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Abstract: The aim of this paper is to model an ordinal response variable in terms

of vector-valued functional data included on a vector-valued RKHS. In particular,

we focus on the vector-valued RKHS obtained when a geometrical object (body) is

characterized by a current and on the ordinal regression model. A common way to

solve this problem in functional data analysis is to express the data in the orthonormal

basis given by decomposition of the covariance operator. But our data present very
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important differences with respect to the usual functional data setting. On the one

hand, they are vector-valued functions, and on the other, they are functions in an

RKHS with a previously defined norm. We propose to use three different bases: the

orthonormal basis given by the kernel that defines the RKHS, a basis obtained from

decomposition of the integral operator defined using the covariance function, and a

third basis that combines the previous two. The three approaches are compared and

applied to an interesting problem: building a model to predict the fit of children’s

garment sizes, based on a 3D database of the Spanish child population. Our proposal

has been compared with alternative methods that explore the performance of other

classifiers (Suppport Vector Machine and k-NN), and with the result of applying

the classification method proposed in this work, from different characterizations of

the objects (landmarks and multivariate anthropometric measurements instead of

currents), obtaining in all these cases worst results.

Key words: Statistical Shape and Size Analysis; Vector-valued Reproducing Kernel

Hilbert Space; Functional Data Analysis; Ordinal Regression

1 Introduction

In many scientific fields, such as Biology, Medicine and Anthropometry, we can find

a great number of applications where it is necessary to predict a categorical vari-

able as a function of a geometrical object predictor. These geometrical objects can

be mathematically characterized in different ways, the most popular being as a set

of landmarks (Bookstein, 1978; Kendall, 1984; Dryden and Mardia, 2016), compact
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sets (Serra, 1982; Baddeley and Molchanov, 1998; Simó et al., 2004; Molchanov, 2006)

or functions (Loncaric, 1998; Kindratenko, 2003; Gual-Arnau et al., 2013). In this

paper, the contour of each geometrical object (surface in R3) is represented by a math-

ematical structure named current. This framework was introduced by Vaillant and

Glaunès (2005) and Glaunes and Joshi (2006) and it provides a unifying framework

in which to process any sets of points, curves and surfaces or a mixture of these. No

hypothesis on the topology of the shapes is assumed. Moreover, it is weakly sensitive

to the sampling of shapes and it does not depend on the choice of parameterizations.

Currents are mathematically complex objects but, fortunately, it is possible to asso-

ciate a subspace of currents with a vector-valued Reproducing Kernel Hilbert Space

(RKHS) by duality and, as a result, we can represent each geometrical object with

a function in an RKHS (Durrleman, 2010; Barahona et al., 2017b). A vector-valued

RKHS is a Hilbert vector space of functions with useful properties.

This work is motivated by an experimental study carried out by the Biomechanics

Institute of Valencia, whose ultimate objective was to implement a web application

for online shopping for children’s wear. In particular, that application should make

it possible to select the right size of children’s clothing without requiring the child

to try on the clothes. Selecting the proper size of any garment for a child without

trying it on constitutes a problem when buying these items both in a physical store

and, especially, online. Seventy-eight randomly selected children between the ages of

3 and 12 years participated in this study. Firstly, the children were scanned using

a 3D body scanner. Next, garments were tried on in different sizes and an expert

classified the fit of each garment as “too small”, “correct fit” or “too large”.

Authors have been previously working with a part of this data set in Barahona et al.
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(2017b) and Barahona et al. (2017a). In Barahona et al. (2017b) we reviewed the

theory necessary to represent geometrical objects as elements of an RKHS through

currents. There, we saw how to calculate the sample mean in a vector-valued RKHS

(Hsing and Eubank, 2015), and checked that the distance between two surfaces (or

curves) is defined as the distance between the corresponding elements in the RKHS,

with the particularity that the inner product of the RKHS will differ from the usual

L2 inner product. Then, we adapted the classic k-means partitioning algorithm to

this space and applied it to synthetic and real data sets.

In Barahona et al. (2017a) we explored supervised classification methods of geo-

metrical objects when these objects are characterized by functions that “live” on a

vector-valued RKHS. We focused on supervised classification methods that are not

just based on distances between objects (as Functional Discriminant Analysis (Fisher,

1936; Shin, 2008) or Classification Trees), where a reduction of the dimension of the

data is compulsory.

Now, we are interested in a “new” ordinal variable “fit of each garment”, that can be

seen as a categorized version of the latent unmeasured continuous variable “width of

the mismatch”, and our main aim is to model it, in terms of vector-valued functional

data included on a vector-valued RKHS.

Different approaches to the problem of predicting the correct garment sizes, can be

found in the literature. Most of them are based on taking the user’s anthropometric

measurements and their relationship with the dimensions of the garment. In this

paper, from the 3D scanning of the child’s body and using the currents approach, a

child will be represented by a function in a vector-valued RKHS and Functional Data

Analysis (FDA) will be used on this space. Unlike the methods based on landmarks,

curves or parameterized surfaces, the great advantage of working with functions is
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that the shift from two to three dimensions does not increase the complexity of the

expressions or the calculations.

RKHSs (usually, scalar-valued) have a long history in the statistical and machine

learning literature. RKHSs have been largely used to facilitate statistical modeling

and estimation. For example, in the 1940s, probabilists had already begun to employ

Hilbert space methods to clarify the structure of time series (Parzen, 1961). Preda

(2007); Yuan and Cai (2010) and Cai and Yuan (2012) use the RKHS framework in

prediction problems under which the unknown slope function is assumed to reside

in a reproducing kernel Hilbert space H(K) but originally data are in L2 with the

usual inner product. In the literature of Support Vector Machines, RKHSs are used

to map original data in a higher dimensional space (Cristianini and Shawe-Taylor,

2000; Steinwart and Christmann, 2008). RKHSs provide a convenient framework for

efficient computation.

An important and crucial difference between previous applications of RKHSs and

ours is that, in our case, original data are functions in a given vector-valued Repro-

ducing Kernel Hilbert Space with a previously defined inner product, that is generally

different from the L2 inner product. For example, polynomial functions can never be

included in an RKHS with a Gaussian kernel (Steinwart and Christmann, 2008).

Nowadays, the theory of statistics with functional data is an important field of re-

search in statistics. It is used when data are in an infinite-dimensional function space.

Although this theory is often a generalization of classic parametric or multivariate

statistics, the infinite-dimensional nature of the sample space poses particular prob-

lems. Key references in the FDA literature are the books by Ramsay and Silverman

(2005) and Ferraty and Vieu (2006). A more theoretical treatment is taken in Hsing
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and Eubank (2015).

With respect to the particular problem of regression with a scalar response and a

functional predictor, the first papers focused on the continuous version of the multiple

linear model, the functional linear model. In these cases, a direct estimation of the

parameter function of the proposed functional regression models through the use

of least squares methods is not possible. The most commonly used approximated

solution for this estimation problem is to consider that functional observations belong

to a space generated by a basis of functions and to perform a multiple treatment based

on this approach. Different bases have been used in the literature, such as spline

functions, trigonometric functions or wavelet functions (see Ramsay and Silverman,

2005, and the references therein).

A slightly different approach, and one of the most popular in the literature, is to use

principal component functional regression. This approach uses the orthonormal basis

of eigenfunctions of the covariance function (Cardot et al., 1999). Unlike the previous

ones, this is a data-driven basis. As in the multivariate case, this technique makes

use of the data covariance function to determine the subspace where the data are

projected. This subspace is spanned by the data covariance eigenfunctions and it is

always an RKHS. This approach solves a typical problem in functional regression: the

great dependence between coefficients, that causes that the estimation of the model

is not very accurate.

