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[1] In this paper, a spatial image technique is used to efficiently calculate the mixed
potential Green’s functions associated with electric sources, when they are placed inside
arbitrarily shaped cylindrical cavities. The technique is based on placing electric dipole
images and charges outside the cavity region. Their strength and orientation are then
calculated by imposing the appropriate boundary conditions for the fields at discrete points
on the metallic wall. A method for the assessment of the potentials accuracy is proposed,
and several optimization techniques are presented. Three cavities are analyzed to
demonstrate the usefulness of the techniques. The cutoff frequencies and potentials
patterns are compared to those obtained by a standard finite elements technique, showing
excellent agreement. Finally, a band-pass filter based on coupled lines is analyzed,
demonstrating the practical value of the technique.
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1. Introduction

[2] The need to develop techniques which allow for the
prediction of the electrical behavior of shielded circuits
and cavity backed antennas has triggered the growth of
studies in this area. In order to make an accurate analysis
of this kind of circuits, pure numerical techniques such as
finite elements, finite differences or the transmission line
matrix method can be used [see, e.g., Jin and Volakis,
1991; Omiya et al., 1998; Hoefer, 1985].
[3] Moreover, the integral equation technique com-

bined with the Method of Moments [see Harrington,
1968] has become very popular, because of its efficiency
and moderate computational cost for circuits with elec-
trical size in the order of few wavelengths [Gentili et al.,
1997; Livernois and Katehi, 1989]. The formulation of
the integral equation requires an algorithm which leads to
the computation of the electromagnetic scalar and vector
potentials of the problem, i.e. the so called mixed

potentials Green’s functions. In the literature, several
formulations can be found for the case of shielded
structures, where the enclosure influence has to be
included inside the Green’s functions [see Eleftheriades
et al., 2004; Gentili et al., 1997]. In this case, the
numerical treatment of the problem is reduced to the
printed circuits itself, and therefore, the computational
cost decreases considerably.
[4] The Green’s functions for rectangular enclosures

have been extensively studied in the past [see Railton
and Meade, 1992; Karen and Atsuki, 1995; Park and
Nam, 1997]. The first studies expressed the Green’s
functions in terms of spectral domain slowly convergent
series of vector modal functions inside rectangular cav-
ities [see Park and Nam, 1997; Dunleavy and Katehi,
1988]. Recently, the computation of the Green’s func-
tions have been performed by using spatial domain
formulations [see Melcón et al., 1999], expressing them
as slowly convergent series of spatial images. However,
in order to evaluate efficiently the Green’s functions it
is necessary to use special acceleration algorithms [see
Park and Nam, 1997; Melcón and Mosig, 2000;
Eleftheriades et al., 2004; Hashemi-Yeganeh, 1995], in
both spectral and spatial domains.
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[5] Because of this complex mathematical treatment,
the circular waveguide has been less studied. Green’s
functions inside circular geometries can be formulated by
using spectral domain techniques, which express them as
vector modal series of Bessel functions [see Leung and
Chow, 1996; Zavosh and Aberle, 1994]. These methods
are strongly dependent on the chosen numerical ap-
proach, since the higher order Bessel functions are not
easily computed with enough accuracy.
[6] On the other hand, a new spatial domain method for

the Green’s functions computation inside circular cylin-
drical cavities was recently proposed by Vera-Castejón et
al. [2004] and Quesada-Pereira et al. [2005]. The tech-
nique uses image theory to enforce the proper boundary
conditions for the fields. The numerical evaluation of the
Green’s functions under electric current excitation inside
an empty circular cylindrical cavity was described by
Vera-Castejón et al. [2004], whereas in the work of
Quesada-Pereira et al. [2005] Green’s functions under
magnetic currents were studied. Besides, the technique
was extended by combining it with the potentials of a
stratified medium formulated in the spatial domain with
the Sommerfeld integral [seeMosig, 1989], which allows
the analysis of practical multilayer printed circuits.
[7] In this framework, this paper presents an extension

of the original image theory that permits its application to
arbitrarily shaped cylindrical geometries. The new for-
mulation to compute both the electric scalar potential and
the magnetic vector potential dyadic Green’s functions
produced by electric currents inside arbitrarily shaped

