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Abstract

In this work, we present a novel approach for fault detectors design and implementation in the case of actuator faults.
Both the design and the implementation are focused on simplicity. The fault detector is based in an output observer that
estimates the fault signal followed by a decision mechanism that detects the presence of a fault from the estimation. The
observer consists of two transfer functions fed by the process manipulated variable and the sensor measurement. For the
synthesis of the fault detector, we just need an input-output model of the process and two tuning parameters; one used
in the observer, and the other in the decision mechanism. We present simple rules for the design considering the trade-off
between the detection time, the minimum detectable fault and the false alarm rate. Our implementation method uses
standard tools available in industrial control systems and we have applied it to a real two-tank system setup. The main
contribution of this work is the simplicity of the design and implementation of the fault detector, making it suitable for
process industry and for being managed by not experts in control systems. Another contribution is the a priori design
based in intuitive engineering performance indices.

Keywords: Fault detection, Transfer functions, Continuous-time systems, Implementation.

1. Introduction

The area of process control has made great advances
in the last decades thanks to the emergence of industrial
computers, suitable to implement control algorithms and
automation sequences. Field control actions related with
actuator equipment, which human operators used to carry
out, are becoming more and more automated. This has
increased the reliability and efficiency of industrial plants
and it has reduced the amount of low added-value tasks
as well as repetitive operations performed by the workers.
Despite this, a critical control task remains mainly as a
manual task, which is to detect abnormal events, to diag-
nose its causes and to make proper adjustments in order
to keep the process into a safe operating state. This task
has become more difficult over the years, due to the size
and complexity of today’s plants and the different kind of
faults likely to happen. This entails an information over-
load for the human operator that makes it difficult to find
out an abnormal event and realize the root cause. There-
fore, fault detection and diagnosis has emerged as an area
of knowledge with high research activity.

A complete introduction to fault diagnosis can be found
in [11]. There are several diagnostic algorithms available
[31], among those we can distinguish between model-based
methods and process history based or data driven. Re-
view references about model-based fault diagnosis are [9]
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and [6]. Within model-based methods, there are quanti-
tative and qualitative methods. Regarding the quantita-
tive model-based techniques, this work focus on observer-
based techniques, a recent review of which can be found in
[38]. The classical approach is usually based in state ob-
servers [32, 10], which imply the use of state space mod-
els. It is popular to use extended observers, also called
PI-observers, and assume the fault signal as a new state
[20, 14, 13]. Then, state observer techniques can estimate
the fault signal. Regarding observer design, classical tech-
niques are based on pole placement or eigenstructure as-
signment [23, 22], which performance in terms of detection
time or false alarm rate is checked after the design, not be-
fore. Robust design is also covered in the literature [41, 33].
Even if these are state of the art techniques in control sys-
tems, the use of state space models and matrix operations
required for the observer design and implementation are
not so tractable for process engineers or industrial oper-
ators. This results in a low use of these techniques in
process industry. Additionally, performance cannot be set
before the design.

Most of the recent work is about dealing with nonlin-
ear and uncertain systems [19, 36, 35], where advanced
techniques as sliding mode observers are used [2, 15]. In
[39, 25, 26, 27], the authors focus the observer design in
achieving the desired performance, but that implies to
solve complex and computationally expensive optimization
problems, which make it less attractive for its implemen-
tation.

If we compare fault detection with regulatory control
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field, we realize that one of the main reasons why indus-
trial control is so widely extended is the simplicity and
intuitiveness of the PID controller [12, 4]. It allows us to
control different processes by only setting two or three pa-
rameters. Moreover, these parameters can be tuned with
simple rules once the process model is known or after some
experiment is performed [28, 3, 7]. The implementation is
also straightforward since almost every industrial control
system has preset tools configured for that.

In case of fault detection techniques, we have not found
in the bibliography solutions as simple and easy to imple-
ment so that they can become a new standard in pro-
cess industry (refining, oil and gas or chemical industry).
In this field, it is common the use of observers to esti-
mate unmeasured variables due to the lack of appropri-
ate estimating devices or to replace high-priced sensors
in a plant; disturbance and fault detection is one of the
main application of this observers [1]. We can find exam-
ples of observers based in statistical methods like princi-
pal components analysis [17, 42], AI-based techniques [34],
and fuzzy-logic [8, 37]. Model-based techniques for fault
detection found in literature mainly use state observers
[29, 21, 5, 24]. Furthermore, the design procedure in the
cited works does not depend on the desired performance,
and it must be checked after the design, leading to iterative
procedures.

Motivated by this fact, the aim of this work is to pose
an approach for the design of fault detectors trying to
achieve a design procedure as straightforward as PID de-
sign. We look for an approach with few tuning parameters
easy to understand and intuitive. Motivated also by the
easy implementation of PID controllers in industrial con-
trol systems, we look for an approach easy to implement in
those systems. Our proposal only requires an input-output
model of the process and it allows us to reach targets re-
lated with the detection time, the minimum detectable
fault and the false alarm rate, considering trade-offs be-
tween them as in [39]. An inspiration for this work is the
coprime factorization technique explained in [9], which de-
composes the model of the process in an invertible part
and a non-invertible part. We propose a similar technique
for the design of the fault observer, as it is described in
the next sections. The proposed fault detector is com-
posed of a fault estimator followed by a fault detection
mechanism. We use the input and the output measure-
ment of the process to estimate the fault signal and then
use it on a decision mechanism to decide if a fault has
occurred. The development of a fault estimator is also
important for further applications on active fault tolerant
control [16, 40, 18].

Main contributions of this work are:

– Fault detection structure based in input-output mod-
els instead of state space models, allowing a major
understanding of the method for practitioners.

– Performance-based design in terms of three main fea-
tures: false alarm rate, minimum detectable fault

and detection time.

– Simple tuning rules based in the process model, even
if only a simple first order plus time delay model is
available.

– Just two continuous tuning parameters and an op-
tional discrete one.

– Easy implementation technique, using tools from in-
dustrial control systems.

On the other hand, to achieve this simplicity in the fault
detector design and implementation, we sacrifice some prop-
erties. There are not enough degrees of freedom to opti-
mize the three features (false alarm rate, minimum de-
tectable fault and detection time) so two of these features
will be optimized and the third one will be given in con-
sequence.