Nevertheless, as Morris (2015) advises, care must be taken when using principal

component functional regression for very complex, high-dimensional functional data

for which the decay rate in the eigenvalues is slow, especially when the number of

functions is small. In certain high-dimensional, low-sample-size settings, PCs have
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been shown to be inconsistent. These problems can be at least partially mitigated

using functional principal component analysis with regularization (Yuan and Cai,

2010).

In the same spirit as in the multivariate setting, functional generalized linear models

(Escabias et al., 2004), which are the functional version of generalized linear models

(Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989), were introduced more

recently in the literature. Such models are based on similar ideas to the linear case.

In James (2002) the predictors are modeled as cubic splines, and in Cardot and Sarda

(2005) the functional coefficient of the functional generalized linear model is estimated

via penalized likelihood with spline approximation.

As our data (functions in a vector-valued RKHS), are not expressed in the standard

form of functional data, in Barahona et al. (2017a) we investigated how to obtain

an appropriate orthonormal basis of the vector-valued RKHS in which to project our

data. The proposed basis was the orthonormal basis given by the integral operator

defined by its reproducing kernel (Quang et al., 2010).

On the other side, Dou et al. (2012) use the functional principal component analysis

(FPCA) approach. However, when we use this approach in logistic or multinomial

functional generalized linear models, we face an additional problem to the one men-

tioned previously. Logistic or, in general, multinomial generalized linear models, are

used to solve classification problems and, as explained in Jolliffe (2002, chap. 9),

when PCA is used in classification problems in order to reduce the dimensionality of

the analysis, we have to be aware that there is no guarantee that the separation be-

tween groups will be in the direction of the high-variance PCs; the separation between

groups may be in the directions of the last few PCs.
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On the other hand, as González (2010, chap. 3) notes, an improvement in the clas-

sification results can be achieved by using other kernels that capture nonlinear de-

pendencies between the data, because the covariance function only deals with linear

ones.

We can also explore this approach and consider the integral operator from the co-

variance function regarding our data as a realization of a stochastic process. The

relationship between L2, our original RKHS and the RKHS defined from the covari-

ance function provides another non-orthonormal base. Moreover, we will prove a

result on simultaneous diagonalization that provides an alternative basis system that

combines the properties of both.

Therefore, the main aim of this work arises in the analysis of the ordinal variable ”fit

of each garment” (classified as “too small”, “correct fit” or “too large”). It turns into

a regression problem with an ordinal response and a functional predictor, that can

be considered as an intermediate problem between regression and classification. To

estimate the coefficients of a regression model with functional predictors, it is usual

to consider that functional observations belong to a space generated by a basis of

functions and to perform the analysis based on this approach. The last novelty of our

work will consist of comparing the performance of three different bases in which to

project our data. Our implementations have been written in MATLAB (2015) and

R (R Core Team, 2018).

The article is organized as follows: Section 2 provides a detailed explanation of the

practical case that motivated this work. Section 3 introduces the concepts of currents

and Reproducing Kernel Hilbert Spaces. Section 4 reviews the basis of functional

generalized linear models and Section 5 gives the different bases of functions in the
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RKHS. The application for predicting children’s garment fit is detailed in Section 6.

Finally, conclusions are discussed in Section 7.

2 Motivating example

In the current process of buying children’s clothing online, consumers base the size

selection on their previous experience or on the size chart that is normally included in

the online store. The consumer’s previous experience is not usually very reliable, be-

cause each brand uses its own sizing system that usually evolves over time according

to the needs of each company. Size tables indicate the ranges of the main anthropo-

metric measures covered by each size. This method is also unreliable, because taking

measurements at home is subject to significant errors, and ambiguous, because users

can fit into different sizes according to the measurements used. The final result is

a high percentage of returns on children’s clothing sold online, meaning that many

consumers are reluctant to buy through this channel, thus increasing the cost of sales.

Selection based on the child’s anthropometry seems the most appropriate approach

to predict garment size and fit in the child population. However, the 3D anthro-

pometry acquisition systems currently available have several drawbacks. 3D body

scanners are too expensive for home use. Parametric avatars configured from manual

measurements by the user present three important sources of inaccuracy: they are

not based on statistics of real populations but on models and proportions that prevail

in aesthetics, the number of measurements entered does not depend on the type of

garment selected or the critical measurements for the associated adjustment, and the

measurements are taken by an untrained user, with the error that this may entail.
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Low-cost systems that use domestic technology to capture body measurements have

not yet achieved sufficient precision for size allocation or prediction of fit.

Ergonomic childrenswear design and size definition processes have several differences

with regard to those of adult apparel. Firstly, childrenswear size designation is usually

labeled in ages, which is not a body measurement, so it is usually related to a specific

body height per age, which may not necessarily be close to a child of that age, due to

the high variability of height by age in children. According to the European standard

UNE-EN 13402-3, the 3 to 12 years age range has 10 different sizes associated with

it (950-1010 mm, 1010-1070 mm, 1070-1130 mm, 1130-1190 mm, 1190-1250 mm,

1250-1310 mm, 1310-1370 mm, 1370-1430 mm, 1430-1490 mm and 1490-1550 mm).

As online clothes shopping is a problem for both the customer and the apparel in-

dustry, in recent years both national administrations and industrial groups from the

clothing sector have been developing national anthropometric surveys in different

countries. Emerging technology for body scanning has also promoted these new siz-

ing surveys.

In order to help solve all these problems, the Biomechanics Institute of Valencia (IBV)

started an ambitious research project in 2004, of which this work is a part. This

project has two objectives: first, to develop a system for capturing the child body’s

3D morphometry that is precise, easy to use and can be done at home. Second, to

build a model to predict how a given garment size of garment fits a child based on

the aforementioned 3D reconstruction. Our work in this article focuses on the latter.

With respect to the first objective of the project addressed by the IBV group, an

application has already been developed. The system reconstructs the body of the
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child in 3D from two or three photographs taken with domestic technology (smart-

phone, tablet or digital camera) using models representative of the European infant

morphometry as a base for reconstruction (Ballester et al., 2016).

To achieve both objectives, a 3D anthropometric study of the child population in

Spain was conducted in 2004. In this study, a randomly selected sample of Spanish

children between the ages of 3 and 12 years was scanned using a Vitus Smart 3D

body scanner from Human Solutions, a non-intrusive laser system which performs a

sweep of the body. Several cameras capture images and associated software provided

by the scanner manufacturer provides information about the 3D spatial location of

up to 200000 points on the body surface. 3D scan data was processed for the creation

of posture harmonized homologous models to obtain a database of individual 3D

homologous avatars with anatomical one-to-one vertex correspondence among them.

Next all the scans were rigidly aligned (Ballester et al., 2014).

Seventy-eight of these children of different ages performed an additional fit test, where

they tested up to three different consecutive sizes of the same shirt model: the sup-

posedly correct size, the size above and the size below. Then, an expert in clothing

and design evaluated each fit qualitatively (as small, correct fit or large). There were

7 possible shirt sizes available, nominally corresponding to ages 3, 4, 5, 6, 8, 10 and

12. In 24 cases, only two sizes were evaluated. In 18 of these cases, the children

tested either had a correct shirt size corresponding to ages 3 or 12. The 6 remaining

cases with only two sizes evaluated were due to lack of cooperation by the children.