cylindrical cavities is shown. This formulation computes
the Green’s functions when source and observation
points belong to the same transverse plane. However, a
multiring approach, similar to the one presented by
Pereira et al. [2005] for circular cavities, can be used
in order to evaluate observation points located at a
different height than the source point. Geometries, such
as rectangular, triangular and cross shaped are analyzed,
while fast convergence behavior is exhibited.
[8] A new technique for the evaluation of the accuracy

of the Green’s functions is introduced, whereas two
methods to increase the precision are proposed. The first
is based on properly locate the spatial images, by
optimizing its distance from the cavity wall in order to
obtain the lowest possible error. The second is based on a
gradient technique which optimizes either the complex
value of the images or their location. Some useful results
are obtained, showing the effectiveness of both techni-
ques for reducing the computational error during the
calculation of the Green’s functions in several cavities.
[9] In addition, the novel image technique has been

applied successfully for the calculation of the resonant
frequencies inside arbitrarily shaped cavities, and several
results are given. Furthermore, a comparison between the
distribution of the potentials and the electric field com-
ponents (provided by HFSS#) is presented. It is shown
that they have the same distribution inside the cavity,
because they satisfy the same boundary conditions.
Finally, a practical 4-poles band-pass filter based on
coupled lines is analyzed, showing the practical value
of the method proposed.

2. Theory

[10] In this section, the formulation needed to obtain
the potentials inside arbitrarily shaped cylindrical cavi-
ties under electric currents excitation is presented. A
technique to assess the accuracy of the potentials, and
two methods for their optimization are then proposed.
[11] With the proposed technique, the calculation of

the potential Green’s functions can be done inside any
geometry, defined by polygonal sides. A triangular
shaped geometry is depicted in Figure 1 in order to
introduce the formulation without lack of generality. A
unitary electric dipole is placed inside the perfectly
conducting triangular cavity; the situation is analogous
if other geometries are chosen. The electric field can be
expressed by using the mixed potentials formulation as:

~E ¼ �jw~A�rfe ð1Þ
[12] To evaluate the electric scalar potential, the basic

formulation presented by Vera-Castejón et al. [2004] for
circular cavities can be used. The idea is to impose the
cancellation of this potential at N discrete points along

Figure 1. Unit electric dipole inside a triangular shaped
cavity.
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the cavity wall. To do that, N image charges will
be placed outside the structure, in order to impose
the boundary conditions. Figure 2 is used to illustrate
the basic idea with a triangular cavity. In this manner, the
next system of linear equations is formulated to numer-
ically evaluate the N charge complex values:

XN
k¼1

qkGV ~ri;~rk
0ð Þ ¼ �GV ~ri;~r0

0ð Þ ; i ¼ 1; 2; 3; . . . ;N

ð2Þ

where all position vectors are shown in Figure 2.
[13] For the sake of simplicity, the basic formulation of

the method has been established by using the free space
Green’s functions as the foundation of the technique. In
this way, GV(~r,~r

0) is the electric scalar potential Green’s
function of a unit point charge in free space. If one
intends to model real cavities, more complex Green’s
functions, such as those evaluated by applying the
Sommerfeld transformation for multilayer structures,
should be used [see Michalski and Mosig, 1997]. This
will allow considering the influence of the top and the
bottom conducting covers in real cavities, and also
dielectric substrates, where real circuits can be printed.
[14] It is interesting to point out that equation (2) is

independent on the geometry of the waveguide, because
a specific coordinate system is not used, and a fixed
location of the images and the tangent points is not
assumed. The solution of the system provides the com-

plex values of the N-images charges (qk) needed to
satisfy the boundary conditions at N-different points on
the wall. The final electric scalar potential Green’s
function inside the cavity (GVT) is simply evaluated by
reusing the already computed charge amplitudes:

GVT
~rð Þ ¼ GV ~r;~r0

0ð Þ þ
XN
k¼1

qk GV ~r;~rk
0ð Þ ð3Þ

[15] For the evaluation of the magnetic vector potential
dyadic Green’s function, a similar procedure is followed
by taking into account the vector nature of the quantity to
be computed. In this case, an arbitrary oblique wall, as
shown in Figure 3, is employed to define the unitary
vectors in rectangular coordinates. The boundary condi-
tion for the electric field at a discrete point on the wall is:

ên �~EtotjC ¼ 0 ð4Þ

where ên is the unit vector normal to the oblique plane
(see Figure 3), and C is the countour of the cavity. The
idea is to impose the boundary conditions on the
potentials, not on the fields. To translate above condition
to the potentials, the mixed potential form of the electric
field shown in equation (1) is used. Then, the previous
condition for the electric field can be split into two
different conditions for the potentials:

ên �~AjC ¼ 0 ð5Þ

fejC ¼ 0 ð6Þ

Figure 2. Image charge rearrangement used to enforce
the boundary conditions for the electric scalar potential at
three points along the cylindrical wall. Point P is a
generic observation point.

