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Abstract: On a particular class of m-idempotent hyperrings, the relation ξ∗m is the smallest strongly
regular equivalence such that the related quotient ring is commutative. Thus, on such hyperrings, ξ∗m
is a new representation for the α∗-relation. In this paper, the ξm-parts on hyperrings are defined and
compared with complete parts, α-parts, and m-complete parts, as generalizations of complete parts in
hyperrings. It is also shown how the ξm-parts help us to study the transitivity property of the ξm-relation.
Finally, ξm-complete hyperrings are introduced and studied, stressing on the fact that they can be
characterized by ξm-parts. The symmetry plays a fundamental role in this study, since the protagonist is
an equivalence relation, defined using also the symmetrical group of permutations of order n.

Keywords: hyperring; m-idempotent hyperring; ξm-parts; ξm-complete hyperrings
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1. Introduction

A congruence relation on an algebraic structure is an equivalence relation that is compatible
with the given structure, that is, all operations of the structure are well-defined on the equivalence
classes. The set of the equivalence classes forms the associated quotient structure, that, in the case of
a group, is a quotient group, while in the case of a ring it is a ring. In algebraic hypercompositional
structures, where the operations are substituted by hyperoperations (i.e., multi-valued operations),
this role of the equivalences is played by the strongly regular relations. Such a relation ρ is defined
on a hypergroup (H, ◦) by the property: if aρb and cρd, for a, b, c, d ∈ H, then, for any x ∈ a ◦ c
and any y ∈ b ◦ d, there is xρy. A strongly regular relation on a hyperring R is strongly regular
with respect to both hyperoperations of R. The mathematical concept of hyperring was defined by
M. Krasner [1] in 1956 in the same paper where the hyperfields were introduced in order to solve
an important problem dealing with approximations of complete valued fields by sequences of such
fields. This algebraic hypercompositional structure has a similar behaviour as a ring and it contains
an additive part (R,+), which is a canonical hypergroup and a multiplicative one (R, ·), that is a
semigroup, while the multiplication is bilaterally distributive with respect to the addition. Besides, a
Krasner hyperring is also known as an additive hyperring. There are also other types of hyperrings [2]
and the most general one is the so called general hyperring, introduced by Vougiouklis [3], where both
addition and multiplication are hyperoperations. A short review on the historical part, terminology
and the importance of hyperrings is presented by Massouros [4] or Nakassis [5] in their expository
papers. The quotient structure associated to a hypergroup modulo a strongly regular relation is a group.
This is a strong relationship between hypergroups and groups, that permits to study properties of

Symmetry 2020, 12, 554 ; doi:10.3390/sym12040554 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-9850-1126
https://orcid.org/0000-0002-5182-4136
http://www.mdpi.com/2073-8994/12/4/554 ?type=check_update&version=1
http://dx.doi.org/10.3390/sym12040554 
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 554 2 of 12

hypergroups using already known properties of groups. In 1970 Koskas [6] defined the β-relation and
its transitive closure β∗ on a hypergroup H, proving that it is the smallest (with respect to inclusion)
strongly regular relation on H such that the quotient H/β∗ is a group. The idea was then extended
to the class of hyperrings, where Vougiouklis [3] defined in 1990 a new strongly regular relation, the
Γ-relation, on a general hyperring, such that the quotient structure modulo the transitive closure Γ∗

is a ring. Both associated quotient structures modulo β∗ and Γ∗ are not commutative. That is why,
new strongly regular relations were defined—first the γ-relation on (semi)hypergroups and then the
α-relation on a hyperring in order to obtained commutative quotient structures [7,8]. The same symbol
γ was (unfortunately) used to define two different relations, one on hyperrings, and the other one on
(semi)hypergroups. In order to avoid confusion, some authors, for example see Reference [9], which
prefers denoting the strongly regular relation on hyperrings with capital Γ and we also adopt this
notation in our current study.

