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ABSTRACT

Shape analysis is of great importance in many fields, such as computer vision, medical imaging, and
computational biology. This analysis can be performed considering shapes as closed planar curves in the
shape space. This approach has been used for the first time to obtain the morphological classification of
erythrocytes in digital images of sickle cell disease considering the shape space S1, which has the property
of being isometric to an infinite-dimensional Grassmann manifold of two-dimensional subspaces (Younes et
al., 2008), without taking advantage of all the features offered by the elastic metric related to the possibility of
stretching and bending of the curves. In this paper, we study this deformation in the shape space, S2, which
is based on the representation of closed planar curves by means of the square-root velocity function (SRVF)
(Srivastava et al., 2011), using the elastic metric of this space to obtain more efficient geodesics and geodesic
lengths between planar curves. Supervised classification with this approach achieved an accuracy of 94.3%,
classification using templates achieved 94.2% and unsupervised clustering in three groups achieved 94.7%,
considering three classes of erythrocytes: normal, sickle, and with other deformations. These results are better
than those previously achieved in the morphological analysis of erythrocytes and the method can be used in
different applications related to the treatment of sickle cell disease, even in cases where it is necessary to study
the process of evolution of the deformation, something that can not be done in a natural way in the feature
space.

Keywords: elastic metric, erythrocyte deformation, geodesics, planar closed curves, shape space, SRVF.

INTRODUCTION

Shape analysis is a key step in many areas of
computer vision, especially in medical imaging, since
shapes are essential in understanding objects. Planar
shapes can be geometrically characterized in different
ways. In particular, there are different approaches
to describe the continuous boundaries (contours) as
curves and then analyze their shape.

In the field of medicine, the study of cell
morphology using digital images offers useful results
in the clinical diagnosis of certain illnesses, like
sickle cell disease. This genetic disorder causes the
hardening or polymerization of hemoglobin inside the
cell, thus resulting in its deformation, which causes
severe complications for the patient. The most frequent
complication is pain crises, caused by vaso-occlusive
events due to the lack of elasticity of the erythrocyte,
which prevents it from circulating normally through
the smaller capillaries.

Shape analysis can be performed with the use
of spaces of planar shapes. A first approximation of
the morphological analysis of erythrocytes with this
approach was studied in Gual et al. (2015b), where the

space of planar shapes represented by simple closed
plane curves with the metric introduced in Younes et
al. (2008) is employed in a practical way. This space
has the property of being isometric to an infinite-
dimensional Grassmann manifold of two-dimensional
subspaces. As consequence, explicit geodesics and
distances between shapes can be calculated using
Jordan angles (Neretin, 2001). This previous work
does not exploit all the advantages of the metric
used, in relation to the possibility of considering both
stretching and bending in the analysis of the curves.
The algorithms to compute distances and geodesics for
erythrocyte shape analysis with this approach can be
found in Gual et al. (2015b).

This paper proposes a second approach of the use
of space of planar shapes for morphological analysis
of erythrocytes, based on a special representation
of curves called the square-root velocity function,
or SRVF, under which a specific elastic metric
becomes an L2 metric and simplifies the shape analysis
(Srivastava et al., 2011). This framework has not been
used until now for erythrocyte shape analysis.

Related work: Automatic recognition and
classification of erythrocytes considering their shapes
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have been studied by the scientific community. Some
techniques consider the use of features and descriptors
to characterize the shape of the cell contour. A
first group uses elementary descriptors, such as the
circularity and elliptical factors, which do not offer
the best results due to their simplicity (Wheeless
et al., 1994; Fernández et al., 2013). Some other
recent approaches propose ellipse fitting (Gonzalez-
Hidalgo et al., 2015), Hough transform (Mazalan et
al., 2013), circlet transform (Sarrafzadeh et al., 2015),
the computation of descriptors using Fourier series
(Frejlichowski, 2010; Aziz , 2013), classification via
artificial neural networks (Durant et al., 2017; Rahmat
et al., 2018; Dalvi and Vernekar , 2016), the analysis of
curvature changes (Delgado et al., 2016) and the use of
integral geometry-based functions to obtain efficient
descriptors of the erythrocyte contour (Gual et al.,
2013; 2015a). All these approaches make it possible to
compare and analyze the shape of erythrocytes in the
feature space, but they are not suitable for computing
shape statistics, such as mean shapes, or capturing the
principal directions of shape variation within a specific
class or between the cells in a normal and/or deformed
cell class. This kind of studies can be performed in
the shape space, which allows us to consider the cell
contour as a point in this space and more sophisticated
analyzes about shape can be made.