Figure 3. Arbitrary oblique wall to define the unit
vectors needed in the formulation.
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At this point, the Lorentz gauge is considered:

r 
~A ¼ �jw�mfe ð7Þ

Since the electric scalar potential is zero at the cavity
contour, the Laurentz gauge imposes the following final
condition on the magnetic vector potential:

r 
~AjC ¼ 0 ð8Þ

If equation (5) is satisfied, then equation (8) is simplified,
working in rectangular coordinates, to a single condition
involving the normal component of the magnetic vector
potential (An), as follows:

rAnð Þ 
 ênjC ¼ 0 ð9Þ

[16] Considering an electric unitary dipole oriented
along the x-axis (see Figure 4), the boundary conditions
are imposed at N points on the wall. The utilization of
two orthogonally oriented electric dipole images is pro-
posed in order to fulfill both conditions (equations (5)
and (9)) at each point. Each orthogonal dipole has its
own weight. Therefore, 2N image dipoles are used,
obtaining a 2N � 2N system of linear equations:

� sin8i

XN
k¼1

GA ~ri;~rk
0ð Þ Ixxk þ cos8i

XN
k¼1

GA ~ri;~rk
0ð Þ Ixyk

¼ sin8i GA ~ri;~r0
0ð Þ ð10Þ

cos8i

XN
k¼1

Ci;k I
xx
k þ sin8i

XN
k¼1

Ci;k I
xy
k ¼ � cos8i Ci;0;

i ¼ 1; 2; 3; . . . ;N ð11Þ

where the following definition for the constants has been
used:

Ci;k ¼ cos8i

@GA ~ri;~rk
0ð Þ

@x
þ sin8i

@GA ~ri;~rk
0ð Þ

@y
ð12Þ

and GA is the magnetic vector potential Green’s function
without cavity. For free space, it can easily be express
as:

GA ~r;~r
0ð Þ ¼ m0

4p
e�jk0j~r�~r 0j

j~r �~r 0j ð13Þ

The constant Ci,k can be computed, for a general
multilayered medium, using the spectral domain for-
mulation combined with the Sommerfeld integral

transformation. For the free space case, a closed form
expression can be obtained as follows:

@GA ~ri;~rk
0ð Þ

@x
¼ � m0

4p



e�jk0j~ri�~rk 0 j xi � x0k

� �
1þ jk0j~ri �~rk

0jð Þ
j~ri �~rk 0j3

ð14Þ

@GA ~ri;~rk
0ð Þ

@y
¼ � m0

4p



e�jk0j~ri�~rk 0 j yi � y0k

� �
1þ jk0j~ri �~rk

0jð Þ
j~ri �~rk 0j3

ð15Þ
Finally, the magnetic vector potential is recovered inside
the arbitrary geometry, by using all the amplitudes of the
(2N) image electric dipoles (Ik

xx, Ik
xy):

Gxx
AT

~r;~r0
0ð Þ ¼ GA ~r;~r0

0ð Þ þ
XN
k¼1

Ixxk GA ~r;~rk
0ð Þ ð16Þ

G
yx
AT

~r;~r0
0ð Þ ¼

XN
k¼1

I
xy
k GA ~r;~rk

0ð Þ ð17Þ

It is worth mentioning that, according to these expres-
sions, an x-directed electric dipole can produce a
magnetic vector potential with a y-component (or vice
versa), depending upon the geometry features.