Because of their “fundamental role”, that is, connecting hypercompositional structures with
the corresponding classical structures, Vougiouklis [3,10] named all these strongly regular relations
fundamental relations. Thus a fundamental relation defined on a hypercompositional structure is the
smallest equivalence (with respect to inclusion) so that the associated quotient is a classical structure
of the same type of the hypercompositional structure. The fundamental relations β∗ and γ∗ defined on
a (semi)hypergroup H lead to a (semi)group H/β∗ and a commutative (semi)group H/γ∗ as quotient
structure, while the fundamental relations Γ∗ and α∗ on a hyperring are the tool to obtain a ring and
a commutative ring, respectively. In 2017, Norouzi and Cristea [11] introduced a particular class
of hyperrings where the fundamental relation Γ∗ is not anymore the smallest equivalence such that
the associated quotient structure is a ring. On this type of hyperrings they defined the fundamental
relation ε∗m, smaller than Γ∗, but with the associated quotient structure non-commutative in general.
Thereby, the fundamental relation ξ∗m was introduced on such hyperrings, obtaining a commutative
quotient ring [12].

On the other hand, all the above mentioned strongly regular relations are not transitive in general.
Already in 1970 Koskas [6] had studied the transitivity property of the β-relation on hypergroups by
using the complete parts, that were used as open subsets of suitable topologies on hypergroups. So they
play an important role in defining topological hypercompositional structures [13]. Inspired by these
studies, in this article we first define the concept of ξm-part on hyperrings and study it in comparison
with the complete part, α-part and m-complete part. In particular, we find conditions under which
the relation ξm is transitive and prove that the equivalence class, modulo the relation ξm, of any
element of a general hyperring is a ξm-part. Finally, we introduce the class of ξm-complete hyperrings,
characterize them using the ξm-parts and present their connections with complete, α-complete, and
ε-complete hyperrings.

2. Preliminaries on the ξm-Relation on Hyperrings

This section contains the basic definitions and results concerning the ξm-relation on hyperrings
that will be used throughout the paper. For more details about hyperstructures theory, specially
hyperrings, we refer the readers to References [3,10,14,15] and references therein.

Definition 1. [15] An algebraic system (R,+, ·) is said to be a

(1) (general) hyperring, if (R,+) is a hypergroup, (R, ·) is a semihypergroup, and the hypermultiplication · is
distributive with respect to the hyperaddition +. If (R,+) is a semihypergroup, then (R,+, ·) is called a
semihyperring.

(2) Krasner hyperring, if (R,+) is a canonical hypergroup and (R, ·) is a semigroup such that 0 is a zero
element (called also absorbing element), that is, for all x ∈ R, we have x · 0 = 0, and the multiplication · is
distributive over the hyperaddition +.
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On a hyperring R, the Γ-relation was defined by Vougiouklis [3] as follows:

xΓy⇐⇒ ∃n ∈ N, ∃ki ∈ N, ∃zi1, . . . , ziki
∈ R (i = 1, . . . , n) : {x, y} ⊆

n

∑
i=1

(
ki

∏
j=1

zij).

Its transitive closure Γ∗ is the smallest strongly regular relation on R such that the associated
quotient R/Γ∗ is a classical ring, but it is not commutative in general. Later on Davvaz and
Vougiouklis [7] introduced the relation α in order to obtain a commutative quotient ring. First set
α0 = {(x, x) | x ∈ R} and then, for any natural number n, we say that xαny if and only if there exist
k1, . . . , kn ∈ N, a permutation σ ∈ Sn and the elements zi1, . . . , ziki

∈ R and the permutations σi ∈ Ski
,

for 1 ≤ i ≤ n, such that x ∈
n

∑
i=1

(
ki

∏
j=1

zij) and y ∈
n

∑
i=1

Aσ(i), where Ai =
ki

∏
j=1

ziσi(j). Take then α =
⋃

n≥0
αn.

The quotient structure R/α∗ is a commutative ring.
In Reference [11] the authors defined a new relation on (semi)hyperrings , denoted by εm, smaller

than the Γ-relation, such that its transitive closure on a particular class of hyperrings is the smallest
strongly regular relation endowing the quotient set with a ring structure. Let us remember here its
definition. Select a constant m, such that 2 ≤ m ∈ N. For two elements x and y in R, consider xεmy
if and only if {x, y} ⊆ ∑n

i=1 zm
i , for n ∈ N, z1, . . . , zn ∈ R and {(x, x) | x ∈ R} ⊆ εm. If (R,+, ·) is

a hyperring such that (R, ·) is commutative and B ⊆ ∑n
i=1 Am

i implies that there exists xi ∈ Ai for

1 ≤ i ≤ n such that B ⊆
n

∑
i=1

xm
i for all B, A1, . . . , An ⊆ R, then the relation ε∗m is the smallest strongly

regular equivalence on R such that the quotient set R/ε∗m is a ring (not necessary commutative).
Besides, since the quotient ring R/ε∗m is not commutative in general, similar to the role of the α-relation,
in Reference [12], a strongly regular relation, smaller than the α∗-relation, was defined in order to
obtain commutative quotient rings as follows:

