
UNIVERSIDAD DE ALMERIA

ESCUELA SUPERIOR DE INGENIERÍA

TRABAJO FIN DE GRADO

Curso 2018/2019

Alumno/a:

Director/es:

MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

Ramón Huesa Amat

José Luis Blanco Claraco

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

GENERAL
CONTENT

Ramón Huesa Amat I

TECHNICAL PAPER.

MICROCONTROLLER-BASED WIRELESS

PEDOMETER PROTOTYPE DESIGN

Ramón Huesa Amat

31/05/2019

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

GENERAL
CONTENT

Ramón Huesa Amat II

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

GENERAL
CONTENT

Ramón Huesa Amat III

GENERAL CONTENT

DOCUMENT 1. REPORT... - 1 -

CHAPTER 1. INTEREST AND OBJECT .. - 5 -

1 INTEREST .. - 7 -

2 OBJECT ... - 8 -

3 SYSTEM OVERVIEW ... - 9 -

CHAPTER 2. COMPONENTS... - 11 -

1 ARDUINO BOARD ...- 13 -

2 MPU-6050 ACCELEROMETER+GYRO ...- 22 -

3 XBEE ...- 27 -

4 0.96’ OLED DISPLAY ..- 32 -

5 POWER SUPPLY ..- 35 -

6 TP4056 CHARGER MODULE ...- 38 -

7 OTHER COMPONENTS ..- 40 -

CHAPTER 3. SOFTWARE .. - 43 -

1 IDE ARDUINO ..- 45 -

2 XCTU ..- 51 -

3 MATLAB ...- 55 -

CHAPTER 5. ORGANIZATION CHART AND DEVELOPMENT PHASES ... - 57 -

CHAPTER 6. RESULTS AND CONCLUSIONS .. - 61 -

1 INTRODUCTION ..- 63 -

2 HARDWARE ...- 63 -

3 SOFTWARE ..- 63 -

4 DEVELOPMENT...- 64 -

CHAPTER 7. BIBLIOGRAPHY .. - 65 -

DOCUMENT 2. ANNEXES .. - 1 -

ANNEX 1. CODE .. - 5 -

1 MPD FOR TESTS ... - 7 -

2 MATLAB TESTS CODE ... - 9 -

3 MPD SPEED ..- 11 -

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

GENERAL
CONTENT

Ramón Huesa Amat IV

4 MPD_M ..- 13 -

5 MPD ...- 15 -

6 MATLAB DISPLAY ...- 17 -

7 UID ...- 19 -

8 LICENSE ..- 21 -

ANNEX 2. ASSEMBLY AND DRAWINGS ... - 23 -

1 MPD ...- 25 -

2 UID ...- 31 -

3 BUDGET ..- 33 -

ANNEX 3. COMMUNICATION PROTOCOLS ... - 35 -

1 COMMUNICATION SCHEMATIC ..- 37 -

2 SERIAL TTL COMMUNICATION ...- 39 -

3 I2C COMMUNICATION ..- 43 -

4 IEEE 802.15.4 ...- 46 -

5 AT MODE ...- 46 -

ANNEX 4. ALGORITHM DEVELOPMENT .. - 47 -

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 1

DOCUMENT 1.
REPORT

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 2

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 3

CONTENT

DOCUMENT 1. REPORT... - 1 -

CHAPTER 1. INTEREST AND OBJECT .. - 5 -

1 INTEREST .. - 7 -

2 OBJECT ... - 8 -

3 SYSTEM OVERVIEW ... - 9 -

CHAPTER 2. COMPONENTS... - 11 -

1 ARDUINO BOARD ...- 13 -

1.1 Microcontroller ... - 13 -

1.2 Board ... - 14 -

1.3 Arduino Nano Characteristics ... - 15 -
1.3.1 Processor ... - 15 -
1.3.2 Power .. - 16 -
1.3.3 Memory ... - 17 -
1.3.4 Hardware Connection.. - 18 -
1.3.5 Supported Communication Protocols ... - 20 -

2 MPU-6050 ACCELEROMETER+GYRO ...- 22 -

2.1 Breakout boards .. - 22 -
2.1.1 Hardware Connection.. - 23 -

2.2 Characteristics ... - 23 -

2.3 Programming .. - 24 -
2.3.1 Wire() Library... - 25 -
2.3.2 Advance Programing Possibilities .. - 25 -

2.4 Code .. - 26 -

3 XBEE ...- 27 -

3.1 Models .. - 27 -
3.1.1 Hardware Connection.. - 28 -

3.2 Communication protocol ... - 29 -

3.3 XBee USB ... - 30 -

3.4 Adaptor Module .. - 30 -

4 0.96’ OLED DISPLAY ..- 32 -

4.1 Characteristics ... - 32 -

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 4

4.1.1 Hardware Connection.. - 33 -

4.2 Arduino libraries .. - 33 -

4.3 Programming .. - 34 -

5 POWER SUPPLY ..- 35 -

5.1 LITHIUM-ION BATTERY .. - 35 -

5.2 Features .. - 36 -

5.3 Manufacturer’s Recommendations ... - 36 -

6 TP4056 CHARGER MODULE ...- 38 -

6.1 Hardware Connection ... - 39 -

6.2 Characteristics ... - 39 -

7 OTHER COMPONENTS ..- 40 -

7.1 Toggle Switch Handle .. - 40 -

7.2 External Protection.. - 40 -

7.3 Buckle Webbing Ending Clip .. - 41 -

CHAPTER 3. SOFTWARE .. - 43 -

1 IDE ARDUINO ..- 45 -

1.1 User Interface .. - 45 -

1.2 Program code Schematic .. - 46 -

1.3 Configuring Arduino IDE .. - 47 -

1.4 MPD Code ... - 47 -
1.4.1 Set up .. - 48 -
1.4.2 Raw values ... - 48 -
1.4.3 Software Serial .. - 49 -
1.4.4 Code for tests .. - 50 -
1.4.5 Code for the final MPD .. - 50 -

2 XCTU ..- 51 -

2.1 Console .. - 52 -

2.2 Configuring the XBee... - 53 -

3 MATLAB ...- 55 -

3.1 Plotting .. - 56 -

3.2 Code .. - 56 -

CHAPTER 5. ORGANIZATION CHART AND DEVELOPMENT PHASES ... - 57 -

CHAPTER 6. RESULTS AND CONCLUSIONS .. - 61 -

1 INTRODUCTION ..- 63 -

2 HARDWARE ...- 63 -

3 SOFTWARE ..- 63 -

4 DEVELOPMENT...- 64 -

CHAPTER 7. BIBLIOGRAPHY .. - 65 -

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 5

CHAPTER 1.
 INTEREST AND OBJECT

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 6

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 7

1 Interest

Pedometers have been used for years by amateur athletes, as well as other people

concerned about their health who want to measure their physical activity and their Total

Daily Energy Expenditure (TDEE), which is highly influenced by the overall number of steps

taken per day [1].

The part of the caloric rate that is independent from exercise can be divided into

three main components:

Basal Metabolic Rate (BMR), which is the energy needed for basic body processes

such as vital organ functions.

Non-exercise Activity Thermogenesis (NEAT), represents the calories that are burnt

from all the movements done during the day that are not considered exercise.

Thermic Effect of Food (TEF). Food digestion is a process that needs energy. Certain

food burns more calories than other. The TEF is a percentage of eaten calories.

NEAT is the component that can be influenced the easiest. Therefore, measuring this

activity combined with an adequate diet is an interesting tool for controlling one’s body fat

percentage and thus preventing obesity, which is one of the main health issues in the

developed world. The pedometer can be a useful device in that matter, as it seems to

encourage people to do more walking [2].

The benefits of physical activity depend on three elements: intensity, duration and

frequency of exercise.

Comparing two basic kinds of exercises such as running and walking, it is easily

appreciable that walking frequency and duration must be increased so its lower intensity is

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 8

balanced. That makes running seem much more time-efficient but if transitions such as the

extra warm-up, cool-down and changes of clothing and shoes that runners need are

weighted, the time difference narrows considerably. If risk of injury is also considered,

walking must be chosen as the best option for the average person as highly combinable with

people life style as well.

2 Object

Nowadays, there are plenty of different models of pedometers, some of those being

embedded in more complex devices such as mobile phones.

The goal of this project has been to develop a pedometer prototype composed of

two separated devices with wireless communication. The first one is hooked to the hip at the

border of the user’s trousers, skirt or any other garment with a similar top border. This

device is called the Measurement Portable Device (MPD) and it will be capable of detecting

steps taken by the carrier. MPD sends data wirelessly to the other device whose name is

User Interactive Displayer (UID), the UID is an interactive display with buttons that makes

the user capable of selecting the specific data desired to be displayed, carried in the user’s

pocket so it can be checked by the user in one hand showing the information on the display.

 The MPD comprises an Arduino microcontroller board, accelerometer, wireless

communication system, direct tension supply, and protective and connective parts.

 The UID comprises an Arduino microcontroller board, display, wireless

communication, direct tension supply, and protective and connective parts.

 This project is built on an Arduino board due to its easy programmability and

because, as a prototype, Arduino boards are ready to be programmed and that hasten the

overall process. Also due to the extended use of Arduino, it is easy to find a wide variety of

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 9

tutorials and open-source software and hardware, which makes learning much easier for

beginners.

It is important to understand that this project contains not only the manual to

implement an application of the Arduino board, the other peripherals and the computer

software provides, but also an introduction to microcontroller programming and automatic

systems, which may be made extensive to a wider range of possibilities for other engineering

projects.

3 System overview

The basis of the system is the MPU, which works detecting steps and sending

information to the displaying system. The MPD is designed to communicate in two different

modes attending to the way in which this information from the MPD is displayed:

In one of these modes, the MPD communicates with the PC and the information is

processed and displayed with Matlab (Figure 1).

Figure 1. MPD communication with the PC.

In the other mode, the MPD communicates with the UID. The UID displays the information

on the OLED display (Figure 2).

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 10

Figure 2. MPD communication with the UID.

In both cases there is one-way communication from the MPD to rather the PC or the UID.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 11

CHAPTER 2.
COMPONENTS

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 12

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 13

This chapter will introduce the components used in the hardware of both devices

(MPD and UID). The overall working systems of every component will be explained as well as

its configuration method in order to expose not only the current function in this project but

also other possible alternatives for future changes.

1 ARDUINO BOARD

Arduino board is the chosen microcontroller for this project for three main reasons:

 Easy programming environment

 Large amount of learning resources available online (tutorials, forums and example

sketches).

 Fast starting with Arduino boards which do not require any extra components but the

PC (with IDE Arduino free software installed), USB cable and the board.

1.1 Microcontroller

Most Arduino boards are built on AVR microcontrollers Atmel-8 bits (ATmega8,

ATmega168, ATmega328, ATmega1280, and ATmega2560), each model is featured by

different memory size, number of pins and functions. For each microprocessor there are

several boards in the market fitting different resources requirements.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 14

Figure 3. ATmega 168 chip [3].

The microprocessor used in this design is ATmega168 (Figure 3). Arduino Nano also

offers the ATmega328 but due to the little memory required in this processing, ATmega168

smaller memory size is not a limiting factor.

1.2 Board

In the market found different board models by Arduino can be. Some of the most

popular ones are Mini, Nano, UNO and Mega. Each of them expand their size, functions, pin

numbers and memory size to adapt to more demanding projects. Because of the power

consumption, size and price, the most adequate board for a project is the smaller one that

complies with the requirements for its purpose.

We will be using Arduino Nano (figure 4) as the microcontroller in this project due to

its small size and the low amount of pins needed for the design.

Figure 4. Arduino Nano V3.1 board [4].

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 15

1.3 Arduino Nano Characteristics

 The Characteristics of the Arduino Nano microcontroller are further explained

in their official website [5]. For this project, it necessary to highlight the points that follow:

The ATmega168p used in this project has the following processor features:

Program Memory Type Flash

Program Memory Size 16KB

CPU Speed (MIPS/DMIPS) 20

SRAM Bytes 1,024

Data EEPROM/HEF 512 bytes

Digital Communication Peripherals 1-UART, 2-SPI, 1-I2C

Capture/Compare/PWM Peripherals 1 Input Capture, 1 CCP, 6PWM

Timers 2 x 8-bit, 1 x 16-bit

Number of Comparators 1

Temperature Range -40 to 85 ºC

Operating Voltage Range 1.8 to 5.5 V

Pin Count 30

Table 1. Arduino Nano characteristics.