Additionally, 9 children tested just one shirt size because the age 12 size was too

small for them or the age 3 size was too large for them.

So, our data set contains the 3D body scans of a total of 78 children (37 boys and
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41 girls, between 3 and 12 years old). It also includes the expert’s opinion on the

goodness of the fit of different (consecutive) sizes of the same shirt model on the

children, codifying the goodness of fit as -1 (if the shirt is too small), 0 (for a good

fit) or 1 (if the shirt is too big). The total number of expert observations is 192 (3

evaluations of 45 children, 2 evaluations of 24 children and 1 evaluation of 9 children).

As the children’s head, hands, legs and feet do not come into play in shirt size selec-

tion, these parts were discarded from the scans, and a total of 1423 points representing

the remaining surface per child were considered. This amount of detail is enough to

characterize a child for our purposes, while keeping the time and memory require-

ments to perform the calculations reasonable. These points were grouped into 2766

triangles forming a mesh. The body contour from each child in our data set was

therefore represented by an oriented triangulated smooth surface, Sk (see Fig. 2).

3 3D geometrical objects as elements in a Reproduc-

ing Kernel Hilbert Space

Currents are mathematical elements that can be used to model general geometrical

objects (Durrleman et al., 2009; Barahona et al., 2017b). In this paper, they will be

used to model the bodies of the children in our data set.

Let D be a compact set in R3 and K : D × D −→ R3×3, the matrix-valued kernel

associated with a vector-valued RKHS HK(D,R3).

The current representation of a surface S ⊂ D is defined by the integral of K along

the surface:
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CS(y) =

∫
S

K(x, y)(τ(x)) dx.

Where τ(x) is the normal vector to the surface S at point x (Durrleman et al., 2009;

Barahona et al., 2017b).

In the discrete setting, the vectors τ(x) are constant over each mesh cell. Then, if xj

is located at the center of mass of mesh cell j, and τj is τ(xj) scaled by the size of

the mesh cell,

S −→ CS(·) ∼=
∫
S

K(x, ·)(τ(x)) dx ≈ ϕ =
∑
j

K(xj, ·)(τj), (3.1)

So, the vector field ϕk associated with each surface Sk will be defined on a different

set of points {xk} given by the centers of mass of the respective mesh cells. Using the

“Representer Theorem” (Cucker and Smale, 2001), given {ai}Ni=1 a sample grid in D,

we can find a smooth function ϕk, defined as:

ϕk =
N∑
i=1

K(ai, ·)(βki ), (3.2)

where ϕk(ai) is closest to ϕk(ai) (Barahona et al., 2017a). βki ∈ R3 for i = 1, · · · , N .

The inner product of two geometrical objects represented as currents is given by

the inner product of the corresponding elements in HK(D,R3).; that is, if ϕ1 =∑
jK(a1

j , ·)(β1
j ) and ϕ2 =

∑
jK(a2

j , ·)(β2
j ) are two elements in the RKHS, associated

with two surfaces S1 and S2, then

〈ϕ1, ϕ2〉HK
=
∑
j

∑
l

β1
j ·K(a2

j , a
1
l )(β

2
j ),

where · is the inner product in R3.
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From now on, the vector fields in HK(D,R3) will be named functions and HK(D,R3)

will be denoted HK for the sake of simplicity. The space of quadratic integrable vector

fields from D to R3 with the Lebesgue measure will simply be denoted by L2.

Moreover, a Gaussian kernel, K(x, y) = k(x, y)I3×3 := exp(
−‖x−y‖2R3

λ2
)I3×3 will be used

in the definition of the operator-valued reproducing kernels K, where I3×3 denotes

the identity matrix (Barahona et al., 2017a).

4 The functional generalized linear model

As mentioned in the introduction, the aim of this paper is to predict the fit of a

particular garment on a child as “too small” (Y = −1), “good fit” (Y = 0) or “too

big” (Y = 1), given different predictors, including the child’s surface, which, as shown

in the previous section, is modeled as a current.

Generalized linear models (GLMs) (McCullagh and Nelder, 1989) provide a natu-

ral generalization of classical linear models. Given a dependent variable Y , with

E(Y ) = µ, they assume that it is distributed following a probability function in the

exponential family (not necessarily a Gaussian distribution), and the relationship be-

tween predictors ϕ1, . . . , ϕm and response Y is modeled by means of a link function

g as:

g(µ) = α +
m∑
i=1

σiϕi (4.1)

where g can be any monotonic differentiable function, and α and σ = (σ1, . . . , σm)

are the parameters to estimate.

When the response variable is a score, representing an ordered category, i.e. when
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Y may take one of several discrete ordered values indexed as 1, . . . , J with probabil-

ities π1, . . . , πJ :
∑J

j=1 πj = 1, these probabilities can be modeled using cumulative

logits (Agresti, 2010) as:

logit[P (Y ≤ j)] = αj +
m∑
i=1

σiϕi, ∀j ∈ {1, . . . , J − 1}. (4.2)

GLMs provide a very flexible class of procedures. However, they assume that the

predictors have a finite dimension. That is why James (2002) extended GLMs to

functional generalized linear models (FGLMs), which directly model the relationship

between a single response from any member of the exponential family of distributions

and a functional predictor. Then, when the predictor ϕ(·) is functional, as in our

case, the link given by Eqs. (4.1) and (4.2) cannot be applied directly, but a natural

generalization is to replace the summation over the finite-dimensional space with an

integral over the infinite-dimensional one. Then, if we were working with functional

predictors in L2, the cumulative logit model (Eq. 4.2) would become:

logit[P (Y ≤ j)] = αj +

∫
σ(x)ϕ(x) dx,∀j ∈ {1, . . . , J − 1},

where σ(·) is the functional analogue of σ in Eq. (4.2). But, in our case, we have

functional predictors in HK , so:

logit[P (Y ≤ j)] = αj + 〈σ, ϕ〉HK
,∀j ∈ {1, . . . , J − 1}. (4.3)

The most widely used approach to estimate these models considers that the functions

σ(·) and ϕ(·) belong to spaces generated by bases of functions (see Ramsay and

Silverman, 2005). In our case, σ(·) and ϕ(·) belong to a common space (a vector-

valued RKHS), so if {φl(·)}∞l=1 is a basis of this space, there will exist coefficients



16 Barahona et al.

{cl}∞l=1, {bl}∞l=1 such that:

ϕ(x) =
∞∑
l=1

clφl(x); σ(x) =
∞∑
l=1

blφl(x).

In practice, these developments are truncated, and ϕ(x) and σ(x) are usually ap-

proached by a summation of a finite number of terms, as:

ϕ(x) ∼=
r∑
l=1

clφl(x); σ(x) ∼=
r∑
l=1

blφl(x). (4.4)

Ideally, these basis functions should have similar features to the functions being es-

timated. Different bases have been used in the literature, such as trigonometric

functions, spline functions (Aguilera et al., 1996), wavelet functions (Ocaña et al.,

1998) or the orthonormal basis of eigenfunctions of the covariance function (Cardot

et al., 1999).

Then from Eqs. (4.3) and (4.4), the link function of the cumulative logit models can

be written as:

logit[P (Y ≤ j)] = αj +
r∑
p=1

r∑
l=1

bpcl〈φp, φl〉HK
, ∀j ∈ {1, . . . , J − 1}. (4.5)

And then:

P (Y ≤ j) =

exp

(
αj +

∑r
p=1

∑r
l=1 bpcl〈φp, φl〉HK

)
1 + exp

(
αj +

∑r
p=1

∑r
l=1 bpcl〈φp, φl〉HK

) , ∀j ∈ {1, . . . , J − 1}, (4.6)

where {αj}J−1
j=1 and {bl}rl=1 are the parameters to estimate.