(x, y) ∈ ξm ⇐⇒ ∃n ∈ N, ∃z1, . . . , zn ∈ R, ∃σ ∈ Sn : x ∈
n

∑
i=1

zm
i ∧ y ∈

n

∑
i=1

zm
σ(i). (1)

A new type of hyperring (R,+, ·) was introduced, where the transitive closure ξ∗m is strongly
regular. Their multiplicative part is commutative and they satisfy the condition—for any nonempty
subsets B, C, A1, . . . , An of R and a permutation σ ∈ Sn, if B ⊆ ∑n

i=1 Am
i and C ⊆ ∑n

i=1 Am
σ(i), then there

exist xi ∈ Ai, for 1 ≤ i ≤ n, such that

B ⊆
n

∑
i=1

xm
i and C ⊆

n

∑
i=1

xm
σ(i). (2)

The quotient R/α∗ is always a commutative ring [15], while the quotient R/ξ∗m is not commutative
in general [12]. Actually, if (R,+, ·) is an m-idempotent hyperring satisfying relation (2), then ξ∗m is the
smallest strongly regular equivalence relation on R such that the quotient R/ξ∗m is a commutative ring.
In Reference [12], it is shown that the four fundamental relations defined on hyperrings are not equal
in general, but for all m-idempotent Krasner hyperrings, it holds Γ = εm = ξm = α. Moreover, it is
proved that ξm = α on m-idempotent hyperrings satisfying relation (2), which states that the relation
ξ∗m is a new representation for the α∗-relation on m-idempotent hyperrings satisfying relation (2).

3. ξm-Parts and Transitivity of the ξm-Relation

Generally, the ξm-relation is not transitive [12], as well as the relations β, Γ, α, or εm, so there is the
necessity to find a tool, a method to show when these relations are transitive. Koskas was the first to
deal with this problem, which was resolved in Reference [6] by introducing the notion of complete
parts on (semi)hypergroups. A nonempty subset A of a semihypergroup (H, ·) is called a complete
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part of H, if A∩∏n
i=1 ai 6= ∅ implies ∏n

i=1 ai ⊆ A, for any nonzero natural number n and any elements
a1, . . . , an ∈ H. In particular, the equivalence class β∗(x) of any element of H is a complete part of H.

The transitivity property of the Γ-relation was studied by Anvariyeh et al. [16], using complete
parts on hyperrings. A nonempty subset M of ahyperring (R,+, ·) is a complete part of R if from
M ∩ ∑n

i=1

(
∏ki

j=1 zij

)
6= ∅ it follows that ∑n

i=1

(
∏ki

j=1 zij

)
⊆ M, for n, ki ∈ N, i = 1, 2, . . . , n and

zi1, . . . , ziki
∈ R.

Next α-parts [17] were introduced on hyperrings to show when the α-relation [7] is transitive.
A nonempty subset M of a hyperring R is an α-part, if for every n, ki ∈ N, i = 1, 2, . . . , n, zi1, . . . , ziki

∈ R,
σ ∈ Sn and σi ∈ Ski

, there is

n

∑
i=1

(
ki

∏
j=1

zij

)
∩M 6= ∅ =⇒

n

∑
i=1

Aσ(i) ⊆ M,

where Ai = ∏ki
j=1 ziσi(j).

Moreover, the m-complete parts [18] were defined with respect to the transitivity of the εm-relation.
In this case, a nonempty subset M of R is an m-complete part if M ∩ ∑n

i=1 zm
i 6= ∅ implies that

∑n
i=1 zm

i ⊆ M, for a constant 2 ≤ m ∈ N.
In this section, the ξm-part of a hyperring R is introduced in order to establish a condition for

transitivity of the ξm-relation. In this regard, some properties of ξm-parts and some of their differences
from complete parts, m-complete parts and α-parts are presented.

Definition 2. Let M be a nonempty subset of a hyperring R. We say that M is an ξm-part, if ∑n
i=1 zm

i ∩M 6= ∅
implies ∑n

i=1 zm
δ(i) ⊆ M, for every n ∈ N, z1, . . . , zn ∈ R and δ ∈ Sn.

To start with, a characterization of ξm-parts is stated.