The structure of this work is the following. Section 2
exposes the problem formulation and describes the main
objectives. Section 3 shows the proposed structure for the
fault estimator. Section 4 explains the tuning rules for the
fault estimator design and compares our approach with
other methods. Section 5 indicates the detection mecha-
nism that follows the fault estimator, and it gives simple
rules for the tuning of the fault detector. In Section 6 we
adapt the results for real systems with an experimental
approach, and we analyze the advantages and disadvan-
tages of this procedure. In Section 7 we implement and
test the proposed fault detector in a real system, recre-
ated in a laboratory. Last, in Section 8 we expose the
main conclusions.

2. Problem Formulation

Let us consider a linear time-invariant process G(s)
with an available input u and a measurable output y,
which can be affected by an actuator fault signal f . The
output is also altered by a noise signal v, which we con-
sider high frequency and Gaussian. Therefore, the system
is defined by

y(s) = G(s) (u(s) + f(s)) + v(s). (1)

Let us express the transfer function of the process as

G(s) =
K
∏p
i=1(1 + βis)

∏q
i=1(1− δis)e−Ts

sk
∏r
i=1(1 + τis)

, (2)

where k = 1 if the system has an integrator and k = 0 if
not. K is the process static gain, βi is the time constant of
the half-left zeros in the complex plane (<(βi) > 0) and δi
the one for those in the half-right plane (<(δi) < 0). T is
the dead time and τi the time constant of both the stable
and unstable poles. We assume that the transfer function
G(s) is proper (i.e., p+ q ≤ k + r)

The main objectives of this paper are
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– To build a model-based estimator of the fault f(s)
using continuous transfer functions and few tuning
parameters.

– To provide a design strategy which ensures certain
estimation performance requirements.

– To define a decision mechanism to detect if a fault
has occurred.

– To provide a simple experimental procedure for its
tuning and industrial implementation.

3. Fault Estimator Structure

In this Section we present the Fault Estimator (FE)
and we justify the reasons that led us to adopt its partic-
ular structure, based in the fulfillment of the some perfor-
mance requirements defined below. We propose the FE of
the figure 1, composed of the transfer functions Hu and
Hy, so that the fault estimation is

f̂(s) = Hu(s)u(s) +Hy(s)y(s), (3)

where Hu(s) and Hy(s) are to be defined.

G
u + + y

Hu Hy
+ +

f̂

f

+

v

+

Figure 1: System with Fault Estimator

We define the fault estimation error as f̃(s) = f(s) −
f̂(s) so

f̃(s) = [1−Hy(s)G(s)] f(s)−
− [Hu(s) +Hy(s)G(s)]u(s)−
−Hy(s)v(s). (4)

For optimal fault estimation, the objective is to mini-
mize the fault estimation error f̃ . In presence of fault f ,
this means f̂ = f . In presence of noise v and no fault, this
means f̂ = 0. This approach is slightly different to the
residual approach commonly used, where the objective is
to maximize residual sensitivity to fault f and minimize
residual sensitivity to noise v.

3.1. Initial analysis

The choice of an structure for Hu(s) and Hy(s) is based
in the fulfillment of some desirable requirements for the
FE. We define the following indicators to evaluate the per-
formance of the FE with respect to the three exogenous
signals of the system: the fault, the input and the noise

signals. The fault is unknown in advance but, for design
purposes, the fault estimator has to fulfill some require-
ments over faults of a certain type, such as step or ramp
faults:

– Step fault: f(s) = 1
s .

– Ramp fault: f(s) = 1
s2 .

The proposed indicators are the following1:

A1. The steady-state fault estimation error versus step
fault, defined as

lim
t→∞

f̃(t) = lim
s→0

(1−Hy(s)G(s)) (5)

A2. The cumulative fault estimation error versus step fault,
defined as

lim
t→∞

∫ t

0

f̃(t)dt = lim
s→0

(1−Hy(s)G(s))
1

s
.

A3. The steady-state fault estimation error versus ramp
fault, defined as

lim
t→∞

f̃(t)dt = lim
s→0

(1−Hy(s)G(s))
1

s
.

Since the ramp fault is the integral of the step fault,
this indicator coincides with the previous one.

A4. The noise effect, which according to (4) and consid-
ering the noise as a high frequency signal can be ap-
proximated by

lim
s→∞

−Hy(s).

A5. The sensitivity from the system input u(s), defined
with the H∞ norm

‖Hu(s) +Hy(s)G(s)‖∞ .

We look for a simple structure for Hu(s) and Hy(s)
which achieves as much as possible a good performance
in terms of previous indicators. Specifically, they have to
fulfill the next requirements:

B1. Hu(s) and Hy(s) must be stable, proper and causal
(realizable).

B2. Considering (4), [1−Hy(s)G(s)] and [Hu(s) +Hy(s)G(s)]
must be stable. This ensures a stable response of the
FE from faults and manipulable inputs.

B3. Hy(s) must fulfill lims→0Hy(s)G(s) = 1 to ensure
null steady-state fault estimation error, according to
A1.

1We use the final value theorem: limt→∞ x(t) = lims→0 sX(s)
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B4. Hy(s) must fulfill lims→0(1 −Hy(s)G(s)) 1
s ≤ γ, γ ∈

R+ to ensure finite error versus a ramp fault, accord-
ing to A3.

B5. Hy(s) must be proper to ensure finite noise amplifi-
cation, according to A4.

B6. The sensitivity from the system input must be bounded,
i.e., ‖Hu(s) +Hy(s)G(s)‖∞ ≤ ε, ε ∈ R+, according
to A5.

Considering this, in the next section we justify the selected
structure for Hu and Hy.

3.2. Structure choice

Considering the dynamics of the fault error expressed
in (4), we can achieve

– perfect fault estimation if

Hy(s) = G(s)−1.

– perfect input decoupling if

Hy(s) = −Hu(s)G(s)−1.

– perfect noise attenuation if

Hy(∞) = 0.

Obtaining perfect fault estimation has the main drawback
of breaking requirement B1 in the following cases: G(s) is
strictly proper (the most common case), as it would lead
to a non-proper Hy(s); G(s) has right half plane zeros,
as it would lead to an unstable Hy(s); or G(s) has some
delay, as it would lead to non-causal Hy(s). Furthermore,
the achievement of perfect noise attenuation would im-
ply Hy(s) being strictly proper, what is incompatible with
perfect fault estimation, as G(s)−1 will never be strictly
proper. We see here that in the design of the transfer
function Hy(s) there is a trade-off between achieving fault
estimation and noise attenuation.