1.3.1 Processor

The Atmel ATmega48/88/168 is a low-power CMOS 8-bit microcontroller based on

the AVR-8 architecture [6]. Figure 5 shows the AVR-8 architecture.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 16

Figure 5. Block diagram of Arduino Nano AVR-8 architecture [6].

The Harvard architecture stores instructions and data in separate memory units that

are connected by different busses. There are at least two memory address spaces to work

with, so there is a memory register for machine instructions and another memory register

for data. Controllers designed with the Harvard architecture are able to run a program and

access data independently, and therefore simultaneously [7].

AVR is based in modified Harvard architecture. This variation of the Harvard computer

architecture allows the contents of the instruction memory to be accessed as if it were data.

Board clock speed is 16MHz from the oscillator whereas

ATmega48P/88P/168P/328 varies in the range of 0 - 20 MHz when the power supply

is 2.7 - 5.5V.

1.3.2 Power

Arduino Nano has 3 options for power supply:

https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Harvard_architecture

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 17

 Mini-B USB connection

 Pin 30, 6-20V unregulated (7-12V recommended)

 Pin 27, 5V regulated

Figure 6. Arduino Nano Schematic [8].

As figure 6 shows, the voltage from Vin is converted into 5V connected to the +5V

pin, this pin can be used both as input and as output. Pin +5V is connected to USB as well.

Arduino power consumption is 19mA if no other peripheral is fed by the board.

1.3.3 Memory

Arduino as others AVR microcontrollers from Atmel have 3 different embedded

memories: Flash, SRAM and EEPROM [9]

 SRAM (static random access memory): Used for local variables and partial data. It is

the memory zone used by the sketch to create and manipulate the variables when it is

executed. It is a limited resource and it must be supervised as not to be exhausted.

 EEPROM: Non-volatile memory used to keep data after a reset. It can be saved from

the microcontroller program, usually as “program constant”.

This memory is slightly slower than SRAM and it is more difficult to be used.

 Flash: It is the program memory where the already compiled sketch is saved. The

bootloader is also saved here which will enable the PC to write on this memory. The program

is executed from the Flash memory but data cannot be changed there. They must be copied

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 18

to the SRAM in order to modify them. As the EEPROM, Flash memory is not volatile and the

information persists after turning the Arduino off.

1.3.4 Hardware Connection

The Arduino Nano has 8 analog inputs and 14 digital I/O pins, as well as other 8 pins

that cannot be configured in the same way as the others (Schematics in Figure 7).

Figure 7. Arduino Nano V3 pins schematic [10].

Digital pins

Arduino has 14 digital pins numbered from 0 to 13 (Figure 5, orange) which can be

set rather as inputs or outputs. Each pin can provide and receive a maximum of 40mA (20mA

is the recommended maximum) and operates at 5V. They also have an internal pull-up

resistor of 20-50kΩ. Some of these pins have also a specialised function:

Serial: Pin 0 (Rx) and 1 (Tx) are used to receive and transmit TTL serial data. These

pins are connected to the FTDI USB-to-TTL Serial chip, in such a way, that they

share the same channel with the USB port.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 19

External interrupts: Pins 2 and 3. These pins can be configured to trigger an interrupt

on a low value, a rising or falling edge, or a change in value.

PWM: Pins 3 to 6 and pins 9 to 11 provide an 8-bit digital signal oscillating at high

speed low and high so this output behaviour can resemble an analog signal. This technique is

known as PWM (pulse-width modulation).

SPI: Pins 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK) support SPI communication, which

despite not being included in the Arduino language, is provided by the underlying hardware.

LED: Pin 13 is connected to a built-in LED. This LED is on when pin 13 is high and it is

off when pin is low.

Analog pins

Nano has 8 analog pins (Figure 5, blue) operating just as inputs, each of which

internally convert the signal into 10-bit digital signal. By default they measure from ground

to 5V but that can be easily configured to another subrange in between these limits by using

AREF pin. They also can be used as digital pins apart from the exception of analog pins 6 and

7. Some of these pins have also a specialised function:

I2C: Pins A4 (SDA) and A5 (SCL) support I2C communication using Wire library.

Other pins

Other 8 pins with other functions can be found on the board:

AREF: Reference voltage for the analog inputs.

Reset: 2 pins that will reset microcontroller when any of them is brought to low

state.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 20

Power: 7-12V recommended input voltage (lower supply is accepted reducing

functionality).

Voltage source: 2 pins with 5V and 3.3V output voltage.

Ground: 2 ground pins used as the 0V reference.

1.3.5 Supported Communication Protocols

Arduino Nano has various facilities to communicate with a computer or another

microcontroller:

UART: The ATmega microcontroller provides UART TTL serial communication

available on digital pins 0 (Rx) and 1 (Tx).

USB: Arduino Nano can communicate through the USB as COM port channelled by an

FTDI FT232RL on the board and a FTDI driver in Arduino software. A serial monitor is also

included in the software, which allow sending and receiving textual data from the Arduino

board.

LEDs: The Rx and Tx LEDs on the board will flash when FTDI chip sends data through

the USB connection to the computer.

Serial: The SoftwareSerial() library allows for serial communication in any of the

Nano’s digital pins (later used in this project code). For the MPD, the Arduino use digital pins

5 and 6 to contact in Serial Mode to the XBee using SoftwareSerial library. It is explained in

detail on chapter 3.

I2C: The ATmega also support a I2C bus communication easy to be used with Wire()

library include in Arduino software

SPI: SPI communication is also included in ATmega, every Arduino model support SPI

communication in different pins in the Arduino Nano SPI is used in digital pin from 10 to 13.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 21

Arduino SPI.h library allows an easy use, and SCK, MOSI, MISO and SS are included as

constant so the code can be interchangeable between different Arduino models.

1.1.1 Programming

The Arduino Nano can be programmed in C++ with Arduino IDE. The ATmega

microprocessor in the board comes preburned with the bootloader that allows the user to

upload new code without any external programmer hardware.

The original STK500 protocol can be used to communicate. The bootloader can be

bypassed and the microcontroller programed through the ICSP (In-Circuit Serial

Programming) header using Arduino ISP.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 22

2 MPU-6050 ACCELEROMETER+GYRO

The accelerometer model used to detect the movement of the user is MPU-6050

Accelerometer + Gyro made by InvenSence (figure 8).

 The MPU-6050 sensor contains three MEMS accelerometer and three MEMS

gyroscopes in a single chip. The analog-to-digital conversion hardware contains a 16-bit

signal for each channel. X, Y and Z axes are captures in different channels simultaneously

[11].

Figure 8. GY-521 breakout board [11].

2.1 Breakout boards

In 2014 the last breakout board version used in this project appeared without any

name or code. This is almost equal to a previous version called GY-521 board.

The board has a voltage regulator on the board for 3.3V, two 10k pull-up resistors for

the SCL and SDA, 300 ohm resistors in the SCL and SDA signal. The MPU-6050 core requires

3.3V but due to the embedded voltage regulator the board must be connected to 5V to the

Vcc.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 23

2.1.1 Hardware Connection

Vcc: pin used for powering the MPU-6050 module with 5V.

GND: is ground pin.

SDA: SDA pin is used for I2C communication data.

SCL: SCL pin is used for I2C communication clock.

XDA: This is the sensor I2C SDA data line for configuring and reading from external

sensors.

XCL: This is sensor I2C SCL clock line for configuring and reading from external

sensors.

ADO: I2C Slave Address LSB. The pin ADO selects between I2C address 0x68 and

0x69. (3.3V).

INT: Interrupt pin for indication of data ready.

For this Project just pins Vcc, GND, SDA and SCL will be used to connect to the

Arduino Nano.

2.2 Characteristics

MPU-6050 datasheet provides the information from the core characteristics [12].

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 24

Parameter Rating

Supply Voltage -0.5V to +6V

Input voltage Level -0.5V to VDD + 0.5V

Acceleration 10,000g for 0.2ms

Operating Temperature Range -40°C to +105°C

Storage Temperature Range -40°C to +125°C

Output rate 1 kHz

Table 2. MPU-6050 processor characteristics.

2.3 Programming

The accelerometer and gyro readings are called “raw” values, following the

standards in the rest of accelerometers and gyro sensors. MPU-6050 has a Digital Motion

Processor (DMP) which can be used in more sophisticated applications computering values

from the sensor before sending them to the microcontroller.

The DMP can be programmed to do complex calculations with the values from the

sensor reducing this way the load for the Arduino. Although InverSense does not supply

detailed information how to program the DMP, for this reason in this project the Arduino

will just communicate with MPU-6050 with a basic programme to read raw values.

The code from the program is based on the example showed on the Arduino website

just by adapting the necessary parts to read the accelerometer and gyro raw values and send

them via I2C. The sleep mode must be disabled so the registers for the accelerometer and

gyro can be read This is done using Wire() library and writing on the specific register.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 25

2.3.1 Wire() Library

This library allows you to communicate with I2C / TWI devices. Arduino Nano has 2

I2C communication pins used to connect MPU-6050 (Digital pin 4, SDA; digital pin 5, SCL)

[12].

There are both 7- and 8-bit versions of I2C addresses. 7 bits identify the device, and

the eighth bit determines if it is being written to or read from. The Wire library uses 7 bit

addresses throughout so if the in 8 bit codes the low bit must be, yielding an address

between 8 and 127 as the addresses from 0 to 7 are reserved. It is important to note that a

pull-up resistor is needed when connecting SDA and SCL pins. However Arduino has its own

internal pull-up resistors so for this project it will not be necessary to use extra resistors.

The Wire() library implementation uses a 32 byte buffer, therefore, any communication

should be within this limit. Exceeding bytes in a single transmission will just be dropped.

2.3.2 Advance Programing Possibilities

The MPU-6050 has much further possibilities and despite not being used for this

project, it is important to bear them in mind for possible future modifications:

The sensor can be also programmed to place values in the 1024 byte FIFO buffer so

the Arduino can read them from there. The MPU-6050 place data in the FIFO buffer, after

which it signals the Arduino with the interrupt signal so the Arduino knows there is data

waiting in the buffer to be read.

The MPU-6050 acts as a slave to the Arduino with the SDA and SCL pins connected to

the I2C-bus. In addition, the MPU-6050 plays as the master to use a second (sub)-I2C-bus

using its own I2C controller. The pins used for this second (sub)-I2C-bus are AUX_DA and

AUX-CL.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 26

2.4 Code

Arduino website provides some example sketches to work fast with the MPU-6050

without deepening much into the hardware or communication protocol. The code to control

the MPU-6050 in this project is based on the “Short Code Sketch” on the Arduino website

using just raw values and omitting DMP [11]. The Arduino code referred to here can be

found in “Annex 1. Code”.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 27

3 XBEE

XBee is a programmable module used for wireless connection created by Digi

International. XBee modules have their own communication protocol by radio frequency and

one of their main advantages is their toughness and the low consumption [13].

3.1 Models

There are different models called series, this are the most widely used: XBee Series 1

(also called XBee 802.15.4), XBee Znet 2.5 (formally called Series 2), ZB (this is the latest

Series 2), 2B (even latest Series 2), 900MHz and XSC. In this project I will use series 1

(S1)(figure 9), which is the easiest one to work with and needs very little configuration or

none at all if the default configuration is convenient for the target purpose. XBee Series are

not compatible among them [14].

Figure 9. XBee S1 [15]

Another interesting specification from the manual is that XBee operate with just 45-

50 mA when is transmitting or receiving data, while XBee is in sleep mode is <10uA, which is

negligible. Such a low power consumption is a significant advantage to be chosen for this

project’s communication stage.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 28

3.1.1 Hardware Connection

XBee has 20 Physical pins just 4 of which will be used for this project figure 10):

Figure 10. XBee Pins Schematic.

 Pin 1. Vcc is the power supply which, in XBee modules is 3.3V.

 Pin 2 and 3. DOUT and DIN are the communication pins. Data in and Data out so

they both should be connected to the Arduino board at the specific pins set in the

code for this serial communication. In this project the chosen pins in Arduino board

for this data transmission will be digital pins 5 and 6.

 Pin 10. GND is ground. It should be connected to ground pin on the Arduino board.

