The best fitting combination of factors in each of the four 
experimental conditions.  
 

The primary aim of this section is to answer the question of which combination of 

factors best predicts the data of the human games under the four experimental 

conditions. The top ten combinations are reported for each experimental condition. 

In order to obtain the best predicting combinations, the data were ranked based on 

accuracy. The data structure is as follows; there are four simulator factors each with 

three levels. These factors, when crossed in every possible combination, result in a 

total of 81 combinations. The combination with all four factors set to zero was 

removed as it resulted in a mathematical error. Each combination was repeated over 

40 rounds for each of the sixteen human games, this resulted in a total number of 

51,200 measurements.  

The predict function in R was used to calculate predicted values, these were then 

inserted into a new column in the data frame. The data were then aggregated at the 

game level which gave a mean prediction accuracy for each combination. The data 

were then ranked based on the predicted values from most accurate to least 

accurate. The top ten combinations for each experimental condition were used to 

create the visualisations below. Each bar represents the transformed dependent 

variable, average scaled prediction, for each factor combination. The error bars 

represent the standard errors of the predicted values.  
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Figure 11: The best fitting combinations for the equal status individual condition 

 
 
In the equal status individual condition, the most accurate simulator factor for 

matching the simulated data to that of the human games was reciprocity. Reciprocity 

at weight 100 yielded a prediction accuracy of (M = 1.289, SE = 0.003368). The 

second highest prediction was reciprocity weighted at 50 (M = 1.287, SE = 

0.003368). The third highest was self-interest weighted at 100 (M = 1.259, SE = 

0.003368).  

The most accurate predictions in this experimental condition were single factors in 

isolation from other factors. When two or more factors were combined, prediction 

accuracy dropped substantially. It is noted that the inclusion of ingroup favouritism 

had a negative effect on prediction accuracy in this condition, this effect is visible in 

the three-way interaction graph (Figure 7). The fairness factor when included in 

isolation, at weight 100, reduced prediction accuracy to the point that it was ranked 

position 28 and had a mean accuracy of (M = 0.962, SE = 0.003368). 
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Figure 12: The best fitting combinations for the equal status group condition 

 
 

In the equal status group condition, the most accurate simulator factor for matching 

the simulated data to that of the human games was reciprocity. Reciprocity at weight 

100 yielded a prediction accuracy of (M = 1.298, SE = 0.001164). The second 

highest prediction was reciprocity weighted at 50 (M = 1.290, SE = 0.001164). The 

third highest was ingroup favouritism weighted at 50 (M = 1.268, SE = 0.001164). 

The most accurate predictions in this condition can be attributed to reciprocity and 

ingroup favouritism. Reciprocity is more effective weighted at 100 than 50. Of 

interest is that ingroup favouritism weighted at 50 leads to a better prediction than if it 

were weighted at 100. Self-interest, when included in this experimental condition, 

results in a notable reduction in prediction accuracy. The fairness factor when 

included in isolation, at weight 100, reduced prediction accuracy to the point that it 

was ranked position 28 and had a mean accuracy of (M = 1.067, SE = 0.001164). 
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Figure 13: The best fitting combinations for the unequal status individual condition  

 

 

In the unequal status individual condition, the most accurate simulator factors in 

matching the human data was a combination of self-interest and reciprocity. 

Reciprocity and self-interest both weighted at 100 yielded a prediction accuracy of 

(M = 1.279, SE = 0.00273). The second and third place in accuracy were different 

combinations of these two factors. Self-interest at weight 100 in isolation (M = 1.270, 

SE = 0.00273) led to a higher prediction accuracy than reciprocity at weight 100 in 

isolation (M = 1.260, SE = 0.00273).  

Referring back to Figure 8 and Figure 10, it is noted that in the section of the plot that 

displays individual condition with inequality, both self-interest and reciprocity led to 

higher prediction when the weighting was increased. In the current visualisation, it is 

evident that a combination of these two factors tend to strengthen each other and 

together lead to a higher prediction accuracy than if they were in isolation. Ingroup 

favouritism, when weighted at 50 in isolation to other factors ranked position number 

19 with a mean prediction accuracy of (M = 1.214, SE = 0.00273). The inclusion of 

the fairness factor in this experimental setting led to a dramatic decline in prediction 

accuracy. The fairness factor when included in isolation, at weight 100, reduced 

prediction accuracy to the point that it was ranked position 41 and had a mean 

accuracy of (M = 0.921, SE = 0.00273). 
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Figure 14: The best fitting combinations for the unequal status group condition 

 
 

In the unequal status group condition, the most accurate simulator factor for 

matching the simulated data to that of the human games was ingroup favouritism. 

