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a b s t r a c t

Deep learning is becoming the reference paradigm for approaching many computer vision problems.
Nevertheless, the training of deep neural networks typically requires a significantly large amount
of annotated data, which is not always available. A proven approach to alleviate the scarcity of
annotated data is transfer learning. However, in practice, the use of this technique typically relies
on the availability of additional annotations, either from the same or natural domain. We propose
a novel alternative that allows to apply transfer learning from unlabelled data of the same domain,
which consists in the use of a multimodal reconstruction task. A neural network trained to generate one
image modality from another must learn relevant patterns from the images to successfully solve the
task. These learned patterns can then be used to solve additional tasks in the same domain, reducing
the necessity of a large amount of annotated data.

In this work, we apply the described idea to the localization and segmentation of the most
important anatomical structures of the eye fundus in retinography. The objective is to reduce the
amount of annotated data that is required to solve the different tasks using deep neural networks. For
that purpose, a neural network is pre-trained using the self-supervised multimodal reconstruction of
fluorescein angiography from retinography. Then, the network is fine-tuned on the different target
tasks performed on the retinography. The obtained results demonstrate that the proposed self-
supervised transfer learning strategy leads to state-of-the-art performance in all the studied tasks
with a significant reduction of the required annotations.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The analysis of the anatomical structures in the retina rep-
resents an essential step for the diagnosis and screening of im-
portant ocular and systemic diseases. The morphology of the
anatomical structures, such as blood vessels, fovea, or optic disc,
can in itself provide evidence of the presence of certain diseases.
Additionally, they can be used as reference for the localization of
lesions as well as for the assessment of their severity [1].

The retinal anatomy can be studied using eye fundus photog-
raphy, or retinography, which is a non-invasive and affordable
imaging technique. These reasons motivate its widespread use
in many clinical services, and make it an interesting target for
the development of image analysis algorithms [2]. In this regard,
several works have approached the automatic analysis of eye
fundus images, including the localization or segmentation of the
different anatomical structures [1]. Similarly to other medical
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fields, the number of methods based on neural networks has
grown significantly in the last few years, which carried an im-
provement of the obtained results [3–5]. Currently, the use of
deep neural networks (DNNs) is the standard approach in many
computer vision applications when the required annotated data
is available. DNNs have not only improved the results obtained
with traditional methods, but have also brought a new simplified
paradigm where no feature design is needed [6]. Instead, the
focus has shifted to the design or selection of the most suitable
network architectures, training losses and training strategies [7].

Regarding the automatic analysis of representative anatomical
structures in retinography, the main limitation for the early use
of DNNs was the scarcity of annotated data [3]. In that sense, the
available datasets typically present a small number of annotated
samples due to the difficulty of hand-labelling the retinal images
in detail. Moreover, despite that some large datasets have been
gathered, in practice, the annotated data usually present a meagre
representation of pathological cases [8], given that those images
are typically of higher variability and complexity.

The scarcity of annotated data is not specific to retinal imag-
ing. Instead, this is a broadly relevant issue in medical imaging,
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where a high level of expertise is required for the reliable la-
belling of the medical data [9]. Conversely, a large amount of
medical images is produced everyday in the different medical
services due to the widespread use of imaging techniques in
modern clinical practice [7]. This directly produces the availability
of large unlabelled datasets, which may be used for the training
of neural networks in unsupervised or semisupervised settings.
Moreover, the medical images are typically accompanied by clin-
ical reports describing the patient’s conditions, which may be
used for distilling image-level labels [7]. In contrast, pixel-level
labels require to be annotated on purpose by, at least, one clinical
expert. Moreover, the manual annotation of pixel-level labels rep-
resents a difficult task, being more tedious and time-consuming
than the manual annotation of image-level labels. This is reflected
in the number of annotated samples that are provided in common
medical imaging datasets [1], being significantly smaller when
the required annotations are more detailed [10].

The limited annotated data in medical imaging is typically
alleviated using extensive data augmentation and transfer learn-
ing [7]. The use of data augmentation techniques including, e.g.,
rigid transformations, elastic deformations or colour transforma-
tions, has become a key component of successful deep learning
methods [7]. Transfer learning, on the other hand, has been
applied since the earliest deep learning approaches on medical
imaging. Early works used the first layers of pre-trained classi-
fication networks as feature extractors [11]. These networks are
trained in a broad domain application with extensive available
data, such as ImageNet classification [12]. Posterior works addi-
tionally performed fine-tuning of the pre-trained layers together
with additional layers that are specialized for the target task [3].
Multi-task learning techniques have also been recently explored
for their ability to combine complementary tasks over data of the
same domain [13]. Multi-task settings can be seen as a special
case of transfer learning where the transference of knowledge
is bidirectional and simultaneous between the involved tasks. In
this case, the amount of labelled data is increased by using het-
erogeneous labels (for each task) over data of the same domain.
However, these additional heterogeneous labels from the same
domain can be also exploited using a regular pre-training and
fine-tuning approach, to achieve improved results on the later
tasks [14]. In the case of training multiple tasks of this kind, with
varying difficulty, the training order may have an impact in the
final performance. In this sense, some works have also proposed
to optimize the sampling order or the different tasks to improve
the final outcome [15].

Self-supervised methods are a recent alternative that allows
the use of unlabelled data for transfer learning [16]. These ap-
proaches rely on the use of innovative complementary tasks
which labels can be automatically computed from the unlabelled
datasets and, thus, can be trained without the need of manual
annotations. The purpose of training these self-supervised tasks
is to learn relevant patterns of the domain from the data, and then
use the learned patterns to improve the desired tasks through
transfer of multitask learning. Existent proposals in medical imag-
ing have exploited, as reference, the colour information in images
using a colourization task [17] or the relation among longitudinal
data by learning patient embeddings [18].