Proposition 1. Let R be a hyperring. The following conditions are equivalent:

(i) A nonempty subset M of R is a ξm-part.
(ii) For any x ∈ M with the property xξmy it follows that y ∈ M.

(iii) For any x ∈ M with the property xξ∗my it follows that y ∈ M.

Proof. (i) =⇒ (ii) Let M be a ξm-part of R and xξmy for x ∈ M and y ∈ R. Hence there exist n ∈ N,
z1, . . . , zn ∈ R and δ ∈ Sn such that x ∈ ∑n

i=1 zm
i and y ∈ ∑n

i=1 zm
δ(i). Since x ∈ ∑n

i=1 zm
i ∩M, it follows

that ∑n
i=1 zm

δ(i) ⊆ M and so y ∈ M.
(ii) =⇒ (iii) Let x ∈ M such that xξ∗my. Thus there exist k ∈ N, z0, . . . , zk ∈ R such that z0 = x,

zk = y and x = z0ξmz1ξmz2 . . . ξmzk = y. The following implications hold:

x = z0 ∈ M, z0ξmz1 =⇒ z1 ∈ M,

z1 ∈ M, z1ξmz2 =⇒ z2 ∈ M,
...

zk−1 ∈ M, zk−1ξmzk =⇒ zk = y ∈ M.

(iii) Now, let M be a nonempty subset of R. If ∑n
i=1 zm

i ∩M 6= ∅, then there exists t ∈ ∑n
i=1 zm

i ∩M.
For δ ∈ Sn and every w ∈ ∑n

i=1 zm
δ(i), we have tξmw. Thus t ∈ M and tξ∗mw. By the hypothesis, it

follows that w ∈ M and so ∑n
i=1 zm

δ(i) ⊆ M. Therefore, M is an ξm-part of R.
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Example 1. Consider the hyperring R = {a, b, c, d, e, f , g} as follows:

+ a b c d e f g
a {a, b} {a, b} c d e f g
b {a, b} {a, b} c d e f g
c c c {a, b} f g d e
d d d g {a, b} f e c
e e e f g {a, b} c d
f f f e c e g {a, b}
g g g d e c {a, b} f

and define x · y = {a, b} for every x, y ∈ R. Then, ξm(a) = {a, b} and ξm(x) = {x} for all x ∈ R \ {a, b}.
By Proposition 1, we can see that M = {a, b, c} is a ξm-part, but N = {a} is not a ξm-part of R, for any m ≥ 2.

Proposition 2. Every α-part is a ξm-part, for every 2 ≤ m ∈ N.

Proof. Proposition 1 is similarly valid for the α-relation and α-parts ([15]). Therefore, the proof is
completed because ξm ⊆ α.

In the following example we can see that the converse of Proposition 2 is not generally valid:

Example 2. In the hyperring R defined in Example 1, the set M = {a, b, f } is a ξm-part, but it is not an α-part
because α( f ) = {a, b, f , g}, with f ∈ M, while f αg and g 6∈ M.

Proposition 3. Every ξm-part is an m-complete part, for every 2 ≤ m ∈ N.

Proof. It follows immediately by using δ = id ∈ SN in the definition of ξm-parts.

The following example shows that the converse of Proposition 3 is not valid. Moreover, we can
see that ξm 6= εm.

Example 3. On the set R = {a, b} define the following hyperoperations

+ a b
a {a} {a}
b {b} {b}

· a b
a {a} {a}
b {a} {b}

Then (R,+, ·) is a noncommutative semihyperring. Put m = 2, hence ∑n
i=1 z2

i = {a} or {b}, for every
z1, . . . , zn ∈ R. Thus, ∑n

i=1 z2
i ∩ {a} 6= ∅ implies ∑n

i=1 z2
i ⊆ {a}, and so {a} is a 2-complete part of R. But,

a2 +
(
b2 + b2) = {a} and so [a2 +

(
b2 + b2)] ∩ {a} 6= ∅, while

(
b2 + a2)+ b2 = {b} 6⊆ {a}. Therefore,

{a} is not a ξ2-part of R. Moreover, we have ε2(a) = {a} and ξ2(a) = {a, b}, which implies that ε2 6= ξ2.

It is easy to see that Proposition 1 is valid also to characterize complete parts with respect to the
Γ-relation on hyperrings. That is, a nonempty subset M is a complete part if and only if, for any x ∈ M
such that xΓy it follows that y ∈ M, equivalently with, for any x ∈ M such that xΓ∗y it follows that
y ∈ M.