Ingroup favouritism at weight 100 yielded a prediction accuracy of (M = 1.262, SE = 

0.00116). The second highest prediction was a combination of ingroup favouritism 

weighted at 100 and reciprocity weighted at 50 (M = 1.260, SE = 0.00116). The third 

highest combination was ingroup favouritism weighted at 100 and reciprocity 

weighted at 100 (M = 1.257, SE = 0.00116).   

Ingroup favouritism was the best predictor of human behaviour in this experimental 

setting. This finding is also present in Figure 7 where an increase in the weighting of 

ingroup favouritism led to a higher rates of prediction accuracy. The combination of 

ingroup favouritism and reciprocity has also led to high prediction rates.  

The self-interest factor tended to reduce prediction accuracy. Self-interest at weight 

50 combined with ingroup favouritism at weight 100 has been ranked in position 7 

with a mean prediction accuracy of (M = 1.242, SE = 0.00116). The fairness factor 

when included in isolation, at weight 100, reduced prediction accuracy to the point 

that it was ranked position 67 and had a mean accuracy of (M = 0.778, SE = 

0.00116). 
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Chapter 5: Discussion 
 
Exchange is a critical part of human interaction and for this reason social exchange 

theory has been a major area of focus in the field of social psychology. The ability for 

this theory to provide a framework to understand social structure has been 

demonstrated since Homans’ early work in 1958. One area of social exchange 

theory that has in the past been critiqued is the dominant assumption of rationality 

that was mainly argued by Homans (1958). Meeker (1971) argued that rationality is 

an important factor, yet it should be given a far narrower definition than it has 

enjoyed in the past. She goes on to argue how multiple situations exist whereby 

rationality, in its primitive definition, is constrained. Emerson (1976) echoed this view 

and argued that the weighing up of rewards is an explanation for some exchange 

situations, but not all. Rationality could rather be thought of as an individual having 

weighed up the consequences associated with a particular exchange, but not 

necessarily make their decision based solely on profit maximisation. There are many 

cases whereby individuals do seem to act irrationally in the economic sense, fairness 

considerations being an illustrative example (Fehr & Schmidt, 1999). 

Meeker (1971) sought to explain exchanges as decisions made by individuals faced 

with a potential exchange. In her schema, the problem of rationality is removed 

entirely. Rational choices, or simply profit maximisation, could then be treated as just 

a possible orientation used by individuals in certain situations (Emerson, 1976). 

Meeker went on to define five exchange rules of reciprocation, ingroup gain, 

competition, altruism, and status consistency. These exchange rules are argued to 

be normative and as such they will change based on the context of the situation. It 

can be expected that they may, in certain contexts, be supportive of one another; 

meaning individuals may select and use more than one exchange rule at a time. It is 

also expected that under some conditions, certain exchange rules will be at conflict 

with a larger governing norm. The process in which an individual adopts a particular 

exchange rule over the alternatives is a complex one and warrants a brief discussion 

on norms in general.  

Norms are socially sanctioned behaviour in response to a particular stimulus. Norms 

are agreed upon socially and are maintained by approval for following the norm or 

disapproval if the norm is violated. At the personal level, anxiety and guilt resulting 
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from the fear of punishment results in an internalisation of the norm. This 

internalisation can even guide behaviour when there is no one around to impose 

punishment for violating the norm. Elster (1989) uses an example of people adhering 

to a norm against picking one’s nose in front of strangers that they will never see 

again. The strangers will never be able to impose punishments, yet people ordinarily 

will be sure not to violate this norm. This suggests that norms have great power in 

guiding individual behaviour due to the strong emotions that they illicit (Festre, 2010). 

Norms within the VIAPPL exchange environment may be formal or informal. Meeker 

(1971) gives examples of informal norms, such as following norms that are followed 

by others, commitments that are formed through repeated exchange, or simple 

imitation of others around them. Formal norms could include role expectations or 

expectations of which exchange rule would be normative for a particular relationship. 

Ingroup favouritism, for example, is argued to be a dominant societal norm that 

prescribes ingroup favouring behaviour in a new and novel group situation (Iacoviello 

& Spears, 2018).  

In the current research, a reconceptualised set of exchange rules has been 

proposed, drawing on recent research in exchange. Reciprocity, fairness, proximity, 

self-interest and ingroup favouritism have received recent empirical support and 

have been selected as candidates for an accurate model of social exchange.  