A rich source of information that has still not been exploited
for self-supervised transfer learning is the unlabelled multimodal
data in medical imaging. In modern clinical practice, it is common
to analyse and diagnose the patients using multiple imaging
techniques. This results in the availability of multimodal sets
in which samples from complementary image modalities are
available for the same patient. The availability of these multi-
modal data can be exploited using a self-supervised multimodal
reconstruction task where a neural network is trained to generate

one image modality from other. If the two involved modalities
are different enough, the network has necessarily to learn the
recognition of relevant domain-related patterns to successfully
solve the task. Then, the learned models can be further adjusted
to solve additional target tasks over the same input modality.

In particular, in this work, we experiment with these ideas
in the context of the localization and segmentation of anatom-
ical structures of the eye fundus in retinography. The objective
is to reduce the amount of annotated data that is required to
solve these tasks with a DNN, and to that end we propose to
use the self-supervised multimodal reconstruction for transfer
learning. Specifically, we pre-train the networks to generate flu-
orescein angiography from retinography. The retinography and
angiography are complementary image modalities, both provid-
ing visualizations of the eye fundus. However, the angiography is
an invasive modality that requires the injection of a contrast dye
to the patients, providing additional information about the retinal
vasculature and related lesions. In the proposed paradigm, both
unlabelled image modalities are used to pre-train the networks.
However, the target tasks are performed using a single image
modality, which in this case is the retinography. Moreover, the
unlabelled multimodal data for pre-training and the task-specific
data for fine-tuning do not need to belong to the same patients.
This allows the use of any multimodal dataset available in the
same domain, independently of the target tasks.

With regards to the multimodal reconstruction, Hervella et al.
[19] demonstrated that a pseudo-angiography representation can
be generated from a given retinography using a DNN. More-
over, the vascular enhancement in the angiography can also be
directly exploited to produce an approximate representation of
the vascular tree in retinography [20], requiring an additional
pre-processing of the target angiographies. None of the previous
works, however, have taken advantage of the domain-specific
patterns that a neural network must learn in order to perform
the multimodal reconstruction. The idea proposed in this work
exploits those patterns learned from the unlabelled multimodal
data for transfer learning purposes. This represents a novel al-
ternative to complement the training of a DNN and reduce the
amount of annotated data that is required. As reference, an il-
lustrative example of retinography, fluorescein angiography, and
generated pseudo-angiography for the same eye is depicted in
Fig. 1.

In order to demonstrate the advantages of the proposed self-
supervised transfer learning strategy, we use the multimodal
reconstruction as a common self-supervised pre-training for: (1)
the localization of the fovea, (2) the localization and (3) segmen-
tation of the optic disc, and (4) the segmentation of the retinal
vasculature. Additionally, we aim at solving all these target tasks
with the same standard methodology, including the network ar-
chitecture and training strategy. In order to study the efficient use
of annotated data with our proposal, we conducted an extensive
experimentation with progressive amounts of annotated training
data. The objective is to demonstrate that the self-supervised
multimodal reconstruction successfully reduces the amount of
annotations required to solve the considered target tasks.

1.1. State-of-the-art

In the literature, several works have approached the auto-
matic analysis of the most important anatomical structures in
retinography [1]. Previous works typically focus on the localiza-
tion or segmentation of a single anatomical structure. However,
the localization of the fovea has been traditionally approached
together with the localization of the optic disc. This is motivated
by the use of the optic disc location as reference to detect the
fovea [21,22]. Additionally, the retinal vascular tree has also been
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Fig. 1. Example of (a) retinography, (b) fluorescein angiography, and (c) pseudo-angiography for the same eye. The pseudo-angiography (c) is generated from (a)
using the method proposed in Hervella et al. [19].

used as reference for the localization of both the optic disc and
the fovea [22,23].

Regarding the optic disc, some proposals exploit its charac-
teristic circular shape. For instance, edge detection filters can
be used to obtain optic disc boundary candidates [23,24]. Then,
these boundaries allow to derive both the segmented area and
the centre coordinates after a refinement step, e.g., using a hough
transformation [23,24] or measuring the distance to some pre-
computed templates [25]. In this context, Dashtbozorg et al. [26]
proposes specific filters in order to better match the optic disc
shape. Alternatively, the characteristic colour patterns of the optic
disc are also exploited by applying histogram matching [27].
Additionally, Qureshi et al. [25] explores the use of an ensemble
of previously proposed algorithms to improve the results. In
contrast, the most recent proposals use deep learning for both the
localization [4,5] and the segmentation [3] of the optic disc. In the
localization task, a convolutional network with fully-connected
output layers can be used to predict the fovea coordinates [4].
However, instead, Meyer et al. [5] reformulates the problem as
a heatmap regression task, which can be performed using fully-
convolutional networks. The latter approach is the one that we
have adopted in this work for the localization of both optic disc
and fovea.

With regards to the fovea localization, traditional approaches
typically rely on the previous detection of the optic disc to reduce
the search area [21,22,28]. Additionally, Gegundez-Arias et al.
[22] also makes use of the extracted retinal vascular tree to
perform a better initial estimate of the foveal region. The final lo-
calization is usually performed exploiting the characteristic shape
and colour of the foveal region. For instance, Niemeijer et al. [21]
uses a k-NN regressor and features extracted from both the reti-
nal image and the segmented blood vessels, whereas Gegundez-
Arias et al. [22] uses thresholding techniques and features from
the original image. In addition, the fovea and the optic disc can be
detected using template matching with the same template filter
but of opposite responses [28]. Similarly to the optic disc, the
most recent proposals use DNNs for the regression of the fovea
coordinates [4] or the prediction of a full-image size distance
map [5].