Example 4. Consider the hyperring R in Example 1 and the subset M = {c, d}. It can be seen that M is a
complete part and also a ξm-part, but is not an α-part, since eαd, but e 6∈ M.

Comparing the definitions of the complete parts and m-complete parts, it is easy to see that
a complete part of every (semi)hyperring is an m-complete part. But the converse implication is
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not generally true [18]. Besides, from the following example, we can state that not all ξm-parts are
complete parts.

Example 5. Consider the following hyperoperations on the set R = {a, b, c, d}:

+ a b c d
a {b, c} {b, d} {b, d} {b, d}
b {b, d} {b, d} {b, d} {b, d}
c {b, d} {b, d} {b, d} {b, d}
d {b, d} {b, d} {b, d} {b, d}

· a b c d
a {b, d} {b, d} {b, d} {b, d}
b {b, d} {b, d} {b, d} {b, d}
c {b, d} {b, d} {b, d} {b, d}
d {b, d} {b, d} {b, d} {b, d}.

Then, (R,+, ·) is a semihyperring. We have ∑n
i=1 zm

i = {b, d} = ∑n
i=1 zm

δ(i) for all z1, . . . zn ∈ R, δ ∈ SN

and 2 ≤ m ∈ N. Hence, M = {a, b, d} is an m-complete part and also a ξm-part, but it is not a complete part of
R since bΓc, but c 6∈ M.

Example 6. Consider the hyperring R = {a, b} in Example 3, where M = {a} is not a ξ2-part, but it is a
complete part of R since Γ(a) = {a}.

By the above mentioned examples about various type of complete parts in a hyperring, the
connections between complete parts, m-complete parts, α-parts and ξm-parts in hyperrings may be
represented as in Figure 1 .

Figure 1. Generalizations of complete parts.

Theorem 1. Let R be an m-idempotent hyperring (for 2 ≤ m ∈ N) satisfying condition (2). Then a nonempty
subset M of R is a ξm-part if and only if M is an α-part of R.

Proof. By Proposition 2, every α-part is a ξm-part.
Now, let M be a ξm-part such that M ∩∑n

i=1 ∏ki
j=1 zij 6= ∅, for n, ki ∈ N, 1 ≤ i ≤ n, 1 ≤ j ≤ ki, and

arbitrary elements zij ∈ R. Since R is an m-idempotent hyperring, it follows that zij ∈ zm
ij for every i, j,

thus ∑n
i=1 ∏ki

j=1 zij ⊆ ∑n
i=1

(
∏ki

j=1 zij

)m
and

n

∑
i=1

kσ(i)

∏
j=1

zσ(i)σσ(i)(j) ⊆
n

∑
i=1

kσ(i)

∏
j=1

zσ(i)σσ(i)(j)

m

=
n

∑
i=1

kσ(i)

∏
j=1

zσ(i)j

m

,

for every σ ∈ Sn. Set Ai = ∏ki
j=1 zij and Aσ(i) = ∏

kσ(i)
j=1 zσ(i)(j). Thus we have

n

∑
i=1

ki

∏
j=1

zij ⊆
n

∑
i=1

Am
i and

n

∑
i=1

kσ(i)

∏
j=1

zσ(i)σσ(i)(j) ⊆
n

∑
i=1

Am
σ(i),
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and by condition (2) there exist ti ∈ Ai (and tσ(i) ∈ Aσ(i)) such that ∑n
i=1 ∏ki

j=1 zij ⊆ ∑n
i=1 tm

i . So

M∩∑n
i=1 tm

i 6= ∅ and we have ∑n
i=1 tm

σ(i) ⊆ M because M is an ξm-part. Hence, ∑n
i=1 ∏

kσ(i)
j=1 zσ(i)σσ(i)(j) ⊆

M, which means that M is an α-part.

Now we are starting the process of finding conditions under which the ξm-relation is transitive.
For this, first we define the following set for every element x in R and 2 ≤ m ∈ N.

Am(x) =
⋃{

n

∑
i=1

zm
σ(i)

∣∣ x ∈
n

∑
i=1

zm
i , z1, . . . , zn ∈ R, σ ∈ Sn, n ∈ N

}
.

Then, we obtain a different characterization of the set Am(x).

Lemma 1. Am(x) = {y ∈ R | xξmy}, for every x ∈ R.