Figure 4. Electric image dipoles used to enforce the
boundary conditions for the magnetic vector potential at
three discrete points on the triangular shaped cavity wall.
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[17] If the electric unitary dipole inside the cavity is
oriented along the y-axis, the same procedure can be
followed in order to impose the boundary conditions on
the wall. In this case, a similar 2N � 2N system of linear
equations is obtained:

� sin8i

XN
k¼1

GA ~ri;~rk
0ð Þ Iyxk þ cos8i

XN
k¼1

GA ~ri;~rk
0ð Þ Iyyk

¼ � cos8i GA ~ri;~r0
0ð Þ ð18Þ

cos8i

XN
k¼1

Ci;k I
yx
k þ sin8i

XN
k¼1

Ci;k I
yy
k

¼ � sin8i Ci;0; i ¼ 1; 2; 3; . . . ;N ð19Þ

we can observe that only the excitation vector changes
with respect to the system formulated for the x-oriented
dipole. The computed image electric dipoles are used to
recover the magnetic vector potential inside the cavity, in
a similar way as before:

G
yy
AT

~r;~r0
0ð Þ ¼ GA ~r;~r0

0ð Þ þ
XN
k¼1

I
yy
k GA ~r;~rk

0ð Þ ð20Þ

G
xy
AT

~r;~r0
0ð Þ ¼

XN
k¼1

I
yx
k GA ~r;~rk

0ð Þ ð21Þ

[18] Although the formulation has been introduced
with a polygonal enclosure, the developed method can
analyze any kind of cylindrical cavity. If the enclosure has
any curved side, the normal component at each point must

be taken with respect to the tangent to the cavity wall.
Taking into account this detail, the formulation correctly
treats any structure containing linear or curved sides.
[19] One interesting remark, is that it is important for

the numerical algorithm to properly select the points
where the boundary conditions are imposed. One possible
strategy is to select uniformly the points in each segment
of the cavity, avoiding the corners, where the tangent and
normal vectors are not defined. Another important issue is
how to place the image dipoles around the cavity.
[20] Because the proposed formulation pretends to be

useful for the evaluation of arbitrary geometries, the
situation of the images changes as a function of the
waveguide shape. An intelligent way to locate them is to
follow the structure contour, with an adequate separation
distance (see Figure 5). However, the numerical accuracy
depends directly on how this selection is made.
[21] To estimate the numerical precision, in both scalar

and vector potentials, the boundary conditions fulfill-
ment is measured. After that, several techniques for
accuracy optimization are proposed. This is very useful,
especially to limit the maximum number of images
which are employed, and therefore, to reduce the com-
putational cost, avoiding ill-conditioned systems.
[22] A method to estimate the precision of the electric

scalar potential is the evaluation of its magnitude on the
whole waveguide contour, assuming it has to be null to
satisfy the proper boundary condition:

Cost ¼
I
C

jGVT
j2 dC ð22Þ

where C is the cavity contour. Once the cost is defined, it
can be optimized, having in mind that the ideal (target)
situation is that of zero cost.
[23] The first proposed technique to reduce the cost

consists on changing the distance of the image charges
relative to the structure, in order to find an optimum
separation (see Figure 5). For every distance, the
corresponding cost is obtained; the target is to find the
separation of the images that leads to the minimum cost.
Once it is estimated, the optimal distance is used to
locate the images and to accurately compute the relevant
Green’s functions.
[24] The second technique is based on a gradient opti-

mization applied to the image charges complex magni-
tudes. First, the charge values are updated using an LMS
(Least Mean Square [see Haykin, 1999]) algorithm:

�q k þ 1ð Þ ¼ �q kð Þ � mr�qCost kð Þ ð23Þ

where �q(k) is a vector containing the magnitude of the N
charges for the k-iteration, and �q(k + 1) is a vector
containing the values in the next iteration.
[25] The cost gradient function is obtained by differ-

entiating with respect to every charge value. To do that,

Figure 5. Different images positions around the cavity,
varying their distance to the waveguide walls.
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the following differentiation rule is used for a function of
complex variables:

@Cost

@qp
¼ 1

2

@Cost

@qpr
� j

@Cost

@qpi

� �
ð24Þ

where qpr and qpi are the real and imaginary parts of a
generic image charge qp. Straightforward calculations
lead to the following closed-form expression for the cost
gradient with respect to a generic p-th charge:

@Cost

@qp
¼
I
C

"
GV
* ~r;~r0

0ð ÞGV ~r;~rp
0� �

þ
XN
k¼1

qk GV ~r;~rk
0ð Þ

 !
*
GV ~r;~rp

0� �#
dC ð25Þ

This technique yields to a local minimum in the cost, and
allows to increase the accuracy of the electric scalar
potential. It is important to point out that the cost
reduction depends upon the kind of analysis (the number
of images, their initial situation, and the position of the
source).
[26] In practice, this algorithm achieves better results if

the number of images is not very high (up to 4–5 images
per wavelength of the perimeter in average). This is
because, in these situations, there is a larger improve-
ment margin, as the local minimum is far away from the
initial point. With respect to the computational cost, it
can be easily controlled by modifying the LMS algo-
rithm m-parameter for each iteration, and stopping the
process when it has converged.

