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Abstract. A locally recoverable (LRC) code is a code over a finite field Fq such that
any erased coordinate of a codeword can be recovered from a small number of other
coordinates in that codeword. We construct LRC codes correcting more than one erasure,
which are subfield-subcodes of some J-affine variety codes. For these LRC codes, we
compute localities (r, δ) that determine the minimum size of a set R of positions so that

any δ − 1 erasures in R can be recovered from the remaining r coordinates in this set.
We also show that some of these LRC codes with lengths n� q are (δ − 1)-optimal.

Introduction

The growth of the amount of stored information in large scale distributed and cloud
storage systems makes the loss of data due to node failures a major problem. To obtain a
reliable storage, when a node fails, we want to recover the data it contains by using infor-
mation from other nodes. This is the repair problem. A naive solving method consists of
the replication of information across several nodes. A more clever method is to protect the
data using error-correcting codes, what has led to the introduction of locally recoverable
(LRC) codes [11]. LRC codes are error-correcting codes for which one or more erased co-
ordinates of a codeword can be recovered from a set of other coordinates in that codeword.
As typical examples of this solution we can mention Google and Facebook storage systems
that use Reed-Solomon (RS) codes to protect the information. The procedure is as follows:
the information to be stored is a long sequence b of elements belonging to a finite field
Fpl , where p is a prime number. This sequence is divided into blocks, b = b1, b2, . . . , bz, of

the same length h. According to the isomorphism Fh
pl
∼= Fplh , each of these blocks can be

seen as an element of the finite field Fq, with q = ps and s = lh. Fix an integer k < q.

The vector (b1, b2, . . . , bk) ∈ Fkq is encoded by using a Reed-Solomon code of dimension k
over Fq, whose length n, k < n ≤ q, is equal to the number of nodes that will be used in
its storage. We choose α1, α2, . . . , αn ∈ Fq and send

f(αi) = b1 + b2αi + · · ·+ bkα
k−1
i

to the i-th node. Even if a node fails, we may recover the stored data (b1, b2, . . . , bk) by
using Lagrangian interpolation from any other k available nodes.

Note that this method is wasteful, since k symbols over n nodes must be used to recover
just one erasure. Of course other error-correcting codes, apart from RS codes, can be used
to deal more efficiently with the repair problem. Thus, in terms of coding theory the
repair problem can be stated as follows: let C be a linear code of length n and dimension
k over Fq. A coordinate i ∈ {1, 2, . . . , n} is locally recoverable if there is a recovery set
R = R(i) ⊂ {1, 2, . . . , n} such that i /∈ R and for any codeword x ∈ C, an erasure at
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position i of x can be recovered by using the information given by the coordinates of x
with indices in R. The locality of the coordinate i is the smallest size of a recovery set for i.
The code C is locally recoverable (LRC) if each coordinate is so, and the locality of C is the
maximum locality of its coordinates. In Section 1 we shall specify these definitions. Note
that strictly speaking, all codes C of minimum distance d(C) > 1 are locally recoverable;
just take {1, 2, . . . , n} \ {i} as a recovery set for coordinate i. However we are interested
in codes admitting recovery sets as small as possible. Thus, in practice we restrict to
consider codes with ‘moderate’ localities. In general, the locality r of an LRC code C with
parameters [n, k, d] is upper-bounded as r ≤ k. For example, MDS codes (RS codes in
particular) of dimension k have locality k. Several lower bounds on r are known. The
most commonly used is the Singleton-like bound (1).

Among the different classes of codes considered as good candidates for local recovering,
cyclic codes and subfield-subcodes of cyclic codes play an important role, because the
cyclic shifts of a recovery set again provide recovery sets [3, 12, 14, 22]. In this article we
continue this line of research by using the very general language of affine variety codes. We
consider specific J-affine variety codes, introduced in [9], whose subfield-subcodes provide
LRC codes. These subfield-subcodes have large lengths over fields Fq, and Theorems 2.8
and 2.9 provide bounds on their localities.

A variant of LRC codes was introduced in [19]. As multiple device failures may occur
simultaneously, it is of interest to consider LRC codes correcting more than one erasure.
This idea leads to the concept of localities (r, δ) of an LRC code C, which measure the
recovery capability of C when at most δ− 2 erasures occur in a recovery set (see Section 1
for a rigorous definition). LRC codes for multiple erasures have been subsequently studied
in [3, 5, 1]. In [3] the authors constructed some classes of such LRC codes over Fq, with
lengths n such that either n|q− 1 or n|q+ 1. Codes of similar type and unbounded length
were given in [5]. Here δ = d − 1, d − 2 or δ = d/2, where d stands for the minimum
distance.

The localities (r, δ) of an LRC code satisfy a Singleton-like bound ((2) in Section 1).
Codes reaching equality for some (r, δ), are called optimal. For example, the codes in [3, 5]
are optimal. Note that, as for the original Singleton bound, the bounds (1) and (2) do
not depend on the cardinality of the ground field Fq. Some size dependent bounds can be
found in [1].

A somewhat different definition of LRC code with localities (r, δ) is proposed in [15] for
systematic codes. There, the purpose is to repair erasures on the information symbols of
a codeword. Other related variants of LRC codes deal with sequential repair of erasures
[20], the availability property [24], or the cooperative repair [21].

In this work we use use affine variety constructions to obtain LRC codes suitable for
multiple erasures, whose localities (r, δ) behave well (Theorems 2.14 and 2.15). In some
cases these codes are optimal for the Singleton-like bound (2). Compared with the codes
shown in [3], the ours are considerably longer, although not optimal in general. Let us
recall here that most good currently known LRC codes have small lengths n, in comparison
with the cardinality of the ground field q; usually n < q, [13] (or n = q+ 1 for some codes
in [3]). For the opposite, our codes (as is the case with those in [5]) have lengths n� q.

The article is organized as follows: in Section 1 we recall some basic facts about LRC
codes and introduce the concept of t-locality. Section 2 is devoted to develop and study
LRC codes from affine varieties. In Subsection 2.1 we introduce J-affine variety codes
which also gave rise to good quantum error-correcting codes in [8, 9, 6]. In subsections
2.2 and 2.3, we show that subfield-subcodes of several types of J-affine variety codes are
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good LRC codes, and we determine some of their localities (r, δ). Finally in Section 3
we give examples of LRC codes obtained by our procedure. We list some parameters and
localities.

1. LRC codes

In this section we state some definitions and facts concerning LRC codes that will be
necessary for the rest of the work. We mostly follow the usual conventions and definitions
of locally recoverable codes. As a notation, given a fixed coordinate i and a set R such
that i /∈ R, we write R = R∪{i}. Let C be an [n, k, d] code over Fq. Let G be a generator
matrix of C with columns c1, c2, . . . , cn. A set R ⊆ {1, 2, . . . , n} is a recovery set for a
coordinate i /∈ R if ci ∈ 〈cj : j ∈ R〉, the linear space spanned by {cj : j ∈ R}. In this
case, for any codeword x ∈ C, xi can be obtained from the coordinates xj , j ∈ R, just by
solving the linear system whose augmented matrix is (cj , j ∈ R | ci).