In the case of the retinal vasculature segmentation, traditional
approaches have typically relied on the characteristic tubular
shape of blood vessels. This characteristic can be exploited using
the gradients of the image or Gabor filter responses, among
other techniques [29]. However, recent works have successfully
solve this task using DNNs, either fully convolutional [3], fully
connected [30] or convolutional with fully-connected output lay-
ers [31]. In this regard, the novelty of recent works is related
to the use of specific network designs or training objectives,
including, as reference, the use of class-balanced losses [3] or the
supervision to intermediate layers [32].

The rest of the manuscript is organized as follows: A general
overview of the proposed approach, along with a description of

the pre-training and target tasks is depicted in Section 2. The
network architecture and the training strategy are also detailed
in this section. The description of the conducted experiments and
the obtained results are presented in . Section 4 is focused on
the discussion of results and the final conclusions are drawn in
Section 5.

2. Methodology

A general scheme that summarizes the proposed methodology
is depicted in Fig. 2. Particularly, the self-supervised reconstruc-
tion of fluorescein angiography from retinography is used as pre-
training. Then, the pre-trained neural network is fine-tuned on
the different target tasks. Given that the multimodal reconstruc-
tion covers the whole anatomy of the retina, it is expected that
the internal neural network representations that are used for the
reconstruction are also useful for the detection and segmentation
of the different anatomical structures.

The exact same network architecture and training strategy are
employed for all the considered tasks, with the only difference of
the loss function. In particular, for the pre-training task a recon-
struction loss is used, whereas for the target tasks two different
losses are used depending on the objective: a localization loss and
a segmentation loss.

2.1. Self-supervised multimodal reconstruction

The multimodal reconstruction of fluorescein angiography
from retinography is conceived as a self-supervised task due to
the use of aligned retinography–angiography pairs from the same
eye [19]. In this scenario, there is a pixel-wise correspondence
between the input retinography and the target angiography. This
enables the use of full-reference metrics for the reconstruction
loss, which provides a supervisory training signal that involves
fine image details and does not need any human labelling effort.

The aligned multimodal data for training the network is ob-
tained after the registration of retinographies and angiographies
of the same eye. This registration is performed following a
domain-specific methodology that relies on the presence of reti-
nal vessels in both image modalities [33]. This registration
methodology is divided into two main steps: an initial landmark-
based registration that globally aligns the images followed by a
refined pixel-wise registration that corrects the remaining small
misalignments between the images.

Both retinography and angiography display the eye fundus in
a circular Field of View (FOV). After the image alignment, the
area containing information from both modalities, denoted as the
multimodal FOV, ΩM , will be typically smaller than the individual
FOVs of the original images. This area is defined as:

ΩM = ΩR ∩ ΩA (1)

where ΩR and ΩA denote the circular FOVs of the retinography
and the angiography respectively. Consequently, ΩM represents
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Fig. 2. Scheme of the proposed methodology. The self-supervised multimodal reconstruction of angiography from retinography is used as pre-training task. The
pre-trained network is fine-tuned on different target tasks aiming at the analysis of the main anatomical structures in retinography.

the region where the reconstruction loss is computed during the
training. The reconstruction loss LR(g(r), a) is given by:

LR(g(r), a) = −

∑
ΩM

SSIM(g(r), a) (2)

where r is the input retinography, a the target angiography, g(r)
the output of the network, and SSIM the Structural Similarity
(SSIM) index map between the target angiography and the net-
work output [19]. SSIM is frequently used as test metric for the
evaluation of deep learning models that were trained with other
losses. However, in our context, the direct optimization of the
SSIM has demonstrated an improved performance with respect
to other common metrics in the presented task [19]. The SSIM
map is obtained as:

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µx
2 + µy

2 + C1)(σx2 + σy2 + C2)
(3)

where x and y denote two single channel images, µx and µy the
local averages of x and y respectively, σx and σy the local stan-
dard deviations of x and y, respectively, σxy the local covariance
between x and y, and C1 and C2 are constant values used to avoid
instability when the denominator terms are close to zero [34].
The local statistics for each pixel are computed using a Gaussian
window with σ = 1.5 [34].

2.2. Localization of anatomical structures of the retina

The localization of the fovea and optic disc centres is obtained
following the same task formulation. In this regard, the localiza-
tion tasks consist in the regression of pixel coordinates, which
can be directly approached using a DNN with fully connected
layers that produce the coordinate values. However, this kind of
regression settings can be difficult to train, and does not take full
advantage of the shared weights and local connectivity of con-
volutional networks. An straightforward alternative is to predict
a target map with two classes: the pixel of the target location
and the rest of the image. In this case, the difficulty is that the
target maps are heavily unbalanced. An alternative to improve
this is to augment the ground truth annotations by the means of

a distance map to the target pixel [5]. Using the Euclidean norm,
this distance map is given by:

dT (xi, yi) =

√
(xi − xT )2 + (yi − yT )2 (4)

where (xT , yT ) are the coordinates of the target pixel and (xi, yi)
the coordinates of each pixel in the image. The distance map
dT provides additional information for training the localization
task. Nevertheless, the accurate prediction of the norm values
for the most distant pixels is difficult given that less visual cues
are present. This has a negative effect on the global accuracy
of the prediction due to the excessive importance given to the
less relevant distant pixels. Thus, we use a location map with
higher variability near the target location, which is obtained by
applying an exponential decay that saturates at the distant pixels.
The proposed location map yL is defined as:

yL = 1 + tanh
(

−dT
π

β

)
(5)

where tanh is a hyperbolic tangent function, β the saturation
distance, and dT the original Euclidean distance map. For the
experiments in this work, we set the saturation distance β to
the value of the approximate optic disc radius. An illustration of
the proposed location map for a given target location is shown
in Fig. 3. The localization tasks are then trained using a mean
squared error (MSE) loss between the target location map yL and
the network output.

A straightforward approach can be used to recover the re-
sulting location coordinates from the predicted location map by
detecting the pixel of maximum response.