[27] Alternatively, the accuracy of the electric scalar
potential can also be improved by modifying the location
of the charges. The idea is based on automatically
moving each image, to obtain a configuration which
optimizes the cost function (see Figure 6). For that, a
gradient based algorithm is again proposed:

�r k þ 1ð Þ0¼ �r kð Þ0�mrr�r 0Cost kð Þ ð26Þ

where �r(k + 1)0 is a vector containing the image positions
to optimize in the (k + 1) iteration. At this point, the cost
function gradient is recalculated (in this case we take the
derivative with respect to a generic image position �rp

0 ):

@Cost

@ �rp0
¼
I
C

"
qp*GV ~r;~r0

0ð Þ~F* ~r;~rp
0� �

þ qp GV
* ~r;~r0

0ð Þ~F ~r;~rp
0� �

þ qp
XN
k¼1

qk*GV
* ~r;~rk

0ð Þ
 !

~F ~r;~rp
0� �

þ qp*
XN
k¼1

qk GV ~r;~rk
0ð Þ

 !
~F* ~r;~rp

0� �#
dC ð27Þ

where the ~F vector function is written as:

~F ~r;~r 0ð Þ ¼ 1

4pe0

e�jk0j~r�~r 0 j ~r �~r 0ð Þ 1þ jk0j~r �~r 0jð Þ
j~r �~r 0j3

ð28Þ

[28] Once the algorithm stops, the images have
changed their position so that the cost is minimum (see
Figure 6). This technique is very effective, especially for
more complicated situations; for example, if the source
charge is very close to the cavity walls. In this case, the
images try to compensate the scalar potential singularity,
approaching some of them very near to the source. An
example will be given in the next section to illustrate this
issue. This effect will reduce notably the cost, and yields
a very accurate electric scalar potential. In this method,
the computational cost is fundamental, since all the
integrals must be calculated for each iteration. Techni-
ques such as a m-parameter dynamical modification, or
an automatic stop are essential.
[29] The magnetic vector potential precision can also

be estimated. Although this quantity is not null on the
geometry contour, if an x-orientated dipole is placed
inside the cavity, equations (10) and (11) must be
satisfied for all points situated on the wall. Note that if
the dipole is oriented along the y-axis, then equations (18)
and (19) are employed. In order to measure the fulfill-

Figure 6. Images movement used to optimize the
electric scalar potential cost.
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ment of the chosen boundary condition, a contour
integral can be defined along the cavity wall:

T1 ¼
I
C

� sin8c

XN
k¼1

GA ~rc;~rk
0ð Þ Ixxk � sin8c GA ~rc;~r0

0ð Þ

�����
þ cos8c

XN
k¼1

GA ~rc;~rk
0ð Þ Ixyk

�����
2

dC ð29Þ

T2 ¼
I
C

cos8c

XN
k¼1

Cc;k I
xx
k þ cos8c Cc;0

�����
þ sin8c

XN
k¼1

Cc;k I
xy
k

�����
2

dC ð30Þ

Since all the contributions are positive, they are
accumulated to obtain a global cost, which gives an
estimation of the magnetic vector potential accuracy:

Cost ¼ T1 þ T2 ð31Þ

[30] As it happened with the electric scalar potential,
the ideal situation is the nullity of the magnetic vector
potential cost. After the cost function is defined, the next
step is its optimization. Due to the complexity of the cost
function, only the variation of the distances of the images
with respect to the cavity is proposed, in order to achieve
a configuration which yields a minimum cost. The
technique is similar to that applied to the electric scalar
potential optimization. It is important to indicate that all
the techniques employed to measure and improve the
accuracy of both scalar and vector potentials are inde-

pendent on the cavity geometry, so they can be applied to
optimize cavities of any shape.
[31] One of the main advantages of the technique

previously derived is that it can be easily extended to
consider a multilayered medium. This is simply done by
replacing the free-space Green’s functions by the multi-
layered media Green’s functions formulated in the spatial
domain through the well known Sommerfeld transfor-
mation [see Michalski and Mosig, 1997]. This allows,
not only to take into account the presence of dielectric
layers, but also to automatically impose the boundary
conditions at the top and bottom covers for the case of
completely close cavities. The details of this formulation
for cylindrical enclosures were presented by Quesada-
Pereira et al. [2005], and can be easily extended to
general cavities.
[32] Another important remark is that the developed

formulation can be easily extended to consider source
and observation points belonging to different transverse
planes. This can be carried out by using several rings of
images to impose the boundary conditions on different
planes. All the images from all rings interact together,
and all of them are used to recover the Green’s functions
at any transverse plane. The details of this procedure
were presented by Pereira et al. [2005] for circular
cylindrical enclosures, and it can be easily extended to
arbitrarily shaped cylindrical enclosures.