Let us take now some considerations on the inverse of
the process transfer function. We can decompose G(s) as

G(s) = GI(s)GN (s),

where

GI(s) =
K
∏p
i=1(1 + βis)

sk
∏r
i=1(1 + τis)

,

GN (s) =

q∏
i=1

(1− δis)e−Ts.

This allows us to easily consider the part whose inverse
leads to an stable and causal system (GI(s)) and the part
whose inverse leads to an unstable system or non-causal
system (GN (s)). If the relative degree of GI(s) given by

d = k + r − p,

is greater than zero, its inverse will not be proper. In
order to achieve a proper transfer function, we propose to
include a pole with multiplicity n equal or greater than
d, i.e., n ≥ d. The time constant of this pole is α. With
all of these considerations, we propose

Hy(s) =
GI(s)

−1

(1 + αs)
n =

=
sk
∏r
i=1(1 + τis)

K
∏m
i=1(1 + βis) (1 + αs)

n , (6)

This fulfills B2, B3, B4 and B5. We use multiplicity n = d
to achieve the simplest solution, although solutions with
multiplicity n > d can be also used.

We can find an structure for Hu(s) which leads to ε = 0
in B6, i.e., perfect input decoupling, and also fulfills B1,
i.e., Hu(s) and Hy(s) realizable, as

Hu(s) = −Hy(s)G(s) =
−GN (s)

(1 + αs)
n =

=
−∏n

i=1(1− δis)e−Ts
(1 + αs)

n . (7)

If we consider G(s) known, then the design of the FE con-
sists in the tuning of a continuous parameter, α, and a
discrete one, n (that must fulfill n ≥ d).

4. Fault Estimator Design

In the previous section we have proposed a structure
for the transfer functions Hy and Hu. In this section,
we analyze how to tune the parameter α depending on
previous performance indicators A1 to A5.
4.1. Fault Estimator error analysis

We first rewrite the fault estimation error dynamics (4)
when using the proposed fault estimator structure given
by (6) and (7), leading to

f̃(s) =

[
1− GN (s)

(1 + αs)n

]
f(s)− GN (s)

(1 + αs)n
v(s),(8)

where we appreciate the cancellation of the effect of input
u over the fault estimation error, and that the poles that
define the dynamics of the fault estimation error are s =
−1/α with multiplicity n.

From dynamics (8) we can compute indicators A1 to
A5 for n = d as a function of α as follows:
A1. f step: limt→∞ f̃(t) = 0

A2. f step: limt→∞
∫ t

0
f̃(t)dt = nα+

∑
δi + T .

A3. f ramp: limt→∞ f̃(t)dt = nα+
∑
δi + T

A4. v high frequency noise: lims→∞−Hy(s) = −∏ τi
αnK

∏
βi

.

A5. sensitivity to u: ‖Hu(s) +Hy(s)G(s)‖∞ = 0.
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The value of the tuning parameter α has an impact on the
measurement noise amplification as well as the tracking
error of the FE. In order to refer to a measure of the fault
tracking ability of the estimator we will use the time de-
lay versus unitary ramp fault A3, leading to the following
expression

td = nα+
∑

δi + T. (9)

This is also the expression for the cumulative fault estima-
tion error versus step fault.

We consider the noise as a high frequency random sig-
nal with certain statistical distribution. For convenience,
we approximate this frequency to infinite, which is a good
approximation if Hy(s) is strictly proper, i.e it has direct
gain, which is always true when we set multiplicity n = d.
Then, the variance of the estimator due to measurement
noises is

σ2
f =

(
lim
s→∞

Hy(s)
)2

σ2
v =

( ∏
τi

K
∏
βi αn

)2

σ2
v (10)

where σ2
f = var(f̃) and σ2

v = var(v).
If values greater than d are used in the multiplicity of

the additional pole, i.e., n > d, Hy(∞) would not be a good
approximation for noise amplification since Hy(∞) = 0. In
those cases, we should compute the the frequency response
for the sampling frequency (ωs) in a digital implementation
to have an approximation of high frequency noise effect,
i.e., |Hy(jωs)|. That would lead to

σ2
f = |Hy(jωs)|2 σ2

v

=
ω2k
s

∏
(1 + ω2

sτ
2
i )

K2
∏

(1 + ω2
sβ

2
i )(1 + ω2

sα
2)n

σ2
v (11)

From (9), (10) and (11) we realize that a high value of α
reduces the noise effect but slows the fault signal tracking
while a lower α speeds up the fault signal tracking but
increases the noise effect. Therefore, there is a trade-off
between requirements B4 and B5.

4.2. Parameter tuning

The design of the FE consists in choosing an appropri-
ate value for α. We can follow two strategies:
C1. To set the desired tracking error delay, t∗d. From (9),

we set

α =
t∗d −

∑
δi − T
n

. (12)

Then, the resulting estimator error variance can be
obtained from (10) or (11).

C2. To set the noise amplification by setting the desired
fault signal variance, σ∗2f . For n = d, we get from (10),

α = 2n

√√√√ σ2
v (
∏
τi)

2

K2 (
∏
βi)

2
σ∗2f

. (13)

In the case of n > d, we get from (11),

α =
1

ωs

(
n

√
σ2
vω

2k
s

∏
(1 + ω2

sτ
2
i )

K2
∏

(1 + ω2
sβ

2
i )σ∗2f

− 1

)1/2

. (14)

Then, the resulting tracking delay can be obtained
from (9).

For a given n, there is just one tuning parameter α so we
can only achieve one of the objectives, either the tracking
delay or the noise amplification.

Fault Estimator design has been explained in the last
two sections, including the structure choice for Hu(s) and
Hy(s) and the procedure for tuning the parameters α and
n. The proposed FE is able to track fault signals with no
error in steady state and it is decoupled from the system
input signal u. The tuning of α and n determines the
performance in terms of tracking error delay and noise
amplification, so we have presented equations to design
the FE according to these performance indices.