2.3. Segmentation of anatomical structures of the retina

The segmentation of the retinal vasculature and the optic disc
is approached following the same formulation. Both tasks consist
in the prediction of pixel-level labels within two categories: the
anatomical structure of interest and the background. The training
of these tasks is performed with a set {(r, ys)1, . . . , (r, ys)N} where
r denotes the fundus image and ys denotes its corresponding
ground truth segmentation map. The objective is to obtain the
transformation fs that assigns the likelihood of belonging to the
anatomical structure of interest to each pixel of the fundus image.
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Fig. 3. (a) Value of the location map as a function of the distance to the target location. The hyperbolic tangent (tanh) version is the one used in this work, whereas
the linear version is provided for comparison. (b) The location map represented as a three-dimensional surface.

These binary classifications are trained optimizing the cross-
entropy loss between ground truth and network output, defined
as:

LS(fs(r), ys) = −

∑
ΩR

yslog(fs(r)) + (1 − ys)(log(1 − fs(r))) (6)

where r is the input retinography, ys the corresponding ground
truth binary map, fs(r) the output of the network, and ΩR the
retinography FOV where the loss is computed.

2.4. Network architecture

In this work, we use the U-Net architecture [35] for all the
reconstruction, localization, and segmentation tasks. U-Net is a
commonly used network in many medical imaging applications,
and a well-known and proven baseline. In that sense, in order to
ensure an strongly validated baseline, we use the same exact net-
work that was proposed by Ronneberger et al. [35], including the
same number of layers and channels, without any additional ad-
justments. The only exception is the number of output channels,
which inevitably depends on the output that is required for each
specific problem. A general scheme of the network, including
details of the different layers, is depicted in Fig. 4. Specifically, U-
Net is a fully convolutional neural network with output and input
of the same size. This allows the estimation of a full size target
image map, which represents an useful property for segmentation
or reconstruction tasks, as well as for the prediction of location
maps.

This architecture presents a multiscale encoder–decoder struc-
ture, featuring skip connections between their respective inner
blocks. In the encoder part, the width and height image dimen-
sions are progressively reduced by half at subsequent blocks,
using max pooling operations. Following the idea of the VGG
networks [36], these blocks are composed of two convolutional
layers with kernel size 3 × 3 followed by the spatial max pooling
operation. The objective of the progressive reduction in space is
to enforce the learning of broad and abstract patterns from the
data. This helps to produce a hierarchical representation from
low to high level features in which the input data is transformed.
The decoder part progressively recovers the width and height
of the input images, by building the output from the high level
abstractions to the low level details. The progressive upsampling
is produced with strided transposed convolutions that increase
the spatial dimensions by a factor of 2 at each block. These trans-
posed convolutions are interleaved between convolution layers
like those in the encoder.

The width and height variations across the network create
a bottleneck effect that enforces the learning of high level pat-
terns. However, the spatial contraction penalizes the tracking of
the precise localization of the extracted features. U-Net success-
fully improves the localization and generation of small details
with the inclusion of skip connections between encoder and
decoder. These connections transfer features from the encoder to
the decoder at different resolutions, providing alternative paths
to propagate precise spatial localizations.

All the convolutional layers of the network are followed by
ReLU activation functions except for the last layer. In the case of
the segmentation tasks, a sigmoid activation function is used at
the output layer of the network, whereas for the localization and
the multimodal reconstruction tasks a linear activation function
is used instead.

2.5. Network training

When the network is trained from scratch, the parameters
are randomly initialized following the method proposed by He
et al. [37]. The Adam [38] algorithm is used for the optimization
of the loss functions. The decay rates for the first and second
order moments of Adam are set to β1 = 0.9 and β2 = 0.999,
respectively, as originally proposed by Kingma and Ba [38]. The
initial learning rate is set to α = 1e − 4 for the multimodal
reconstruction and α = 1e − 5 for all the localization and
segmentation tasks. The learning rate schedule is the same for all
the experiments. It consists in the reduction of the learning rate
by a factor of 10 when the validation loss does not improve for
2500 iterations. Each iteration consists in a network parameters
update due to the presentation of a training minibatch, which is
fixed to consist of one image in all the experiments. The training
stops when the validation loss stalls after reaching a learning rate
of α = 1e − 7. These parameters were empirically established as
those that were observed to provide enough training for all the
tasks.

For the target tasks the datasets are initially divided into
training and hold-out test sets, whereas for the pre-training task
the whole dataset is used during training. In order to control the
learning rate schedule and the stopping criteria, the training sets
are additionally divided into training and validation subsets. In
this work, several experiments are performed varying the number
of training samples used. Therefore, for each experiment, the
samples that are not selected for training are included into the
validation subset. In the experiments where the whole training
data is used, there is no validation subset, and the schedule
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Fig. 4. Description of the U-Net architecture.

Fig. 5. Results of the fovea localization for a varying number of training samples and comparison of the proposed self-supervised pre-training (Multimodal
reconstruction) against the training from scratch (Random initialization). (a) Average distance error in pixels and ((b), (c), (d)) accuracy for (b) R, (c) R/2, and
(d) R/4 criteria. The means and standard deviations are computed for each experiment from 5 repetitions with 5 different training subsets.

resulting from the previous experiment with more data samples
is applied.

To avoid excessive overfitting, data augmentation techniques
and dropout are also used in both the target and pre-training
tasks. In that sense, we apply the same data augmentation tech-
niques as Hervella et al. [20], including colour and spatial aug-
mentations. The colour augmentations consists in random linear
transformations of the image channels using the HSV colour rep-
resentation. The spatial augmentation consists in random affine
transformations with scaling, rotation, and shearing components.
Dropout layers with probability p = 0.2 are added to the network
after the convolutional blocks 2, 3, 4, 5, and 6, which are depicted
in Fig. 4.