Let R be a set of cardinality #R = r and let πR : Fnq → Frq be the projection on the
coordinates in R. For x ∈ Fnq we write xR = πR(x). Often we shall consider the punctured
and shortened codes:

C[R] := {xR : x ∈ C} and C[[R]] := {xR : x ∈ C, supp(x) ⊆ R},
respectively, where supp(x) denotes the support of x, supp(x) := {i : xi 6= 0}. Note
that ci ∈ 〈cj : j ∈ R〉 if and only if dim(C[R]) = dim(C[R]). So the notion of recovery
set does not depend on the generator matrix chosen. If ci ∈ 〈cj : j ∈ R〉, there exist

w1, w2, . . . , wn ∈ Fq such that
∑n

j=1wjcj = 0 with wi 6= 0 and wj = 0 if j /∈ R. Then

w = (w1, w2, . . . , wn) ∈ C⊥, the dual of C, and wR ∈ C⊥[[R]]. Thus R is a recovery set for
the coordinate i if and only if there exists a word wR ∈ C⊥[[R]] with wi 6= 0. In this case
#R ≥ d(C⊥)− 1.

The smallest cardinality of a recovery set R for a coordinate i is the locality of i. The
locality of C, often denoted by r = r(C), is the largest locality of any of its coordinates.
Thus, we have proved the following result.

Proposition 1.1. The locality r of an LRC code C satisfies r ≥ d(C⊥)− 1.

A code C reaching equality in the bound given by Proposition 1.1 will be called sharp.
Note that all cyclic codes are sharp. Apart from Proposition 1.1, perhaps the most im-
portant bound on the locality r of an LCR code with parameters [n, k, d] is given by the
following Singleton-like inequality, see [11].

Theorem 1.2. The locality r of an LRC code C satisfies

(1) d+ k +

⌈
k

r

⌉
≤ n+ 2.

The difference between the two terms in Theorem 1.2, D1 := n+ 2− d− k − dk/re, is
the LRC-Singleton defect of C. Codes with D1 = 0 are called Singleton-optimal (or simply
optimal). While optimal LRC codes are known for all lengths n ≤ q, [16], the problem of
finding codes of this type when n > q is currently a challenge [13]. To avoid confusion in
what follows, we shall sometimes refer to r as the classical locality of C.

The LRC codes that we have described above allow local recovery of the information
stored in a failed node. However, concurrent failures of several nodes in a network are
also possible and uncommon. This problem was first treated in [19]. According to the
definition given in that article, an LRC code C has locality (r, δ) if for any coordinate i
there exists a set of positions R = R(i) ⊂ {1, 2, . . . , n} such that
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(RD1) i ∈ R and #R ≤ r + δ − 1; and
(RD2) d(C[R]) ≥ δ.
The sets R satisfying the above conditions (RD1) and (RD2) are called (r, δ) recovery

sets. Given such a set R and i ∈ R, the correction capability of C[R] can be used to correct
an erasure at position i plus any other δ − 2 erasures in R \ {i}. Notice that the original
definition of locality of LRC codes corresponds to the case δ = 2. Provided that δ ≥ 2, any
subset R ⊂ R of cardinality r with i /∈ R, satisfies d(C([R]∪{i})) ≥ 2 and consequently R
is a recovery set for i. Thus if C has a locality (r, δ), then the classical locality of C is ≤ r
and the number of recovery sets of cardinality r for any coordinate i is at least(

#R− 1

r

)
,

which can be relevant to improve the availability of C for recovering erasures. We remark
that associated to C we have several localities (r, δ), corresponding to the d(C)−1 values of
δ = 2, 3, . . . , d(C). These localities satisfy the following generalization of the Singleton-like
bound of Theorem 1.2, which was proved in [19].

Proposition 1.3. Let C be an LRC code with parameters [n, k, d] and locality (r, δ). Then,
the following inequality holds

(2) d+ k +

(⌈
k

r

⌉
− 1

)
(δ − 1) ≤ n+ 1.

Analogously to what was done for the classical locality r, for t = 1, 2, . . . , d(C) − 1, in
this article we define

rt = rt(C) := min
{
ρ : for all i = 1, 2, . . . , n, there is a set Ri ⊆ {1, 2, . . . , n}

with i ∈ Ri, #Ri ≤ ρ and d(C[Ri]) ≥ t+ 1
}
− 1.

The value rt is the minimum number of positions, #R − 1, needed to recover a given
coordinate i ∈ R of any codeword x, when at most t erasures occur in xR. Clearly r1 is the
classical locality of C. We refer to rt as the t-locality of C. For example, since puncturing
< d times an MDS code gives a new MDS code of the same dimension, for t < d the
t-locality of an [n, k, d] MDS code is rt = k + t− 1.

Note that from the above definitions, the code C has locality (ρ, δ) if and only if rδ−1 ≤
ρ+ δ − 2. Thus we can translate the bound given by Proposition 1.3 in terms of rt’s, as

(3) d+ k +

⌈
k

rt − t+ 1

⌉
t ≤ n+ t+ 1.

The difference between the two terms of Inequation (3)

(4) Dt := n+ t+ 1− d− k −
⌈

k

rt − t+ 1

⌉
t,

is the t-th LRC-Singleton defect of C. Codes with Dt = 0 will be called t-optimal. For
example, MDS codes are t-optimal for all t = 1, 2, . . . , d− 1.

The sequence (r1, r2, . . . , rd−1) we have associated to an LRC code C, resembles, up to
some extent, the weight hierarchy of C. Let us recall that for t = 1, 2, . . . , k = dim(C), the
t-th generalized Hamming weight of C is defined as

dt = dt(C) := min{#supp(E) : E is a t-dimensional subcode of C},
where supp(E) := {i : there exists x ∈ E with xi 6= 0}, see [18, Section 3.3]. We extend
the bound given by Proposition 1.1 to all localities rt’s in the following new result.
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Proposition 1.4. For t = 1, 2, . . . , d− 1, the t-locality of an [n, k, d] LRC code C satisfies
rt ≥ dt(C⊥)−1, where dt(C

⊥) is the t-th generalized Hamming weight of the dual code C⊥.

Proof. First note that d−1 ≤ dim(C⊥). Let R be a set of coordinates such that #R ≤ rt+1
and d(C[R]) ≥ t + 1. According to the Singleton bound, we have dim(C[R]) ≤ #R − t.
Since C[R]⊥ = C⊥[[R]] (see [18], Proposition 3.1.17), it holds that dim(C⊥[[R]]) ≥ t. Thus
dt(C⊥) ≤ #R and the result follows. �

The above result can be stated in terms of localities (r, δ) as follows.

Corollary 1.5. Let C be an LRC code with locality (r, δ). Then the following inequality
holds

r + δ ≥ dδ−1(C⊥) + 1.