4.3. Comparison with other techniques

Other fault estimators found in the literature use state
space models and the fulfillment of conditions equivalent
to those presented here. For instance, the inclusion of an
integral term in the observer leads to null steady state error
under step disturbances. This is called a PI observer. Let
us assume that we have a model for the system as

ẋ = Ax+B (u+ f), (15)

y = C x+ v. (16)

Let us also consider an integrator for the generation of
fault f as [

ẋ

ḟ

]
=

[
A B
0 0

] [
x
f

]
+

[
B
0

]
u+

[
0
I

]
δf (17)

y =
[
C 0

] [x
f

]
+ v, (18)

being δf the fault generator signal. Then, we can con-
struct an observer as[

˙̂x
˙̂
f

]
=

[
A B
0 0

] [
x̂

f̂

]
+

[
B
0

]
u+ L

(
y −

[
C 0

] [x̂
f̂

])
(19)

f̂ =
[
0 I

] [x̂
f̂

]
, (20)

where L is the observer gain to be designed. The ability
of the observer to track the fault and to reject the effect
of the measurement noises depends on that matrix L. In
this approach, the observer transfer functions in figure 1
are computed as

Hu(s) = C̄(sI − Ā)−1B̄, Hy(s) = C̄(sI − Ā)−1L
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where

Ā =

[
A B
0 0

]
−L

[
C 0

]
, B̄ =

[
B
0

]
, C̄ =

[
0 I

]
.

The observer design (i.e., computing matrix L) relies
on the resulting extended model. For that, there are sev-
eral techniques as pole placement, optimal estimation or
bounding some system norm. When those designs try to
show the trade-offs between tracking speed and noise am-
plification, they require the solution of an optimization
problem, mainly through matrix inequalities. In some
cases, those problems are convex and, therefore, standard
solver can solve the problem. In other cases, those op-
timization problems are not convex and we must apply
iterative or heuristic procedures. Furthermore, those fault
estimator designs try to bound some generic system norms
but they do not focus the design on the desired perfor-
mance for the observer, so the user must evaluate them a
posteriori.

In that sense, our procedure differs in the use of input-
output models as well as in the design techniques, avoiding
the computation of complex optimization problems. Fur-
thermore, in our proposal we focus the design on the de-
sired performance indices, instead of checking them after
the fault estimator design.
Example 1. In order to illustrate the differences between
our fault estimator and others based on state space models
we use in this section a numeric example with the following
transfer function for the plant model:

G(s) =
1

(1 + s)3
. (21)

An state space model for this system is given by matrices

A =

−3 −1.5 −0.5
2 0 0
0 1 0

 , B =

0.5
0
0

 , C =
[
0 0 1

]
.

We compare these different designs:

1. Our approach with n = 3 and α = 2.

2. Our approach with n = 4 and α = 2.

3. State Observer with poles on {−1/2,−1/2,−1/2,−10/2}
4. State Observer with poles on {−1/2,−1/2,−1/2,−1/2}

In order to compare the results of the different proposals
we show the frequency response from fault signal to its es-
timation, and from measurement noise to fault estimation.
We see in figures 2 and 3 that the second and fourth ap-
proaches are equivalent as they look for the same poles for
the fault estimation dynamics. The first and third ap-
proach behave practically the same for frequencies under
1 rad/s. With the state observer approach, we can set
other poles to achieve different responses, which is where
the state space approach increases its flexibility (degrees of
freedom) with respect to ours, as we use one pole with a
given multiplicity.

10−2 10−1 100 101 102
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0.4

0.6

0.8

1

ω
|(f̂
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f
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| s=

j
ω

1
2
3
4

Figure 2: Frequency response of the fault estimation under faults.
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Figure 3: Frequency response of the fault estimation under measure-
ment noises.
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5. Fault Detection

Fault Detection (FD) consists in generating a binary
signal which is 0 if there is no fault and 1 if there is a
fault. This binary signal results from a Fault Detection
Mechanism (FDM), which performs the following compar-
ison: {

if |f̂ | > J, Fault,

otherwise, No Fault.
(22)

Here, f̂ is the FE output signal or fault estimation defined
in (3) and J is a threshold to be tuned.

5.1. Initial analysis

Let us define the following three indices to evaluate the
performance of the FD.

D1. The false alarm rate φ, which is the likelihood of de-
tecting a fault when no fault has occurred:

φ = Pr{∃t : f(t) = 0, |f̂(t)| ≥ J}. (23)

A false alarm can occur due to the effect of noise on
the estimator.

D2. The minimum detectable fault, fmin, which is the
smallest amplitude of a step fault f which would trig-
ger f̂ above J .

fmin = {min ks : |f̂(t→∞)| ≥ J, f(t) = ks}. (24)

D3. The acknowledgment time ta, which is the time elapsed
between the instant when the fault signal f reaches
J if a ramp fault occurred and the instant when the
fault estimation f̂ reaches J .

ta = {min t : |f(t0)| ≥ J, |f̂(t0 + t)| ≥ J}, (25)

assuming t0 the instant in which the fault reaches J .

In this work we consider Gaussian distributed noise. Then,
the fault estimation error is also Gaussian distributed,
with variance σf (given by (10) or (11)). The false alarm
rate is the probability that the fault estimation error is
over J due to noise in a fault-free scenario. Therefore, φ
can be determined as

φ = 2

(
1− Φ

(
J

σf

))
, (26)

where Φ is the cumulative distribution function of a Gaus-
sian variable.

Under a null error in steady state of the fault estimator,
we have

fmin = J. (27)

Both the false alarm rate φ and the minimum detectable
fault fmin depend on the chosen threshold J . Since the

fault variance σ2
f is independent of the detection mecha-

nism (it has been set through α in the fault estimator),
by setting J we can just achieve either a given false alarm
rate or a given minimum detectable fault, but not each one
independently. A high value for the threshold J reduces
the false alarm rate but increases the minimum detectable
fault while a lower threshold J reduces the minimum de-
tectable fault but increases the false alarm rate. Then,
there is a trade-off between both targets.

In the case of the acknowledgment time, if we consider
that the fault estimation reaches the threshold once the
fault estimation error is steady state, ta coincides with the
time delay versus ramp fault, td, which according with (9)
is not related with J . If that is not the case, and the fault
estimator has no oscillatory modes, ta would be lower than
td. Then, td is an appropriate measure for the worst-case
acknowledgment time ta, and it has no relationship with
the threshold J .

5.2. Fault Detection Mechanism design

The design of the FDM consists in choosing an ap-
propriate value for the threshold J . We can follow two
strategies:

E1. To set the desired minimum detectable fault, f∗min, so
we set

J = f∗min. (28)

Therefore, the false alarm rate φ is given by (26).