Proof. For any arbitrary elements x, y ∈ R such that xξmy, there exist n ∈ N, z1, . . . , zn ∈ R and
σ ∈ Sn such that x ∈ ∑n

i=1 zm
i and y ∈ ∑n

i=1 zm
σ(i). Thereby there exists n ∈ N such that y ∈ Am(x),

that is, {y ∈ R | yξmx} ⊆ Am(x). On the other hand, if y ∈ Am(x), then there exists n ∈ N such
that y ∈ ∑n

i=1 zm
σ(i) for σ ∈ Sn, n ∈ N, z1, . . . , zn ∈ R and x ∈ ∑n

i=1 zm
i , which means that xξmy. This

completes the proof.

Theorem 2. Let R be a hyperring. If ξm is transitive, then Am(x) = ξ∗m(x), for every x ∈ R.

Proof. If ξm is transitive, then ξm = ξ∗m. By Lemma 1, we have y ∈ ξ∗m(x), equivalently with xξ∗my if
and only if y ∈ Am(x).

The next result states a necessary condition for the set Am(x) to be a ξm-part of R.

Theorem 3. Let R be a hyperring and x ∈ R. If Am(x) = ξ∗m(x), then Am(x) is a ξm-part of R.

Proof. Let z1, . . . , zn ∈ R and σ ∈ Sn such that ∑n
i=1 zm

i ∩Am(x) 6= ∅ and take y ∈ ∑n
i=1 zm

σ(i). Hence,
there exists t ∈ ∑n

i=1 zm
i ∩ Am(x) such that tξmy which implies that tξ∗my. Then y ∈ ξ∗m(t). Also,

t ∈ Am(x) = ξ∗m(x) and thus ξ∗m(t) = ξ∗m(x). It follows that y ∈ ξ∗m(x) = Am(x), implying that
∑n

i=1 zm
σ(i) ⊆ Am(x). This proves that Am(x) is a ξm-part of R.

In the next result the transitivity of the ξm-relation is discussed.

Theorem 4. Let R be hyperring and x ∈ R. If Am(x) is a ξm-part, then ξm is transitive.

Proof. Let x, y, z ∈ R such that xξmy and yξmz. Since x ∈ Am(x), by Lemma 1, it follows that
y ∈ Am(x). And using once again Lemma 1 we obtain z ∈ Am(x), implying zξmx. Therefore,
ξm is transitive.

Summarizing the above theorems we can discuss the transitivity property of the ξm-relation on
hyperrings by the next result.

Corollary 1. Let R be a hyperring. Then the following statements are equivalent:

(1) The ξm-relation is transitive;
(2) ξ∗m(x) = Am(x), for all x ∈ R;
(3) The set Am(x) is a ξm-part of R, for every x ∈ R.
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4. ξm-Complete Hyperrings

In this section, the concept of ξm-complete hyperrings is introduced by meaning of the ξm-relation
and some characterizations are provided using properties of ξm-parts. We present several examples
that illustrate the fact that ξm-complete hyperrings are different from εm-complete hyperrings and
αn-complete hyperrings.

Let recall first the definition of n-complete hyperrings, αn-complete hyperrings and
εm-complete hyperrings.

For an arbitrary natural number n, a hyperring R is said to be an n-complete hyperring ([17]) if

Γ

(
n

∑
i=1

ki

∏
j=1

zij

)
=

n

∑
i=1

ki

∏
j=1

zij,

for all ki ∈ N and zi1, . . . , ziki
∈ R.

R is called an αn-complete hyperring [17] if, for all ki ∈ N, zi1, . . . , ziki
∈ R, σ ∈ Sn and σi ∈ Ski

with
1 ≤ i ≤ n, there is

α

(
n

∑
i=1

ki

∏
j=1

zij

)
=

n

∑
i=1

Aσ(i),

where Ai = ∏ki
j=1 ziσi(j).

For any natural number m, 2 ≤ m ∈ N, the hyperring R is an εm-complete hyperring if

εm

(
n

∑
i=1

zm
i

)
=

n

∑
i=1

zm
i ,

for all z1, . . . , zn ∈ R and n ∈ N.
Similarly, we can define the concept of ξm-complete hyperrings based on ξm-relation as follows.

Definition 3. For any natural number m, 2 ≤ m ∈ N, we say that a (semi)hyperring R is ξm-complete, if it
satisfies the condition

ξm

(
n

∑
i=1

zm
i

)
=

n

∑
i=1

zm
σ(i),

for any n ∈ N, arbitrary elements z1, . . . , zn ∈ R and an arbitrary permutation σ ∈ Sn.