Proof. From the definition of locality (r, δ) we have rδ−1 ≤ r + δ − 2. Since rt < rt+1

for all 1 ≤ t ≤ d − 2, we deduce rδ−1 = r + δ − 2. Then, Proposition 1.4 gives r + δ ≥
dδ−1(C⊥) + 1. �

2. J-affine variety codes giving LRC codes

In this section we show that subfield-subcodes of some codes arising from J-affine va-
rieties are LRC codes with good recovery properties. We keep the notations as in the
previous sections. In particular our LRC codes will be defined over the finite field Fq,
where q = ps and p is a prime number. We shall consider an extension field FQ of Fq,
where Q = p` and s divides `. The affine varieties we manage, and so the codes arising
from them, will be defined over FQ. Subfield-subcodes of these codes will be defined over
Fq.

The concept of J-affine variety code was introduced in [9] and used in [6, 7] for con-
structing quantum and LCD codes with good parameters. In the first subsection we recall
the construction of J-affine variety codes over FQ and their subfield-subcodes over Fq.

2.1. J-affine variety codes and their subfield-subcodes. Let Fq, q = ps, be a finite

field and let FQ, Q = p`, be an extension field of Fq. Let R := FQ[X1, X2, . . . , Xm] be
the polynomial ring in m ≥ 1 variables over FQ. For simplicity we will often write the
monomial Xa1

1 Xa2
2 · · ·Xam

m ∈ R as Xa, with a = (a1, a2, . . . , am). Fix positive integers
Nj > 1, j = 1, 2, . . . ,m, such that Nj − 1 divides Q − 1. Let J be a subset of indices
of variables, J ⊆ {1, 2, . . . ,m}, and let IJ be the ideal of R generated by the binomials

X
Nj−1
j − 1 if j ∈ J , and X

Nj

j −Xj if j 6∈ J . Denote by RJ the quotient ring RJ = R/IJ .
Set Tj = Nj − 2 if j ∈ J and Tj = Nj − 1 otherwise, and let

HJ := {0, 1, . . . , T1} × {0, 1, . . . , T2} × · · · × {0, 1, . . . , Tm}.
Let ZJ = {P1, P2, . . . , PnJ} be the set of zeros of IJ over FQ. This set has cardinality

nJ =
∏
j /∈J

Nj

∏
j∈J

(Nj − 1).

Consider the well-defined evaluation map

evJ : RJ → FnJ
Q , evJ(f) = (f(P1), f(P2), . . . , f(PnJ )),

where f denotes both the polynomial in R and its corresponding equivalence class in RJ .

Definition 2.1. Given a non-empty subset ∆ ⊆ HJ , the J-affine variety code EJ∆, is the
linear subspace EJ∆ := 〈evJ(Xa) : a ∈ ∆〉 ⊆ FnJ

Q .
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Then EJ∆ is a linear code over FQ. Its length is nJ and its dimension equals the
cardinality of ∆, since evJ is injective, [9]. Recall that q = ps where s divides ` and thus
Fq is a subfield of FQ.

Definition 2.2. The subfield-subcode of EJ∆ over the field Fq, denoted CJ∆, is the linear
code CJ∆ := EJ∆ ∩ FnJ

q .

In order to study the codes CJ∆, we shall manage the elements of HJ in a particular
manner. Let j, 1 ≤ j ≤ m. If j ∈ J then we identify the set {0, 1, . . . , Tj} with the ring
Z/(Tj+1)Z. When j 6∈ J , we identify the set {1, 2, . . . , Tj} with Z/TjZ, and we extend the
addition and multiplication of this ring to {0, 1, . . . , Tj}, by setting 0 +α = α, 0 ·α = 0 for
all α = 0, 1, . . . , Tj . The reason that explains these different ways of treating {0, 1, . . . , Tj}
is the fact that the evaluation of monomials containing X0

j or containing X
Nj−1
j may be

different when j 6∈ J , see [6] for details.
Under the above conventions, a set S ⊆ HJ is a cyclotomic set with respect to q if qy ∈ S

for all y = (y1, y2, . . . , ym) ∈ S. Minimal cyclotomic sets are those of the form I = {qiy :
i ≥ 0}, for some element y ∈ HJ . For each minimal cyclotomic set I, we consider a
unique representative a = (a1, a2, . . . , am) ∈ I, constructed iteratively as follows: a1 =
min{y1 : (y1, y2, . . . , ym) ∈ I}, and aj = min{yj : (a1, a2, . . . , aj−1, yj , . . . , ym) ∈ I} for
j = 2, 3, . . . ,m. We shall denote by Ia the minimal cyclotomic set with representative a
and by ia the cardinality of Ia. Thus Ia = {a, qa, . . . , q(ia−1)a}.

Let A be the set of representatives of all minimal cyclotomic sets in HJ . Given a non-
empty subset ∆ ⊆ HJ , we define A(∆) = {a ∈ A : Ia ⊆ ∆}. The set ∆ is called closed
if it is a union of minimal cyclotomic sets, that is, if

∆ =
⋃

a∈A(∆)

Ia.

An important tool to study subfield-subcodes is the trace map. Since we are interested
in subfield-subcodes over Fq of evaluation codes over FQ, for a ∈ A we consider the map

Ta : RJ → RJ , Ta(f) = f + f q + · · ·+ f q
(ia−1)

.

Let ξa be a fixed primitive element of the field Fqia . The next result gives an explicit

description of the code CJ∆. It extends Theorem 4 in [8]. Here we state the result for any
set J ⊆ {1, 2, . . . ,m}, while in [8] only the case J = {1, 2, . . . ,m} was considered.

Theorem 2.3. With the above notation, if ∆ ⊆ HJ then the set of vectors⋃
a∈A(∆)

{
evJ(Ta(ξkaX

a)) : 0 ≤ k ≤ ia − 1
}

is a basis of CJ∆ over Fq. In particular, if ∆ is a closed set, then dim(CJ∆) = dim(EJ∆) =
#∆.

The proof of Theorem 2.3 is similar to that of Theorem 4 in [8] and we omit it. Instead
we show an example illustrating this theorem.

Example 2.4. Take p = 2, s = 3, ` = 6 and m = 2, so q = 23 = 8 and Q = 26 = 64. Take
J = {1}, N1 = 8 and N2 = 10, so that T1 = 6 and T2 = 9. Let a1 = (1, 2),a2 = (2, 3)
and a3 = (1, 3). Then Ia1 = {(1, 2), (1, 7)}, Ia2 = {(2, 3), (2, 6)} and Ia3 = {(1, 3), (1, 6)},
hence ia1 = ia2 = ia3 = 2. Let ∆1 = Ia1 ∪ Ia2 and ∆2 = Ia1 ∪ Ia2 ∪ {(1, 3)}. Thus ∆1

is closed but ∆2 is not. Consider the affine variety codes EJ∆1
, EJ∆2

defined over F64 and
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the subfield-subcodes CJ∆1
, CJ∆2

over F8. All of them have length nJ = 70. Furthermore

dim(EJ∆1
) = 4,dim(EJ∆2

) = 5. In fact we have

EJ∆1
= 〈evJ(X1X

2
2 ), evJ(X1X

7
2 ), evJ(X2

1X
3
2 ), evJ(X2

1X
6
2 )〉,

EJ∆2
= 〈evJ(X1X

2
2 ), evJ(X1X

7
2 ), evJ(X2

1X
3
2 ), evJ(X2

1X
6
2 ), evJ(X1X

3
2 )〉

over F64. And from Theorem 2.3

CJ∆1
= CJ∆2

= 〈evJ(X1X
2
2 +X1X

7
2 ), evJ(ξX1X

2
2 + ξ8X1X

7
2 ),

evJ(X2
1X

3
2 +X2

1X
6
2 ), evJ(ξX2

1X
3
2 + ξ8X2

1X
6
2 )〉

over the field F8, where ξ a primitive element of F64. This example shows that when we
study the properties of a code CJ∆, we can always assume that the set ∆, from which it
arises, is closed.