3. Experiments and results

In order to quantify and demonstrate the advantages of the
proposed approach, the self-supervised multimodal pretraining is
compared against training the networks from scratch, which is
the standard alternative without requiring additional annotated
data. In this way, the same experiments were conducted for two
different frameworks:

• Multimodal reconstruction: The neural network is pre-
trained on the unlabelled multimodal data using the self-
supervised multimodal reconstruction. Then, the network is
fine-tuned using the annotated data of the target task.
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Fig. 6. Results of the optic disc localization for a varying number of training samples and comparison of the proposed self-supervised pre-training (Multimodal
reconstruction) against the training from scratch (Random initialization). (a) Average distance error in pixels and ((b), (c), (d)) accuracy for (b) R, (c) R/2, and (d) R/4
criteria. The means and standard deviations are computed for each experiment from 5 repetitions with 5 different training subsets.

• Random initialization: The neural network is randomly
initialized and trained from scratch using the annotated data
of the target task.

In order to guarantee an adequate and fair comparison, the same
network architecture and training strategy was used for both
frameworks, as described in Section 2. Additionally, the same
settings were also used in all the studied tasks, except for the
training loss and the output layer of the network, which re-
quire to be specific for each task objective (segmentation or
localization).

In general terms, several experiments were mainly performed
to study whether the use of the multimodal reconstruction as
self-supervised pre-training may alleviate the impact of hav-
ing a very small number of annotated samples. To that end,
we performed experiments with a varying progressive number
of training samples, ranging from a single image to the whole
training set, while keeping the same hold-out test set for the
evaluation. In most of these experiments, only a subset of the
available training data is actually used for training. Thus, for
each experiment, different combinations of the available training
samples are possible. The variability regarding the selection of
these training samples may have an effect in the performance of
the networks. In order to take this variability into account, we
performed 5 repetitions for each experiments using 5 different
training subsets. These subsets are randomly selected from all
the possible combinations of the available training data. The only
exception to this procedure was the experiment with the whole
training set, where all the training data was used for a single
repetition. Additionally, in order to ensure a fair comparison,

the same randomly selected training subsets were used for both
frameworks.

Finally, the performance of both frameworks is compared
against that of state-of-the-art approaches for fovea localization,
optic disc localization, vessel segmentation, and optic disc seg-
mentation. The objective of this comparison is to ensure that the
proposed methods, despite being general and of straightforward
use, can reach state-of-the-art performance in the tested tasks.

3.1. Datasets

The experiments presented in this paper were all conducted
using five of the most representative publicly available datasets,
which are described below:

• Isfahan MISP [39]: This dataset was used for the self-
supervised pre-training consisting in the multimodal re-
construction between retinography and angiography. The
dataset comprises 59 retinography–angiography pairs with
image sizes of 720 × 576 pixels. Half of the samples cor-
respond to pathological cases that were obtained from pa-
tients diagnosed with diabetic retinopathy. The other half
correspond to healthy cases. All the images in this dataset
are used for training.

• DRIVE [40]: This dataset was used for the training and
evaluation of the blood vessel segmentation and optic disc
localization. DRIVE is a collection of 40 retinographies with
their corresponding ground truth vessel segmentations. The
ground truth optic disc locations, instead, are not publicly
available and were manually annotated by a clinical expert
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Fig. 7. Results of the blood vessels segmentation for a varying number of training samples and comparison of the proposed self-supervised pre-training (Multimodal
reconstruction) against the training from scratch (Random initialization). (a) Mean PR and ROC curves, (b) AUC-PR, and (c) AUC-ROC for a varying number of training
samples. The means and standard deviations are computed for each experiment from 5 repetitions with 5 different training subsets.

in our case. These annotations consist of the pixel coordi-
nates for the optic disc centre. The images present a size
of 565 × 584 pixels and the approximate optic disc radius
is 40 pixels. This value is used as the saturation distance β

in Eq. (5) to compute the optic disc location maps. We use
the standard split for this dataset, which results in 20 images
used as training set and the remaining 20 images hold out
for the evaluation.

• DRIONS [41]: This dataset was used for the training and
evaluation of the optic disc segmentation. DRIONS includes
a collection of 110 retinographies with their corresponding
ground truth optic disc segmentations. The images have
a size of 700 × 605 pixels. We use the same data split
that Maninis et al. [3], consisting of 60 images for training
and the remaining 50 images hold out for the evaluation.

• IDRiD [42]: This dataset was used for the training and evalu-
ation of the fovea localization. IDRiD contains 516 retinogra-
phies including different grades of diabetic retinopathy. The
provided ground truth annotations for the fovea localization
consist in the pixel coordinates of the fovea centre. The
images have a size of 4288 × 2848 pixels, being, therefore,
significantly larger than the images from the Isfahan MISP
dataset used for pre-training. The size of the retinal struc-
tures in the images also differs. For this reason, the images
are rescaled to a fixed size of 858 × 570, for which the
approximate optic disc radius is 50 pixels. This value is used
as the saturation distance β in Eq. (5) to compute the fovea
location maps. We use the standard split for this dataset,
consisting of 413 images for training and the remaining 103
images hold out for the evaluation.

• MESSIDOR [8]: This dataset was used for the evaluation
of the fovea localization. MESSIDOR is a collection of 1200
retinographies including different grades of diabetic
retinopathy. From them, we use 1136 images, for which
the ground truth fovea localizations were provided by
Gegundez-Arias et al. [22]. The dataset includes images of
three different sizes. As happens with IDRiD, the scale of
the retinal structures is significantly different to that of the
pre-training dataset. Therefore, the original image sizes of
2240 × 1488, 1440 × 960, and 2304 × 1536 are rescaled to
1120 × 744, 1080 × 720, and 1152 × 768, respectively, to
match the scale of the other datasets. The approximate optic
disc radii are also provided by Gegundez-Arias et al. [22] and
are rescaled in the same proportion than the images. In this
case, all the images are used as test set for comparison with
the state-of-the-art.