If the basis is orthonormal for HK , then Eq. (4.6) becomes:

P (Y ≤ j) =

exp

(
αj +

∑r
l=1 blcl

)
1 + exp

(
αj +

∑r
l=1 blcl

) , ∀j ∈ {1, . . . , J − 1}.
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5 Bases of functions in HK

This section focuses on the methodological novelties of our work. It is interesting to

remember at this point that we are working in a vector-valued RKHS, i.e. our data are

vectorial fields. Theoretical properties about bases in scalar RKHSs are well known

and scalar RKHSs and their bases have been largely used in the statistical literature.

However, nowadays theoretical properties of vector-valued RKHSs in general and

their bases in particular are a research field in the functional analysis literature and,

as far as we know, they have never been used in classical statistical applications.

Vector-valued RKHSs were used in Image colorization problems, a particular case of

a mathematical extension problem (Quang et al., 2010).

It should be noted that in conventional functional data analysis applications, the

original data are functions in the L2 Hilbert space and RKHSs are used to facilitate

statistical modeling and estimation. For instance, Preda (2007); Yuan and Cai (2010);

Cai and Yuan (2012) use the RKHS framework in prediction problems under which

the unknown slope function is assumed to reside in a reproducing kernel Hilbert space

H(K) with a reproducing kernel K, but originally the data are in L2 with the usual

inner product. As mentioned previously, in our case the original data are functions in

a given vector-valued Reproducing Kernel Hilbert Space with the previously defined

inner product, which is different from the L2 inner product, and this is an important

difference between conventional functional data analysis applications and ours.

It is known that the eigen structures of integral operators in an RKHS provide bases of

functions; this idea will be explored in the following section. Moreover, when working

with Hilbert spaces, compact operator can be approximated by finite-dimensional
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operators (matrix) and, as a result, exhibits similar properties. This make easier the

implementation of the models.

5.1 Basis from the operator integral of the kernel

Let LK : L2 −→ L2 be the integral operator of the kernel K in the space HK , defined

by

LKf(x) :=

∫
D

K(x, y)(f(y)) dy.

Since LK is a compact, continuous, self-adjoint, positive operator, there are eigen-

values {λl}∞l=1 and the corresponding eigenfunctions {ψl}∞l=1 of LK , with λ1 ≥ λ2 ≥

· · · > 0 and lim
l→∞

λl = 0 (Hsing and Eubank, 2015).

Moreover,

〈ψi, ψj〉L2 = δij, and 〈ψi, ψj〉HK
= δij/λi,

where δij is the Kronecker delta.

Therefore, if we denote ρl =
√
λlψl, {ρl}∞l=1 is an orthonormal basis for HK , and the

hypersurfaces Sk in Eq. (3.2), as elements of HK , can be represented as

ϕk =
∞∑
l=1

〈ϕk, ρl〉HK
ρl =

∞∑
l=1

µkl ρl. (5.1)

The basis {ρl}∞l=1 is determined by the RKHS where our functions are included

and a generalization to our vector-valued case of Theorems 4.4.7 and 4.6.8 in Hs-

ing and Eubank (2015) can be proved. Because our functional data are of the form

ϕk(x) =
∑N

i=1K(ai, x)(βki ), these results ensure that the truncated eigenvalue-eigen-

vector decomposition provides the best approximation to K and, as a result, the

truncation of Eq. 5.1 reduces the dimension in an optimal way.
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This basis was previously used in Barahona et al. (2017a) in a Supervised Classifi-

cation problem. As usual in practice, the coefficients are estimated using the matrix

approach to the kernel function (Barahona et al., 2017a).

In particular, we consider K|a the matrix defined as (K|a)(i, j) = k(ai, aj), i, j =

1, · · · , N . vq ∈ RN are the eigenvectors of K|a and `q are the eigenvalues of K|a. In

Barahona et al. (2017a) it was proved that if

ϕk(·) =
N∑
i=1

K(ai, ·)(βki ) =
∞∑
q=1

3∑
j=1

µk3(q−1)+j

(√
λqψ

j
q(·)
)
, (5.2)

where l = 3(q− 1) + j and ρl =
(√

λqψ
j
q(·)
)

in Eq.5.1, the first coefficients µkl can be

approximated by

µ̂kl =
√
`q(vq · βk,j), where l = 3(q − 1) + j

for j = 1, 2, 3, q = 1, · · · , d (d = rank(K|a)) and where βk,j is the j-th column of the

N × 3-matrix βk whose rows are the vectors βki of Eq. 3.2

If we truncate the first summation in Eq. 5.2 to a low number r of terms, r ≤ d =

rank(K|a), each hypersurface Sk for k = 1, . . . ,m, is given by the coefficients µkq,j for

j = 1, 2, 3 and q = 1, . . . , r (estimated by µ̂kq,j).

As a result, it can be represented as a (3 · r)-dimensional vector.

5.2 Basis from the operator integral of the covariance func-

tion

Our functional data are realizations of random variables that take values in a vector-

valued RKHS. Classical L2 FPCA is based on the eigenvalue-eigenvector decompo-

sition of the integral operator of the covariance function. We will show that this
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operator is also well defined in the case of random elements in vector-valued RKHS

and the Karhunen-Lóeve Theorem is fulfilled (Hsing and Eubank, 2015). The eigen-

vectors of the decomposition of this operator are different from those of the covariance

operator (see Hsing and Eubank (2015) page 197) and, as a result, they do not form a

base of HK . We will prove that they are included in H(K) and then we will calculate

the inner products in Eq. 4.6 with respect to the HK norm.

It is known that a random element of HK is a stochastic process (Hsing and Eu-

bank, 2015). Therefore, we could consider the covariance functions γij(x, y) :=

Cov(Φi(x),Φj(y)), ∀i, j = 1, 2, 3. Let γ(x, y) be the (3 × 3)-matrix whose elements

are γij(x, y). Then Γ(x, y)(α) := γ(x, y)α is a symmetric and nonnegative-definite

vector-valued function. We consider the integral operator LΓ:

LΓf(x) :=

∫
D

Γ(x, y)(f(y)) dy.

By again using the eigenvalue-eigenvector decomposition for a self-adjoint compact

operator (Quang et al., 2010; Hsing and Eubank, 2015), the eigenfunctions of the

operator LΓ, {vl}∞l=1 form an orthonormal basis for L2, that is, 〈vi, vj〉L2 = δij.

Because ϕk ∈ HK ⊂ L2:

ϕk =
∞∑
l=1

〈ϕk, vl〉L2vl =
∞∑
l=1

ςkl vl. (5.3)

As Γ is a symmetric and non-negative-definite function, we can consider the vector-

valued RKHS associated with the kernel Γ, HΓ (Aronszajn, 1950). Assuming that Γ

is continuous, it is known that HΓ ⊂ HK (Lukić and Beder, 2001), and then vj ∈ HK .

The inner products satisfy the following relationship with respect to the products in
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L2:

〈vi, vj〉HK
=
∞∑
k=1

λ−1
k 〈vi, ψk〉L2〈vj, ψk〉L2 . (5.4)

The basis given by the integral operator defined from the covariance functions {vl}∞l=1

depends on the random sample, and the Karhunen-Lóeve Theorem guarantees that

there are random variables IΦ(vl) with mean zero, decreasing variances and uncorre-

lated such that:

lim
n→∞

sup
t∈D

E[‖Φ(t)−
n∑
l=1

IΦ(vl)vl(t)‖] = 0,

and as a result, the truncated development of Eq. 5.3 is optimal in this regard.