2.2. LRC codes from J-affine variety codes. In this subsection we present some
specific families of J-affine variety codes whose subfield-subcodes are LRC codes. We
determine recovery sets for these LRC codes and show that their localities (r, δ) behave
well.

Let us remember that the construction of J-affine variety codes begins by taking a set
of indices J ⊆ {1, 2, . . . ,m} and integers N1, N2, . . . , Nm, such that Nj − 1 divides Q− 1
for all j. In order to obtain good LRC codes, from now on we shall assume the additional
property that N1, N2, . . . , Nm have been chosen in a way that there exists a non-empty
subset L ⊆ J such that q − 1 divides Nj − 1 for all j ∈ L. Throughout the rest of this
section we shall assume that the integers N1, N2, . . . , Nm, and the sets J and L, have been
fixed satisfying the above conditions.

Let α and η be primitive elements of FQ and Fq, respectively. For 1 ≤ j ≤ m, let

γj = α(Q−1)/(Nj−1) ∈ FQ. The following property will be used later.

Lemma 2.5. Let l and n be two nonnegative integers. If j ∈ L, then the following equality
holds in FQ, (

γljη
n
)Nj−1

= 1.

Proof. The statement follows from the chain of equalities(
γljη

n
)Nj−1

=

(
α

Q−1
Nj−1

)l(Nj−1) (
ηNj−1

)n
=
(
αQ−1

)l (
ηq−1

)nNj−1

q−1 = 1.

�

As defined in Subsection 2.1, let IJ be the ideal in R generated by the binomials

X
Nj−1
j − 1 if j ∈ J and X

Nj

j −Xj if j 6∈ J , and let ZJ = {P1, P2, . . . , PnJ} be the set of

zeros of IJ over FQ. In this subsection we determine recovery sets for codes CJ∆. These
recovery sets will be obtained from subsets R ⊂ ZJ satisfying some geometrical properties.
Given a point P ∈ ZJ we set coord(P ) := j if P = Pj ; consequently, given a set R ⊆ ZJ ,
we set coord(R) := {coord(P ) : P ∈ R}.

Given a nonzero element λ ∈ F∗Q and a point P ∈ FmQ , we define the product λ ·L P
as the point of FmQ obtained by multiplying by λ the coordinates of P corresponding to
positions in L and leaving unchanged its remaining coordinates.

Lemma 2.6. If P ∈ ZJ , then ηn ·L P ∈ Zj for every nonnegative integer n.
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The proof of this lemma follows directly from the definition of L and Lemma 2.5. We
define the orbit of a point Pt0 ∈ ZJ as the set

(5) Rt0 := {ηn ·L Pt0 : 0 ≤ n ≤ q − 2}.

Notice that Rt0 ⊂ Zj by Lemma 2.6. As we shall see later, these orbits are closely related
to recovery sets of our codes. For short, the point ηn ·L Pt0 will be denoted PLn,t0 .

Let A be the set of representatives of all minimal cyclotomic sets in HJ , as defined in
Subsection 2.1. For a ∈ A we write σL(a) =

∑
j∈L aj , where the aj ’s and the sum σL(a)

are seen as integers.

Lemma 2.7. Let a ∈ A and let k and n be two integers such that 0 ≤ k ≤ ia − 1 and
0 ≤ n ≤ q − 1. Then we have

(6) Ta(ξkaX
a)
(
PLn,t0

)
= ηnσL(a)Ta(ξkaX

a) (Pt0) .

Proof. Since no coordinate of Pt0 in the positions of L vanishes, we can write Pt0 =

(γk11 , γk22 , . . . , γkmm ) without loss of generality. Then

(7) Ta(ξkaX
a)
(
PLn,t0

)
=

ia−1∑
t=0

ξka∏
l∈L

(ηnγkll )al
∏
l 6∈L

(γkll )al

tq

= ηnσL(a)
ia−1∑
t=0

(
ξka

m∏
l=1

(γkll )al

)tq
= ηnσL(a)Ta(ξkaX

a) (Pt0)

as stated. �

The J-affine variety code EJ∆ was defined as the linear subspace spanned by the vectors
evJ(Xa), a ∈ ∆, where ∆ is any non-empty subset of HJ . Taking advantage of Theorem
2.3, from now on all the sets ∆ we consider will be closed, that is a union of minimal
cyclotomic sets, ∆ = ∪rl=1Ial

, with al ∈ A, 1 ≤ l ≤ r. Later in this article we shall impose
even more restrictive conditions.

Theorem 2.8. Let ∆ = ∪rl=1Ial
, where {a1,a2, . . . ,ar} is a subset of A with cardinality

r ≤ q − 2. If the integers σL(a1), σL(a2), . . . , σL(ar) are pairwise different modulo q − 1,
then the subfield-subcode CJ∆ is an LRC code with locality ≤ r.

Proof. Let c = evJ(h) be a codeword of CJ∆. By Theorem 2.3, h can be written as

h = ha1 + ha2 + · · ·+ har ,

where each hal
is a linear combination of polynomials of the form Tal

(ξkal
Xal), 0 ≤ k ≤

ial
− 1, and coefficients in Fq. Fix a possition t0 ∈ {1, 2, . . . , n}. We shall show that the

set R = {PLni,t0 : i = 1, 2, . . . , r} of points corresponding to r consecutive nonzero ni’s,
gives a recovery set coord(R) for t0. According to Lemma 2.6, the points in R belong to
ZJ . Assume we know the r coordinates h

(
PLni,t0

)
, i = 1, 2, . . . , r, of c. By linearity

(8) h (Pt0) = ha1 (Pt0) + ha2 (Pt0) + · · ·+ har (Pt0) .
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Then, from Lemma 2.7 we get the equalities

h (ηn1 ·L Pt0) = ηn1σL(a1)ha1 (Pt0) + ηn1σL(a2)ha2 (Pt0) + · · ·+ ηn1σL(ar)har (Pt0) ,

h (ηn2 ·L Pt0) = ηn2σL(a1)ha1 (Pt0) + ηn2σL(a2)ha2 (Pt0) + · · ·+ ηn2σL(ar)har (Pt0) ,

...

h (ηnr ·L Pt0) = ηnrσL(a1)ha1 (Pt0) + ηnrσL(a2)ha2 (Pt0) + · · ·+ ηnrσL(ar)har (Pt0) .

Write ηi := ησL(ai), 1 ≤ i ≤ r. We have obtained the square system of linear equations
ηn1

1 · · · ηn1
r

ηn2
1 · · · ηn2

r
...