3.2. Evaluation metrics

For the localization of the optic disc and the fovea, the perfor-
mance was evaluated following the strategy that is typically used
in the literature [4,23]. First, the euclidean distance between the
predicted location and the ground truth location is computed. If
this distance is lower than a certain threshold, the prediction is
considered successful. The accuracy, defined as the ratio between
the successful predictions and the total number of images, is
used for the assessment of the performance. In order to obtain a
more complete analysis, this accuracy is computed using different
progressive thresholds. Particularly, we use R, R/2, and R/4, where
R denotes the approximate optic disc radius, which is indicated
for each dataset in Section 3.1. Additionally, the average distance
in pixels is also used as evaluation metric.
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Fig. 8. Results of the optic disc segmentation for a varying number of training samples and comparison of the proposed self-supervised pre-training (Multimodal
reconstruction) against the training from scratch (Random initialization). (a) Mean PR and ROC curves, (b) AUC-PR, and (c) AUC-ROC for a varying number of training
samples. The means and standard deviations are computed for each experiment from 5 repetitions with 5 different training subsets.

Regarding the segmentation tasks, Receiver Operating Char-
acteristic (ROC) and Precision–Recall (PR) curves were used to
assess the performance. Both curves are commonly used in binary
decision problems, allowing the evaluation of the generated prob-
ability maps without selecting the decision threshold. Note that
the difference between ROC and PR curves is significative when
the target classes are unbalanced. In our case, for the vessels and
the optic disc segmentation, the number of samples from the
positive class, i.e., vessels or optic disc, is significantly lower than
the number of samples from the negative class, i.e., background.
In this scenario, PR curves are more sensitive to variations in
the false positive number, which leads to a greater performance
discrimination ability. Despite this, ROC curves are widely used
in the literature as a default metric in retinal imaging, specially
for vessel segmentation [31,32]. For such reason, we include
both complementary curves in our evaluation. Additionally, the
area under the ROC curve (AUC-ROC) and the area under the
Precision–Recall curve (AUC-PR) were used.

Finally, for all the target tasks, mean values and standard
deviations of the evaluation metrics are computed from the 5
repetitions with 5 different trainings subsets that are performed
for each experiment. Additionally, in the case of the segmentation
tasks, mean ROC and PR curves are also computed. The only
exception to this procedure happens for the experiments with the
whole training set, given that all the training samples are used for
a single repetition in that case.

3.3. Results

The results for the fovea localization and the optic disc lo-
calization are depicted in Figs. 5 and 6, respectively. It is ob-
served that the use of the self-supervised multimodal pre-training

improves the performance of the localization process of both
anatomical structures. In particular, this improvement happens in
terms of both average value and standard deviation. In the case of
the fovea (Fig. 5), the improvement is significant for any number
of training samples, whereas in the case of the optic disc (Fig. 6),
the random initialization approach reaches the performance of
the proposed method only when all the training data is used. The
latter is due to the fact that the multimodal reconstruction frame-
work has already almost converged to the maximum performance
with a smaller number of annotated samples.

The results for blood vessel segmentation and optic disc seg-
mentation are depicted in Figs. 7 and 8, respectively. It is observed
that the use of the self-supervised multimodal pre-training also
improves the performance for the segmentation of both anatom-
ical structures. In the case of the optic disc segmentation (Fig. 8),
the random initialization approach reaches the performance of
the proposed method when half the training data is used. As
with the optic disc localization, this is due to the fact that the
multimodal reconstruction framework has already converged. Re-
garding the blood vessel segmentation (Fig. 7), the improvement
is obtained using any number of training samples. In fact, as
illustrated in the plots of Fig. 7(b) and (c), the trend may have
continued if more training samples were also used.

A notorious difference between the localization and the seg-
mentation results is that the latter show a smaller difference
between the two frameworks in the comparison. This is a con-
sequence of the high performance that is already achieved by
training the networks from scratch, which leaves only a little
gap for improvement. However, even in this highly competi-
tive scenario, the self-supervised multimodal pre-training gets to
improve the performance.
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Table 1
Comparison with state-of-the-art methods for the fovea localization. The means and standard deviations in our experiments are computed from 5 repetitions with
5 different training subsets.

Accuracy (%)

R R/2 R/4

Evaluation on MESSIDOR

Gegundez-Arias et al. [22] 96.50 95.88 94.25
Yu et al. [28] 98.00 94.00 64.88
Niemeijer et al. [21] 97.38 96.00 93.25
Dashtbozorg et al. [26] 98.87 93.75 66.50
Al-Bander et al. [4] 96.60 91.40 66.80
Meyer et al. [5] 99.74 97.71 94.01

Ours (1 image) Random init. 54.52 ± 36.23 53.86 ± 36.01 48.98 ± 32.08
Multimodal 86.09 ± 19.02 85.49 ± 19.18 80.07 ± 21.20

Ours (2 images) Random init. 83.64 ± 9.41 83.17 ± 9.36 78.93 ± 9.51
Multimodal 98.33 ± 0.59 97.94 ± 0.52 94.35 ± 1.21

Ours (200 images) Random init. 99.47 ± 0.06 99.26 ± 0.09 97.02 ± 0.38
Multimodal 99.84 ± 0.07 99.54 ± 0.13 97.80 ± 0.15

Ours (413 images) Random init. 99.91 99.56 97.54
Multimodal 100.00 99.65 97.98

Evaluation on IDRiD

Ours (1 image) Random init. 51.26 ± 26.87 47.18 ± 28.72 32.43 ± 19.17
Multimodal 75.92 ± 13.46 71.46 ± 13.63 62.14 ± 13.24

Ours (2 images) Random init. 67.77 ± 11.23 63.50 ± 12.14 54.56 ± 8.67
Multimodal 86.60 ± 2.33 82.33 ± 2.70 74.95 ± 3.33

Ours (200 images) Random init. 83.88 ± 0.99 80.19 ± 1.58 75.34 ± 2.35
Multimodal 93.40 ± 0.73 88.74 ± 0.78 82.52 ± 1.74

Ours (413 images) Random init. 89.32 85.44 76.70
Multimodal 93.20 90.29 84.47

Table 2
Comparison with state-of-the-art methods for the optic disc localization. The means and standard deviations in our experiments are computed from 5 repetitions
with 5 different training subsets.