3. Results

[33] In order to estimate the performance of the devel-
oped technique, the numerical accuracy in the calculation
of the Green’s functions is measured inside a rectangular
cavity, as shown in Figure 7. In this case, 16 images are
used to enforce the boundary conditions, while the unit
charge or dipole source is placed at the waveguide center.
[34] For this configuration, the boundary conditions

are evaluated on the wall, which provides the necessary
information to evaluate the potentials accuracy. The
boundary conditions fulfillment for the electric scalar
potential at the waveguide contour is shown in Figure 8.
The presence of 16 zeros for the electric scalar potential
can be observed around the contour (the boundary
condition has been enforced at 16 points). In between
these points higher values of the potential are observed.
For the magnetic vector potential, a similar situation is
obtained in Figure 9. In this case, to evaluate the
boundary conditions fulfillment, the sum of the absolute
values of equations (10) and (11), evaluated along the
cavity wall, is plotted in Figure 9. Again, 16 zeros are
obtained, corresponding to the points where the bound-
ary conditions are imposed.
[35] It is important to notice in Figures 8 and 9 that

there are several peaks at some of the corners, both in the
scalar and vector potentials. These peaks are produced by

Figure 7. Rectangular waveguide analyzed with 16
images. The dotted line shows the sweep of the
observation points. Source (1) is at the center of the
cavity (0, 0), and source (2) is at point (1.85l, 0).
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the abrupt changes of the contour direction, that occur
close to the corners of the geometry.
[36] The electric scalar potential cost for the first

situation (placing the source at point (1) of Figure 7) is
78.041. If the gradient based algorithm, which optimizes
charge values is used, the cost is decreased to only 11.51
(a reduction of ’85.25% is achieved) as it can be seen in
Figure 10.

[37] All the charge complex values have been updated
at the same time for each iteration. Convergence has
been achieved within 6 iterations, with a minimal com-
putational budget. Depending on the waveguide, on the
number of images and on the source position, the cost
reduction and the number of iterations needed will
change.
[38] If the location of the source is changed (for

example, to position (2) in Figure 7), the scalar potential
cost increases to 83.67. A potential singularity, which
appears close to the wall rises the cost. In this case it is
recommended the optimization of the images distribution
using the gradient based algorithm. The final distribution
of images is shown in Figure 11. It can be observed that
some of the images have been positioned in front of the
source, in order to compensate the scalar potential
singularity close to the wall.
[39] This technique has provided very good results. In

this case, the cost has decreased to only 32.74 (a
reduction of ’60.87%) within 15 iterations. Figure 12
illustrates the fulfillment of the boundary conditions at
the waveguide contour, before and after application of
the gradient optimization. The quantity plotted is the
absolute values of equation (3), evaluated at several
points along the cavity contour. It is worth noticing, that
the potentials at the points where the boundary condi-
tions are enforced are not null after the gradient optimi-
zation, because the algorithm tried to optimize the global
cost, moving the position of the images. Therefore, the
boundary conditions are not anymore imposed at several
fixed points after the optimization algorithm is applied.

Figure 8. Modulus of the Electric scalar potential along
the waveguide contour.

Figure 9. Magnetic vector potential boundary condition
(sum of the absolute values of equations (10) and (11)),
along the cavity contour.

Figure 10. Gradient based algorithm for the optimiza-
tion of the charge values, when the source is at point (1)
of Figure 7.
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Rather, the boundary conditions are impose on average
on the whole cavity contour. Because of this fact, the
cancelation of the potential near the singularity is also
not perfect. We have observed that in general the
algorithm can compensate at to certain point the peaks
near to the source. In the example of Figure 12, the value
of the potential in the peak is reduced in 6% with respect
to the original value before optimization. Also we can
observe in the figure, that far from the singularity the
improvement is important.