. . .
...

ηnr
1 · · · ηnr

r




ha1 (Pt0)
ha2 (Pt0)

...
har (Pt0)

 =


h (ηn1 ·L Pt0)
h (ηn2 ·L Pt0)

...
h (ηnr ·L Pt0)

 .

The matrix of this system is of Vandermonde type, and thus nonsingular. Then the
solution is unique and gives the values hai (Pt0), 1 ≤ i ≤ r. Once these values are known,
from (8) we can deduce h (Pt0). �

Under some supplementary conditions we can obtain LRC codes with larger dimension.
In the next theorem we restrict to the case L = {1}, so that σL(al) is the first coordinate
of al. We denote by al such first coordinate.

Theorem 2.9. Let L = {1}. Let ∆ = ∪q−1
l=1 Ial

, where {a1,a2, . . . ,aq−1} is a subset of
A such that the first coordinates a1, a2, . . . , aq−1 of a1,a2, . . . ,aq−1, are pairwise different
modulo q − 1. If there is an index v, 1 ≤ v ≤ q − 1, for which the following conditions

(1) av divides N1 − 1,
(2) gcd(av, al) = 1 for all 1 ≤ l ≤ q − 1, l 6= v, and
(3) gcd(av, q − 1) = 1;

hold, then CJ∆ is an LRC code with locality ≤ q − 1 + (av − 1).

Proof. As in the proof of Theorem 2.8, let c = evJ(h) be a codeword of CJ∆. Fix a
coordinate t0 and consider the set of points

R := {ηn ·L Pt0 : 0 ≤ n ≤ q − 1} ∪ {ωkη ·L Pt0 : 1 ≤ k ≤ av − 1},

where ω is a primitive av-root of unity. Since av divides N1 − 1, then it holds that
ωkη ·L Pt0 ∈ ZJ for all 1 ≤ k ≤ av − 1. We shall show that coord(R) \ {t0} is a recovery
set for the coordinate t0. For simplicity we can assume v = 1. As in Theorem 2.8, we can
write h as

h = ha1 + ha2 + · · ·+ haq−1 ,

hal
being a linear combination with coefficients in Fq of polynomials of the form Tal

(ξkal
Xal),

0 ≤ k ≤ ial
− 1. So we have

(9)
h (η ·L Pt0) = ηa1ha1 (Pt0) + ηa2ha2 (Pt0) + · · ·+ ηaq−1haq−1 (Pt0) ,

h (ωη ·L Pt0) = ηa1ha1 (Pt0) + ηa2ha2 (ω ·L Pt0) + · · ·+ ηaq−1haq−1 (ω ·L Pt0) ,

...

h
(
ωa1−1η ·L Pt0

)
= ηa1ha1 (Pt0) + ηa2ha2

(
ωa1−1 ·L Pt0

)
+ · · ·+ ηaq−1haq−1

(
ωa1−1 ·L Pt0

)
.
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The facts that a1 divides N1 − 1 and gcd(a1, q − 1) = 1 imply that none of the points
ωkη ·LPt0 , 0 ≤ k ≤ a1−1, coincide neither with Pt0 nor among them. Adding the equalities
in (9) we get a known value on the left hand. On the right hand we get

(10) (a1 − 1) (ηa1ha1 (Pt0)) + ηa2ha2 (Pt0)
(
1 + ωa2 + (ωa2)2 + · · ·+ (ωa2)a1−1

)
+ · · ·

+ ηaq−1haq−1 (Pt0)
(
1 + ωaq−1 + (ωaq−1)2 + · · ·+ (ωaq−1)a1−1

)
.

Since gcd(a1, al) = 1 for 2 ≤ l ≤ q − 1, it holds that

1 + ωal + (ωal)2 + · · ·+ (ωal)a1−1 = 0

as this expression is the sum of all a1-roots of unity. Then (10) becomes (a1−1) (ηa1ha1 (Pt0)),
from which we deduce ha1 (Pt0). The polynomial h− ha1 = ha2 + · · ·+ haq−1 is related to
q−2 minimal cyclotomic sets, hence we can apply now the procedure developed in the proof
of Theorem 2.8 to compute (h−ha1) (Pt0). Finally h (Pt0) = (h−ha1) (Pt0)+ha1 (Pt0). �

2.3. The case of {1, 2, . . . ,m}-affine variety codes. In this subsection we study the
codes CJ∆ when J equals the whole set of indices, J = {1, 2, . . . ,m}. Let L be a non-
empty subset of J . As in the previous subsection, we take the closed set ∆ as a union of
minimal cyclotomic sets, ∆ = ∪zi=1Iai , but now we shall add the condition that the set
{σL(a1), σL(a2), . . . , σL(az)} contains exactly r consecutive integers. With these ingredi-
ents we construct the J-affine variety code EJ∆ over FQ and its subfield-subcode CJ∆ over
Fq.

Let us first deal with the case m = 1 and r = z. So let J = L = {1}. The set A
of representatives of all minimal cyclotomic sets in HJ can be seen now as a subset of
Z. Let a1,a2, . . . ,ar,ar+1 be the r + 1 smallest (with respect to the natural order in Z)
representatives in A and let ∆ = ∪rl=1Ial

. The codes EJ∆ we obtain in this case were
studied in [6], where the following result was proved by using the BCH bound.

Proposition 2.10. ([6, Theorem 3.7]) Let m = 1 and let ∆ = ∪rl=1Ial
, where a1,a2, . . . ,ar,

ar+1 are the r + 1 smallest elements of A. Then the minimum distance of the dual code
(EJ∆)⊥ satisfies d((EJ∆)⊥) ≥ ar+1 + 1.

Let us recall that there exists a close relation between the dual of any linear code D of
length n, defined over FQ and the subfield-subcode D ∩ Fnq . This relation is given by the
Delsarte Theorem, as follows

(D ∩ Fnq )⊥ = Tr(D⊥)

where Tr is the trace map of the extension FQ/Fq, see [4]. In our case m = 1, this theorem
implies

(11)
(
CJ∆
)⊥

= (EJ∆)⊥ ∩ FnJ
q

see [10, Proposition 11] for a complete proof of this equality. If r ≤ q − 2, then the r
smallest elements of A are al = l− 1, l = 1, 2, . . . , r, and hence from Proposition 2.10 and
Equality (11) we have d((CJ∆)⊥) ≥ r + 1.

Proposition 2.11. Let m = 1 and ∆ = ∪rl=1Ial
, where r ≤ q − 2 and a1,a2, . . . ,ar are

the r smallest elements of A. Then CJ∆ is a sharp LRC code of locality r1 = r.

Proof. According to Theorem 2.8, CJ∆ is an LRC code of locality ≤ r. Since d((CJ∆)⊥) ≥
r + 1, Proposition 1.1 implies the result. �
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Le us study now the general case m ≥ 1. So let J = {1, 2, . . . ,m}, let L be a non-empty
subset of J , and ∆ = ∪zl=1Ial

. We are going to construct codes CJ∆ with locality (r, q − r)
for some r ≤ z, whose (r, q−r) recovery sets satify the conditions (RD1) and (RD2) stated
in Section 1 with equality. Fix a coordinate t0, 1 ≤ t0 ≤ nJ , and let us consider the orbit
of Pt0 , defined in Equation (5),

Rt0 = {ηn ·L Pt0 : 0 ≤ n ≤ q − 2} = {Pt0 , PL1,t0 , . . . , P
L
q−2,t0} ⊆ ZJ .