Pin 2 and 3 must be connected with pull-up resistors so when they are not receiving

or sending data they do not have a floating state but instead they are high and protocol is

not affected by fault values. These pull-up resistors are implemented in the Arduino board;

however, its value can be modified adding two additional resistors.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 29

3.2 Communication protocol

XBee communicates using radio transmission, the standard follows is 802.15.4. XBee

can be configured in 2 different modes to communicate: AT (Transparent) and API

(Application Programming Interface):

AT Mode

 This mode is useful when it is not necessary to change destination addresses very

often, or there is a very simple network or simple point to point communication.

 In AT mode, any data sent to the XBee module is immediately sent to the remote

module identified by the Destination Address in memory.

 No packet formation is necessary, so it just sends Serial data to the Tx of one XBee

and it will be received by the Rx of the destination XBee. This communication

procedure is also known as Transparent Mode.

API Mode

 For larger networks that involve nodes talking to multiple targets, API mode can be

more convenient.

 Data must be formatted in frames with Destination information and payload

 API mode allows to change destination address much more quickly because

Command Mode does not need to be entered. [18]

As in this project the communication network is composed of just 2 XBee modules,

AT is enough to allow good communication and for the project this is the chosen mode.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 30

3.3 XBee USB

XBee models also include a version integrated with a USB male port protected in a

more solid shell to be directly connected to the PC (figure 11). It is configured in the same

way as the XBee but the communication with the PC is through USB instead of the I2C bus

In this project the XBee USB is used for the test with the MDP to develop the

algorithm as well as to test the final mode substituting the UID. Matlab is be the software

designed to receive and process the data from the COM port which the XBee USB is

connected to.

Figure 11. XBee USB 802.15.4 [16]

3.4 Adaptor Module

XBee’s pins are distributed in 2mm width, slightly smaller than common boards,

therefor an adaptor module will often be require. These adaptor modules may have a power

convertor from 5V to 3.3V so we can still use a power supplier of 5V for the overall project

and not to be afraid of damaging the XBee.

The adaptor used in this project is made by Roarkit (figure 12). XBee must be

connected to 3.3V as the adaptor does not convert voltage. By using this adaptor module

the board allows manually coupling and removing the XBee module since it is UAL property

and must be turned in after the assessment of this project.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 31

Figure 12. Adaptator module for XBee [17].

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 32

4 0.96’ OLED Display

This section explains the characteristics of the 0.96 inch monochrome OLED display

from Geekcreit (figure 13), how to connect to the Arduino and use it to show the

information obtained from the MPD.

Figure 13. 0.96" OLED display [20].

4.1 Characteristics

This small OLED display is characterised by its low consumption, good luminosity,

wide vision angle and relatively good resolution [19].

Resolution 128x64 pixels

Vision angle >160º

Working voltage 3 - 5V

Interface I2C

IC Driver SSD1306

Working temperature -30ºC - 70ºC

Colour White

I/O Pins Voltage 3V3 and 5V

Dimensions 27x27x4 mm

Table 3. OLED display characterisitics.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 33

4.1.1 Hardware Connection

The display connects to Arduino using four wires – two for power and two for data.

The data connection is I2C (I²C, IIC or Inter-Integrated Circuit) [20].

At the very lowest level, the Arduino Wire library is used to communicate with the

display. Libraries are available that make it easy to start using the display right away to

display text and graphics.

These are the connections from the Geekcreit 0.96 Inch 4 pin I2C OLED module to

Arduino:

 Vcc pin from OLED to the 5V pin from the Arduino for powering the display.

 GND from OLED to GND from the Arduino.

 SDA from OLED to SDA (A4, physical pin 27) from the Arduino.

 SCL from OLED to SCL (A5, physical pin 28) from the Arduino.

Important to note is that some of the displays may have the GND and VCC power pins

swapped around (GND VCC SDA SCL

4.2 Arduino libraries

Two Arduino libraries must be installed to start using the display. The SSD1306 driver

library is used to initialize the display and provide low level display functions. The GFX library

provides graphics functions for displaying text, drawing lines and circles, etc. Both libraries

are available from Adafruit website.

Another library that can be useful is “Adafruit_GFX.h” that provides a common

syntax set of graphics functions for all the LCD and OLED displays Arduino compatible. This

allows Arduino sketches to easily be adapted between display types with minimal fuss .

This library is included in the code but there are no syntax of it.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 34

4.3 Programming

Programing the OLED display is an easy task provided that the SSD1306 driver library

is used. The OLED display is entirely controlled with commands from the library. The OLED

display must be begun and some set up be done, after that plain text can be sent through

display.print() command to the screen and will be displayed after the display.display() line

[22].

Read “Annex 1. Code” to see the code used for the OLED 0.96 display.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 35

5 POWER SUPPLY

This project must be powered with direct 5V tension by using a lithium battery of

3.7V combined with the conversion module which it is connected to. Both devices also

include protection systems to avoid overcurrent, over charge and over discharge.

5.1 LITHIUM-ION BATTERY

A lithium-ion is a type of rechargeable battery commonly used for portable

electronics and electric vehicles.

In the batteries lithium ions move from the negative electrode to the positive

electrode during discharge and back when charging. Non-rechargeable batteries use metallic

as one electrode material whereas Li-ion batteries use an intercalated lithium compound.

The batteries have a high energy density, no memory effect and low self-discharge. They

can however be a safety hazard since they contain a flammable electrolyte, and if damaged

or incorrectly charged can lead to explosions or fires.

The battery used for this project is a 3.7v 1000mAh lithium-ion polymer rechargeable

battery made by YCDC (figure 14). Despite de fact that the average voltage is lower than the

Arduino required voltage the Conversion Module will enforce this conversion.

The built-in smart protective PCB charging module, also prevents over charging, over

discharging, over current and short circuit.

https://en.wikipedia.org/wiki/Rechargeable_battery
https://en.wikipedia.org/wiki/Portable_electronics
https://en.wikipedia.org/wiki/Portable_electronics
https://en.wikipedia.org/wiki/Electric_vehicle
https://en.wikipedia.org/wiki/Lithium
https://en.wikipedia.org/wiki/Ion
https://en.wikipedia.org/wiki/Electrode
https://en.wikipedia.org/wiki/Metal
https://en.wikipedia.org/wiki/Intercalation_(chemistry)
https://en.wikipedia.org/wiki/Chemical_compound
https://en.wikipedia.org/wiki/Energy_density
https://en.wikipedia.org/wiki/Memory_effect
https://en.wikipedia.org/wiki/Self-discharge

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 36

Figure 14. 3.7V Lithium Battery by YCDY

5.2 Features

Model 803040

Type Lithium battery

Capacity 1000mAh

Rechargeable YES

Charging Voltage 4.2V

Rated Voltage 3.7V

Working Temperature -10°~50°

Dimensions (LxWxH) 40x30x8mm

Table 4. Lithum Baterry characteristics.

5.3 Manufacturer’s Recommendations

 The user must consider small deviation from the specifications due to human

measurements.

 When the battery is not in use, it must be removed from the device.

 It is important to make sure that there is no connection between the red and black

wires at any time to avoid short circuit after the battery has been charged.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 37

Lithium must be kept protected from hits, violent movements, excessive heat or any

trigger which can increase risk of fire or explosion. That is the reason why the whole system

is protected inside a plastic box and the battery glued to its bottom.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 38

6 TP4056 CHARGER MODULE

In order to protect the lithium battery against unexpected electric conditions and in

order to allow easy charging, the battery will not be connected directly to the Arduino but to

a Charger Module.

Figure 15. TP4056 Charger Module [21].

The Charger Module used for this project is the Smart Electronics 5 V TP4056 micro

USB 1A lithium battery charging board with protection charger module for Arduino (Figure

15) [24, 25].

The module is designed to protect the battery and simplify charging through a micro

USB port compatible with many phone chargers. If the phone charger provides 1A, the

charging period is approximately an hour.

To charge the battery it must be connected to the module and the charger inserted

into the USB module port, the red light signal that the battery is being charged until the

green light when it is full.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 39

6.1 Hardware Connection

The module has 3 pairs of connections and the USB:

 B+/B-: Here the battery wires are connected. Red wire must be connected to B+ and

black wire to B-.

 OUT+/OUT-: connected to the load, in this case the Arduino board. It provides the

voltage supplied by the battery. OUT+ must be connected to Vcc and OUT- to

GROUND, otherwise it may damage the Arduino.

 Micro USB: Female Micro USB can be directly input to the phone charger with 5V

tension.

 IN+/IN-: This is the alternative and convenience DIY input for future charging

method. It perform the same function as the Micro USB but it can be soldered to a

different port or device and receive 5V as well (not used in the project).

6.2 Characteristics

Input voltage (min - typ - max) 4.0 – 5.0 – 8.0V

Charging cut-off voltage 4.2V ± 1%

Maximum charge current 1000mA

Battery over-discharge protection 2.5V

Battery overcurrent protection 3A

Board size 2.6x1.7 cm

Table 5. Charger Module characteristics.

Note that the charger used to connect the module must be able to output at least 1A

or it may not charge.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 40

7 Other components

The following components are not very complex but must be briefly explained as

well.

7.1 Toggle Switch Handle

The toggle switch handle (figure 16) opens the circuit and switches the system off

while it is not used. It has 3 pins and the switch connect the middle one with the one on the

side where the handle is shifted.

Figure 16. Toggle Switch Handle.
7.2 External Protection

The whole system is vulnerable to be touched by other objects, water and other

elements from the environment. The most vulnerable parts are the lithium battery and the

assembling soldering so it must be protected inside the protecting shell in order to make it

easier to be manipulated and to extend its life expectancy.

The protection is a white plastic box with measures of 70 X 45 X 30mm (figure 17),

30mm is may however be too high for our project so in the assembling half of the box is cut

off.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 41

Figure 17.Case Enclosure Box.

7.3 Buckle Webbing Ending Clip

The protection shell of the MPD also has the couple system to fasten the device to

the top border of the lower body garment (tests and algorithm are developed using the

trousers´ belt to couple the MPU-6050to the user and this method will be the most

trustworthy one to obtain correct readings from the sensor). The buckle webbing ending

clips (figure 18) are cut and glued to the box, explained in Annex 2. Assembling.

Figure 18. Buckle Webbing Ending Clip [22].

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 42

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 43

CHAPTER 3.
SOFTWARE

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 44

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 45

1 IDE Arduino

The computer software used in this project to program the microcontroller is IDE

Arduino. It is an easy-to-use editor and compiler by Arduino Genuino which makes creating a

program so easy that even students with very little knowledge of electronic or information

technology can use it.

1.1 User Interface

Figure 19 shows the characteristic IDE user interface is. It does not have many

options as it is designed to be simple and easy to use.

Figure 19. IDE Arduino user interface

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 46

IDE Arduino runs on Windows, Mac OS X and Linux. The environment is written in

Java and based on Processing and other open-source software. IDE Arduino (which stands

for Integrated Development Environment) uses C++ programing language customised with

libraries which transform the language into a higher level language, easier to use for simple

project, these code functions are explained on the Arduino website and complemented with

great variety of tutorial widely available in internet.

1.2 Program code Schematic

Arduino code structure can be separated in 3 main parts:

1 - In the head of the code libraries must be used as well as variables and constants.

2 - After that first part we can find the void setup function. In this function all the

setup instruction related with the processor should be placed, also other embedded devices

with a default setup that must be changed before starting running the rest of the program.

For instance, to set the physical pins or registers mode. This part is run every time the

Arduino is turn on or reset.

3 - The last part is the main code inside the void loop function which will be run

repeatedly in a loop as the processor is powered on.

When the code is written it can be verified with the V symbol on the left top corner

showing any error and comments on the bottom black window and if the code is error-free it

can be uploaded to the board connected pressing the -> symbol next to the previous one.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 47

1.3 Configuring Arduino IDE

Figure 20. IDE Interface configuration.

Arduino IDE must be configured to connect to the microcontroller when the code has

been compiled and is then going to be saved on it. This configuration is made in

Tools options and always appears in the bottom margin of the main window (Figure

20), just 3 parameters have to be set up:

 Board: Arduino Nano.

 Processor: ATmega328P (Old Bootloader). Despite the microcontroller used being

168 this option is the only one acceptable for the program to upload new software,

168 option will call an error.