Example 7. Consider the hyperring (R,+, ·) in Example 1. We can see that

n

∑
i=1

zm
i = {a, b} =

n

∑
i=1

zm
σ(i) and ξm({a, b}) = {a, b},

for arbitrary m, n ∈ N, σ ∈ Sn and z1, . . . , zn ∈ R. So, R is a ξm-complete hyperring.

Example 8. Consider now the semihyperring (R,+, ·) in Example 3. Since a2 + (b2 + b2) = {a} and
(b2 + a2) + b2 = {b}, it follows that ξ2(a) = R and so

ξ2(a2 + (b2 + b2)) = R 6= {b} = (b2 + a2) + b2.

Therefore R is not ξ2-complete.

Corollary 2. Every αn-complete hyperring is a ξm-complete hyperring.
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Proof. Let R be an αn-complete hyperring. For all 1 ≤ i ≤ n, take zi1 = . . . = ziki
= zi elements

in R, Id = σi ∈ Ski
the identical permutation, and ki = m. Then ∑n

i=1 ∏ki
j=1 zij = ∑n

i=1 zm
i and

∑n
i=1 Aσ(i) = ∑n

i=1 zm
σ(i), where Ai = ∏ki

j=1 ziσi(j). Hence,

ξm

(
n

∑
i=1

zm
i

)
⊆ α

(
n

∑
i=1

ki

∏
j=1

zij

)
=

n

∑
i=1

Aσ(i) =
n

∑
i=1

zm
σ(i).

Clearly, ∑n
i=1 zm

σ(i) ⊆ ξm
(
∑n

i=1 zm
i
)
. This completes the proof.

Generally, a ξm-complete hyperring is not an αn-complete hyperring, as illustrated by the
following example.

Example 9. Consider the hyperring R in Example 1. We know by Example 7 that R is an ξm-complete
hyperring. Since we have α(a) = {a, b, f , g}, it follows that

α(a + a) = α({a, b}) = α(a) ∪ α(b) = {a, b, f , g} 6= a + a.

Hence the hyperring R is not α2-complete.

For any m, 2 ≤ m ∈ N, we say that a hyperring R is strongly m-idempotent, if xm = {x}, for every
x ∈ R. It is known [12] that ξm = α in any m-idempotent hyperring satisfying condition (2). Then, we
can present the converse case of Corollary 2.

Theorem 5. Any strongly m-idempotent hyperring satisfying condition (2) that is ξm-complete is also an
αn-complete hyperring, for every n ∈ N.

Proof. Let R be a strongly m-idempotent hyperring satisfying condition (2) and such that R is
ξm-complete. For every n, ki ∈ N, 1 ≤ i ≤ n, zi1, . . . , ziki

∈ R, σ ∈ Sn and σi ∈ Ski
, let

x ∈ α
(

∑n
i=1 ∏ki

j=1 zij

)
. This means that there exists y ∈ ∑n

i=1 ∏ki
j=1 zij such that x ∈ α(y). Since R

is a strongly m-idempotent hyperring, it follows that

n

∑
i=1

ki

∏
j=1

zij ⊆
n

∑
i=1

(
ki

∏
j=1

zij

)m

,

n

∑
i=1

kσ(i)

∏
j=1

zσ(i)σσ(i)(j) ⊆
n

∑
i=1

kσ(i)

∏
j=1

zσ(i)σσ(i)(j)

m

=
n

∑
i=1

kσ(i)

∏
j=1

zσ(i)j

m

.

Put Ai = ∏ki
j=1 zij and Aσ(i) = ∏

kσ(i)
j=1 zσ(i)(j). Then, by condition (2), there exist ti ∈ Ai for every

1 ≤ i ≤ n (and tσ(i) ∈ Aσ(i) for σ ∈ Sn) such that

n

∑
i=1

(
ki

∏
j=1

zij

)
⊆

n

∑
i=1

tm
i and

n

∑
i=1

kσ(i)

∏
j=1

zσ(i)σσ(i)(j)

 ⊆ n

∑
i=1

tm
σ(i).
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Hence,

α(y) ⊆ α

(
n

∑
i=1

ki

∏
j=1

zij

)
⊆ α

(
n

∑
i=1

tm
i

)
=

n

∑
i=1

tm
σ(i)

⊆
n

∑
i=1

kσ(i)

∏
j=1

zσ(i)σσ(i)(j)

m

=
n

∑
i=1

kσ(i)

∏
j=1

zσ(i)σσ(i)(j).