Lemma 2.12. Let J = {1, 2, . . . ,m} and let ∆ = ∪zl=1Ial
be a closed set. Let t0 be a

coordinate, 1 ≤ t0 ≤ nJ , and let Rt0 be the orbit of Pt0 ∈ ZJ . If the set {σL(a1),
σL(a2), . . . , σL(az)} contains exactly r ≤ q − 2 distinct elements modulo q − 1, then the
punctured code CJ∆[coord(Rt0)] has length q − 1 and dimension r.

Proof. The statement about the length is clear, since Rt0 ⊆ ZJ . Let us compute the
dimension of CJ∆[coord(Rt0)]. According to Theorem 2.3, this code is generated by the set
of vectors

(12) vlk =
(
Tal

(ξkal
Xal)(Pt0), Tal

(ξkal
Xal)(PL1,t0), . . . , Tal

(ξkal
Xal)(PLq−2,t0)

)
1 ≤ l ≤ z; 0 ≤ k ≤ ial

− 1. From Lemma 2.7 we have

vlk =
(
Tal

(ξkal
Xal)(Pt0)

)
(1, ησL(al), . . . , η(q−2)σL(al)) =

(
Tal

(ξkal
Xal)(Pt0)

)
wl

for 1 ≤ l ≤ z and 0 ≤ k ≤ ial
− 1, where wl = (1, ησL(al), . . . , η(q−2)σL(al)). Since η is

a primitive element of Fq, then the set of vectors {w1,w2, . . . ,wz} has rank exactly r.
Thus, to prove our claim on the dimension of CJ∆[coord(Rt0)] it suffices to prove that for

any a ∈ {a1,a2, . . . ,az}, there exists k such that Ta
(
ξkaX

a
)

(Pt0) 6= 0. Suppose, on the

contrary, that there is a such that Ta
(
ξkaX

a
)

(Pt0) = 0 for all k, 0 ≤ k ≤ ia − 1. Let
i = ia. A simple computation shows that we can write

0 = Ta (Xa) (Pt0) = Xa(Pt0)(1 + b1 + · · ·+ bi−1),

0 = Ta (ξaX
a) (Pt0) = Xa(Pt0)(ξa + ξqab1 + · · ·+ ξ

(i−1)q
a bi−1),

...

0 = Ta
(
ξi−1
a Xa

)
(Pt0) = Xa(Pt0)(ξi−1

a + (ξi−1
a )qb1 + · · ·+ (ξi−1

a )(i−1)qbi−1)

for some elements b1, b2, . . . , bi−1 ∈ Fq. Note that Xa(Pt0) 6= 0 since J = {1, 2, . . . ,m}.
Thus the vector (1, b1, b2, . . . , bi−1) 6= 0 is a solution of a homogeneous square linear system
whose matrix is of Vandermonde type, what is not possible. �

Let us recall here the well-known fact that the dual code of a linear MDS code is again
an MDS code.

Proposition 2.13. Let J = {1, 2, . . . ,m} and ∆ = ∪zl=1Ial
be a closed set. If the set

{σL(a1), σL(a2), . . . , σL(az)} contains exactly r ≤ q − 2 distinct values and these values
are consecutive integers, then for any coordinate t0, the punctured code CJ∆[coord(Rt0)] is
an MDS code with parameters [q − 1, r, q − r], where Rt0 is the orbit of Pt0 ∈ ZJ .

Proof. For simplicity suppose that σL(a1), σL(a2), . . . , σL(ar) are the consecutive integers
mentioned in the statement. Since r ≤ q − 2 all these integers are distinct modulo q − 1,
and hence the statements about length and dimension follow from Lemma 2.12. Let us
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compute the minimum distance of CJ∆[coord(Rt0)]. A generator matrix of this code is Ta1 (Xa1) (Pt0) ησL(a1)Ta1 (Xa1) (Pt0) · · · η(q−2)σL(a1)Ta1 (Xa1) (Pt0)
...

...
...

Tar (Xar) (Pt0) ησL(ar)Tar (Xar) (Pt0) · · · η(q−2)σL(ar)Tar (Xar) (Pt0)

 .

If Tal
(Xal) (Pt0) = 0 we can remove the corresponding row in this matrix, hence we can

assume Tal
(Xal) (Pt0) 6= 0 for all al. To study the independence of columns, it suffices to

consider the matrix

A =

 1 ησL(a1) · · · η(q−2)σL(a1)

...
...

...

1 ησL(ar) · · · ησL((q−2)ar)

 .

Since σL(a1), σL(a2), . . . , σL(ar) are consecutive integers, any submatrix of A obtained
by taking r columns of A has rank r, see [23, Lemma 6.6.5]. Thus the minimum distance
of CJ∆[coord(Rt0)]⊥ is ≥ r + 1. So it has parameters [q − 1, q − 1− r, r + 1] and then it is
an MDS code. Therefore CJ∆[coord(Rt0)] is also MDS with parameters [q− 1, r, q− r]. �

As a direct consequence of this proposition, we have the following theorem.

Theorem 2.14. Let J = {1, 2, . . . ,m} and ∆ = ∪zl=1Ial
be a closed set. If the set

{σL(a1), σL(a2), . . . , σL(az)} contains exactly r ≤ q − 2 distinct values and these values
are consecutive integers, then for any coordinate t0, the set coord(Rt0) is a (r, q − r)
recovery set for t0, where Rt0 is the orbit of Pt0 ∈ ZJ . Consequently CJ∆ is an LRC code
with locality (r, q − r) and rq−r−t ≤ q − 1− t for t = 1, 2, . . . , q − r − 1.

Proof. The first statement follows from Proposition 2.13. The second one follows from the
definition of rt’s and the fact that puncturing t < d times an [n, k, d] MDS code gives an
[n− t, k, d− t] MDS code. �

Let us note that formulas for the length and dimension of the codes CJ∆ are given given
by Theorem 2.3. For the opposite, we do not have any explicit bound for its minimum
distance (apart from the trivial bound d(CJ∆) ≥ d(EJ∆)). The same happens to most codes
obtained as subfield-subcodes. Therefore, we cannot explicitly calculate formulas for the
Singleton defect. In some of the examples we shall show in Section 3, these distances are
calculated by computer search. Next we shall show that we can give such explicit formulas
in the univariate case, m = 1, when char(Fq) 6= 2 and Q = q2.

So let m = 1. Given a closed set ∆ = ∪rl=1Ial
⊂ HJ , we define its dual set as

∆⊥ := HJ \ ∪rl=1InJ−al
. The dual code (CJ∆)⊥ is related to the dual set ∆⊥ as follows

(13) (CJ∆)⊥ = (EJ∆ ∩ FnJ
q )⊥ = EJ∆⊥ ∩ FnJ

q ,

see [6, Proposition 2.4].