The first proposal that considers the space shape
for analyzing the erythrocyte morphology was put
forward by Gual et al. (2015b), where the metric
introduced by Younes et al. (2008) is used and
explicit geodesics and distances between shapes can
be computed using Jordan angles (Neretin, 2001).
This is the S1 shape space. The results obtained
achieved 93.52% overall sensitivity in the supervised
classification of cells and 92.39% in the classification
considering distances of the cells to circle and ellipse
templates, which drastically reduces the computational
complexity of the process and maintains a high
sensitivity value. In this proposal, the study is based
completely on bending one curve into the other using
linear interpolation of angle functions of the curves
(with arc-length parameterization), so the advantages
offered by the metric are not fully exploited. Due to
this, the deformation process may not be optimal in
some cases, because the behavior is similar to non-
elastic metrics.

A Riemannian framework for analyzing planar
shapes was developed by Srivastava et al. (2011).
In this framework, the shape analysis is performed
using the square root velocity function (SRVF)
representation of curves in Euclidean spaces, under
an elastic metric. This is the S2 space shape.
With this kind of metric, geodesics and geodesic

distances provide a framework for optimally matching,
deforming, comparing, averaging, and inferring
shapes, considering deformations of curves resulting
not just from bending but from stretching as well. This
approach has already been applied to various problems
(Laga et al., 2012; Srivastava et al., 2011), but this is
the first time it has been applied to the erythrocyte
morphology classification problem, where intra-class
and inter-class differences between certain types of
erythrocytes can be seen as elastic deformations. Thus,
quantifying such differences can be formulated as the
problem of computing geodesics (registration) and
geodesic lengths (similarity) between planar curves.

The main objective of this paper is to apply the
distances and geodesics derived from the shape space
and the metric introduced in Srivastava et al. (2011)
in order to study different applications related to
the morphological analysis of shape deformation of
erythrocytes, for the first time, considering the elastic
characteristics of the metric that takes into account
both stretching and bending for shape analyzing; and
to compare the results obtained with previous works
introduced in Gual et al. (2015b). In particular, three
applications are presented here: interpolation between
shapes; supervised classification and unsupervised
clustering.

This metric is part of a general family of elastic
metrics (Mio et al., 2006) which includes in particular
the SRVF for the choice of parameters a = 1, b =
1/2, and the metric of Younes et al. for the choice of
parameters a = 1, b = 1. More details about this can
be reviewed in Bauer et al. (2014), Bauer et al. (2017),
Bauer et al. (2018) and Kurtek et al. (2020). For this
reason, some of the experiments were realized for the
metric of Younes et al. too, in this case considering the
elastic characteristics of the same.

The rest of the paper is organized as follows:
section 2 presents theoretical details of the both
approaches; section 3 presents the experimentation
done in S2 for the three evaluated applications and
comparison with the results obtained in Gual et al.
(2015b); and section 4 contains a discussion of the
results, the conclusions and proposals for future work.
More results (Tables and Figures referenced with the
letter S) are shown in Supplemental material.

MATERIALS AND METHODS

THE SPACE OF PLANE SHAPES S1:
THE GRASSMANN MANIFOLD MODEL
Let M be the set of closed curves that are smooth

boundaries of planar shapes, i.e.
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M = {α ∈C∞(S1,R2) : |α ′(t)| �= 0, ∀t ∈ S1},

where S1 denotes the unit circle and α ′(t) stands for
the parametric derivative of α . M is the space of C∞-
immersions α : [0,2π]−→ R2 with α(0) = α(2π).

Let the tangent space TαM at α be the set of
vector fields h on α (h : S1 −→ R2). If h,k ∈ TαM, the
Riemannian metric Gα(h,k) is defined as in Younes et
al. (2008) by

Gα(h,k) =
1

l(α)

∫

S1
ḣ(s)• k̇(s)ds,

where l(α) is the length of α , ḣ(s) denotes
derivative with respect to arc length, and ḣ(s) • k̇(s)
stands for the usual product in R2.

The set M modulo translations, scalings, rotations,
and reparameterizations of the curve (Di f f (S1)) is the
space of planar shapes. Nevertheless, let us study first
the pre-shape space, i.e. before division by the group
of diffeomorphisms Di f f (S1) is carried out. We refer
to the group generated by translations, rotations and
scalings as the group of similitudes (sim). Therefore,
the pre-shape space Md is defined by

Md =
M

sim
,

and the restriction of the metric Gα is associated with
Md .