E2. To set the desired false alarm rate, φ∗. Consider-
ing (26), the minimum detectable fault fmin can be
determined as the quantile to get the confidence in-
terval of level (1− φ/2), so

J = Φ−1

(
1− φ∗

2

)
σf . (29)

where Φ−1 is the inverse cumulative distribution func-
tion of a Gaussian variable. Therefore, the minimum
detectable fault is equal to the threshold J .

As we said before, acknowledgment time ta is indepen-
dent from the threshold J , so achieving a certain ta is
inherent to the FE design and cannot be done in the FDM
design.

5.3. Fault estimation and detection co-design

As shown in previous sections, by setting α we can
achieve either a determined acknowledgment time ta or a
determined variance of the fault estimation σf . With the
chosen α, we can set the detection threshold J to achieve
either a determined minimum detectable fault fmin or a
determined false alarm rate φ. However, after setting α
we cannot change the acknowledgment time ta by setting
the threshold J . Therefore, if we want to tune α and J
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to achieve targets considering the acknowledgment time,
the minimum detectable fault and the false alarm rate, we
have to design the FE and the FDM at the same time, in
a parallel design or co-design where

φ = f(α, J), (30)

fmin = f(J),

ta = f(α).

Since we have three targets (φ, fmin, ta) and only two
decision variables (α, J) it is not feasible to achieve all the
targets. Hence, the co-design strategies proposed consist
in setting α and J to achieve two targets and then the third
one is given by the relations defined in previous sections.
We present a summary of the strategies in the table 2.

If we want to bound the three performance indices, we
must use also the multiplicity index n ≥ d as a decision
parameter and, given a sampling frequency ωs, look for
values (n, α, J) such that the following set of inequalities
hold:

φ ≤ f(n, α, J), (31)

fmin ≤ f(J),

ta ≤ f(n, α).

The cumulative distribution of a Gaussian variable is
easily found in literature, but we provide here its value for
some reasonable values of φ∗:

φ∗ 10−3 10−6 10−9 10−12

Φ−1
(
1 − φ∗

2

)
3.29 4.89 6.11 7.13

Table 1: Inverse cumulative distribution of Gaussian variables

6. Experimental approach

In the previous sections, we have shown how to tune
and implement a Fault Detector for all kind of processes
no matter the model complexity. However, in process in-
dustry it is popular to use data-based techniques to get
a FOTD (First Order and Time Delay) model of a pro-
cess, from simple experiments like input step tests. Pro-
cesses use to be non-linear, coupled with other processes
and the sensors add measurement noise, so it is often dif-
ficult to find a model of higher complexity that fits well
the experimental data. Usually, there is not a big fitting
improvement by using models that are more complicated.
Another motivation is that most of the techniques for con-
troller tuning use FOTD models and industry workers are
used to manage them. In this section, we adapt the tech-
niques explained before to the case of FOTD models that
may include modeling errors, and we present solutions for
the inherent drawbacks of this approach.
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Figure 4: Step response of the system and its FOTD approximation.

Let us assume that we have a FOTD model of the
process,

G(s) =
K e−Ts

1 + τs
. (32)

In order to apply directly the ideas of the previous
sections to this specific FOTD model, we have simplified
the formulas in table 2, shown in table 3, giving the rules
to tune α and J .

The use of a FOTD model obtained by identification
with a step signal around a given operation point tends
to neglect the high frequency modes of the process, which
depend on non-dominant poles and zeros. It also neglects
the potential gain non-linearity due to the use of incre-
mental variables during the identification process. In the
following, we will give an insight of the problems derived
from applying directly this rules to a FOTD model that
simplifies the real dynamics of the system, and we will
propose some solutions to these problems.

Example 2. In order to illustrate the problems caused by
the model mismatch and the effect of the proposed solu-
tions, we use in this section a numeric example with a
process with the next transfer function for the plant model:

Gp(s) =
1

(1 + s)3
. (33)

We assume that we have a FOTD model for this plant
given by

G(s) =
1

(1 + 1.8s)
e−1.33s. (34)

Figure 4 compares the step response of the process Gp(s)
and the FOTD approximation G(s).

6.1. Fault estimation

Following the initial proposal in this work, the fault
estimation is given by

f̂(s) = Hu(s)u(s) +Hy(s)y(s). (35)
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Table 2: FD design strategies for n = d

Targets α J Resulting free index

φ∗, f∗min
2n

√
σ2
v

K2f∗
min2

(∏
τi∏
βi

)2

Φ−1
(

1− φ∗

2

)2

f∗min ta = nα+
∑
δi + T

φ∗, t∗a
t∗a−

∑
δi−T
n

σv

K
(
t∗a−

∑
δi−T
n

)n ∏ τi∏
βi

Φ−1
(

1− φ∗

2

)
fmin = J

f∗min, t
∗
a

t∗a−
∑
δi−T
n f∗min φ = 2

(
1− Φ

(
KαnJ
σv

∏
βi∏
τi

))

Table 3: Simplified FD design strategies in the FOTD case

Targets α J Resulting free index

φ∗, f∗min
σvτΦ−1

(
1−φ∗2

)
Kf∗

min
f∗min ta = α+ T

φ∗, t∗a t∗a − T
σvτΦ−1

(
1−φ∗2

)
K(t∗a−T ) fmin = J

f∗min, t
∗
a t∗a − T f∗min φ = 2

(
1− Φ

(
KαJ
σvτ

))

According to Section 3 if we use n = d = 1, the FE transfer
functions are

Hy(s) =
1 + τs

K(1 + αs)
, Hu(s) = −e−Ts

1+αs , (36)

which can be obtained from (6), (7) and (32).

The fault estimation error, f̃(s) = f(s)− f̂(s), consid-
ering the model plant Gp(s), is

f̃(s) = [1−Hy(s)Gp(s)] f(s)−
− [Hu(s) +Hy(s)Gp(s)]u(s)−
− Hy(s)v(s). (37)

With the defined structure for the fault estimator we
can compute the indicators A1 to A5 as a function of
the parameter α and model mismatch w.r.t. model plant
Gp(s). First, we present the results assuming no modeling
error (i.e., G(s) = Gp(s)):

A1. step in f : limt→∞ f̃(t) = 0

A2. step in f : limt→∞
∫ t

0
f̃(t)dt = α+ T .