As usual in practice, the coefficients ςkl are estimated using the matrix approach to

the covariance function (Barahona et al., 2017a).

In particular, the coefficients have been estimated by applying PCA method to a

m × 3N -matrix X. This matrix contains in each row the evaluations in the grid

{ai}Ni=1 of a vector field of the database. To calculate the inner products of Eq. 5.4

we use the corresponding eigenvectors.

It is important to note that although it could seem more natural to consider the

eigenfunctions of the operator LΓ : HK −→ HK we work with have to work with the

operators defined from L2 to L2 for several reasons. Firstly, because if we define the

operator from HK to HK we can not estimate, as far as we know, the coefficients

with respect to the base. In a discrete setting the product of L2 is equivalent to the

product of matrices or vectors and it is important to emphasize that despite the sets

inclusion HK ⊂ L2, we are considering in HK the inner-product of HK and in L2 the

one of L2. Another reason is related to the good theoretical properties of the integral

operators defined in L2.
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This basis has some drawbacks, as mentioned in the introduction. When we use the

PCA approach in logistic or multinomial functional generalized linear models, there is

no guarantee that the separation between groups will be in the direction of the high-

variance PCs. Moreover, following the covariance procedure, only linear relations are

captured (González, 2010).

5.3 Mixed basis

In the preceding subsections we have seen that we can express a function ϕk rep-

resenting a hypersurface Sk as an infinite linear combination with respect to two

different bases: {vl}∞l=1, which depends on the random sample and is related to the

covariance operator, and {ρl}∞l=1, which is determined by the kernel that defines the

RKHS. Both of them have different optimality properties. The aim of this section is

to obtain a new basis {ul}∞l=1, from a relationship between both operators LK and

LΓ. This expression will represent a compromise between the optimality given by

the sample information and the one given by the RKHS in which our functions are

included.

Define the linear operator G := L
1
2
K ◦ LΓ ◦ L

1
2
K and let {ηj, wj}∞j=1 be the eigenvalue-

eigenvector pairs of G.

As a consequence of Mercer’s theorem, we have Im(L
1
2
K) = HK (Quang et al., 2010).

Then, since HΓ ⊂ HK , we have Im(G) ⊆ HK .

Note that if we assume that the operators LK and LΓ are perfectly aligned, that is,

they share the same ordered set of eigenfunctions {ψj}∞j=1, then

G(ψk) = lkλk ψk.
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In this case, ηj = lkλk and the three bases {ψj}∞j=1, {vj}∞j=1 and {wj}∞j=1 used in the

application coincide.

From the basis {wl}∞l=1 we will define in Theorem 5.1, a new set of functions in HK ,

{ul}∞l=1, which generate all the functions in HK , and from which we will obtain a

relationship (“simultaneous diagonalization”) between the operators LK and LΓ.

Theorem 5.1 Let {ηj, wj}∞j=1 be the eigenvalue-eigenvector pairs of G.

Define uj := L
1
2
K(wj), ∀j.

Then, ∀f ∈ HK, f =
∞∑
j=1

ξj uj, where ξj = 〈f , L−1
K uj〉L2,

LΓ uj = ηj L
−1
K uj

and

〈ui , LΓ uj〉L2 = ηj δij.

Proof. Details regarding operators and proof of the theorem can be found in the

appendix. �

As in the preceding subsection, the products of vectors uj, which are not necessarily

orthonormal with respect to the L2-metric, satisfy a similar equation to Eq. 5.4.

Let denote K to a 3N × 3N -matrix, which is the discrete estimation of the integral

operator LK . It is defined by N blocks 3×3. The block i, j of the matrix is K(ai, aj) =

k(ai, aj) × I3×3, with i, j = 1, · · · , N and {ai}Ni=1 the grid. If X is the m × 3N -

matrix that contains in each row the sampling of a vector field of the database in
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the grid {ai}Ni=1 and G = K1/2 × cov(X) × K1/2, the implementation of this basis

is based on obtaining the eigenvectors $j, j = 1, · · · , 3N of the matrix G, which

estimate wj functions. Then, it is possible to estimate the basis functions uj by

K1/2 × $j, j = 1, · · · , 3N and to calculate the coefficients by solving the matrix

system X = ε × U . U is a 3N × 3N -matrix containing each K1/2 × $j ∈ R3N in a

row, and ε is the m× 3N -matrix whose rows are the coefficients of each vector field

in the database in relation to the mixed basis.

Similar bases to those used in Subsections 5.2 and 5.3 have been considered in Yuan

and Cai (2010) and Cai and Yuan (2012), but in a different framework. In these papers

the authors consider a prediction problem in FDA where the functional predictor is a

real function defined over a domain in R, and the slope function is also a real function

which is assumed to reside in a real-valued RKHS. In our case, both the functional

predictor and the slope are vector-valued functions in a vector-valued RKHS. Then,

a metric defined in the vector-valued RKHS is used instead of the L2-metric.

In Section 1 we noted that PC basis can fail in capturing directions that are best

suited for a classification problem. As with this criticism, we can never be sure which

basis performs better in each particular supervised problem. Our advise is to try the

different alternatives and choose the one that provides better cross validation results.

In section 6.3 a experimental study is done to illustrate that.

Given a 3d-triangulated surface, the source code to compute its coefficients in the

three bases of functions described in the paper can be found as supplementary material

through the link: http://www.statmod.org/smij/archive.html.

http://www.statmod.org/smij/archive.html
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6 Application

We revisit the motivating example presented in Section 2 and apply the proposed

modeling approach.

As stated in Section 2, the points representing the surface of each child were grouped

into 2766 triangles, forming a mesh. If aj, bj, cj denote the vertices of the j-th oriented

triangle for a child k, the center of this triangle was defined as xkj = (aj + bj + cj)/3

and its area vector (that is, its unit normal vector, scaled by its area) was τ kj =

(bj − aj)× (cj − aj), ∀j = 1, . . . , 2766 (see Fig. 1).

Figure 1: Section of the triangulated surface in R3, centers of the triangles and area

vectors.

Then, each child’s body surface was associated with a function ϕk =
∑2766

j=1 K(xkj , ·)(τ kj )

in HK , where the points xkj differ from one hypersurface to another. All these vec-

tor fields were represented in the same sample grid of points {ai}Ni=1 chosen in the

compact subset D ⊂ R3 , so that each ϕk was approximated by a smooth function

ϕk =
∑N

j=1K(aj, ·)(βkj ) evaluated on this common grid (Sec.3). In this case we con-

sidered D = [−472.73, 487.27]× [−824.72, 735.28]× [−156.70, 203.30] and the grid was

defined on this domain considering a set of points separated by a fixed gap ∆ = 200
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in the three dimensions. So a grid with N = 90 points was obtained (see Fig. 2).

Figure 2: Triangulated surface that represents the body contour from the upper body

of a child in the sample. Red points represent the common grid {ai}Ni=1.

A Gaussian kernel, K(x, y) := exp(
−‖x−y‖2R3

λ2
)I3×3 was used in the definition of the

operator-valued reproducing kernels K (Eq. 3.1) and the value of the parameter λ

was chosen by cross-validation.