 Port: COM3. It completely depend of every single computer ports management)

This configuration is made in Tools options and always appears in the bottom margin

of the main window.

1.4 MPD Code

Here the code in the Arduino from the MPD will be explained. There are two

different codes used for the MPD. The first one, called MPD.Tests.ino is the one used to test

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 48

the MPD and analyse the reading so as to find the best algorithm to detect steps. The second

code, called MPD.ino, is just slightly different and it applies this algorithm to the readings so

it detects the steps itself and sends the detected steps to the UID. There is also another

branch to transmit to the PC using Matlab to read it called MPD_M.ino. For generic Arduino

code the main structure is going to be explained and the whole commented code can be

found in the “Annex 1. Code”, which will help to make them understood:

1.4.1 Set up

1 - First of all in Arduino code libraries must be called. All the functions used in the

code that belong to a library make programming easier but that library must be included in

the top of the code.

2 - After it some variables can be declared giving them a value or not. These variables

will be available for the whole code, not as if they were declared inside of a function that

would make them only available inside that function.

3 - After that the set up code starts. This part of the code will be run just once before

being followed by the loop part which will be running in a loop as long as the Arduino is

powered or reset. Here the physical pins which are going to be used are defined as inputs or

outputs.

1.4.2 Raw values

This part of the code is based on the model code “Short Code Sketch” made by

Arduino on its website to pull raw values from the accelerometer. The first lines are used to

disable sleep mode and set the accelerometer to send ray values to the registers. Then those

values are read and saved in the Ax, Ay, Az, Gx, Gy and Gz variables so they can later be sent

to the XBee.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 49

1.4.3 Software Serial

For the MPD, Arduino will be using physical pins 5 and 6 to contact with serial

protocol to the XBee as Tx and Rx using SoftwareSerial library. The Arduino website explains

how to use the SoftwareSeral function for Arduino projects [23]

The software serial command is presented as SoftwareSerial(RxPin, TxPin, inverse

logic). Rx and Tx must be located in a digital pin from the Arduino. For this prototype the

chosen pins are 5 and 6 but any of the other free digital pins could be chosen.

SoftwareSerial is used to create an instance of SoftwareSerial object, whose name

needs to be provided, which for this project it is XBee. SoftwareSerial, the program will refer

to it through this name as more than one SoftwareSerial object can be created, however

only one can be active at a given moment. The inverse logic argument is optional and

defaults to false, for this code this argument will not be used and so it will remain false.

The communication is enabled when SoftwareSerial.begin() is called.

Parameters

RxPin: This pin is used to receive serial data, for this argument it is just needed the

physical number of the pins used.

TxPin: This pin is used to transmit serial data, for this argument the physical number

of the pins used is just needed.

Inverse logic: a high value of this argument will invert the sense of incoming bits

treating LOW as HIGH and HIGH as LOW. It also affects the way that it writes to the Tx pin.

Default value of this argument is False, which is normal logic.

For Serial communication it is important to consider that both devices connected

must use the same voltage as receiving high voltage than what the device is prepared for can

damage it permanently.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 50

1.4.4 Code for tests

This code will be used to read the values from the MPU-6050 sensor and send them

to the PC to be analysed with Matlab. Through this analysis the algorithm for detecting steps

will be decided and it will be implemented in the final MPD code.

The code and its explanation can be found in the “Annex 1. Code”.

1.4.5 Code for the final MPD

This code is the final program for the prototype and the one used in the physical

device developed for this project.

The code and its explanation can be found in the “Annex 1. Code”.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 51

2 XCTU

XCTU is the chosen software to configure XBee modules as it is the recommended

one provided by Digi.

Figure 21. XCTU main menu. [24]

As Figure 21 shows, XCTU window is divided into five main sections: the menu bar,

main toolbar, devices list, working area, and status bar.

Figure 22. XCTU icon

The main toolbar is located at the top of the application and the first section contains

two icons used to add radio modules to the radio modules list (Figure 22).

By clicking on any of them, the user can rather add or discover radio modules

connected directly to the computer and add them to your list. Once the module is added it

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 52

can be configured (in AT mode for this project). A new window with all the configuration

settings appears when the module is double clicked, the values are read from the module

and now they are ready to be modified.

Modules are configured by default and not many changes should be done.

The most important one for XBee so it is using AT mode is that API mode is disabled.

The first thing that must configure is the Pan ID. The Pan ID is the network address so

both XBees need to operate with the exact same one.

It is important that the destination addresses are configured so both XBee can

communicate to each other. Configuration will be explain later on.

One of the modules must be configured as a master while the other one is

configured as a slave, to set one XBee as a master the option Coordinator must be enabled.

For several modules networks it is important that the master is turned on, otherwise the

network will not be working.

After all the changes in the configuration have been set, they must be save in the

XBee module by clicking the “Write” button.

2.1 Console

To check the communication, using the console tool might be very useful (figure 23).

It can be found on the top right corner and it works in a similar way as the serial monitor in

IDE Arduino.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 53

Figure 23. XCTU console log in AT mode.

The console allows the use to type rather in ASCII code on the left as in hexadecimal

code on the right simultaneously translated and sent to the XBee. The received data is

shown in red font whereas sent data is coloured in blue. With a basic program in Arduino,

set to reply when data is received by the XBee, it is easy to test if the XBee communication is

working properly. When this test is successful, the XBee is likely to be well configured.

2.2 Configuring the XBee

Figure 24. XCTU Configuration Window.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 54

Configure the XBee is simple, when the XBee icon is double clicked the configuration window

with the current configuration is displayed (Figure 24). All the values must be set as default

by clicking on default bottom if they are not default values and then just the following values

have to be changed:

ID PAN ID 1111

DH Destination Address High 0

DL Destination Address Low FFFF

Coordinator Enable Coordinator[1]

AP API Enable API disable[0]

Table 6. XBee registers configuration.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 55

3 Matlab

In order to create the algorithm for the step counting, data must be analysed and the

chosen software for this task is Matlab. Matlab offers a powerful platform for data analysing

with useful tools as plot, script programs easy access to saved variables. In addition, the

software license is provided by Universidad de Almería for all the students.

Figure 25. Matlab User Interface.

In Matlab’s window user can find the following spaces (Figure 25):

 Script window

 Command window

 Workspace

 Current folder

 Tools bar

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 56

For the tests a script in Matlab is created to analyse the data received in the COM

port. Data is visualised on the plot generated when the script is run and it also allows to

analyse the variables in the Workspace and operate with them in the Commands Window.

Matlab’s system will not be explained in this document. For further explanation

consult Matlab user manual or its website https://es.mathworks.com.

3.1 Plotting

Figure 26. Matlab script plot.

The plot in Figure 26 shows how each step produces a time response with a in the

accelerometer axis whose transient state has a short settling time but a significant pic. This

pic value depends from one step to another.

3.2 Code

The code used in Matlab consists in a script that converts receiving data into 6

vectors, one for each variable, and also plots it. Through the analysis of the plots and the

values in the vector the algorithm is obtained.

The exact code and its explanation can be found in the “Annex 1. Code”.

https://es.mathworks.com/

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 57

CHAPTER 5.
ORGANIZATION CHART AND

DEVELOPMENT PHASES

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 58

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 59

The following table resume the development phases of this project:

 First steps where learning how to program the different components and software to

use.

 The Other labour later were to describe and explain in the report all this components

and software that were going to be used.

 Creating then the analysis and the rest of information in the project that was a large part.

 Finally revising and correcting the mistakes in the drafting as English is not the author

tongue language, this fact made the overall process slower but provided large knowledge

to the author .

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 60

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 61

CHAPTER 6.
RESULTS AND CONCLUSIONS

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 62

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 63

1 Introduction

The aim of this project has been to create a pedometer prototype. Bearing in mind

that the commercial product still requires large development work, this process has been

successful because the obtained device follow the conditions of a technical project and its

hardware and software meet the standards set at the beginning:

2 Hardware

The two devices are well sized and adequately resistant to its actual use. Both are

portable and easy to use.

In the MPD, the electronic circuit is not protected as it would make the prototype

considerably bigger than it was planned in the previous design version of the MPD. For a

user, circuits without cover would be an inconvenience but as a prototype used only for

testing purposes it is acceptable.

The hardware design of the UID cannot be constructed for this project but it is a less

useful part as the main purpose of this project is the steps measurement and the output can

be connected to different kind of interfaces.

3 Software

The actual algorithm of the MPD is basic and still can be improved, still the ability to

count steps is now consistent and the error is minimum. However, the current software is

the base of future modifications and additions in the code to add more functionalities.

The MPD is capable of measuring slow, medium and fast steps and ignore fast and

repetitive movements or just minimise them adding few false steps.

The UID shows real time step count and can be turned on and off without losing

counting as it is saved the whole time in the MPD.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 64

4 Development

The purpose of this project is to create a prototype that can be developed till the

very end of a final commercialised product or to help in the investigation of other projects in

this area of technology. For this aim some possible branches of modifications for the

development of the project will be explained for further works on it:

Additional functionalities: the step measurement has been the main goal of this

project but, once it is reached, adding information for the user based on their steps count is

relatively easy to program. These new features might be maximum speeds, average speed,

resting times or other interesting data.

Another possibility of improvement of the code would be to allow the MPD to be

coupled in different angles. Now the MPD must be placed with the Y axis pointing

perpendicularly to the floor but with some trigonometry transformation it could allow the

user to carry it in any position.

The OLED 0.96 display does not allow printing much information on the screen apart

from the step count due to its small size so in order to do these kinds of modifications a

different display should be used or bottoms added to allow navigation through different

windows on the screen.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 65

CHAPTER 7.
BIBLIOGRAPHY

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 66

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 67

[1] J. R. Scott, “Very Well Fit,” [Online]. Available:

https://www.verywellfit.com/what-is-energy-expenditure-3496103. [Accessed 16 01

2019].

[2] M. Porter, Interviewee, BBC Rabio 4 - INSIDE HEALTH - Programme 2.

[Entrevista]. 02 10 2018.

[3] «Pollin Electronic,» [En línea]. Available:

https://www.pollin.de/p/microcontroller-atmel-atmega168-20au-101131. [Last

entrance: 24 04 2019].

[4] «Electronics Lab,» [En línea]. Available: http://www.electronics-lab.com/make-

your-own-arduino-nano-diy-arduino-nano/. [Last entrance: 24 04 2019].

[5] «Arduino,» [En línea]. Available: https://store.arduino.cc/arduino-nano. [Last

entrance: 10 02 2019].

[6] A. Corporation, «ATMEGA168 Datasheet,» 2011.

[7] «Mocrocontrollers Tips,» [En línea]. Available:

https://www.microcontrollertips.com/difference-between-von-neumann-and-

harvard-architectures/. [Last entrance: 03 05 2019].

[8] [En línea]. Available: https://www.digikey.com/reference-designs/en/open-

source-mcu-platforms/2556. [Last entrance: 03 05 2019].

[9] «Aprendiendo Arduino,» [En línea]. Available:

https://aprendiendoarduino.wordpress.com/2017/06/21/memoria-flash-sram-y-

eeprom-3/. [Last entrance: 29 03 2019].

[10] [En línea]. Available: https://forum.arduino.cc/index.php?topic=243653.0. [Last

entrance: 24 04 2019].

[11] «Arduino Playground,» [En línea]. Available:

https://playground.arduino.cc/Main/MPU-6050. [Last entrance: 5 3 2019].

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 68

[12] InvenSense, MPU-6000 and MPU.6050 Product Specifications Revision 3.4,

2013.

[13] «Arduino Genuino,» [En línea]. Available:

https://www.arduino.cc/en/Reference/Wire. [Last entrance: 05 05 2019].

[14] [En línea]. Available: https://geekytheory.com/tutorial-arduino-comenzando-

con-xbee/. [Last entrance: 19 01 2019].

[15] [En línea]. Available: https://xbee.cl/que-es-xbee/. [Last entrance: 19 01 2019].

[16] [En línea]. Available: https://www.seeedstudio.com/XBee-PCB-Antenna-S1-

802-15--p-1227.html. [Last entrance: 24 04 2019].

[17] «Digikey,» [En línea]. Available:

https://www.digikey.com/eewiki/display/Wireless/XBee+AT+Mode+-

+Transmit+and+Command+Mode+Example. [Last entrance: 2019 02 01].