We denote by V the vector space of all C∞

mappings f : S1 −→ R, with the norm

|| f ||2 =
∫ 2π

0
( f (x))2dx.

Let e, f be two functions in V and let us assume
that our plane curves are curves in the complex plane
C. We define the basic mapping by

Φ : (e, f )−→ α(t) =
1
2

∫ t

0
(e(x)+ i f (x))2dx. (1)

Let Gr(2,V ) be the Grassmannian of unoriented
two-dimensional subspaces of V defined by an
orthonormal pair (e, f )∈V 2 with ||e||2+ || f ||2 = 2 (i.e.
l(α) = 1); then, Φ defines an isometry between Md and
a subset of Gr(2,V ).

Gual et al. (2015b) proposed detailed algorithms
and pseudocodes to compute distances and geodesics
in Md from the preceding isometry.

Since our interest lies in geometric curves, i.e. we
consider curves up to reparameterizations, then the
shape space is defined by the following quotient space

S1 =
Md

Di f f (S1)
.

We will analyze digital contours that characterize
cell boundaries with a fixed orientation and with
approximately evenly spaced discrete points in these
contours. The distance and the geodesic between two
shapes in S1 are computed as in Gual et al. (2015b).

However, as deformations of curves respect
the arc-length parameter, stretch elasticity is not
incorporated to the model and resulting shape
correspondences are sometimes far from optimal.

In this first proposal, only bending is considered
for the evolution from one curve to another, so the
metric is not used with all the advantages that it
offers and the behavior is similar to that of non-elastic
metrics. In the rest of the article the reference to the
space S1 is made considering this particularity.

THE SPACE OF PLANE SHAPES S2:
THE SRVF REPRESENTATION MODEL

In this section we review some results proposed by
Srivastava et al. (2011). In particular, we consider the
SRVF representation of closed curves in R2 and we
summarize the main results for the shape space S2
with the standard elastic metric.

Let β : [0,1] −→ R2 be an absolutely continuous
parameterized curve on [0,1]. The Square Root
Velocity (SRV) of β is defined as the function q :
[0,1]−→ Rn given by (Srivastava et al., 2011):

q(t) =
β ′(t)√
|β ′(t)|

. (2)

For every q ∈ L2([0,1],R2) there is a curve β
(unique up to translation) such that the given q is the
SRV function of that β . In fact,

β (t) =
∫ t

0
q(s)|q(s)|ds. (3)

To remove the scaling variability, we rescale all
curves to be of unit length. If a curve β is of length
one, then

∫ 1
0 |q(t)|2dt = 1.

Therefore, the SRV functions associated with these
curves are elements of the unit hypersphere in the

3
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Hilbert manifold L2([0,1],R2):

C 0 = {q : [0,1]−→ R2 /
∫ 1

0
|q(t)|2dt = 1}, (4)

is a Hilbert manifold.

To study the shapes of closed curves, we must
impose the additional condition that the curve starts
and ends at the same point, then the space of
fixed length, closed curves represented by their SRV
functions is

C c = {q : S1 −→ R2 /
∫

S1
|q(t)|2dt = 1,

∫

S1
q(t)|q(t)|dt = 0}.

(5)

To take care of the rotation and reparameterization
of the curve β whose SRV function is q, we
remember that a rotation is an element of SO(2),
the special orthogonal group of 2 × 2 matrices; and
a re-parameterization is an element of Γ, the set
of orientation-preserving diffeomorphisms of S1. The
actions of SO(2) and Γ on the SRV of β are given by:

(O,q(t)) = q(t), where O ∈ SO(2), and the SRV of
the curve β ◦ γ is q(γ(t))

√
γ ′(t), where γ ∈ Γ.

The orbit of a function q ∈ C c is

[q] = {O(q,γ)=O(q(γ(t)))
√

γ ′(t) / (γ,O)∈Γ×SO(2)}.
(6)

If we consider the metric in L2 given by the usual
inner product

〈v1,v2〉L2 =
∫ 1

0
〈v1(t),v2(t)〉dt, (7)

the feature space of interest is:

S2 = {[q] / q ∈ C c}, (8)

and the distance in S2 is:

ds([q1], [q2]) = inf
O∈SO(n),γ∈Γ

dc(q1,O(q2,γ)), (9)

where dc denotes the distance in the hypersphere C c.
The computation of the geodesics in the shape space
S2 was detailed by Srivastava et al. (2011) and Joshi
et al. (2007).