[40] At this point, the cavity height (z-axis in Figure 7)
is considered by introducing the Sommerfeld transfor-
mation [see Quesada-Pereira et al., 2005]. When the
Sommerfeld transformation is used in the formulation,
the boundary conditions are automatically imposed at
the top and the bottom covers for completely closed
enclosures.

Figure 11. Situation of the images after the gradient
optimization is applied to their positions, when the
source is at point (2) of Figure 7.

Figure 12. Modulus of the electric scalar potential along
the waveguide contour before and after the position
optimization. The source is placed at position (2) of
Figure 7.

Figure 13. Electric scalar potential along the x-axis
obtained with different number of images. Spectral
domain solution is also shown for reference. Source
placed at position (1) and observation points placed
along the dotted line of Figure 7.

Figure 14. Electric scalar potential along x-axis with
and without optimization. Results obtained with a
spectral domain technique are included for reference.
Source placed at position (2) and observation points
placed along the dotted line of Figure 7.
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[41] Taking up again the rectangular waveguide of
Figure 7, a configuration, where the cavity height is
0.5l and the source is placed at a middle-height, is
considered. For general situations, it is not necessary to
employ many images to achieve convergence, obtaining
a very good result with only 2–3 images per wavelength
of the cavity perimeter. Figure 13 shows the scalar
potential along the x-axis obtained with two different
numbers of images, when the source is placed at position
(1) of Figure 7. The observation point is placed along the
dotted line also shown in Figure 7. The results are
compared with a spectral domain technique valid only

for rectangular cavities, presented by Melcón and Mosig
[2000]. Some differences can be seen if 5 images are
used. However, the results agree well with the spectral
domain approach when only 15 images are used.
[42] A more difficult situation occurs if the source is

placed near the wall, for example, when the source is
located at position (2) of Figure 7. In this case, the first
image distribution fails, and the optimized image posi-
tions obtained in Figure 11 becomes really appropriate.
A comparison for the scalar potential along the x-axis,
with and without the optimization is shown in Figure 14.
Results obtained with the technique presented by Melcón
and Mosig [2000] are included for reference. An impor-

Figure 15. Cylindrical cross shaped cavity analyzed
with 64 images (the source is placed at the center of the
cavity). Frequency of analysis 3 GHz.

Figure 16. Electric scalar potential cost as a function of
the images distance from the waveguide.

Figure 17. Magnetic vector potential cost as a function
of the images distance from the waveguide.

Figure 18. Electric scalar potential obtained with
the new spatial images at the resonant frequency of
6.935 GHz.
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tant improvement of the accuracy is observed when the
new optimization procedure is applied.
[43] Another kind of structure, like the cross-shaped

waveguide shown in Figure 15, can also be analyzed
with this technique. For this configuration, the optimi-
zation technique based on varying the distance from the
images to the wall is used. These optimum distances are
different for the electric scalar and for the magnetic
vector potential components. The scalar potential cost
variation as a function of the images separation from the
cavity wall in meters is illustrated in Figure 16, at 3 GHz.
As it can be observed, the cost function converged to a
minimum value (0.228), situating all the images at a
distance greater than 80 mm from the cavity wall.
[44] The same procedure has been followed in

Figure 17 to obtain the relationship between the mag-
netic vector potential cost and the distance of the images
(in meters) from the cavity. In this case, it can be noticed
that a local minimum, with a cost of only 5.66, appears at
135 mm. These results show that the accuracy of both
scalar and vector potentials can be considerably in-
creased, if the distance from the images to the cavity is
properly selected.
[45] As a final validation result for this waveguide, we

show in Figure 18 the electric scalar potential obtained at
one of the resonances of a cross-shaped cavity of height
30 mm (TM331 mode at the frequency of 6.935 GHz). For
this calculation the source is placed at the center of the
cavity. The results can be compared with those obtained
in Figure 19 using the commercial finite elements based
HFSS# tool. In this case the z-component of the electric
field is plotted at the same resonant frequency
(6.935 GHz). We can observe the same distribution of

the TM331 mode, with both the new technique and with
the finite elements technique.
[46] This last example shows a very interesting aspect

of the developed theory. In fact, the potentials at the
cavity resonances can be computed without any conver-
gence problems. To show that this is indeed the case, the
natural resonances of a triangular cavity, illustrated in
Figure 20, are calculated. The waveguide is 30 mm

Figure 19. Electric field z-component obtained by HFSS# at the same frequency of 6.935 GHz.