A3. ramp in f : limt→∞ f̃(t)dt = α+ T

A4. high frequency noise in v: lims→∞−Hy(s) = −τ
αK .

A5. sensitivity to u: ‖Hu(s) +Hy(s)Gp(s)‖∞ = 0.

These results only particularize those obtained in 2. If
the model does not fit the model dynamics (i.e., G(s) 6=
Gp(s)), then, the previous indicators result as follows:

A1. When the model gain K is different from the process
gain (let us call it Kp), the steady-state fault esti-
mation error versus step fault will have a bias given
by

lim
t→∞

f̃(t) = 1− Kp

K
.

Then, if K mismatches Kp, we expect a bias in the

steady state of f̂ w.r.t f .

A2. If K differs from the process gain Kp, the cumulative
fault estimation error versus step fault will be infinite:

lim
t→∞

∫ t

0

f̃(t)dt =

= lim
s→0

(
1− 1 + τs

1 + αs

1

K
Gp(s)

)
1

s
=∞.

A3. The steady-state fault estimation error versus ramp
fault coincides with the previous item since the ramp
fault is the integral of the step fault, being also infinite
under gain mismatch.
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A4. The noise effect depends only on the selected Hy(s)
but not on the process transfer function, and there-
fore:

lim
s→∞

−Hy(s) =
−τ
αK

A5. If we consider some modeling error, G(s) 6= Gp(s).
Then, Hu(s) + Hy(s)Gp(s) 6= 0, i.e., the sensitivity
w.r.t. input u is not null and it is given by

f̂(s)

u(s)
=
−e−Ts
1 + αs

+
1 + τs

K(1 + αs)
Gp(s) 6= 0.

Considering this, we expect some effect in f̂ due to
changes in u both in transient response and in steady
state. In fault-free scenarios, the estimated fault in
steady state due to constant inputs of size ū will be

lim
t→∞

f̂(t) =

(
−1 +

Kp

K

)
ū

To summarize, there are two main drawbacks when we
consider a FOTD model for the FE in real systems:

– Biased fault estimation f̂ w.r.t. both fault f and
process input u.

– Transient effect in the fault estimation f̂ due to pro-
cess input u changes.

Example 3. We define for the system (34) the following
fault estimation transfer functions

Hy(s) =
1 + 1.8s

1 + s
, Hu(s) =

−e−1.33s

1 + s
,

where we have set α = 1. We assume in this example
that the system has a gain Gp(0) = 0.97, different from
the initial one. Figure 5 illustrates the effects of model
simplification and gain mismatch on the example. We see
the transient response of the fault estimation f̂ due to a
unitary step change in u, and also a bias in the steady
state. We also appreciate a bias in the fault estimation f̂
steady state after a unitary step fault f occurs.

The bias on the fault estimator does not encourage us
to directly use fault detection mechanism (22) since it re-
quires an unbiased fault estimation to fulfill its properties
about minimum detectable fault and false alarm rate. We
propose the following changes to correct these problems:

• In order to overcome the steady state estimation er-
ror, we present a fault estimator for incipient faults,
that is, a fault estimator that tries to estimate the
high frequencies of the faults but does not detect the
low frequencies, i.e., the constant value of the faults.
The estimator tries to avoid the bias when there is
no fault on the system and tries to estimate properly
only the initial time when the fault occurs. This does
not solve the complete fault estimation, but enables
posterior use of fault detection mechanisms.
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Figure 5: FOTD model drawbacks due to model mismatch under
step inputs and step faults.

• In order to overcome the transient error under input
changes, we propose the use of the incipient fault
estimator together with an adaptive threshold that
depends on the control action.

In the following subsections, we address these two is-
sues.

6.2. Incipient Fault estimation

The model mismatch in the low frequency range due
to non-linear gain implies a steady state error in the fault
estimator in absence of fault, as we showed before. We
have this problem even in linear systems because models
only behave linear for incremental variables around an op-
erating point.

To avoid this, we propose to filter the initial fault es-
timate through a washout filter Hw, i.e. a high pass filter
that rejects steady state inputs, and we define as f̂+ its
output signal. This signal will estimate the initial tran-
sients of the fault signal but it will ignore its steady state
value, so it will be appropriate for fault detection issues.
We propose for the washout filter the next transfer func-
tion, including a derivative and a relatively slow pole:

Hw(s) =
τws

1 + τws
. (38)

Then, the incipient fault estimator is given by

f̂+(s) = Hw(s)f̂(s). (39)

We define the parameter τw in order to keep the domi-
nant frequencies of the fault estimator. The approximate
dynamics of the fault estimator is

f̂(s)

f(s)
= Gp(s)Hy(s) ≈ G(s)Hy(s) =

e−Ts

1 + αs
. (40)

We choose the washout filter time constant τw to fulfill
τw � α+T in order to guarantee that the main dynamics
of the fault estimator are still present in the incipient fault
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Figure 6: Fault estimation response after the washout filter for dif-
ferent filter parameter τw values.

estimator. However, τw is also related to the time needed
to reject the bias in fault-free scenarios, and, therefore, it
is the initialization time too. Therefore, we also choose τw
small enough to obtain a reasonable initialization time.

A reasonable initial tuning value is τw = 10(α + T ),
but the performance should be checked in each particular
application.

Note that the high frequency response of Hw(s) is a
unitary gain, i.e., Hw(∞) = 1, so the high frequency noise

amplification is the same for f̂+ and f̂ . Adding Hw(s) in
the FE structure has no effect in noise amplification.

Example 4. Figure 6 shows the fault incipient estimation
response under unitary step faults for different values of
the washout filter parameter τw, where ta = T +α = 2.33.

6.3. Adaptive threshold

The model mismatch in the high frequency range gen-
erates a transient in the error response from input changes.
To solve this issue, we propose an adaptive threshold for
the Fault Detection Mechanism. The new threshold is the
sum of the static threshold J and a new signal j that de-
pends on u. This signal j is generated by the transfer
function Hj and the input u.