Theorem 2.15. Assume Q = q2 with q odd. Let m = 1, J = L = {1} and N1 =
2(q − 1) + 1. Take r ≤ q − 2 consecutive integers a1 = 0,a2 = 1, . . . ,ar = r − 1, and
let ∆ = ∪rl=1Ial

. Then the subfield-subcode CJ∆ has length nJ = 2(q − 1), dimension

k = 2r − d r2e and minimum distance d ≥ (q − 1) − 2b r−2
2 c. It is a sharp LRC code with

locality (r, q − r) and (q − r − 1)-th Singleton defect

Dq−r−1 ≤
⌈r

2

⌉
+ 2

⌊
r − 2

2

⌋
+ 1− r.
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Proof. The length of CJ∆ is nJ = N1−1 = 2(q−1). The minimal cyclotomic sets in HJ are
Ia = {a} when a is even and Ia = {a, q+a−1} when a is odd. Thus #∆ = 2r−

⌈
r
2

⌉
and

since ∆ is a closed set, CJ∆ has dimension k = #∆ = 2r −
⌈
r
2

⌉
according to Theorem 2.3.

Furthermore, a simple computation shows that the dual set ∆⊥ = HJ \ ∪rl=1InJ−al
is the

union of (q − 2)− 2b(r − 2)/2c minimal cyclotomic sets with consecutive representatives.
Then from equation (13) and Proposition 2.11 we get a bound on the minimum distance
of CJ∆ as follows

d(CJ∆) = d
(

((CJ∆)⊥)⊥
)
≥ d

(
(EJ∆⊥)⊥

)
≥ (q − 1)− 2

⌊
r − 2

2

⌋
.

From Proposition 2.11 the code CJ∆ is sharp. Finally, according to Theorem 2.14, CJ∆ is
an LRC code with locality (r, δ) = (r, q − r). Based on this locality, the (q − r − 1)-th
Singleton defect of CJ∆ satisfies

Dq−r−1 ≤ 2(q−1)+1−

(
(q − 1)− 2

⌊
r − 2

2

⌋
+ 2r −

⌈r
2

⌉
+

⌈
2r −

⌈
r
2

⌉
r

− 1

⌉
(q − r − 1)

)
.

Since ⌈
2r −

⌈
r
2

⌉
r

− 1

⌉
= 1,

we get the bound on the defect Dq−r−1. �

3. Examples

In this section we give examples of parameters of LRC codes CJ∆ over Fq correcting
several erasures, which are obtained as subfield-subcodes of J-affine variety codes EJ∆.
The theoretical support for these examples is in theorems 2.3, 2.14 and 2.15. So the
parameters we show arise from these theorems when they provide these data, and are
calculated by computer search otherwise (see below for details). In particular, all codes
we present have locality (r, q − r), where r ≤ q − 2 depends on the cyclotomic sets in
∆. In order to evaluate the quality of these codes for local recovery purposes, we use the
Singleton bounds (2) and (3), and compute the corresponding Singleton defects as stated
in Section 1. Let us recall that when a code of parameters [n, k, d] has locality (r, δ), then
r1 ≤ r and its defect Dδ−1 satisfies

(14) Dδ−1 ≤ n+ 1−
(
d+ k +

(⌈
k

r

⌉
− 1

)
(δ − 1)

)
.

In most cases, the codes we present are optimal (Dδ−1 = 0); otherwise they have small
defect Dδ−1. Let us remark that, besides the Singleton-like bound, there exist other
available bounds on the (r, δ)’s (eg. Corollary 3 of [1]). To gain clarity, these bounds are
not included here.

This section is organized in two subsections. In the first one we show examples with
m = 1; the second one contains examples of bivariate codes, m = 2, improving some
results obtained in the univariate case. We also include an example showing that this
improvement does not always happen.
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3.1. Examples of LRC codes coming from the univariate case. We take m = 1,
J = L = {1}, and apply Theorems 2.14 and 2.15. The following tables contain the
relevant data of the obtained codes: the cardinality q of the ground field over which the
code is defined; their parameters [n, k, d]; the dual distance d⊥; the locality (r, δ) given by
Theorems 2.14 or 2.15; and the estimate on the (δ− 1)-th Singleton defect Dδ−1 given by
the bound of Equation (14). All these data have been computed from the above theorems,
except the minimum distance in Table 1, which has been obtained by computer search
using Magma [2].

Let us note that in all cases, the localities (r, δ) shown satisfy that δ = q − r and r is
equal to d⊥−1. So from Proposition 1.1 it follows that all our codes are sharp and r = r1,
the classical locality.

Example 3.1. Let q = 8, Q = 64, N1 = 22, al = l − 1, 1 ≤ l ≤ 6, and let ∆ = ∪rl=1Ial

for r = 2, 3, 4, 6. We get codes with the parameters given in Table 1.

q [n, k, d] d⊥ (r, δ) Dδ−1

8 [21, 3 14] 3 (2,6) 0
8 [21, 5 12] 4 (3,5) 1
8 [21, 6 12] 5 (4,4) 1
8 [21, 10 8] 7 (6,2) 3

Table 1. Univariate LRC codes over F8.

Look, for example, at the [21, 6, 12] code of the third row of Table 1. Its has locality
(4, 4), so r3 ≤ 6 and thus r2 ≤ 5, r1 ≤ 4. Since d⊥ = 5, from Proposition 1.4 we get
equality in all cases. Then this code has defects D1 = 3, D2 = 2 and D3 = 1. Note
furthermore that the best known [21, 6] code over F8 has minimum distance d = 13, [17].
So no currently known [21, 6] code can be 1-optimal.

Example 3.2. Let q = 9, Q = 81, N1 = 2(q − 1) + 1 = 17, al = l − 1, 1 ≤ l ≤ 7, and let
∆ = ∪rl=1Ial

for r = 2, 3, 4, 5, 6, 7. We get codes with the parameters given in Table 2.

q [n, k, d] d⊥ (r, δ) Dδ−1

9 [16,3,8] 3 (2,7) 0
9 [16,4,8] 4 (3,6) 0
9 [16,6,6] 5 (4,5) 1
9 [16,7,6] 6 (5,4) 1
9 [16,9,4] 7 (6,3) 2
9 [16,10,4] 8 (7,2) 2

Table 2. Univariate LRC codes over F9.

Example 3.3. Let q = 11, Q = 121, N1 = 2(q − 1) + 1 = 21, al = l − 1, 1 ≤ l ≤ 7, and
let ∆ = ∪rl=1Ial

for r = 2, 3, . . . , 7. We get codes with the parameters given in Table 3.

Example 3.4. Let q = 25, Q = 625, N1 = 49, al = l − 1, 1 ≤ l ≤ 7, and let ∆ = ∪rl=1Ial

for r = 2, 3, . . . , 7. We get codes with the parameters given in Table 4.