All the experiments were performed using an
open source implementation of the general family

of elastic metrics which include the SRVF, available
from https://github.com/h2metrics/
h2metrics. As a confirmation, the experiments
were performed again using another SRVF framework
toolbox available from http://ssamg.stat.
fsu.edu, where equations (5.15), (5.28) and
(5.29) from the book Srivastava et al. (2016) are
implemented.

RESULTS

There are many interesting applications of the
geometric representation of planar shapes in S2
proposed here. In this section, we show some of
these applications and we use them to analyze digital
images of blood smears in the morphological study of
erythrocytes. The novelty lies in the use of the general
theory in S2 (Sec. 2.2, Eqs. 2 and 9), which has never
been used for these specific applications.

Experiments were performed using the
erythrocytesIDB image database (Gonzalez-
Hidalgo et al., 2015) (available from http://
erythrocytesidb.uib.es/), which consists
of 202 images of normal cells, 210 images of sickle
cells, and 211 images of cells with other deformations,
obtained from the blood specimens of patients with
sickle cell disease. Some specifications about image
acquisition and characteristics are explained on the
website. The other deformations class includes images
with shapes that are close to circular or elongated
forms, making the classification of this class a
challenging task. Fig. 1 shows examples of images
for all three classes (normal cells, sickle cells, and
cells with other deformations). In order to accomplish
segmentation we used methods that are based on
contour evolution and that appear in the literature
under the name of active contours, deformable models,
etc. The objects in this database were the data used for
the experiments performed in Gual et al. (2015b). All
the experimentation was done in MATLAB R2016a
64-bit.

Fig. 1. Examples of normal, sickle and other deformed
erythrocytes.

Three applications are presented here:
interpolation between shapes; classification and
clustering.

4
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INTERPOLATION BETWEEN SHAPES
Geodesic paths between shapes exposed before

can be used to interpolate between shapes, which
can be useful for estimating intermediate shapes of
cells, whose shapes vary over time, for example
those affected by sickle cell disease. Fig. 2 shows
the interpolation between the same normal and the
same sickle cell in S1 and S2, respectively, with
the geodesic path between the two shapes. The
representation of the curves is different in each space,
hence the initial and final positions that are displayed
are different, even when they correspond to the same
cells. It can be noticed that in shape space S2 the
deformation begins to be more pronounced than in S1
at a point closer to the first curve, which is because
the metric is elastic and allows both stretching and
bending, so the curve can deform more naturally than
the case of the first attempt in S1, where the study
only considers the bending of the curves. The distance
between these two cells is 0.49 in the first study and
0.46 in S2, which confirms that the latter approach is
more suitable for obtaining the geodesic path between
those elements.

Fig. 2. Geodesic between normal and sickle
erythrocyte: in S1 with distance=0.49 (top); in
S2 with distance=0.46 (bottom).

SUPERVISED CLASSIFICATION
One of the most important issues in the study of

this illness is the search for an efficient automatic
classification method to quantify the number of
deformed cells that a patient has and thus gauge the
severity of the crisis. The distance between planar
shapes was employed for the first time in Gual et
al. (2015b) to obtain the supervised classification
and unsupervised clustering of erythrocytes, achieving
very good performance even when only bending
was considered for the analysis of the curves. In
this section, we begin by proposing the use of the
distance between planar shapes (Eq. 9) in space S2
as the elastic metric in the supervised erythrocyte
morphology classification process as normal, sickle,
or those with other deformations, and given the
excellent results obtained. The next section deals with
unsupervised clustering of erythrocytes.

To carry out the task of supervised classification,
we propose again two possibilities: using the distance

in Eq. 9 to perform the normal supervised classification
process and using it to perform a classification
considering the cells as deformations of known
templates, in this case circles and ellipses. The metrics
used to evaluate the results were sensitivity or True
Positive Rate (TPR), precision (P), specificity or True
Negative Rate (TNR), and F1-score (F1). The overall
sensitivity was given as the mean sensitivity of the
classes. The measures F1-macro (F1-M) and Accuracy
(Acc) were used to evaluate the whole process.

Like in the first approach, all the distances between
pairs of cells were calculated and the k-nearest
neighbor algorithm for supervised classification (k-
NN) was used. It is not the purpose of the work to
determine the most efficient classification algorithm in
this case; k-NN tests are only carried out for the sake
of simplicity, since our purpose is to demonstrate the
feasibility of using the framework in this environment.
In order to validate the results, a 5×1 cross-validation
process was carried out. The confusion matrix of the
process and the sensitivity, precision, specificity and
F1-score measures for each class are shown in Table 1.