[18] «Digi,» [En línea]. Available: https://www.digi.com/products/networking/rf-

adapters-modems/xstick. [Last entrance: 24 04 2019].

[19] [En línea]. Available: https://tinkersphere.com/breadboard-perfboard-

prototyping/951-xbee-breadboard-adapter.html. [Last entrance: 24 04 2019].

[20] [En línea]. Available: https://www.ledats.pl/en/oled-lcd-display/3813-oled-096-

i2c-serial-blue-display-module-lk3.html. [Last entrance: 12 05 2019].

[21] [En línea]. Available: https://diotronic.com/pantalla-oled-0-96-i2c-

128x64_32304/. [Last entrance: 28 04 2019].

[22] [En línea]. Available:

https://startingelectronics.org/tutorials/arduino/modules/OLED-128x64-I2C-

display/. [Last entrance: 28 04 2019].

[23] [En línea]. Available:

https://startingelectronics.org/tutorials/arduino/modules/OLED-128x64-I2C-

display/. [Last entrance: 10 05 2019].

[24] [En línea]. Available: https://www.addicore.com/TP4056-Charger-and-

Protection-Module-p/ad310.htm. [Last entrance: 28 04 2019].

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 69

[25] N. T. P. A. Corp., TP4056 - Datasheet.

[26] [En línea]. Available: https://www.aliexpress.com/item/5pcs-3-4-2-Quick-Slip-

Keeper-Plastic-Buckle-Webbing-Ending-Clips-adjusting-strap-Belt-

molle/32822577828.html?spm=a2g0s.9042311.0.0.27424c4dA6eoXM. [Last

entrance: 1 05 2019].

[27] A. Genuino. [En línea]. Available:

https://www.arduino.cc/en/Reference/SoftwareSerialConstructor. [Last entrance: 25

03 2019].

[28] «Digi,» [En línea]. Available:

https://www.digi.com/resources/documentation/digidocs/90001458-

13/default.htm#concept/c_xctu_layout.htm%3FTocPath%3DXCTU%2520overview%7

C_____0. [Last entrance: 07 02 2019].

[29] «GNU General Public Licence,» GNU Operrating System, [En línea]. Available:

https://www.gnu.org/licenses/gpl-3.0.en.html. [Last entrance: 07 05 2019].

[30] «Diagram Circuits,» [En línea]. Available: https://www.circuit-

diagram.org/editor/. [Last entrance: 24 04 2019].

[31] «Circuit Basics,» [En línea]. Available: http://www.circuitbasics.com/basics-

uart-communication/. [Last entrance: 16 04 2019].

[32] «Circuit Basics,» [En línea]. Available: http://www.circuitbasics.com/basics-

uart-communication/. [Last entrance: 12 05 2019].

[33] «Sparkfun,» [En línea]. Available: https://learn.sparkfun.com/tutorials/serial-

communication/wiring-and-hardware. [Last entrance: 10 04 2019].

[34] «Sparkfun,» [En línea]. Available: https://learn.sparkfun.com/tutorials/serial-

communication/wiring-and-hardware. [Last entrance: 12 05 2019].

[35] [En línea]. Available: https://learn.sparkfun.com/tutorials/serial-

communication/all. [Last entrance: 23 05 2019].

[36] «Sparkfun,» [En línea]. Available: https://learn.sparkfun.com/tutorials/serial-

communication/all. [Last entrance: 2019 02 01].

[37] «Luis Llamas,» [En línea]. Available: https://www.luisllamas.es/arduino-i2c/.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

REPORT

Ramón Huesa Amat 70

[Last entrance: 11 04 2019].

[38] [En línea]. Available: http://www.ieee802.org/15/pub/TG4.html.

[39] D. I. Inc., XBee®/XBee-PRO® RF Modules. Product Manual v1.xEx- 802.15.4

Protocol, 2009.

[40] «Stack Exchange,» [En línea]. Available:

https://electronics.stackexchange.com/questions/37814/usart-uart-rs232-usb-spi-

i2c-ttl-etc-what-are-all-of-these-and-how-do-th. [Last entrance: 16 04 2019].

[41] [En línea]. Available: https://www.techopedia.com/definition/19737/harvard-

architecture. [Last entrance: 03 05 2019].

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 1

DOCUMENT 2. ANNEXES

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 2

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 3

CONTENT

DOCUMENT 2. ANNEXES .. - 1 -

ANNEX 1. CODE .. - 5 -

1 MPD FOR TESTS ... - 7 -

2 MATLAB TESTS CODE ... - 9 -

3 MPD SPEED ..- 11 -

4 MPD_M ..- 13 -

5 MPD ...- 15 -

6 MATLAB DISPLAY ...- 17 -

7 UID ...- 19 -

8 LICENSE ..- 21 -

ANNEX 2. ASSEMBLY AND DRAWINGS .. - 23 -

1 MPD ...- 25 -

1.1 Assembling .. - 25 -

1.2 Electronic Schematic ... - 30 -

2 UID ...- 31 -

2.1 Assembling .. - 31 -

2.2 Electronic Schematic ... - 32 -

3 BUDGET ..- 33 -

ANNEX 3. COMMUNICATION PROTOCOLS ... - 35 -

1 COMMUNICATION SCHEMATIC ..- 37 -

1.1 PC displayed .. - 37 -

1.2 OLED displayed.. - 37 -

2 SERIAL TTL COMMUNICATION ...- 39 -

2.1 UART ... - 39 -

2.2 Wiring and Hardware.. - 39 -
2.2.1 Protocol ... - 40 -

2.3 Asynchronous .. - 41 -
2.3.1 Baud rate ... - 41 -
2.3.2 Data framing .. - 42 -
2.3.3 Synchronization bits .. - 42 -
2.3.4 Parity bit .. - 42 -

3 I2C COMMUNICATION ..- 43 -

3.1 Wiring and Hardware.. - 43 -

3.2 Protocol ... - 43 -

3.3 Synchronous .. - 44 -

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 4

3.4 Data framing ... - 44 -

4 IEEE 802.15.4 ...- 46 -

5 AT MODE ...- 46 -

ANNEX 4. ALGORITHM DEVELOPMENT ... - 47 -

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 5

ANNEX 1.
CODE

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 6

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 7

These files can be found in the GitHub open repository named MPD in RamonHuesa

account.

1 MPD for tests

This file is called MPDTest.ino and used in the MPD to read the values from the 3

accelerometers axis and 3 gyroscope axis from the MPU-6050 and send them through XBee

transmission to the PC to be displayed and analysed in the steps designed to determine the

algorithm to be used in the MPD.ino and MPD_M.ino versions of the MPD code.

GitHub:

https://github.com/RamonHuesa/MPD/blob/master/mpd_firmware/MPDTest.ino

1. // <MPD Tests. Read values from the MPU-6050 and send them through the XBee.>
2. // Copyright (C) <2019> <Ramón Huesa Amat>
3. //
4. // This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software Founda
tion; either version 3 of the License, or any later version.

5. //
6. // This program is distributed in the hope that it will be useful,
7. // but WITHOUT ANY WARRANTY; without even the implied warranty of
8. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9. // GNU General Public License for more details.
10. //
11. // You should have received a copy of the GNU General Public License
12. // along with this program; if not, see http://www.gnu.org/licenses
13. // or write to the Free Software Foundation,Inc., 51 Franklin Street,
14. // Fifth Floor, Boston, MA 02110-1301 USA

1. // The acelerometre part based on MPU-
6050 Short Example Sketch By Arduino User JohnChi

2. // The acelerometre part based on MPU-
6050 Short Example Sketch By Arduino User JohnChi

3. #include <SoftwareSerial.h> //library needed to use SoftwareSeral funti
on

https://github.com/RamonHuesa/MPD/blob/master/mpd_firmware/MPDTest.ino

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 8

4. #include<Wire.h> //library needed to use Wire funtion to configure MPU
-6050

5. SoftwareSerial XBee(9,8); //XBee pins //set pins 10 and 9 as serial co
munication pins Tx and Rx

6. const int MPU_addr=0x68; // I2C address of the MPU-6050
7. int16_t AcX,AcY,AcZ,GyX,GyY,GyZ; //Inicialize ·variable for the Accele

rometer axes and another 3 for the Gyro
8. void setup(){
9. Wire.begin();
10. Wire.beginTransmission(MPU_addr);
11. Wire.write(0x6B); //Access PWR_MGMT_1 register
12. Wire.write(0); // set to zero desable sleep mode (wakes up the MPU-

6050)
13. Wire.endTransmission(true);
14. XBee.begin(9600); //9600 bps serial comunication with the XBee
15. }
16. void loop(){
17. Wire.beginTransmission(MPU_addr);
18. Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H)
19. Wire.endTransmission(false);
20. Wire.requestFrom(MPU_addr,14,true); // request a total of 14 registers
21. AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOU

T_L)
22. AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOU

T_L)
23. AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOU

T_L)
24. Wire.read()<<8|Wire.read(); // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L) it

does not have to be read.
25. GyX=Wire.read()<<8|Wire.read(); // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_

L)
26. GyY=Wire.read()<<8|Wire.read(); // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_

L)
27. GyZ=Wire.read()<<8|Wire.read(); // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_

L)
28. XBee.print(" "); XBee.print(AcX); //Transmiting the values to the ser

ial communication with the XBee
29. XBee.print(" "); XBee.print(AcY);
30. XBee.print(" "); XBee.print(AcZ);
31. XBee.print(" "); XBee.print(GyX);
32. XBee.print(" "); XBee.print(GyY);
33. XBee.print(" "); XBee.println(GyZ); XBee.print("\n");
34.
35. delay(10); //Delay to help the communication to be read correctly
36. }

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 9

2 Matlab tests code

The following Matlab script has been used to read the data sent from the Arduino to

the PC through XBee transmission. The data is read through the COM port where the USB

XBee is plugged in.

This data is the “raw values” read from the MPU-6050 and which must have the same

speed as the reading speed rate set before for the microcontroller-accelerometer and

microcontroller-XBee communication (9600).

GitHub:

https://github.com/RamonHuesa/MPD/blob/master/matlab/DisplayMatlabTest.m

1. % <Matlab display. Display data received from the MPU via XBee-XBee USB.>
2. % Copyright (C) <2019> <Ramón Huesa Amat>
3. %
4. % This program is free software; you can redistribute it and/or modify it under t

he terms of the GNU General Public License as published by the Free Software Foundat
ion; either version 3 of the License, or any later version.

5.
6. % This program is distributed in the hope that it will be useful,
7. % but WITHOUT ANY WARRANTY; without even the implied warranty of
8. % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9. % GNU General Public License for more details.
10.
11. % You should have received a copy of the GNU General Public License
12. % along with this program; if not, see http://www.gnu.org/licenses
13. % or write to the Free Software Foundation,Inc., 51 Franklin Street,

14. % Fifth Floor, Boston, MA 02110-1301 USA
15.
16. clear all % Clean the Workspace and Commands Window
17. delete(instrfind({'Port'},{'COM4'})); % Delete some posible previous

 configuration for the port used for the XBee (COM4).
18.
19. Rechazados=0;
20. extraDelay=35;
21. delay=10; % Delay in the Arduino code
22. TestDuration=10; % Duration of the test in seconds
23. SampleLength=round(TestDuration*1000/(delay+extraDelay)); % Samples=D

uration[s]*(1000ms/1s)*(1sample/delay[ms])
24.
25. tic % Initiacilates tic funtion (used to track the time which every

 sample is taken at).
26. rate = 9600; % 9600 bits per seconds which compared with the 50 sec

onds delay in the Arduino code is negligible

https://github.com/RamonHuesa/MPD/blob/master/matlab/DisplayMatlabTest.m

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 10

27. s = serial('COM4', 'BaudRate',rate,'TimeOut',10,'Terminator','LF');
% Object created to represent the COM port, some inputs are set here

28. s.InputBufferSize = 1000000;
29.
30. fopen(s); % Open port communication
31.
32. data=zeros(7,SampleLength); % 7x100 matrix initialised with zeros w

hich will be used to save every axis from the sensor (3 acceleration axis a
nd 3 gyroscope axis) and the time vector.

33. i=1;
34. while i<=SampleLength % When the SampleLength limit is reached the

processor exits the loop and continues executing the rest of the code.
35. sample=fscanf(s,'%i');
36. if length(sample)==6; % every reading block is checked to be com

pleted with the 6 variables expected, as sometimes it is damaged and must b
e eliminated leaving those zeros behind.