Cropanzano et al. (2005) raised an important point; that very little research has 

examined the “black box” of social exchange. That is, the actual process of 

exchange has yet to be fully uncovered. Agent-based modelling has been used in 

the current research to model exchange behaviour from individual agent level 

decision making. Agent-based simulations hold great potential for studying 

emergence; the repeated interactions between individuals that lead to macrolevel 

behaviour. Most social exchange research has relied upon experimental research in 

laboratory settings. This research has been scientifically useful in that it creates an 

environment which is largely free of extraneous variables. The ability to simulate 

microlevel behaviour from the ground up has allowed the ability to study particular 

agent level decisions and how that has evolved through interaction into the macro 

level structure that we observe empirically. With the ability to quantitatively compare 

the results from the agent-based simulation to that of empirical data, we have been 
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able to uncover the following: Firstly, which exchange rule human participants are 

relying upon the most; secondly, which exchange rules are most relied upon under 

each experimental condition; and thirdly, under each condition, which combination 

exchange rules are most fitting to the empirical data.   

An overview of the results of the current research 
 

The data in the current study were analysed using three separate analyses. Each 

analysis provided a particular perspective of how each simulator factor and the 

interactions between factors were predicting human moves. In order to arrive at a 

more holistic view of how accurately the model predicted human behaviour, it was 

necessary to discuss the results of each exchange rule with reference being drawn 

from all three analyses. An overview of the results of each exchange rule have been 

discussed below.  

(Note: The random giving and proximity exchange rules both led to accuracy scores 

that were clustered around the expected random value. These factors were then 

removed from the model in order to refine and create a better predicting model, and 

as such they have been excluded in the current discussion.)  

Ingroup-favouritism 
 

The results from analysis 1 indicated that the simulator predicted human moves very 

accurately when the ingroup favouritism exchange rule was modelled. Ingroup 

favouritism was expected to be a good predictor of human moves as favouring ones 

ingroup within the minimal group paradigm is a robust and well-known outcome. The 

original study using the VIAPPL application did indeed find that ingroup favouritism 

emerges over time in a stable fashion in the group conditions (Durrheim et al., 2016). 

As the data used in the current study was the same data used in the VIAPPL study, 

it was a safe assumption that this factor would score highly. 

Under analysis 2 and 3, it was found that ingroup favouritism was a high predictor of 

behaviour under the experimental condition of groups with unequal starting 

conditions, but was not a good predictor in the remaining three conditions. Ingroup 

favouritism was not expected to be a good predictor in the individual conditions, as 

group identity was not visible to the participants. A somewhat surprising finding was 
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that ingroup favouritism was not a commonly used exchange rule in the group 

condition with equal starting conditions. In this condition, it appears that reciprocity 

was a more relied upon exchange rule. This finding illustrates the normative 

pressures that are evident in exchange networks. Being loyal to the ingroup is a 

robust phenomenon within the minimal group paradigm, yet the normative pressure 

to reciprocate to those who have given to you in the past was stronger. One can 

conclude that inequality in these experiments had an enhancing effect on ingroup 

favouritism. This finding is supported by a recent study by Lei and Vesely (2010) 

which aimed to research the effect that income inequality has on the development of 

ingroup favouritism. Their findings concluded that ingroup favouritism was only found 

within members of the wealthier group. Additionally, the participants that were poor 

were more trusting towards the wealthier group than towards the poor.  

Reciprocity 
 

The exchange rule of reciprocity was a very high predictor of human decision making 

in most of the experimental conditions. In both conditions of group and individual with 

equal starting conditions, reciprocity was the modelled exchange rule that best 

predicted human behaviour. The experimental condition of individuals with unequal 

starting conditions was predicted best by an equal combination of reciprocation and 

self-interest. This is a surprising finding as these exchange rules could be thought of 

as competing with each other. A possible explanation for this finding would be that a 

dominant norm of economic profit maximisation is constrained by the normative 

obligation to cooperate with those that have been helpful in the past. The self-

interest norm is likely induced by the inequality of wealth between participants, which 

as Miller (2001) argued, is often induced by the context. This finding is an illustrative 

example of the conflict that can arise between exchange rules, on one side there is a 

clear rationality in the participants decision making, but there is an equal normative 

obligation to cooperate with others.  

Overall, there is much support for the generic norm of reciprocity argued by 

Gouldner (1960), yet it is clear that contesting norms such as ingroup favouritism 

under a condition of inequality can supress this norm.  
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Self-interest 
 

The modelled exchange rule of self-interest was a good predictor in the individual 

condition with unequal starting conditions. A previously discussed self-interest was 

the best predictor of human behaviour when paired with reciprocity. In the individual 

condition with equal starting conditions, self-interest did feature in eight of the top ten 

combinations with reciprocity being in the top two. These results seem to indicate 

that self-interest was normatively promoted, yet it was constrained by the stronger 

cooperative norm of reciprocity.  