Hj(s) must have zero static gain and its response versus

u has to be an envelope for f̂ . First, the transfer function
response has to fit the peak of f̂(s) under a step in u.
Next, the response must have a smooth decrease. With
these requirements, we propose

j(s) = Hj(s)u(s), (41)

where

Hj(s) =
kjs

(1 + τjs)2
. (42)

The effect of u in f̂ cannot be predicted before implement-
ing the FD because it depends on the model mismatch.
The proposed strategy then consists in performing some
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Figure 7: Response of f̂(t) under u step and envelope j.

steps in u once the initial FE is implemented and then
measure the peak (pj) of the resulting transient in f̂ as
well as the time (tj) at which this peak appears. Then, we
have to set kj and τj to get a similar peak in the step re-
sponse of Hj(s). The following expressions give an initial
guess for those values:

τj = tj ,

kj = pj τj e, (43)

being e the basis of the natural logarithm. These expres-
sions have been tested with several processes and model
mismatches and usually give a good starting point. Other
envelope transfer functions can be used for this proposal.

Example 5. In the example we show the drawbacks of the
initial approach. We see in figure 7 that the peak under an
step in the input is achieved at instant tj = 1.33 (this
coincides with the delay of the FOTD model) with a peak
value pj = 0.23. Then, we propose

Hj(s) =
0.8315s

(1 + 1.33s)2
.

In figure 7 we compare the transient response of the fault
estimator under an input step and the response of the enve-
lope function. Note that the envelope propose is to increase
the threshold during transient changes in the input and it
is added to the static threshold J . Even if the envelope
response have some values slightly below the transient re-
sponse, as the ones observed from instants t = 8 to t = 10,
the static threshold J is able to avoid false alarms.

In summary, the new threshold of the FDM is

J ′(t) = J + |j(t)|. (44)

The modified FD proposed for implementation, includ-
ing the washout filter and the adaptive threshold detailed
before, is shown in Figure 8.
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Figure 8: System with Fault Estimator, including Hj and Hw

The resulting Fault Detection Mechanism will be{
if |f̂+(t)| > J + |j(t)|, Fault

otherwise, No Fault.

Since

f̂+(s)

f(s)
= Hw(s)Hy(s)Gp(s) (45)

and Hw(s) includes a derivator, the steady state value of

f̂+(s) versus a ramp fault with slope r is

lim
t→∞

r

∫ t

0

f̂+(t)dt = lim
s→0

Hw(s)Hy(s)Gp(s)
r

s
= r τw.

In order to ensure the fault detection versus ramp faults,
we have to guarantee

rmin τw ≥ fmin, (46)

being rmin the minimum fault slope detectable by the FD
and fmin the value obtained from threshold J and FAR.
This is a drawback because, if the slope of the fault signal
is lower than that, the FD will not detect the fault. This
has to be considered carefully during the tuning of τw.

7. Experimental results

This section presents an example of the proposed FD
in a real process, depicted in the figure 9. The system
consists of two water tanks. The pump P-1 boosts water
from the feed tank to the other, through a pipeline where
the valve V-1 can regulate the flow. The pump has a
driver so we can regulate its speed. The higher tank has
a level transducer, L-1. There is a drain pipeline with a
valve, V-2, to return water to the feed tank. At the end of
this pipeline there is a connection, C-1, which reduces the
flow. We have configured this in the laboratory for testing
the proposed FD.

We consider this process as a SISO system. The input
u is the duty cycle of the pulse-width modulated signal
applied to the DC regulator which drives the pump, in the
range [0, 100] %. The applied voltage to the pump is then

u

100
Vcc, (47)

Figure 9: Process for FD testing

being Vcc the voltage of the DC regulator. Initially that
voltage is set to Vcc = 15 V. The output y is the tank
level L-1, in the range [0, 50] cm. The valves V-1 and V-2
are initially fully open and the connection C-1 is properly
installed.

We are going to consider and test these faults:

• f1: V-1 valve small closure, around 20% of its range.

• f2: V-1 valve big closure, around 50% of its range.

• f3: C-1 connection removal.

• f4: V-2 valve small closure, around 20% of its range.

• f5: V-2 valve big closure, around 50% of its range.

• f6: Vcc increase in P-1 driver, from 15V to 16V .

7.1. System identification
First, we need to get a model for the process. With the

system in steady state, we have done a step test by sud-
denly reducing u by 10%. We have identified the output
response approximating it to a FOTD model using the SK
method described in the Appendix A, as shown in figure
10. The process model, with time measured in seconds, is

G(s) =
1.19

1 + 132.80s
e−35s. (48)

7.2. FD tuning
In this example we require a FD with φ∗ = 10−9 and

f∗min = 5%. From the identification data, we have ob-
tained σ2

v = 0.0033. With the formulas in the table 2, we
can easily get the proper tuning for the FD, α = 7.78,
leading to

Hu(s) =
−e−35s

(1 + 7.78s)
, (49)

Hy(s) =
1 + 132.80s

1.19(1 + 7.78s)
, (50)

Figure 11 shows the direct application of the Fault Esti-
mator, after some changes on u have also been applied.
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Figure 10: SK method identification. ∆ym is the step response of
the FOTD identified model.

7.3. Washout filter and adaptive threshold tuning

We can see in figure 11 that f̂ has an offset: it is not
laying around 0. This is due to the operating point at
which the system has been identified. We can appreciate
also that the steady state value is not the same over the
time, it changes depending on the current value of u. For
avoiding this effect caused by process non-linearity, we can
include the washout filter Hw explained above. For the
tuning of Hw, we propose to set a pole ten times slower
than the acknowledgment time ta, so

τw = 10 ta = 10 (α+ T ) = 428. (51)

With this, we expect a negligile effect of Hw in the
main frequencies of G but in the long term we are able
remove the effect of the non-linearity due to the operating
point. Then,

Hw(s) =
428s

1 + 428s
. (52)

On the other hand, due to model mismatches, we ex-
pect some sensitivity between the system input and the
fault estimation signal. As explained above, we propose
to implement an adaptive detection threshold considering
the effect of the input. After implementing Hu and Hy we

have made some steps in u to measure the effect in f̂ . The
peak pw of the transient response requires attention since
it is necessary for the adaptive threshold tuning. Figure
11 shows the result of this experiment.

Being conservative, we should tune Hj taking into ac-
count the highest transient peak and the smallest peak
time. This fulfills for the third transient, with peak value
pw = ∆f̂/∆u = 1.8 and peak time, since input u changes,
tp = 35. From (43),

Hj(s) =
171.25s

(1 + 35s)2
, (53)
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Figure 11: Offset in f̂ due to a different operating point. Transient
response in f̂ due to changes in u.