37. data(:,i)=vertcat(sample,toc); % Variables are added to the m
atrix with the corresponding time extracted from “toc” function.

38. i=i+1;
39. else
40. Rechazados=Rechazados+1;
41. end
42. end
43. fclose(s); % Close serial port bus
44.
45. % Matrix divided into 7 arrays that are plotted to be visually analysed
46. Ax=data(1,:);
47. Ay=data(2,:);
48. Az=data(3,:);
49. Gx=data(4,:);
50. Gy=data(5,:);
51. Gz=data(6,:);
52. Time=data(7,:);
53.
54. plot(Time,Ax,Time,Ay,Time,Az,Time,Gx,Time,Gy,Time,Gz);
55. legend('Ax','Ay','Az','Gx','Gy','Gz');

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 11

3 MPD Speed

Millis() function offers the possibility to measure the time spent in a loop. If this time

were close to cero the rate would correspond to a frame (with the 6 variables measured

from the MPU) every 20ms corresponding to delay() function as the baud rate of 9600 is fast

enough to be not considered.

Through the results with this test program we can assume the average duration of a

void loop() cycle is 35ms. Thus every frame will be sent every 45 ms.

15. void loop(){
16. int t=millis();
17. Wire.beginTransmission(MPU_addr); //ENTIENDO QUE ACCEDE A UN REGUISTR

O LO GUARDA Y SE MUEVE
18. Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H)
19. Wire.endTransmission(false);
20. Wire.requestFrom(MPU_addr,14,true); // request a total of 14 registers
21. AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOU

T_L)
22. AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOU

T_L)
23. AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOU

T_L)
24. //Wire.read()<<8|Wire.read(); // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L)

 //yo este no lo voy a usar pero no se borrarlo y hacer que salte de Az a
 Gx

25. GyX=Wire.read()<<16|Wire.read(); // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT
_L)

26. GyY=Wire.read()<<8|Wire.read(); // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_
L)

27. GyZ=Wire.read()<<8|Wire.read(); // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_
L)

28.
29. XBee.print(" "); XBee.print(AcX); //Transmiting the values to the ser

ial communication with the XBee
30. XBee.print(" "); XBee.print(AcY);
31. XBee.print(" "); XBee.print(AcZ);
32. XBee.print(" "); XBee.print(GyX);
33. XBee.print(" "); XBee.print(GyY);
34. XBee.print(" "); XBee.println(GyZ);
35.
36. XBee.print("\n"); t=millis()-t;
37. XBee.println(t);

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 12

38. delay(10); //Delay to help the communication to be read correctly
39. }

Figure 27. Matlab's output.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 13

4 MPD_M

This file is called MPD_M.ino and the one used in the MPD to count steps and send

the step count to the PC to be displayed with Matlab when the script is run. MPD evaluates

the AcY values from the vertical accelerometer axis and add 1 step to the set count every

time these values resemble a step vibration.

GitHub:

https://github.com/RamonHuesa/MPD/blob/master/mpd_firmware/MPD_M.ino

1. // <MPD_M. Counts steps from the MPU-6050 values and sends this count to the PC
through XBee.>

2. // Copyright (C) <2019> <Ramón Huesa Amat>
3. //
4. // This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software Founda
tion; either version 3 of the License, or any later version.

5. //
6. // This program is distributed in the hope that it will be useful,
7. // but WITHOUT ANY WARRANTY; without even the implied warranty of
8. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9. // GNU General Public License for more details.
10. //
11. // You should have received a copy of the GNU General Public License
12. // along with this program; if not, see http://www.gnu.org/licenses
13. // or write to the Free Software Foundation,Inc., 51 Franklin Street,
14. // Fifth Floor, Boston, MA 02110-1301 USA
15.
16. // The acelerometre part based on MPU-

6050 Short Example Sketch By Arduino User JohnChi
17.
18. #include <SoftwareSerial.h> //library needed to use SoftwareSeral funtion
19. #include<Wire.h> //library needed to use Wire funtion to configure MPU
20. SoftwareSerial xbee(9,8); //xbee pins //set pins 10 and 9 as serial comunicatio

n pins Tx and Rx
21. const int MPU_addr=0x68; // I2C address of the MPU-6050
22. int16_t AcX,AcY,AcZ,GyX,GyY,GyZ; //Inicialize ·variable for the Accelerometer a

xes and another 3 for the Gyro
23. int stepCount=0;
24. int last_t=millis(), sPeed;
25. void setup(){
26. Wire.begin();
27. Wire.beginTransmission(MPU_addr);
28. Wire.write(0x6B); //Access PWR_MGMT_1 register
29. Wire.write(0); // set to zero desable sleep mode (wakes up the MPU-6050)
30. Wire.endTransmission(true);
31. xbee.begin(9600); //9600 bps serial comunication with the Xbee

https://github.com/RamonHuesa/MPD/blob/master/mpd_firmware/MPD_M.ino

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 14

32. }
33. void loop(){
34. Wire.beginTransmission(MPU_addr); //ENTIENDO QUE ACCEDE A UN REGUISTRO LO GUAR

DA Y SE MUEVE
35. Wire.write(0x3D); // starting with register 0x3D (ACCEL_XOUT_H)
36. Wire.endTransmission(false);
37. Wire.requestFrom(MPU_addr,14,true); // request a total of 14 registers
38. AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)
39.
40. sPeed = millis()-last_t;
41. if (AcY>18000) {
42. stepCount=stepCount+1;
43. last_t=millis();
44.

45. //Transmiting the values to the serial communication with the XBee
46. xbee.print(" "); xbee.print(stepCount);
47. xbee.print(" "); xbee.print(sPeed);
48. xbee.print(" "); xbee.print(AcY);
49. xbee.print("\n");
50. delay(350); //Delay to help the communication to be read correctly
51. }

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 15

5 MPD

This file is called MPD.ino and the one used in the MPD to count steps and send the

step count to the IUD to be displayed on the OLED display. MPD evaluates the AcY values

from the vertical accelerometer axis and add 1 step to the set count every time these values

resemble a step vibration.

GitHub:

https://github.com/RamonHuesa/MPD/blob/master/mpd_firmware/MPD.ino

15. // <OLED display. Display data received from the MPU via Xbee.>
16. // Copyright (C) <2019> <Ramón Huesa Amat>
17. //
18. // This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software Founda
tion; either version 3 of the License, or any later version.

19. //
20. // This program is distributed in the hope that it will be useful,
21. // but WITHOUT ANY WARRANTY; without even the implied warranty of
22. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23. // GNU General Public License for more details.
24. //
25. // You should have received a copy of the GNU General Public License
26. // along with this program; if not, see http://www.gnu.org/licenses
27. // or write to the Free Software Foundation,Inc., 51 Franklin Street,
28. // Fifth Floor, Boston, MA 02110-1301 USA
29.
30. // The acelerometre part based on MPU-

6050 Short Example Sketch By Arduino User JohnChi
31.
32. #include <SoftwareSerial.h> //library needed to use SoftwareSeral funtion
33. #include<Wire.h> //library needed to use Wire funtion to configure MPU
34. SoftwareSerial xbee(9,8); //xbee pins //set pins 10 and 9 as serial comunicatio

n pins Tx and Rx
35. const int MPU_addr=0x68; // I2C address of the MPU-6050
36. int16_t AcX,AcY,AcZ,GyX,GyY,GyZ; //Inicialize ·variable for the Accelerometer a

xes and another 3 for the Gyro
37. int stepCount=0;
38. int lapse=millis();
39. void setup(){
40. Wire.begin();
41. Wire.beginTransmission(MPU_addr);
42. Wire.write(0x6B); //Access PWR_MGMT_1 register
43. Wire.write(0); // set to zero desable sleep mode (wakes up the MPU-6050)
44. Wire.endTransmission(true);
45. xbee.begin(9600); //9600 bps serial comunication with the Xbee
46. }

https://github.com/RamonHuesa/MPD/blob/master/mpd_firmware/MPD.ino

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 16

47. void loop(){
48. Wire.beginTransmission(MPU_addr); //ENTIENDO QUE ACCEDE A UN REGUISTRO LO GUAR

DA Y SE MUEVE
49. Wire.write(0x3D); // starting with register 0x3D (ACCEL_XOUT_H)
50. Wire.endTransmission(false);
51. Wire.requestFrom(MPU_addr,14,true); // request a total of 14 registers
52. AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)
53.
54. if ((AcY>18000)&&((millis()-lapse)>0.35)) {
55. stepCount=stepCount+1;
56. lapse=millis();
57.
58. //Transmiting the values to the serial communication with the Xbee
59. xbee.print(AcY);
60. xbee.print(lapse);
61. }
62.
63. delay(10); //Delay to help the communication to be read correctly
64. }

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 17

6 Matlab Display

This file is called DisplayMatlab.m and is the one used in the PC as a Matlab script to

display the step count received from the MPD. The transmitting MPD must be using

MPD_M.ino.

Every time the PC receive a package of data, including the step count, from the MPD

saves it in a matrix and shows the step count in the command window.

This script keeps running even if the MPD is turned off. It ends the loop when the

maximum steps are reached or when a intense vertical acceleration is received, it can be

rather a jump, a strong step or a soft hit on the MPD with the fingertip.

GitHub:

https://github.com/RamonHuesa/MPD/blob/master/matlab/DisplayMatlab.m

1. % <Matlab display. Display data received from the MPU via XBee-XBee USB.>
2. % Copyright (C) <2019> <Ramón Huesa Amat>
3. %
4. % This program is free software; you can redistribute it and/or modify it under t

he terms of the GNU General Public License as published by the Free Software Foundat
ion; either version 3 of the License, or any later version.

5.
6. % This program is distributed in the hope that it will be useful,
7. % but WITHOUT ANY WARRANTY; without even the implied warranty of
8. % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9. % GNU General Public License for more details.
10.
11. % You should have received a copy of the GNU General Public License
12. % along with this program; if not, see http://www.gnu.org/licenses
13. % or write to the Free Software Foundation,Inc., 51 Franklin Street,
14. % Fifth Floor, Boston, MA 02110-1301 USA
15.
16. %clear all % Clean the Workspace and Commands Window
17. delete(instrfind({'Port'},{'COM4'})); % Delete some posible previous configur

ation for the port used for the Xbee (COM4).
18.
19. TestDuration=30; % Duration of the test in seconds
20. Rechazados=0;
21. extraDelay=35;
22. delay=10; % Delay in the Arduino code
23. SampleLength=200; % Samples=Duration[s]*(1000ms/1s)*(1sample/delay[ms])
24.

https://github.com/RamonHuesa/MPD/blob/master/matlab/DisplayMatlab.m

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 18

25. tic % Initiacilates tic funtion (used to track the time which every sample i
s taken at).

26. rate = 9600; % 9600 bits per seconds which compared with the 50 seconds dela
y in the Arduino code is negligible

27. s = serial('COM4', 'BaudRate',rate,'TimeOut',10,'Terminator','LF'); % Object
created to represent the COM port, some inputs are set here

28. s.InputBufferSize = 1000000;
29.
30. fopen(s); % Open port communication
31.
32. data=zeros(3,SampleLength); % 7x100 matrix initialised with zeros which will

 be used to save every axis from the sensor (3 acceleration axis and 3 gyroscope axi
s) and the time vector.

33. i=1;
34. AcY = 0;
35. last_t=0;
36. stepCount=0;
37. while ((i<=SampleLength)&&(AcY<30000)) % When the SampleLength limit is reac

hed the processor exits the loop and continues executing the rest of the code.
38. sample=fscanf(s,'%i');
39. if length(sample)==3; % every reading block is checked to be completed wi

th the 6 variables expected, as sometimes it is damaged and must be eliminated leavi
ng those zeros behind.

40. data(:,i)=vertcat(sample); % Variables are added to the matrix with th
e corresponding time extracted from “toc” function.

41. stepCount=data(1,i)
42. pSpeed=data(2,i);
43. AcY = data(3,i);
44. i=i+1;
45.
46. else
47. Rechazados=Rechazados+1;
48. end
49.
50. end
51. fclose(s); % Close serial port bus
52.
53. s="End of the test";
54. disp(s)

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 19

7 UID

This fille is called IUD.ino and is the one used in the UID to display on the OLED

display the step count received from the MPD. MPD must be using the MPD.ino fille.