Accuracy (%)

R R/2 R/4

Al-Bander et al. [4] (MESSIDOR) 97.00 95.00 83.60
Marin et al. [23] (MESSIDOR) 99.75 99.50 97.75
Zhu et al. [24] 90.00 – –
Qureshi et al. [25] 100.00 – –
Dehghani et al. [27] 100.00 – –

Ours (1 image) Random init. 79.00 ± 4.90 63.00 ± 8.12 39.00 ± 11.14
Multimodal 100.00 ± 0.00 95.00 ± 6.32 66.00 ± 14.28

Ours (2 images) Random init. 90.00 ± 4.47 80.00 ± 8.37 59.00 ± 17.15
Multimodal 100.00 ± 0.00 98.00 ± 2.45 78.00 ± 14.00

Ours (10 images) Random init. 100.00 ± 0.00 99.00 ± 2.00 91.00 ± 2.00
Multimodal 100.00 ± 0.00 100.00 ± 0.00 91.00 ± 2.00

Ours (20 images) Random init. 100.00 100.00 90.00
Multimodal 100.00 100.00 95.00

Table 3
Comparison with state-of-the-art methods for the blood vessels segmentation. The means and standard deviations in our experiments are computed from 5 repetitions
with 5 different training subsets.

AUC-PR (%) AUC-ROC (%)

Fraz et al. [29] – 97.47
Liskowski and Krawiec [31] – 97.90
Li et al. [30] – 97.38
Maninis et al. [3] 90.64 97.93
Mo and Zhang [32] – 97.82

Ours (1 image) Random init. 86.41 ± 1.65 95.81 ± 0.72
Multimodal 89.14 ± 0.37 96.97 ± 0.22

Ours (2 images) Random init. 87.98 ± 0.64 96.36 ± 0.27
Multimodal 89.74 ± 0.18 97.19 ± 0.08

Ours (10 images) Random init. 90.12 ± 0.06 97.44 ± 0.04
Multimodal 90.62 ± 0.08 97.65 ± 0.02

Ours (20 images) Random init. 90.44 97.51
Multimodal 91.02 97.82
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Table 4
Comparison with state-of-the-art methods for the optic disc segmentation. The means and standard deviations in our experiments are computed from 5 repetitions
with 5 different training subsets.

AUC-PR (%) AUC-ROC (%)

Maninis et al. [3] 99.57 99.98

Ours (1 image) Random init. 79.62 ± 7.93 98.44 ± 0.67
Multimodal 90.50 ± 8.46 99.21 ± 0.74

Ours (2 images) Random init. 90.69 ± 3.41 99.40 ± 0.29
Multimodal 96.33 ± 1.98 99.71 ± 0.19

Ours (30 images) Random init. 99.37 ± 0.10 99.98 ± 0.00
Multimodal 99.31 ± 0.03 99.98 ± 0.00

Ours (60 images) Random init. 99.49 99.98
Multimodal 99.45 99.98

Fig. 9. Examples of predicted location maps for the fovea using different number of training samples and comparison of the proposed self-supervised pre-training
(Multimodal reconstruction) against training from scratch (Random initialization). The green cross depicts the ground truth location.

In addition, the comparison with state-of-the-art methods is
respectively shown in Table 1 for the fovea localization, Table 2
for the optic disc localization, Table 3 for the blood vessel seg-
mentation, and Table 4 for the optic disc segmentation. It is
observed that both the multimodal reconstruction and the ran-
dom initialization frameworks reached competitive performance
in all the studied tasks. However, we would like to remark that
the proposed self-supervised multimodal pre-training approach

leads to state-of-the-art performance with much less annotated
data.

Regarding the fovea localization, our experiments were per-
formed using the recently published IDRiD dataset. In order to
perform a comparison with state-of-the-art approaches we in-
clude additional results of our proposal evaluated on the MES-
SIDOR dataset. This additional evaluation is performed using the
networks that were previously trained using the IDRiD dataset.
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Fig. 10. Examples of predicted location maps for the optic disc using different number of training samples and comparison of the proposed self-supervised pre-training
(Multimodal reconstruction) against training from scratch (Random initialization). The green cross depicts the ground truth location.

Table 1 shows that the results obtained for MESSIDOR are better
than those obtained for IDRiD. We have to consider, in this case,
the higher percentage of pathological cases and advanced severity
stages that is present in the IDRID dataset.

In the case of the optic disc localization, existent approaches
evaluated on the DRIVE dataset only report accuracy for a dis-
tance threshold of value R, i.e., the approximate optic disc ra-
dius. Thus, as additional reference, we include two representative
works that were evaluated using the MESSIDOR dataset and man-
ually labelled ground truths. In this case, the labels were not
publicly available.

Finally, as illustration for qualitative comparison, examples of
results obtained with the multimodal reconstruction and the ran-
dom initialization frameworks are provided in Figs. 9, 10, 11, and
12. In particular, Figs. 9 and 10 depict representative examples of

predicted location maps for the fovea and the optic disc, respec-
tively. In addition, Figs. 10 and 11 depict representative examples
of predicted segmentation maps for the vasculature and the optic
disc, respectively. All the examples correspond to images from the
evaluation sets, and the ground truth annotations are provided as
reference.