Example 3.5. Let q = 27, Q = 729, N1 = 53, al = l − 1, 1 ≤ l ≤ 7, and let ∆ = ∪rl=1Ial

for r = 2, 3, . . . , 7. We get codes with the parameters given in Table 5.
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q [n, k, d] d⊥ (r, δ) Dδ−1

11 [20, 3, 10] 3 (2,9) 0
11 [20, 5, 10] 4 (3,8) 0
11 [20, 6, 8 ] 5 (4,7) 1
11 [20, 7, 8] 6 (5,6) 1
11 [20, 9, 6] 7 (6,5) 2
11 [20, 10, 6] 8 (7,4) 2

Table 3. Univariate LRC codes over F11.

q [n, k, d] d⊥ (r, δ) Dδ−1

25 [48,3,24] 3 (2,23) 0
25 [48,4,24] 4 (3,22) 0
25 [48,6,22] 5 (4,21) 1
25 [48,7,22] 6 (5,20) 1
25 [48,9,20] 7 (6,19) 2
25 [48,10,20] 8 (7,18) 2

Table 4. Univariate LRC codes over F25.

q [n, k, d] d⊥ (r, δ) Dδ−1

27 [52,3,26] 3 (2,25) 0
27 [52,4,26] 4 (3,24) 0
27 [52,6,24] 5 (4,23) 1
27 [52,7,24] 6 (5,22) 1
27 [52,9,22] 7 (6,21) 2
27 [52,10,22] 8 (7,20) 2

Table 5. Univariate LRC codes over F27.

3.2. Examples of LRC codes coming from the bivariate case. Let us consider
now the bivariate case m = 2, with J = {1, 2} and L = {1}. As above we show tables
of parameters of codes CJ∆ over Fq for different values of q. The minimum distances in

these tables have been computed with Magma [2]. The dual distances d⊥ have been also
computed with Magma; they are included in the tables only when they provide relevant
information about sharpness, what corresponds to the cases q = 8, 11, 16. For q = 25, 27,
the codes are far from being sharp, and the value of d⊥ is omitted. The examples we are
going to present seem to suggest that bivariate codes give better results than the univariate
ones. However, this is not always true, as shown in Example 3.11.

Example 3.6. Let q = 8, Q = q4 = 4096, N1 = 8 and N2 = 6. Table 6 contains
the parameters of codes CJ∆ obtained by using successively the following defining sets ∆:
I(0,1); I(0,1) ∪ I(1,1); and I(0,1) ∪ I(1,1) ∪ I(2,1).

Example 3.7. Let q = Q = N1 = 11 and N2 = 3. Table 7 contains the parameters of
codes CJ∆ obtained by using the following defining sets ∆: the first code (first row of Table
7) comes from the set I(0,0)∪I(0,1)∪I(1,0)∪I(2,0); the defining sets for the remaining codes
are obtained by successively adding the cyclotomic sets I(3,0); I(4,0); I(5,0); I(1,1) ∪ I(6,0);
and I(7,1).
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q [n, k, d] d⊥ (r, δ) Dδ−1

8 [35,4,14] 2 (1,7) 0
8 [35,8,12] 3 (2,6) 1
8 [35,12,10] 4 (3,5) 2

Table 6. Bivariate LRC codes over F8.

q [n, k, d] d⊥ (r, δ) Dδ−1

11 [20,4,10] 4 (3,8) 0
11 [20,5,10] 4 (4,7) 0
11 [20,6,10] 4 (5,6) 0
11 [20,7,10] 4 (6,5) 0
11 [20,9,8] 6 (7,4) 1
11 [20,10,8] 8 (8,3) 1

Table 7. Bivariate LRC codes over F11.

Example 3.8. Let q = Q = N1 = 16 and N2 = 4. Table 8 contains the parameters of
codes CJ∆ obtained by using the following defining sets ∆: the first code comes from the set
I(0,0) ∪ I(0,1) ∪ I(1,1) ∪ I(2,0) ∪ I(3,0). The defining sets for the remaining ones are obtained
by successively adding the cyclotomic sets I(4,0); I(5,0); and I(4,1) ∪ I(6,1).

q [n, k, d] d⊥ (r, δ) Dδ−1

16 [45,5,30] 3 (4,12) 0
16 [45,6,30] 3 (5,11) 0
16 [45,7,30] 3 (6,10) 0
16 [45,9,28] 3 (7,9) 1

Table 8. Bivariate LRC codes over F16.

Example 3.9. Let q = Q = N1 = 25 and N2 = 3. Table 9 contains the parameters
of codes CJ∆ obtained by using the following defining sets ∆: the first code comes from
the set I(0,0) ∪ I(0,1) ∪ I(1,0) ∪ I(1,1) ∪ I(2,0). The defining sets for the remaining ones are
obtained by successively adding the following cyclotomic sets: I(3,0); I(4,0); I(5,0); I(6,0);
I(7,0); I(8,0); and I(9,0).

q [n, k, d] (r, δ) Dδ−1

25 [48,5,23] (3,22) 0
25 [48,6,23] (4,21) 0
25 [48,7,23] (5,20) 0
25 [48,8,23] (6,19) 0
25 [48,9,23] (7,18) 0
25 [48,10,23] (8,17) 0
25 [48,11,23] (9,16) 0
25 [48,12,23] (10,15) 0

Table 9. Bivariate LRC codes over F25.
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Example 3.10. Let q = Q = N1 = 27 and N2 = 3. Table 10 contains the parameters of
codes CJ∆ obtained by using the following defining sets ∆: the first code comes from the
set I(0,0) ∪ I(0,1) ∪ I(1,0) ∪ I(1,1) ∪ I(2,0) ∪ I(3,0). The defining sets for the remaining ones
are obtained by successively adding the cyclotomic sets I(4,0); I(5,0); I(6,0); I(7,0); I(8,0);
I(9,0); and I(10,0) ∪ I(11,0).

q [n, k, d] (r, δ) Dδ−1

27 [52,6,25] (4,23) 0
27 [52,7,25] (5,22) 0
27 [52,8,25] (6,21) 0
27 [52,9,25] (7,20) 0
27 [52,10,25] (8,19) 0
27 [52,11,25] (9,18) 0
27 [52,12,25] (10,17) 0
27 [52,13,25] (11,16) 0
27 [52,14,25] (12,15) 0

Table 10. Bivariate LRC codes over F27.

Example 3.11. To conclude this work we show the parameters of some univariate LRC
codes over F32 which seem not to be improved by the bivariate ones. Let m = 1. Take
q = 32, Q = 1024, N1 = 94, al = l − 1 for 1 ≤ l ≤ 4, and let ∆ = ∪rl=1Ial

for r = 2, 3, 4.
We get univariate codes with the parameters given in Table 11. Bivariate codes improving

q [n, k, d] d⊥ (r, δ) Dδ−1

32 [93,3,62] 3 (2,30) 0
32 [93,5,60] 4 (3,29) 1
32 [93,6,60] 5 (4,28) 1

Table 11. Univariate LRC codes over F32 that cannot be improved by the
bivariate ones.

these should come from the choice N1 = 32, N2 = 4, and we are forced to use the same
field extension. An exhaustive computer search shows that such bivariate codes do not
improve the univariate ones.
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