This code has not been tested with real values in an UID so some adjustments might

be needed.

GitHub: https://github.com/RamonHuesa/MPD/blob/master/UID.ino

1. // <OLED display. Display data received from the MPU via Xbee.>
2. // Copyright (C) <2019> <Ramón Huesa Amat>
3. //
4. // This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software Founda
tion; either version 3 of the License, or any later version.

5. //
6. // This program is distributed in the hope that it will be useful,
7. // but WITHOUT ANY WARRANTY; without even the implied warranty of
8. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9. // GNU General Public License for more details.
10. //
11. // You should have received a copy of the GNU General Public License
12. // along with this program; if not, see http://www.gnu.org/licenses
13. // or write to the Free Software Foundation,Inc., 51 Franklin Street,
14. // Fifth Floor, Boston, MA 02110-1301 USA
15.
16.
17. #include <Wire.h> // libraries needed to use OLED
18. #include <Adafruit_SSD1306.h>
19. #include <Adafruit_GFX.h>
20.
21. #include <SoftwareSerial.h> // library needed to use Xbee
22.
23. #define SCREEN_WIDTH 128 // OLED display width, in pixels
24. #define SCREEN_HEIGHT 64 // OLED display height, in pixels
25.
26. // Declaration for an SSD1306 display connected to I2C (SDA, SCL pins)
27. #define OLED_ADDR 0x3D // Address 0x3D for 128x64
28. Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, -1);
29.
30. SoftwareSerial xbee(10,9); // set pins 10 and 9 as serial comunication pins Tx

 and Rx
31.
32. int iniMPDTime, sesionAverage, stoppedTime,currentMillis, MPDTime;
33. int stepCount = 0;
34. int t = 0;
35.
36. void setup() {
37. display.begin(SSD1306_SWITCHCAPVCC, OLED_ADDR); // initialize and clear display

https://github.com/RamonHuesa/MPD/blob/master/UID.ino

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 20

38. display.clearDisplay();
39. display.display();
40.
41. xbee.begin(9600); //9600 bps serial comunication with the Xbee
42.
43. // display inicializatin text
44. display.setTextSize(1); // Normal 1:1 pixel scale
45. display.setTextColor(WHITE); // Draw white text
46. display.setCursor(0,20); // Start at 20 pixels from the top and left
47. display.print("Welcome to MPD prototype");
48. display.setCursor(0,40); // Start at 40 pixels from the top and left
49. display.print("by Ramon Huesa Amat");
50.
51. display.display(); // update display with all of the above graphics
52. }
53.
54. void loop() {
55.
56. stepCount = xbee.read();
57. t = xbee.read();
58.
59. if ((stepCount==0)&&(t==0)) {
60. iniMPDTime=t;
61. }
62.
63. // display a line of text
64. display.setTextSize(1);
65. display.setTextColor(WHITE);
66. display.setCursor(0,20);
67. display.print("Step Count");
68. display.setCursor(0,40);
69. display.print(stepCount);
70.
71.
72. // update display with all of the above graphics
73. display.display();
74.
75. // Extra usefull data for the user (not displayed)
76. currentMillis=millis();
77. MPDTime = currentMillis+iniMPDTime;
78. sesionAverage = 1000*stepCount/currentMillis;
79. stoppedTime= MPDTime-t;
80.
81. }

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 21

8 License

The code made for this project has been fed by other free software codes shared

online For that reason and in order to contribute to educative purposes, all the code used

for this project use GNU General Public License (GNU GPL or GPL), which guarantees end

users the freedom to run, study, share and modify the software. The GPL is a copyleft

license, which means that derivative work can only be distributed under the same license

terms [29].

GNU version 3 is the current latest version. The foundation of this license is that

there are four freedoms that every user should have:

 the freedom to use the software for any purpose
 the freedom to change the software to suit user’s needs
 the freedom to share the software
 the freedom to share the changes you make

An important condition of this license is that developers who write software can

release it under the terms of the GNU GPL, this makes the software irreversibly become free

software and remain free software, no matter who changes or distributes the program. That

is what copyleft means: in the same way software is copyrighted, copyleft uses those rights

not to restrict users like proprietary software does, but so they use them to ensure that

every user has this freedom.

The license declaration is commented at the beginning of each one of the source

code files used in this project.

https://en.wikipedia.org/wiki/End_user
https://en.wikipedia.org/wiki/End_user
https://en.wikipedia.org/wiki/Copyleft
https://en.wikipedia.org/wiki/Derivative_work

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 22

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 23

ANNEX 2.
ASSEMBLY AND DRAWINGS

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 24

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 25

1 MPD

The MPD is the step counting unit and the most important part of this project.

1.1 Assembling

The current MPD version is the third one. The previous two were discarded and its

design improved. It follows a breve explanation:

MPD v1

Figure 28. MPD v1.

MPD v1 (Figure 28) was built on bread board and was easy to adjust connections but

the difficulty to maintain the cable connections while it was coupled to the user made

changing into a metal board necessary.

MPD v2

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 26

Figure 29. MPD v2 both sides.

The soldering in the MPD v2 (Figure 29) where inconsistent and the protecting shield

which it was dimensioned for was too large to be brought comfortably. Another problem

with this model was that the charging module had been added after and did not have

enough free space on the board.

MPD v3

Figure 30. MPD v3.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 27

MPD v3 (Figure 30) solved the previous problems and improved further. It is far

sturdier, more precisely soldered, and has a more appealing design.

Fort he MPD the following components are required:

Plastic Buckle Webbing Ending Clip: Figure 31. Cutting one side standing edges and

sanding the surface will make it ready to be glued to the back side of the shield. This

component is intrusted with the task of coupling the device to the top border of the user’s

trousers.

Figure 31. Buckle Webbing Ending Clip cut and sanded.

Plastic Shell: Figure 32. As the original box is unnecessarily high it has been sliced in

half using the solderer. Will be kept only the top part and gluing a second cover on its

bottom part where the clips will be fixed.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 28

Figure 32. Case Enclosure Box cut in half.

Figure 33 shows the resulting structure:

Figure 33. Clip + Cover + Half-Box assembling.

The cover is then placed on the other side with the battery glued to it in order to

minimise the risk of being hit (Figure 34).

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 29

Figure 34. Lithium battery glued to the shield cover.

Its cables pass through two circular holes made with the solderer tip. On top of this

cover the circuit board will be fix glued with 2 pieces of sponge material in anticipation of

possible modifications that requires to separate them by easily breaking the sponges and

this way access to the solderings (Figure 35).

Figure 35. Soldering on the board back.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 30

1.2 Electronic Schematic

Figure 36. MPD connection diagram created with Diagram Circuits [25]

In Figure 36 diagram wires are classified by colours:

 Black: Ground, 0V.

 Red: Direct voltage, 5/3.3V.

 Blue: Communication.

Arduino-MPU-6050serial communication follows I2C protocol. In the Arduino

code, Wires function is set to communicate with the MPU, Arduino Nano pins for I2C

communication are fixed to pins A5 (SDA) and A5 (SCL).

Arduino-XBee serial communication follows instead TTL Serial protocol. In the

Arduino code, SoftwareSerial function is set to communicate with the XBee but in this

case pins used for this communication can be specified in the code among various digital

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 31

pins, for this assembly D9 (Rx) and D8 (Tx) are chosen for its physical proximity with The

XBee module pins.

In terms of power supply, the battery supplies 3.85V which the Arduino internally

converts into rather 5V or 3V3. XBee is powered with the 3V3 pins whereas the MPU-

6050uses 5V output pin.

2 UID

2.1 Assembling

Due to a broken XBee module the hardware assembling of the UID unit has been

impossible in the time and assigned budget for this project. Nevertheless, all the

documentation of its components, schematics and code are contained in this paper to allow

its construction or design modifications. Figure 37 shows the distribution of the components

on the circuit board:

Figure 37. IUD board.

Steps:

326

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 32

In absence of the UID, the output display of the step count from the MPD can be

obtained from the PC by using the Matlab script.

2.2 Electronic Schematic

Figure 38. UID connection diagram created with Diagram Circuits [25]

In Figure 38 diagram wires are classified by colours in the same way as in the previous

MPD:

 Black: Ground, 0V.

 Red: Direct voltage, 5/3.3V.

 Blue: Communication.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 33

Arduino-OLED display communication follows I2C protocol whereas Arduino-

XBee communication follows TTL Serial protocol. Both protocols explained in the MPD

assembling and in more detail in the Annex 3. Communication Protocols.

3 Budget

The total money expended in this project can be calculated by summing all the

component prices (delivery is included) and the value of the material used in the assembling

multiplied by an estimated percentage of it used.

ITEM Price/Unit Units Price

Arduino Nano 1.92€ 2 3.84 €

MPU-6050 1.60€ 1 1.60 €

XBee s1 2 0.00 €

OLED Display 1.52€ 1 1.52 €

XBee Adaptor 1.19€ 2 2.38 €

TF4056 0.41€ 2 0.82 €

Lithium Battery 2.20€ 2 4.40 €

Circuit Board 0.61€ 2 1.22 €

Shield 0.57€ 4 2.28 €

Clips 0.61€ 4 2.44 €

Glue 0.77€ 0.4 0.31 €

TOTAL 20.81€

Table 7. Materials budget.

All the components where bought from Aliexpress.com and Amazon.es except the

XBee that are not included in the budget as they are borrowed from Universidad de Almería.

Another project should consider the cost of them.

Apart from this price, must be considered the use of other tools needed that had to

be bought for this project: electronic solderer, tin wire, flux and material used for previous

prototypes.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 34

It must also be considered that a cost coming from the manufacturing exist that can

hardly be estimated from the assembling of these prototypes such as efficiency in this

assembling would be reached through repetition and the method would be improved. On

the other hand, assigning a cost for a prototype mass production would have a real interest.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 35

ANNEX 3.
COMMUNICATION PROTOCOLS

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 36

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 37

1 Communication Schematic

1.1 PC displayed

PC

Plain Text Frames

MPU
AT Mode

ARDUINO

XBEE

XBEE

USB IEEE 802.15.4 Serial TTL I2C

1.2 OLED displayed

OLED

Plain Text Frames

MPU
 Arduino

AT Mode

ARDUINO

XBEE

XBEE

I2C USB IEEE 802.15.4 Serial TTL I2C

These graphs illustrate the data flow between all the components as well as all the

communication protocols involved in the process.

There are two possible communication network designs, the first one is using the PC

as end of the net and the other one is using the OLED display instead.

In the base of the communication layers are the basic protocols of communication

used by each component: I2C, IEEE 802.15.4, Serial TTL and USB.

The second layer represents the AT mode in the XBee communication that allows the

two components to communicate in a similar way as they were connected directly to each

other. This mode is also called Transparent Mode.

The top layer represents the communication protocol created with the combination

of all the protocols in the nets and consists of plain text frames sent by the MPU rather than

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 38

the PC display or the OLED display. This protocol is one-way communication coming from the

MPU-6050 to the PC or the OLED display.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 39

2 Serial TTL communication

Serial communication is the process of sending data one bit at a time, sequentially,

over a communication channel. Parallel communication instead, is created by several busses

transmitting several bits at a time. TTL (Transistor Transistor Logic) is an old technology for

digital logic and the name is often used to refer to the 5 V supply voltage.

2.1 UART

UART stands for Universal Asynchronous Receiver/Transmitter. It is not a

communication protocol like SPI and I2C, but a peripheral in the microcontroller. The electric

signalling levels and methods are handled by a driver circuit external to the UART, if not

using TTL/CMOS logic levels.

2.2 Wiring and Hardware

In UART communication, two UARTs communicate directly with each other. The

transmitting UART converts parallel data from controlling device into serial form, transmits it

in serial to the receiving UART, which then converts the serial data back into parallel data for

the receiving device. Only two wires are needed to transmit data between two UARTs, one

for sending data and another for receiving. As such, serial devices should have two serial

pins: the receiver, RX, and the transmitter, TX. It's important to note that

those RX and TX labels are with respect to the device itself. So data flows from the Tx pin of

the transmitting UART to the Rx pin of the receiving UART, and vice-versa (Figure 39) [28] .

https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Communication_channel

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 40

Figure 39. UART wire connection [30].