Therefore, α
(

∑n
i=1 ∏ki

j=1 zij

)
⊆ ∑n

i=1 ∏
kσ(i)
j=1 zσ(i)σσ(i)(j). This concludes that R is an

αn-complete hyperring.

In the following, we discuss the relationship between ξm-complete hyperrings and
εm-complete hyperrings.

Corollary 3. Every ξm-complete hyperring is an εm-complete hyperring.

Proof. The proof follows immediately from the definition of a ξm-complete hyperring, taking the
permutation σ = Id ∈ Sn.

Clearly if R is a commutative hyperring, then we have ξm = εm and so any εm-complete
hyperring is ξm-complete. But the converse of Corollary 3 is not valid in general, as shown in
the following example.

Example 10. Consider the hyperring R in Example 3. By Example 8, we know that R is not a ξ2-complete
hyperring. Besides we have ∑n

i=1 z2
i = {c} or { f } or {d} or {b, e}, for all zi ∈ R and 1 ≤ i ≤ n. On the

other side, one founds that ε2(c) = {c}, ε2( f ) = { f }, ε2(d) = {d} and ε2({b, e}) = {b, e}. Hence,
ε2(∑n

i=1 z2
i ) = ∑n

i=1 z2
i , meaning that R is an ε2-complete hyperring.

We conclude this study with a characterization of ξm-complete hyperrings based on the notion
of ξm-parts.

Theorem 6. A hyperring R is ξm-complete if and only if ξm(x) = ∑n
i=1 zm

σ(i) for all x ∈ ∑n
i=1 zm

i where n ∈ N,
z1, . . . , zn ∈ R and σ ∈ Sn.

Proof. Let R be a ξm-complete hyperring and take an arbitrary x ∈ ∑n
i=1 zm

i . Then

ξm(x) ⊆ ξm

(
n

∑
i=1

zm
i

)
=

n

∑
i=1

zm
σ(i).

Moreover, if y ∈ ∑n
i=1 zm

σ(i), then xξmy, because x ∈ ∑n
i=1 zm

i . Hence, y ∈ ξm(x) and so ξm(x) =
∑n

i=1 zm
σ(i).

Conversely, by hypothesis we have

ξm

(
n

∑
i=1

zm
i

)
=

⋃
x∈∑n

i=1 zm
i

ξm(x) =
n

∑
i=1

zm
σ(i).

Therefore, R is a ξm-complete hyperring.

Theorem 7. Let R be a ξm-complete hyperring for any m, 2 ≤ m ∈ N. Then ∑n
i=1 zm

σ(i) is a ξm-part of R, for
every n ∈ N, z1, . . . , zn ∈ R and σ ∈ Sn.
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Proof. For k ∈ N and x1, . . . , xk ∈ R, let ∑k
i=1 xm

i ∩ ∑n
i=1 zm

σ(i) 6= ∅. Then there exists y ∈ ∑k
i=1 xm

i ∩
∑n

i=1 zm
σ(i). For every u ∈ ∑k

i=1 xm
δ(i), with δ ∈ Sk, we have uξmy. Hence,

u ∈ ξm(y) = ξm(
n

∑
i=1

zm
σ(i)) =

n

∑
i=1

zm
σ(i),

and there by ∑k
i=1 xm

σ(i) ⊆ ∑n
i=1 zm

σ(i) which implies that ∑n
i=1 zm

σ(i) is a ξm-part of R.

5. Conclusions

Ten years after the introduction of the fundamental relation α∗ in [7] on general hyperrings,
Norouzi and Cristea [11] defined a new class of m-idempotent hyperrings satisfying a certain condition,
where α∗ is no longer the smallest strongly regular relation such that the associated quotient structure
is a commutative ring. For this reason, they introduced the ξ∗m-relation, as the transitive closure of
the ξm-relation, as a fundamental relation on such hyperrings. Since ξm is not generally transitive,
it is useful to find conditions under which the transitivity property holds, too. In this respect, the
well-known tool of complete parts has been studied in this paper, but in a general form. After defining
the ξm-parts and presenting the relationships with complete parts, m-complete parts, and α-parts, the
study has focused on finding conditions when ξm is transitive. The second part of the article has dealt
with the study of ξm-complete hyperrings and their connections with αn- and εm-complete hyperrings.
The results have been supported by illustrative examples.
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