The pattern of economic rationality with competing normative considerations of 

cooperation have gained the attention of many economists (Festre, 2010). 

Fairness 
 

The fairness factor under analysis 1 had a mean Average Scaled Prediction of 0.76. 

This accuracy is higher than our expected value of 0.5 which means that the 

modelling of fairness is indeed predicting human behaviour.  

When referring to analysis 2, the fairness factor, when weighted in all four 

experimental conditions, leads to a reduction in prediction accuracy. The prediction 

accuracy drops from 1.2 to under 1 on the arcsine transformed scale when fairness 

is introduced. This means that with fairness excluded, the average rank falls 

between position 1 and 2, and when fairness is included, the rank drops to position 

4. This effect is attributable to the previously discussed problem of fairness being 

mathematically disadvantaged in comparison to the three other decision rules with 

binary outcomes. 

  

Concluding thoughts 
 

The ability to generate macro level phenomena from a set of simple rules and then 

compare these macro level outcomes to existing data from human experiments has 

informed us of which decision rules are most relied upon under each experimental 

condition.  
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We have also been able to observe how rules interact with each other to form these 

macro level outcomes. It is noted, for example, that ingroup favouritism and 

reciprocity share a relationship, as they are both in the top combinations in the group 

conditions. Durrheim et al. (2016) shed some light on this with the explanation that 

participants are likely to expect reciprocation to be more likely within their own group 

than with the outgroup. Ingroup favouritism is then elevated due to participants 

expecting their token allocations to be likely returned by ingroup members. The 

results of the current research indicate a dynamic interplay between these two 

factors.  

Reciprocity also interacted with self-interest in the individual condition, crossed with 

inequality. Self-interest as noted by Miller (2001), may be induced by the context. 

The unequal starting conditions may have induced a pattern of self-giving, though it 

is also possible that select participants modelled self-giving, and this behaviour then 

became normative with other participants. Further simulations investigating temporal 

patterns of allocation behaviour may be able to uncover these trends.  

The relationship between ingroup favouritism and self-interest is interesting in that 

the group conditions, where participants were aware of their group belonging, were 

less likely to engage in self-giving behaviour. The individual conditions with equal 

and unequal starting conditions tended to see more self-interest. These results 

suggest that ingroup favouritism was far stronger than self-interest under the minimal 

group situation.  

Reflections on method 
 

The approach to agent-based modelling in this research has been novel in that it has 

sought to be highly descriptive which is very different from the “keep it simple stupid” 

approach. The KISS principle is highly favoured due to the inherent problem with 

agent-based models that become too complicated with too many rules. When a 

model has too many rules, it can become very difficult to gain any meaningful results 

from the data. The method demonstrated in the current research quantitatively 

compares the simulated data to that of the human data. This comparison then allows 

researchers to abandon the KISS principle in favour of models that can become 

highly descriptive. The ability to refine a model through a sensitivity analysis, that is 
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to add or remove factors based on the comparison with empirical data, allows 

researchers the ability to test theory (Thiele, Kurth, & Grimm, 2014).  

Limitations and areas for future research 
 

A limitation in the current research that could be addressed in future research is the 

way in which fairness is modelled. As mentioned in the methods chapter, a smaller 

scale of measurement was inadvertently introduced when fairness was completely 

excluded from the final Empathy Matrix. This meant that comparisons between 

simulations that included fairness and ones that did not were misleading. For 

publication, this limitation will be overcome by simply changing the weightings of the 

simulated exchange rules. In the current study, the rules were weighted at three 

levels with increments of 50. This resulted in each exchange rule being weighted at 

0, 50 or 100. When weighted at 0, the exchange rule was mathematically cancelled 

out entirely. The proposed weightings of 1, 50 and 99 will overcome the problem of 

scale by ensuring that no simulated exchange rule will be fully excluded from the 

final Empathy Matrix.   

A second limitation in this study would be that the analysis did not include a temporal 

aspect which would allow the observation of norms emerging over time. The current 

research has modelled behaviour from interpersonal interactions and has compared 

the macrolevel outcomes of the simulation to empirical data. Future research could 

adapt the analysis to uncover changes in exchange behaviour over time.  
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Appendices 
Appendix 1: Multilevel model results table 
 

Fixed effects:                                               Coef. 
    Std. 