Figure 20. Triangular cavity analyzed with 30 images.
Height of the cavity is 30 mm. Source placed at point
(x, y, z) = (10, 0, 15) mm and observation placed at
point (x, y, z) = (�10, 0, 15) mm.
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height and the point source is placed at 15 mm (half
height). 30 images have been used to make the analysis,
locating them around the waveguide as shown in Figure 20.
[47] To obtain the resonances, in Figure 21 the potentials

are presented as a function of frequency for a fixed position
of the observation and source points (see Figure 20). One
can clearly observe the cavity resonances corresponding to
sharp peaks in the response. Resonant frequencies pre-
dicted with the new spatial method are compared to those
obtained by the finite elements technique. Table 1 shows
that a high accuracy has been achieved maintaining in all
cases a relative error below 0.2%.
[48] Figures 22–25 show the TM121 mode (at a

frequency of 8.88 GHz), for the electric scalar potential
and for the magnetic vector potential GA

yy component.
Again, the comparison between the corresponding elec-
tric field components (provided by HFSS#) and the
potentials obtained with the new technique shows an
excellent agreement.

[49] The developed technique can also be used for the
analysis of practical printed circuits shielded in arbitrarily-
shaped enclosures. This can be done by using the new
formulated Green’s functions inside an electric field
integral equation, formulated for the metallic objects
printed on the dielectric substrates. A shielded band-pass
filter based on coupled lines sections inside a square box
is presented in Figure 26. For this simple geometry, only
12 images are needed to obtain good convergence. The
images are placed at the air dielectric interface, surround-
ing the structure. The scattering parameters are presented
in Figure 27, showing an excellent agreement between our
results and those obtained with a spectral domain tech-
nique presented by Melcón et al. [1999]. Also, the
agreement is good with the results obtained with a neural
network method presented by Garcı́a et al. [2006].

4. Conclusions

[50] In this paper, a novel technique for the evaluation
of the Green’s functions in arbitrarily shaped cylindrical
cavities has been presented. The technique is completely
formulated in the spatial domain, showing fast conver-
gence behavior. The method is based on taking a spatial
image rearrangement to properly impose the boundary
conditions for the fields at a given number of discrete
points on the cavity wall. Details of the formulation are
given under electric current excitation. A new method to
measure the accuracy of the potentials is proposed, and
several techniques for their optimization are described.
The presented results, such as the analysis of several
waveguides (rectangular, cross and triangular) or a prac-
tical band-pass filter, show the validity of the formulation.
Cutoff frequencies and potentials patterns for three-

Figure 22. Electric scalar potential obtained with the
new spatial images at 8.88 GHz.

Table 1. Cutoff Frequencies Comparison for a Real Triangular

Enclosure

Cutoff Frequencies
HFSS#, GHz

Cutoff Frequencies
Spatial Images
Method, GHz

Difference,
GHz

Relative
Difference, %

5.6602 5.656 0.0042 0.074
5.8166 5.816 0.0002 0.010
6.9139 6.9 0.0139 0.201
6.9935 6.993 0.0005 0.0071
7.5622 7.569 0.0068 0.0899
8.6966 8.706 0.0094 0.1080
8.8685 8.88 0.0115 0.1296

Figure 21. Mixed potentials as a function of frequency
in the triangular cavity shown in Figure 20.
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Figure 23. Electric field z-component obtained with HFSS# at 8.88 GHz.

Figure 24. Magnetic vector potential dyadic component GA
yy
obtained with the new spatial images

at 8.88 GHz.
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Figure 25. Electric field y-component calculated with HFSS# at 8.88 GHz.

Figure 26. Boxed microstrip band-pass filter based on coupled lines sections.
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dimensional cavities are obtained, and they are compared
to those provided by HFSS#, showing the accuracy of
the developed technique.
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J. Pascual-Garcı́a, and A. Álvarez-Melcón (2004), Numerical

evaluation of the Green’s functions for cylindrical enclosures

by a new spatial images method, IEEEMTT-S Int. Microwave

Symp. Dig., 3, 1415–1418.

Zavosh, F., and J. T. Aberle (1994), Infinite phased arrays of

cavity-backed patches, IEEE Trans. Antennas Propag.,

42(3), 390–398.

������������
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