The robustness of this representation regarding the pre-processing parameters and

the kernel assumption has been discussed in (Barahona et al., 2017b) and Barahona

et al. (2017a), using a data base with much simpler geometrical objects and so with

much less computational cost.

In Section 5, it has been seen that we can express a function ϕk by representing a

surface Sk as an infinite linear combination with respect to a basis of HK that is

determined by the RKHS (Sec. 5.1), with respect to a basis of HK that depends on

the random sample (Sec. 5.2), and with respect to a basis of HK found from both

non-negative-definite operators (Sec. 5.3).

As our aim is to predict the goodness of fit of a given shirt size for the k-th child as
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small (Yk = −1), good fit (Yk = 0) or large (Yk = 1) as a function of the garment

size, the age of the child, his/her body shape and his/her sex, we will get three

different models depending on the basis used to express the children’s body surface

in the RKHS. Following the notation used in Section 4, let us denote the basis used

each time with {φl}∞l=1, and the corresponding coefficients for the k-th surface with

{ckl }∞l=1. ∀l = 1, . . . ,∞ we will consider ’case 1’, where φl = ρl and ckl = 〈ϕk, ρl〉HK

(as in Eq. 5.1), ’case 2’, where φl = vl and ckl = 〈ϕk, vl〉L2 (as in Eq. 5.3), and ’case

3’, where φl = ul and ckl = 〈ϕk, L−1
K ul〉L2 (as in Theorem 5.1). Since much of

the information inherent in the original data is captured by the first few functional

components and their associated coefficients, these bases are truncated with a low

number r of terms. In ’case 1’, the approach ϕ(x) ∼=
∑r

l=1 clφl(x) is truncated

considering r = 7 elements in the basis. In ’case 2’, r = 8 elements are considered

in the basis and in ’case 3’ r = 7 elements are also considered. Then, Eq. (4.5) to

include functional and non-functional predictors in the model become:

logit[P (Yk ≤ j)] =αj + β1shirt.size+ β2sexk + β3agek+

+
r∑
p=1

r∑
l=1

bpc
k
l 〈φp, φl〉HK

, ∀j ∈ {−1, 0}, ∀k

with {αj}j∈−1,0, β1, β2, β3 and {bp}rp=1, parameters to estimate.

This model assumes independent observations, but in our case several measurements

are taken on each child, so this model is modified to overcome this fact into the

following cumulative link mixed model (Agresti, 2010):

logit[P (Yk,i ≤ j)] =αj + β1shirt.sizei + β2sexk + β3agek+

+
r∑
p=1

r∑
l=1

bpc
k
l 〈φp, φl〉HK

+ u(k),

∀i = 1, · · · , nk; j ∈ {−1, 0}; k = 1, · · · , 78,

(6.1)
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where nk ∈ {1, 2, 3} is the number of observations taken on the k-th child, and the

child’s effects are assumed to be random, independent and identically distributed

following a Gaussian distribution, i.e. u(k) ∼ N(0, σ2
k).

The clmm function of the R-package ordinal (Christensen, 2015) is used to fit the

model in all three cases.

Parameters β = (β1, β2, β3) in Eq. (6.1) are clearly interpretable unlike the parame-

ters {bp}p=1,··· ,r associated to the different basis, that are not.

The estimation procedure provides very similar estimates for the three interpretable

parameters with the three different representations (the three different basis): β̂case1 =

(2.576,−0.741,−0.603); β̂case2 = (2.249,−0.207,−0.512) β̂case3 = (2.253,−0.211,−0.523).

As β1 > 0, each cumulative logit increases as the evaluated shirt’s size increases and

equivalently, as β3 < 0, each cumulative logit decreases as the child’s age increases,

as was expected. Moreover, given the difference in the signs of the parameters, fixed

a sex, β1shirt.size + β3agek becomes somehow a measure distance between the age

of the k-th child and the size of the garment tested.

Additionally, a leave-one-out cross-validation (CV) analysis is performed to check

the predictive power of the model for the different bases. For each basis, the model

is iteratively estimated taking into account all the data except for the observations

available for each child in turn and a prediction is made for the different observations

of this child (i.e. the model selection is performed within the CV and the predictions

are completely out-of-sample). A percentage of agreement between predictions and

real observations is computed and used to evaluate the different cases (see table 1).

As can be seen, although in the functional data analysis literature, the basis of eigen-
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Case 1 Case 2 Case 3

Prediction Prediction Prediction

-1 0 1 -1 0 1 -1 0 1

Expert

decision

-1 47 16 1 51 12 1 51 12 1

0 10 41 10 11 38 12 10 39 12

1 1 12 54 0 13 54 1 11 55

% of agreement 73.95% 74.48% 75.52%

Table 1: Results of the cross-validation procedure for the mixed ordinal regression

models estimated with the different bases.

functions of the covariance function is one of the most commonly used to approach

functional observations, and to work with them, we have found two additional bases,

and we have obtained a similar predictive power for this particular application with

all of them. Although the differences are quite small, the results are slightly better

with the mixed basis, as initially expected.

Other link functions (probit, cloglog and loglog) have been tested using the function

pom of the R-package OCAPIS (Heredia-Gómez et al., 2018a), getting similar results.

6.1 Robustness against the number of points in the grid

To evaluate the influence of the gap ∆ that determines the number of points in the

grid, we have repeated the previous procedure for two additional values: ∆ = 100

and ∆ = 250. The experimental results shown in Table 4 reflect that the procedure is

robust enough and the fact that better results are obtained from a balance between

small and large values of ∆.
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∆
Points

in the grid

% of agreement

Case 1 Case 2 Case 3

100 450 71.88% 69.79% 71.35%

200 90 73.96% 74.48% 75.52%

250 60 70.31% 69.79% 70.83%

Table 2: Results of the cross-validation procedure for different values of ∆.

6.2 Comparison with other methods

Functions svmo and wknnor, implemented in the R-package OCAPIS (Heredia-Gómez

et al. (2018b)), allow us to compare our results with those obtained with other classi-

fiers such as the Support Vector Machine with Ordered Partitions (SVMOP) (Waege-

man and Boullart, 2009), and the weighted k-Nearest Neighbors classifier for ordinal

data (Hechenbichler and Schliep, 2004). We have checked the performance of these

algorithms, from the estimated coefficients (corresponding to the three bases) of the

current-based representation of the geometrical objects, separately for boys and girls.

Table 3 shows the percentages of correct classifications obtained in each case. The

best results for the k-NN algorithm have been achieved for k = 5. As can be seen, in

all cases, the percentages of agreement is lower than the obtained with the method

proposed in this work (Table 1).

The European Standard CEN - EN 13402-3, establishes tables for body measure-

ments and intervals to be used for compiling standard garment sizes for men, women,

boys, girls and infants. Additionally, each brand usually has its own sizing chart

that relates consecutive ranges of the main anthropometric measurements with size

assignations. So, several new technologies and online services have been developed in
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Case 1 Case 2 Case 3

% of agreement SVMOP classifier Boys 29.35% 35.87% 34.78%

Girls 25.27% 31.87% 31.87%

k-NN classifier Boys 46.74% 53.26% 47.82%

(k=5) Girls 48.35% 50.55% 49.45%

Table 3: Results of the SVMOP classifier and of the k-NN classifier (k = 5), with the

different bases.

recent years to address the selection of proper garment sizes or models based on the

user’s anthropometric measurements (see, for instance, www.fits.me). In the case of

T-shirts, shirts and/or blouses, the main anthropometric dimensions established by

the European standard are height, chest and neck for boys, and height and bust for

girls.