For some serial busses just a single connection between a sending and receiving

device might be enough if one of them does not need to send any data back, which makes

the communication unidirectional.

When two serial devices are connected together, it is important to verify their signal

voltages match up.

2.2.1 Protocol

The UART that is going to transmit data receives the data from a data bus. The data

bus is used to send data to the UART by another device like a CPU, memory, or

microcontroller. Data is transferred from the data bus to the transmitting UART in parallel

form. After the transmitting UART gets the parallel data from the data bus, it adds a start bit,

a parity bit, and a stop bit, creating the data packet. Next, the data packet is output serially,

bit by bit at the Tx pin. The receiving UART reads the data packet bit by bit at its Rx pin. The

receiving UART then converts the data back into parallel form and removes the start bit,

parity bit, and stop bits. Finally, the receiving UART transfers the data packet in parallel to

the data bus on the receiving end [29].

A serial interface where both devices may send and receive data is either full-

duplex or half-duplex. Full-duplex means both devices can send and receive simultaneously.

Half-duplex communication means serial devices must take turns sending and receiving.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 41

2.3 Asynchronous

UARTs transmit data asynchronously, which means there is no clock signal to

synchronize the output of bits from the transmitting UART to the sampling of bits by the

receiving UART. Instead of a clock signal, the transmitting UART adds start and stop bits to

the data packet being transferred (Figure 40). Both UARTs must be configured to transmit

and receive the same data packet structure.

Figure 40. Serial frame signal [31].

The Arduino TTL Serial is an asynchronous serial protocol which has a number of built-

in rules - mechanisms that help ensure robust and error-free data transfers. These

mechanisms, which we get for eschewing the external clock signal, are:

 Baud rate

 Synchronization bits

 Parity bits

2.3.1 Baud rate

This protocol is highly configurable but it is important to make sure that both

connected devices are configured to use the exact same protocol.

The baud rate specifies data speed sent over a serial line. It is usually expressed in

units of bits-per-second (bps). This value determines how long the transmitter holds a serial

line high/low or at what period the receiving device samples its line.

https://cdn.sparkfun.com/assets/1/8/d/c/1/51142c09ce395f0e7e000002.png

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 42

One of the more common baud rates, especially for simple stuff where speed is not

critical, is 9600 bps. This baud rate will be used in many Arduino code examples.

2.3.2 Data framing

Figure 41. Serial Frame structure [35].

Each data transmitted is sent in packet or frame of bits, as in Figure 41. Frames are

created by appending synchronization and parity bits to our data.

The real information carried in a frame is the data piece. This block of data is also

called chunk because its data is not specifically stated. The size of the data piece is

something in between of 5-9 bits; data size will usually be 8 bits as the standard (1 byte).

2.3.3 Synchronization bits

The synchronization bits are 1 at the beginning and 1 o 2 at the end, and as supposed,

they mark the beginning and the end of the frame. It tells the receiver when data is starting

and when it is finished.

2.3.4 Parity bit

The parity bit is used just as a confirmation of the data received that it was correctly

read. It works checking if the data is an odd or an even number showing 1 or 0 in each case.

Assuming that if there is any error it will be in just one bit, otherwise it would work with

even number of error. Parity is optional and not very widely used but it can be helpful to

protect communication against noise. [26]

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 43

3 I2C Communication

Along with serial port and SPI bus, I2C (Inter-Integrated Circuit) is one of the 3 main

communication systems in Arduino environment [30].

3.1 Wiring and Hardware

I2C, also known as TWI (Two Wired Interface), just requires two wires for full

communication, one used for the clock signal (CLK) and the other one for sending and

receiving data.

 In the bus every device has an address number assigned to access to every

single one individually. This address can rather be assigned in the hardware, which usually

give the programmer the possibility of changing the last 3 bits through jumpers or interrupts,

or completely by the code.

 Every single device connected to the bus must have a unique address

number, otherwise it must be changed or, in case that this is impossible, enable another bus.

3.2 Protocol

I2C protocol is based in master-slave architecture. The master device begin

communication with slaves and then slaves can reply to the master. Slaves cannot begin a

conversation if the master does ask them first or either talk directly to each other.

 There is normally just one master, despite multiple masters buses being

possible, just one of them can be the master at a time and master changes introduce high

complexity.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 44

3.3 Synchronous

The I2C protocol is synchronous. The master provides a clock signal that keeps all the

devices in the bus synchronised. Thus, there is no need for every single device to have its

own clock signal, to arrange a transmission speed and to have mechanisms to maintain

transmission synchronised as in UART protocol.

I2C protocol considers Pull-Up resistors from wires to Vcc as shown Figure 42. In

Arduino projects, seeing it not installed is frequent as Arduino library Wire activates internal

Pull-Up resistors. Withal, internal resistors have an impedance in the range of 20-30 KOhm,

so these are very strong resistors.

Figure 42. I2C protocol wiring [30].

 This makes signal rises slower and it involve lower baud rates and shorter
communication distances. To avoid these problems extra Pull- Up resistors must be added to
the circuit of a value in between 1 and 4.7 KOhm.

3.4 Data framing

In order to perform good communication with just a single wire, I2C bus uses large
frames, as shown in Figure 43, conformed by these elements:

 7 bits: address number of the device to communicate to.

 1 bit: to indicate if the request is to send data or receive it.

 1 bit: validation.

 1 or more bits: data sent or receive from the slave.

 1 bit: validation.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 45

Figure 43. I2C frames signal.

With these 7 bits it is possible to access to 112 different devices in a single bus (16
address numbers are set for special utilities).

If the data piece is 8 bits (1 byte) the data frame grows up to 18 bits, which makes
the communication not as fast as in other protocols. Standard transmission rate is 100MHz,
and high speed mode around 400MHz.

I2C standards consider other working modes with longer address numbers or slower
speeds but they are not usually implemented in Arduino.

One of the perks of using I2C communication is the verification of successful
transmission, although there is no verification of correct content of the message and the
communication cannot be full-duplex.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 46

4 IEEE 802.15.4

XBee modules support multiple wireless protocols which are suitable for different

network topologies.

IEEE 802.15.4 is a technical standard which defines the operation of LR-WPANs (low-

rate wireless personal area networks). It specifies the physical layer and media access

control for LR-WPANs. XBee further extends the standard by developing the upper layers

which are not defined in IEEE 802.15.4 [32].

5 AT Mode

By default, XBee Modules operate in Transparent Mode, however it is recommended

to directly configure this mode following the instruction in the XCTU section. When

operating in this mode, the modules act as a serial line replacement - all UART data received

through the DI pin in the XBee is queued up for RF transmission. When RF data is received,

the data is sent through pin DO in the Xbee [33].

Data is buffered in the DI buffer until one of the following causes the data to be

packetized and transmitted:

 No serial characters are received for the amount of time determined by the RO

(Packetiza-tion Timeout).

 The maximum number of characters that will fit in an RF packet is received (100

characters)

 The Command Mode Sequence (GT + CC + GT) is received.

If the module cannot immediately transmit (for instance, if it is already receiving RF

data), the serial data is stored in the DI Buffer until it can transmit it.

If the DI buffer becomes full, hardware or software flow control must be

implemented in order to prevent overflow (loss of data between the host and module).

https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Physical_layer
https://en.wikipedia.org/wiki/Media_access_control
https://en.wikipedia.org/wiki/Media_access_control
https://en.wikipedia.org/wiki/Protocol_stack

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 47

ANNEX 4.
ALGORITHM DEVELOPMENT

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 48

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 49

Algorithm method

Analysing the plot after some test it seems the axis Ay (the vertical accelerometer

axis) and Gz (the horizontal sided gyroscope axis) shows a higher response to steps. The

reason for that is when a step is made there is a vertical hit with the floor that generates

vibration and this is picked up by the Accelerometer specially in the Y axis, likewise shortly

before the step the initiation of the movement is made by a hip flexion which is received in

the gyroscope as a rotation in the Z axis.

This algorithm used to detect steps just used the variable Ay, as it is enough to

perceive the step movements. When we look at the Ay plot using the command >>plot(Ay),

if the test has been done previously saving the variables, we can appreciate the steps as high

oscillations on the graph. There are two main conditions to implement the algorithm.

Condition 1. The first one is to define what is the trigger value in order to assess a

raise in Ay as a peak created by a step. If the trigger value is too low other body movements

can be considered steps by the MPD and it could add these false steps to the step count. On

the other hand, if this value is too high then soft steps in slow walking will not be detected.

Condition 2. The other condition, and this one is a bit more sensitive, is to bear in

mind that due to imprecisions in the measurements the signal may have picks without a step

movement or a low pick while a step pick is occurring without a clear movement reason.

Because of this, two separated picks in a single step movement can happen.

This can be solved with a “wait” condition in the algorithm by not adding new steps

to the count until a certain time has passed. The big problem here is that if this time is too

short there might be double steps separated enough to be saved in the step count. But if it is

too long the MPD would lose its ability to measure fast walking.

These two values have been adjusted by tests with the algorithm implemented in

Matlab with an if() condition where the real steps numbers where counted aloud while the

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 50

user was performing the test and at the same time checking real-time the correspondence

on the PC.

Tests

Here is an explanation of how the tests to develop the algorithm were performed.

In the test 3 kind of waking are consider:

Fast walking: Not completely maximum speed but still fast and difficult to maintain

for a long time. Speed walking of people walking in the street with a destination and not

much time to arrive there. Up to 120 steps per minute.

Medium speed waking: Average walk for people. Approximately 85 steps per

minute.

Slow walking: Short steps with variable speed in the way of a person moving inside

of a room.

Short displacements with very short steps are not considered in the algorithm, the

MPD may detect some of them but because of “Condition 2” fast short waking will not add

many steps in a short time. This algorithm is just orientated to measure natural continuous

walking.

The test is done with a tester and a tested subject, tests were done in 3 different

people train to minimise the effect of personal differences in the efficiency of the MPD and

this way make the device suitable for as many kind of users as possible.

This test was performed in order to adjust the 2 parameters in the algorithm and find

a correspondence between the program output and reality.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 51

Figure 44. Test with the MPU.

Figure 44 shows the result seen after a test is performed the stepCount variable

count steps and in the test the result was exactly the same as in the real model. By just

plotting the Ay a better analysis can be done.

TECHNICAL PAPER. MICROCONTROLLER-BASED WIRELESS
PEDOMETER PROTOTYPE DESIGN

ANEX

Ramón Huesa Amat 52

Figure 45. Matlab plot of Ay for the MPD tests.

In Figure 45, the plot of one of the test can be seen. This test consisted in 20

medium-speed steps and 10 slow-speed steps and the algorithm successfully assigned all the

steps.

The test is performed using the code MPDtest.ino for the Arduino and

DisplayMatlabTests.m for Matlab. The commented code can be seen in the Annex 1. Code.

Resumen/Abstract

GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL, 2018/2019

 El sedentarismo es una de las causas principales de muerte
prevenible y morbilidad en los países desarrollados. Los actuales niveles
de inactividad física son en parte debidos a una participación insuficiente
en actividades físicas y un aumento de comportamiento sedentario
durante las actividades diarias. Caminar más es una solución adecuada
para la mayoría de las personas, y midiendo la cantidad de actividad al
caminar, los usuarios dispondrán de una herramienta útil para aumentar
su actividad física.
 Este proyecto aborda el reto de detectar pasos mediante el uso del
acelerómetro, controlado por microcontrolador Arduino y transmitirlo
inalámbricamente a otro terminal para ser visualizado. Este diseño
corresponde al prototipo destinado a ayudar en el desarrollo de una
versión de podómetro posterior que pueda ser fabricada con un diseño
más compacto y con funcionalidades adicionales.

 Physical inactivity is a leading cause of preventable death and
morbidity in developed countries. The current levels of physical inactivity
are partly due to insufficient participation in physical activities and an
increase in sedentary behaviour during daily activities. Increase walking
is a suitable solution for most people, and by measuring the amount of
activity in the walk, people will have a useful tool to increase their
physical activity.
 This project addresses the challenge of detecting steps through the
use of the accelerometer, controlled by the Arduino microcontroller and
transmit it wirelessly to another terminal in order to be displayed. This
design is a prototype intended to support the development of a later
pedometer version that can be manufactured with a more compact design
and further functionalities.