Err.     Df     T-value            P-value 
(Intercept) 1.302379 0.015274 17.248258 85.268 < 0.0000000000000002 *** 
Individual.Group1 0.001414 0.021601 17.248258 0.065 0.94855 
Equality.Inequality1 -0.050938 0.021601 17.248258 -2.358 0.03041 * 
Reciprocity.weight50 -0.015140 0.002404 51184.000002 -6.297 0.000000000306 *** 
Reciprocity.weight100 -0.012546 0.002404 51184.000013 -5.218 0.000000181663 *** 
self.Interest.weight50 -0.043379 0.002404 51184.000015 -18.042 < 0.0000000000000002 *** 
self.Interest.weight100 -0.042554 0.002404 51184.000016 -17.698 < 0.0000000000000002 *** 
Group.Weight50 -0.104499 0.002404 51184.000011 -43.462 < 0.0000000000000002 *** 
Group.Weight100 -0.123138 0.002404 51184.000017 -51.214 < 0.0000000000000002 *** 
Fairness.weight50 -0.354670 0.002404 51184.000016 -147.509 < 0.0000000000000002 *** 
Fairness.weight100 -0.340735 0.002404 51184.000017 -141.714 < 0.0000000000000002 *** 
Individual.Group1:Equality.Inequality1 -0.056826 0.030548 17.248257 -1.860 0.07999 . 
Individual.Group1:Reciprocity.weight50 0.001715 0.003400 51184.000017 0.504 0.61405 
Individual.Group1:Reciprocity.weight100 0.006751 0.003400 51184.000029 1.985 0.04710 * 
Equality.Inequality1:Reciprocity.weight50 0.019200 0.003400 51184.000017 5.647 0.000000016446 *** 
Equality.Inequality1:Reciprocity.weight100 0.021468 0.003400 51184.000029 6.314 0.000000000275 *** 
Individual.Group1:self.Interest.weight50 -0.045480 0.003400 51184.000030 -13.375 < 0.0000000000000002 *** 
Individual.Group1:self.Interest.weight100 -0.056424 0.003400 51184.000029 -16.594 < 0.0000000000000002 *** 
Equality.Inequality1:self.Interest.weight50 0.055590 0.003400 51184.000030 16.349 < 0.0000000000000002 *** 
Equality.Inequality1:self.Interest.weight100 0.061148 0.003400 51184.000029 17.983 < 0.0000000000000002 *** 
Individual.Group1:Group.Weight50 0.068666 0.003400 51184.000027 20.194 < 0.0000000000000002 *** 
Individual.Group1:Group.Weight100 0.079751 0.003400 51184.000032 23.454 < 0.0000000000000002 *** 
Equality.Inequality1:Group.Weight50 0.067243 0.003400 51184.000027 19.775 < 0.0000000000000002 *** 
Equality.Inequality1:Group.Weight100 0.058744 0.003400 51184.000032 17.276 < 0.0000000000000002 *** 
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Individual.Group1:Fairness.weight50 0.109053 0.003400 51184.000033 32.071 < 0.0000000000000002 *** 
Individual.Group1:Fairness.weight100 0.103666 0.003400 51184.000033 30.487 < 0.0000000000000002 *** 
Equality.Inequality1:Fairness.weight50 0.008358 0.003400 51184.000033 2.458 0.01397 * 
Equality.Inequality1:Fairness.weight100 0.010294 0.003400 51184.000034 3.027 0.00247 ** 
Individual.Group1:Equality.Inequality1:Reciprocity.weight50 -0.007738 0.004809 51184.000025 -1.609 0.10760 
Individual.Group1:Equality.Inequality1:Reciprocity.weight100 -0.020237 0.004809 51184.000036 -4.208 0.000025769401 *** 
Individual.Group1:Equality.Inequality1:self.Interest.weight50 0.013091 0.004809 51184.000037 2.722 0.00648 ** 
Individual.Group1:Equality.Inequality1:self.Interest.weight100 0.013372 0.004809 51184.000036 2.781 0.00542 ** 
Individual.Group1:Equality.Inequality1:Group.Weight50 0.022744 0.004809 51184.000033 4.730 0.000002255046 *** 
Individual.Group1:Equality.Inequality1:Group.Weight100 0.050635 0.004809 51184.000038 10.530 < 0.0000000000000002 *** 
Individual.Group1:Equality.Inequality1:Fairness.weight50 -0.176080 0.004809 51184.000040 -36.616 < 0.0000000000000002 *** 
Individual.Group1:Equality.Inequality1:Fairness.weight100 -0.191347 0.004809 51184.000039 -39.791 < 0.0000000000000002 *** 

Note. *p<0.1; **p<0.05; ***p<0.01 
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