After implementing both Hj and Hw in the configu-
ration shown in Figure 8, we have tested how the FD re-
sponds when u changes. In figure 12 we can see how the
threshold is able to envelope the transient response of the
fault estimation, avoiding false alarms. We can also see
that the steady state value of f̂+ is now around 0.
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Figure 12: The washout filter and the adaptive threshold are able to
avoid the estimation offset and false alarms due to changes in u.

7.4. Faults test

Figure 13 shows the results of the faults test from f1 to
f6 as described above. All of them have been successfully
detected since f̂+ has exceeded the threshold limits. It is
shown that the acknowledgment time ta is smaller when
the fault is bigger. The fault signal f in the figure 13 has
been deducted a posteriori using the steady state of f̂+

and it is just for illustration purpose; it is not possible
to know the actual fault signal value. During the test,
we have measured the occurrence time of the faults. The
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washout filter ensures non-biased f̂+ and is slow enough
to not miss the fault detection.

The test of the last fault, f6, is especially illustrative.
The fault estimation signal f̂+ is in actuator units, in the
range [0, 100] %. This fault has been produced by increas-
ing 1V the DC driver voltage from 15V to 16V , which is
equivalent to an increase of 6.6% in the duty cycle u keep-
ing the original voltage, and we can see how f̂+ matches
this value.

The effect of changes in u are significant considering its
range and this limits the performance of the proposed FD,
getting a wide adaptive threshold. Nevertheless, we should
realize that in most industrial applications control loops
are tuned so that actuators respond slowly to avoid dis-
turbances in other processes that are commonly coupled.
In that case, the adaptive threshold will be narrower.

7.5. Results comparison with other methods

In this section we want to compare our previous results
with those obtained by implementing a PI state observer
for the fault estimator, as described in section 4.3. Our
motivation is to show that our method has some advan-
tages and that our design procedure is simpler.

First we need an state space representation of the model
(48) with no time delays. For that, we use the Padé ap-
proximation which substitutes the time delay by a number
of poles and zeros. We use a first order approximation (one
pole and one zero) because higher order approximations
led to oscillatory observer response.

Then, we have applied pole placement to design an ob-
server with all the poles in −1/α with α = 7.78. The first
disadvantage of this method is that pole placement is done
by trial and error and the fault estimation performance is
checked after the implementation. We have finally placed
the poles in the same values that in our procedure. There
is not a procedure to relate the pole placement with ful-
filling some false alarm rate or minimum detectable fault,
as we do in our method with the formulas in tables 2 and
3.

Therefore, the previous pole placement technique gives
us the following transfer functions for the fault estimator,
after following the explanation in section 4.3,

Hu(s) =
−(1− 17.5s)

(1 + 7.78s)3

Hy(s) =
0.84034(1 + 17.5s)(1 + 132.8s)

(1 + 7.78s)3
.

Due to the fault integrator and the Padé approxima-
tion, the order of the observer is now 3 instead of 1. Figure
14 shows the results for the same fault test detailed previ-
ously. We can observe that the higher order of the observer
implies a more filtered fault estimation signal, and there-
fore a slower detection time. We have tried to reduce the
value of α in the pole placement but the observer behavior

presented oscillations. With this procedure (delay approx-
imation plus PI observer design with pole placement) we
have a trade-off between the order of the Padé approxi-
mation and the placement of the poles. This trade-off not
only involves the fault detector behavior (time until de-
tection, minimum detectable fault or false alarm rate) but
also the oscillations derived from the use of an approxima-
tion for the time delay. Our method tackles directly the
time delay and, thus, we do not have an extra source of
model inaccuracy.
8. Conclusion

We have presented along this work a novel approach for
fault detectors design and implementation in the case of
actuator faults. We have proposed a Fault Estimator com-
posed of two transfer functions which include information
of the process input-output model and two tuning param-
eters for achieving objectives based on the fault tracking
error and the measurement noise effect. The tuning pa-
rameters on the transfer functions are the time constant
α and its multiplicity n. Then, we have included a Fault
Detection Mechanism that compares the fault estimation
with a threshold. The setting of this threshold J as unique
tuning parameter for the FDM fulfills objectives based in
the false alarm rate, the minimum detectable fault and the
acknowledgment time. We show that for considering all
the objectives we need to design altogether the FE and the
FDM (called Fault Detector co-design). This consists in
the tuning of the three free parameters of the FD (α, n and
J). Furthermore, we have stated the simpler case in which
the multiplicity n is equal to the relative degree d. We have
proposed simple tuning strategies through straightforward
formulas considering the process model and the fulfillment
of the desired objectives for the FD. We have explicitly
written the formulas for the FOTD case, which is a com-
mon approach for modeling in process industry. In that
case we have also analyzed the implications of assuming
that model, giving solutions for the drawbacks. Last, we
have implemented it in a real system recreated in the labo-
ratory and compared it with methods based on state space
observers.

The main advantages of the proposed method are de-
scribed below. It is simpler because it is based in input-
output models instead of state space models. The design
is based in the performance of three intuitive engineering
indices such as false alarm rate, minimum detectable fault
and detection time. Our approach tackles directly the time
delay in the model. We provide easy tuning rules based in
the process model. The procurement of a process model
is a well-covered topic and it is used also for controller de-
sign, so it is familiar for workers in industry; furthermore,
we explicitly address the case of FOTD models, which is
the most widely used model in process industry. The im-
plementation technique is straightforward and uses tools
available in industrial control systems.

This work establishes a solid base for future work. We
pretend to test this approach in real industrial cases and
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Figure 13: Faults test results with the proposed approach as described in section 7.

Figure 14: Faults test results with a PI state observer and Padé approximation of the time delay.
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to extend the scope to the MIMO case. We will also use
this approach in fault tolerant control based in fault esti-
mation.

Appendix A. FOTD identification

For the process identification, due to its simplicity, we
propose to follow the SK method [30], which approximates
the system to a FOTD model matching the value at 35%
and 85% of its step response. This usually gives a good
approximation of the process gain and slow dynamics but
partially ignoring the high frequency response, which has
an impact in the behavior of the fault estimation signal
f̂ as we said before. For the proposed example (33), our
FOTD model will be

G(s) =
1

(1 + 1.8s)
e−1.33s. (A.1)
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