In Pierola et al. (2016), the authors used ordered logistic regression and random forest

methodologies to predict a garment’s goodness of fit from the differences between

the measurements of the reference mannequin for the evaluated size and the child’s

anthropometric measurements.

Following this line, we could also have used different children’s anthropometric mea-

surements to fit a mixed proportional odds model, as in McCullagh (1980). So if Yk,i

denotes the response as (small (-1)/good (0)/large (1)) fit of a shirt size i for the

k − th child, and Xk denotes a vector of explicative variables formed by the sex of

the k − th child, his/her age and the values of the 27 anthropometric measurements

considered by Pierola et al. (2016), we could have fitted:

www.fits.me
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logit[P (Yk,i ≤ j)] = αj + β1shirt.sizei + βXk + u(k), (6.2)

∀i = 1, · · · , nk; j ∈ {−1, 0}; k = 1, · · · , 78,

where once again nk ∈ {1, 2, 3} is the number of observations taken on the k-th

child, and the child’s effects are assumed to be random, independent and identically

distributed following a Gaussian distribution, i.e. u(k) ∼ N(0, σ2
k).

Performing a leave-one-out cross-validation study, choosing the model on each step by

a forward stepwise model selection based on likelihood ratio tests (Christensen, 2015),

we obtain worse results than those obtained with our methodology. The percentage

of correct classifications is now 68.27% (see table 4).

As in our case, many problems in medical imaging analysis and computer vision

involve the classification of bodies (geometrical objects with bounded boundaries),

based on their size and shape. Several mathematical frameworks have been proposed

in the literature to deal with such objects, three of these being the most widely used.

Firstly, functions can be used to represent closed contours of the objects (curves in 2D

and surfaces in 3D). Secondly, geometrical objects can be treated as compact subsets

of Rm and, finally, these geometrical objects can be characterized by sequences of

points with certain geometrical or anatomical properties (landmarks).

In our application, we are working with rigidly aligned 3D homologous avatars with

anatomical one-to-one vertex correspondence among them (Ballester et al., 2014), so

we can consider these 1423 points as landmarks, and define Xk ∈ M1423×3 as the

configuration matrix of the k-th child. As the shape of an object is all the geometric

information that remains invariant with translations, rotations and changes of scale,
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the shape space and size-and-shape space are not flat Euclidean spaces, so classical

statistical methods cannot be directly applied to the manifold-valued data (Pennec,

2006). However, if the sample has little variability, the problem can be transferred to a

tangent space (at the Procrustes mean of these shapes or size-and-shapes, for example)

and then standard multivariate procedures can be performed in this space (Dryden

and Mardia, 2016), such as Principal Component Analysis (PCA), where the first p

PC scores, which summarize most of the variability in the tangent plane data, are

usually chosen in order to reduce the dimensionality of the data set.

The tangent space is defined from a point called pole, so the distance from the shape

to the pole is preserved. As one moves away from the pole, the Euclidean distances

between some pairs of points in the tangent space are smaller than their corresponding

shape distances. This distortion becomes larger as one considers points further from

it. For this reason, the pole should be taken close to all of the points and the mean

of the observed shapes is the best choice (Dryden and Mardia, 2016).

So, given the configuration matrices Xk ∈ M1423×3, the size sk of each child is ob-

tained and the full Procrustes mean shape is computed. Then, the coordinates of the

projection of Xk ∈M1423×3 onto the tangent plane defined at its corresponding mean

shape is obtained. The first PC scores of these coordinates are calculated and they

will be used as covariates in our predictive model. The first PC components that

explain 98% of the variability are considered.

So, given the response variable Y with 3 ordered categories and given the garment

size to evaluate and a vector X with the child’s size, his/her sex, his/her age and the

first PC scores of his/her coordinates in the tangent space, we can fit the model given

by Eq. 6.2.
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Once again, performing a leave-one-out cross-validation study using this model, we

obtain worse results than those obtained with our methodology. The percentage of

correct classification is now 66.67 (see Table 4).

Multivariate Landmarks

Prediction Prediction

-1 0 1 -1 0 1

Expert

decision

-1 47 12 3 48 14 2

0 13 31 15 14 34 13

1 1 15 49 0 21 46

% of agreement 68.27% 66.67%

Table 4: Results of the cross validation procedure for the two alternative methods

tested

The outperformance of our method compared with Procrustes landmark methods

might be due to the parametrization dependence of these methods. In this sense, other

methods which need a far greater computational complexity, as Large Deformation

Diffeomorphic Metric Mapping (LDDMM) or Diffeomorphic Demon techniques (Beg

et al., 2005; Vercauteren et al., 2007) could give more accurate results. However, we

consider that this complexity is not necessary for the purpose of this work.

6.3 Experimental study of basis performance

Two types of experimental studies are done in this section to obtain more information

on the behavior of the different bases for classification. In order to simplify the

experiments, a problem of binary classification is considered instead of an ordinal
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one.

Firstly, we want to see that, as it was said in the introduction, the PCA basis may fail

in a classification problem because there is no guarantee that the separation between

groups will be in the direction of the high-variance PCs; the separation between

groups may be in the directions of the last few PCs.

In order to show this behavior, two samples of size 200 of currents were simulated.

All them were simulated from a multivariate gaussian distribution with the sample

covariance function of our data set (child’s data set), and two different means. The

mean of the samples of each group is taken as the sample mean, plus and minus

respectively the p-th vector of the basis from the operator integral of the covariance

function (Sec. 5.2). The values of p were p = 1, 5, 40, 80.

Thereafter, we obtain the expression of all these simulated currents with respect to

the tree different bases stated in Sec. 5 of HK . Finally the classification of each

current of each group is predicted using as explicative variables the first 10 and the

fist 20 coefficients in the bases. In Table 5 the goodness of the classification is given.

As can be seen, if we define the groups using the the first’s vectors of the basis from

the covariance kernel (p = 1 and p = 5) all the bases provide very good classification

rates. When the direction is defined by the 40-th vector, i.e. the direction that the

defines the groups is further away from the first vectors, the basis from the reproducing

kernel provides better results. When we take the last vectors all the bases provide

bad results.

Unfortunately, the currents simulated in this first experiment could not correspond to

a random surface, because the application that corresponds to each surface a current
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first 10 coefficients first 20 coefficients

basis 1 p = 1 0.9700 0.9650

p = 5 0.9125 0.9350

p = 40 0.6000 0.7375

p = 80 0.4425 0.4650

basis 2 p = 1 0.9700 0.9675

p = 5 0.9575 0.9625

p = 40 0.4700 0.4725

p = 80 0.4825 0.4675

basis 3 p = 1 0.9700 0.9675

p = 5 0.9575 0.9625

p = 40 0.4775 0.4800

p = 80 0.4825 0.4750

Table 5: Results of the first experimental study
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is not surjective. As a result, no illustration of the representatives of each group can

be shown. For this reason, we conduct another similar experimental study using the

landmark-based shape methodology of Section 6.2.