In general, it is observed that the multimodal reconstruction
approach produces similar or even better results than the random
initialization approach when all the training data is used. Never-
theless, due to the competitive performance of both frameworks,
the visual comparison of the results can be difficult, requiring a
more detailed analysis that is out of the scope of this paper. In
contrast, when the training data is reduced, the contribution of
the self-supervised multimodal pre-training is easier to appreci-
ate with a rough visual analysis. In that sense, the improvement is
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Fig. 11. Examples of predicted segmentation maps for the retinal vasculature using different number of training samples and comparison of the proposed
self-supervised pre-training (Multimodal reconstruction) against training from scratch (Random initialization).

especially significant when a single training sample is used, which
represents the most challenging scenario in this scope.

Additionally, even greater improvement is that of the example
in Fig. 9(b). In this case, the multimodal reconstruction leads to an
important improvement when all the training data is used with
respect to the random initialization counterpart. This is caused
by the presence of lesions in the retina, which evidences that
the proposed self-supervised multimodal pre-training presents
the potential of being especially helpful in the more complex
pathological cases.

4. Discussion

In this work, we address the problem of training DNNs for the
localization and segmentation of the main anatomical structures

of the eye fundus in retinography using scarce annotated data. To
that end, we propose the use of the multimodal reconstruction
between retinography and fluorescein angiography as a common
self-supervised pre-training task; and the later fine-tuning of the
pre-trained DNN for fovea localization, optic disc localization,
blood vessel segmentation, and optic disc segmentation using a
limited amount of task-specific annotated data. Given that obtain-
ing the best possible results is not our main objective, we use the
same network and training methodology for all the considered
tasks. The only difference is the training loss, which requires to
be specific for each kind of task: reconstruction, localization, or
segmentation. Additionally, as neural network architecture, we
employ the original U-Net [35], which is a reliable baseline that
was previously applied in this retinal context with a satisfactory
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Fig. 12. Examples of predicted segmentation maps for the optic disc using different number of training samples and comparison of the proposed self-supervised
pre-training (Multimodal reconstruction) against training from scratch (Random initialization). The boundary of the ground truth segmentation is depicted in green.

performance [19]. Incidentally, the experimental results demon-
strate that state-of-the-art performance can be achieved in all the
studied tasks with the same network architecture and training
strategy without further specific tuning.

From the comparison between the multimodal reconstruction
and the random initialization frameworks, it is observed that the
proposed self-supervised multimodal pre-training improves the
obtained performance in all the studied tasks. Nevertheless, the
extent of this improvement is not the same for all the tasks or
training data sizes. The most remarkable improvement is ob-
served in all the tasks when only few annotated images are used
for training. In fact, the results that are obtained training from
scratch with all the annotated data can be achieved using a frac-
tion of the annotations if the networks are, instead, pre-trained
with the proposed multimodal reconstruction. A negligible im-
provement of the proposed approach happens only for the cases
where highly competitive performance is already obtained by the
random initialization counterpart. Naturally, the beneficial effect
of using the multimodal reconstruction as pre-training is limited
by the room left for improvement by the baseline approach.
For example, this is the case of some experiments involving the
optic disc. However, in any case, the multimodal reconstruction
approach converges to the maximum performance with less an-
notated data. In this regard, the results indicate that the optic disc
localization and segmentation tasks are easier in comparison to
the others in our experiments.

The provided comparison with state-of-the-art works shows
that both the multimodal reconstruction and the random ini-
tialization frameworks produce competitive results when using
all the training data. In that sense, the strong baseline ensures
the practical relevance of the conclusions drawn from our analy-
sis. Additionally, for some experiments, the random initialization
framework behaves reasonably well with moderate reductions
in the training data. This shows that modern data augmentation
practices, adequate training schedules, and well designed loss
functions are key to the successful application of DNNs to stan-
dard medical image analysis applications, without even needing
any bells and whistles to fine tune the network architecture.

Regarding the self-supervised multimodal pre-training, the
provided comparisons demonstrate that competitive results can
also be achieved using a fraction of the total annotated training
data. This is a strong result, indicating that clinical applications
based on deep learning methods can be produced without requir-
ing large amounts of manually annotated images. Additionally,
we have demonstrated the advantages of the multimodal re-
construction as stand-alone transfer learning strategy. However,
the proposed pre-training could also be applied together with
other complementary self-supervised tasks in settings similar
to those already explored in other domains [16]. In that sense,
future works could explore the complementary application of the
multimodal reconstruction and other self-supervised approaches
in the medical domain.
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Finally, other benefit of the proposed self-supervised pre-
training is that, in general, the variability due to the use of
different training samples is significantly reduced. However, this
variability is still high when fewer annotations are used. Inci-
dentally, this indicates that some images are considerably more
adequate for training than others in order to achieve a better
generalization. Thus, despite that a competitive performance can
be achieved with very scarce annotations, for some applications
this labelled data efficiency could be limited by the appropriate
selection of particular training samples. In those situations, it
would be interesting to explore the use of techniques aiming at
the selection of the most informative images for being annotated.

5. Conclusions

Despite the great success of deep neural networks, the scarcity
of annotated data is still a significant limiting factor to apply deep
learning solutions to new clinical applications. In this regard, we
propose to use the multimodal reconstruction as a self-supervised
pre-training for different target tasks in the same application
domain. We demonstrate the advantages of this proposal in the
context of retinal image analysis. In particular, this work focuses
on the localization and the segmentation of the main anatom-
ical structures of the eye fundus, namely the fovea, the retinal
vasculature, and the optic disc. For that purpose, we use the self-
supervised multimodal reconstruction between retinography and
fluorescein angiography to pre-train the networks.

The performed experiments demonstrate that using the mul-
timodal reconstruction as self-supervised pre-training improves
the performance of the considered target tasks. In particular,
the proposed self-supervised transfer learning strategy allows
to produce state-of-the-art results with a significant reduction
of the annotated training data. This outcome has remarkable
implications for future applications of neural networks in many
fields of medical imaging where multimodal data can be easily
gathered.
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