In this experiment, two hundred shapes are generated from a multivariate Gaussian

distribution in the tangent space of the mean shape of Section 6.2, all of them using

the covariance matrix of the tangent coordinates. In a similar way to the previous

experiment, the mean is taken using the tangent coordinates of the mean shape, plus

and minus respectively the p-th PC vector multiplied by twice its standard deviance

(Dryden and Mardia, 2016). The values of p were p = 1, 5, 40, 50. In figure 3 it can be

seen the total sample mean shape and, in Figure 4 the mean shape of each simulated

group. We analyze this synthetic sample of surfaces using the methodology of

Figure 3: Total sample mean shape

Section 6.2. As the Tangent Space is a finite Euclidean space it is easier to analyze

the results. In Table 6 we can find the proportion of agreement between actual and

predicted classification, when we use as information the coefficients of the surfaces

expressed on the PC basis on the Tangent Space. In the first case we use the first

15 coefficients and in the second case the coefficients from 16 to 30. We can also
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Figure 4: Means of each simulated group of experiment two. Each row corresponds

to the p-th eigen vector with p = 1, 5, 40, 50. Left column shows the mean of the first

group and right column the mean of the second
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see the percentage of variability explained using these coefficients. We can see, again

first 15 coefficients coefficients from 16 to 30

agreement variablity agreement variablity

p = 1 0.986 95.7 0.320 2.9

p = 5 0.970 92.1 0.354 5.4

p = 40 0.568 90.3 0.930 6.7

p = 50 0.550 90.3 0.926 6.6

Table 6: Results of the second experimental study.

and more clearly, that there is no guarantee of success when we use the first PC’s

directions in classification problems. With lower values of p the first PC’s directions

provide excellent results but with greater values of p, the directions of high-variance

don’t provide a good separation between groups but good results are provided by

subsequent PC’s directions.

Finally a third experiment has been performed, quite different from the previous ones.

A sample of currents of size 400 is simulated taking the 10 first vectors of each of

the three bases of Section 6, and with random coefficients extracted from a standard

gaussian distribution. We have to note that in this way, our simulated data are in a

subspace of HK of dimension 10.

For each sample, taking these simulated currents ϕk as explicative variables, a sample

of 400 binary variables Yk was simulated with mean:

P (Yk = 1) =
1

1 + exp−〈σ, ϕk〉HK

,

being σ a functional parameter previously set. Different values of σ have been proved
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with similar classification results, we show the results with σ = (1, ..., 1).

The results of this experiment don’t show clear differences between bases and no clear

conclusions can be derived from them. We guess that this could be due to the low

dimensionality of the data. The means of 10 repetitions are shown in Table 7.

first 2 coefficients of first 6 coefficients of

basis 1 basis 2 basis 3 basis 1 basis 2 basis 3

vectors basis 1 0.805 0.800 0.812 0.975 0.927 0.935

vectors basis 2 0.795 0.712 0.720 0.827 0.757 0.797

vectors basis 3 0.490 0.510 0.522 0.520 0.535 0.535

Table 7: Results of the third experimental study

7 Discussion

In this paper we have proposed a new methodology for modeling an ordinal response

variable in terms of 3D geometrical objects. It is based on their characterization by

means of currents and the expression of each geometrical object in terms of three

different bases of functions that generate the corresponding vector-valued RKHS.

Firstly, the predictors were expressed in the orthonormal basis given by the kernel

of the RKHS. Secondly, we used a basis obtained in a similar way as the usual basis

given by the covariance kernel in the scalar setting. Thirdly, a basis of functions that

connect the benefits of the two previous expressions was sought by “simultaneous

diagonalization” of operators. The coefficients of each geometrical predictor in rela-

tion to the three bases of functions were estimated. The goodness of the method was
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checked by leave-one-out cross-validation.

Then, it was applied to predict whether the size fits a customer or is too large or

small for him/her, which is useful for an application to online clothing sales. This

was done using a 3D training database obtained from an anthropometric survey of the

Spanish child population. The results were quite promising, taking into account the

difficulty of the application. Although the results obtained are quite similar with the

three bases tested, as expected they are slightly better with the mixed basis. In near

future this methodology could be incorporated into the mobile application (kidsize)

recently developed by the Biomechanical Institute of Valencia.

We compare our methodology with alternative methods that explore the performance

of other classifiers (Suppport Vector Machine and k-NN), and with another two meth-

ods traditionally used in biometric size determination. The first of these traditional

methods is based on considering children’s anthropometric measurements and classi-

cal ordinal regression. The second is based on landmark configuration and its pro-

jection in the tangent space where classical multivariate statistical methods can be

applied. In all cases, the classification results obtained are slightly worse than those

obtained with the methodology developed in this paper.

It is important to note that the success of the three bases proposed in our methodology

depends on the data and the application. We illustrate with an experimental study

that we can never be sure which basis performs better in each particular supervised

problem. Our suggestion to practitioners is to check the performance of all of them

for each particular problem.
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A Theorem 5.1

Before starting with the proof of the Theorem 5.1, let us recall some definitions re-

garding operators. If an operator F is compact, self-adjoint and nonnegative, there

is a unique nonnegative operator F 1
2 , called the square-root of the operator, such

that (F 1
2 )2 = F 1

2 ◦F 1
2 = F , and it commutes with any operator that commutes with

F . When an operator F is bijective, there is an operator F−1, called the inverse

operator, such that F−1 ◦ F and F ◦ F−1 are the identity operator.

Due the fact that LK is compact, positive-definite and self-adjoint, the operator

L
1
2
S : L2 −→ L2 can be defined, and it works as follows:

L
1
2
K(f) :=

∞∑
j=1

√
λj〈f, ψj〉HK

ψj.

L
1
2
K is also compact, positive-definite and self-adjoint.

Note that LK and L
1
2
K are injective because they are positive-definite (their eigenval-

ues are strictly positive). Hence, restricting their arrival spaces to their respective

images converts them into bijective operators on pre-Hilbert spaces. These restricted
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operators will also be denoted by LK and L
1
2
K ; then, there are the inverse operators o

L−1
K , L

− 1
2

K , and we have L
− 1

2
K ◦ L

− 1
2

K f = L−1
K f, ∀f ∈ HK .

Proof of Theorem 5.1.

Since uj := L
1
2
K(wj) and Gwj = ηj wj, we prove that, for all j.

LΓ uj = LΓ L
1
2
K wj = L

− 1
2

K L
1
2
KLΓ L

1
2
K wj = L

− 1
2

K G wj

= L
− 1

2
K ηj wj = ηj L

− 1
2

K L
− 1

2
K uj = ηj L

−1
K uj.

Moreover, L
1
2
K is self-adjoint and {wj}∞j=1 is an orthogonal system. Thus,

〈ui , LΓ uj〉L2 = 〈L
1
2
K wi , LΓ L

1
2
K wj〉L2 = 〈wi , L

1
2
K LΓ L

1
2
K wj〉L2

= 〈wi , ηj wj〉L2 = ηiδij.

Finally, if f ∈ HK ,

f = L
1
2
K

(
L
− 1

2
K f

)
= L

1
2
K

(
∞∑
j=1

〈L−
1
2

K f , wj〉L2 wj

)

=
∞∑
j=1

〈L−
1
2

K f , wj〉L2 L
1
2
K (wj)

=
∞∑
j=1

〈L−
1
2

K f , L
− 1

2
K uj〉L2 L

1
2
K

(
L
− 1

2
K uj

)
=
∞∑
j=1

〈L−
1
2

K f , L
− 1

2
K uj〉L2 uj =

∞∑
j=1

〈f , L−
1
2

K L
− 1

2
K uj〉L2 uj

=
∞∑
j=1

〈f , L−1
K uj〉L2 uj =

∞∑
j=1

ξj uj,

{wj}∞j=1 being an orthogonal basis of L2 with respect to the L2-metric and using the

definition of {uj}∞j=1. �
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