Table 1. Supervised classification results in both cases.
Classes N: Normal, S: Sickle, O: Other Deformations.

S2
Confusion Matrix Measures
N S O TPR TNR P F1

N 199 0 1 1.00 0.95 0.91 0.95
S 0 193 7 0.96 0.98 0.96 0.96
O 19 7 174 0.87 0.98 0.96 0.91

S1
Confusion Matrix Measures
N S O TPR TNR P F1

N 202 0 0 1.00 0.94 0.89 0.94
S 0 202 8 0.96 0.98 0.96 0.96
O 25 8 178 0.84 0.98 0.96 0.90

In Table 1 we see that the sensitivity values
obtained in S2 for classes normal and sickle are high,
with 100% and 96% for each, respectively. No normal
cell was classified as sickle or vice versa. In the
case of other deformations the sensitivity decreased to
87% due to several cells with other deformations with
shapes that were very close to circular and elongated,
and in addition these elements differ a lot from each
other.The precision values are greater than 91% for all
cases, and the specificity values are greater than 95%
for the three classes analyzed. The F1-score measure
achieves values above 91% in all the cases and the
process has an accuracy of 94.3%.

In order to assess the quality of these results, they
were compared with those obtained in Gual et al.
(2015b). This previous work were performed under the
same experimental conditions and using the whole data
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set in the image database, which has 202 normal cells,
210 sickle cells and 211 cells with other deformations,
and the results are shown in Table 1. With the new
approach, the sensitivities of normal and sickle cells
were the same that in this previous work, but the
sensitivity of the class of cells with other deformations
and the precision of the normal class (87% and 91%)
were greater than the 84% and 89% achieved in the
previous work, respectively, because several objects
of this class were correctly classified in S2. In Fig.
S1 two cases of cells with other deformations that
are misclassified under the previous method but are
correctly classified under the proposed method are
shown, the first column is the object to classify, second
and third columns show the class and the distance of
the object closest to the first one. Accuracy in this
previous work was 93.4%, lower than 94.3% of the
new approach.

The second possibility for experimentation
proposes the use of the S2 space to make a
classification considering the cells as deformations
of known templates. In this particular case, normal
cells have an almost circular shape and sickle cells
have an almost elliptical shape and we could assume
that elliptical forms appear in their geodesic path from
the circle. Therefore, we can assess the possibility
of considering how close the studied cells are to
circle and ellipse templates in this framework, which
drastically reduces the calculations needed to obtain
the classification. The axes of the ellipse used as a
template are obtained as the mean value of the axes of
the ellipses that best fit each of the sickle cells in the
sample.

The linear discriminant analysis algorithm for
classification with leave-one-out cross-validation was
used. The confusion matrix and measures obtained of
the process in S2 is shown in Table 2. The results
show that the sensitivity of normal and elongated
classes is also high, 98% in both cases, and once
again no normal cell was classified as elongated or
vice versa. In the case of other deformations the
sensitivity decreased to 86%, slightly lower than the
87% obtained in the supervised classification. The
precision and specificity values remain as in the case
of supervised classification, with more than 92% and
96% for the three classes analyzed. The F1-score
measure achieves values above 91% in all cases and
the process has a high accuracy of 94.2%, practically
the same as the 94.3% of the supervised classification
process. This is a very interesting result, because the
computational cost of the process is drastically reduced
with this method, maintaining the high accuracy of the
process.

Table 2. Results of classification using templates in
both cases. Classes N: Normal, S: Sickle, O: Other
Deformations.

S2
Confusion Matrix Measures
N S O TPR TNR P F1

N 197 0 3 0.98 0.96 0.92 0.95
S 0 195 5 0.98 0.97 0.95 0.96
O 16 11 173 0.86 0.98 0.96 0.91

S1
Confusion Matrix Measures
N S O TPR TNR P F1

N 198 0 4 0.98 0.94 0.89 0.93
S 0 207 3 0.99 0.96 0.92 0.95
O 24 17 170 0.81 0.98 0.96 0.88

For the previous case, this experiment was
performed by Gual et al. (2015b), under the same
conditions. Table 2 shows the confusion matrix and
measures of the process. In this case, the sensitivity
of normal and elongated classes is also high: 98%
and 99%, respectively, and once again no normal
cell was classified as elongated or vice versa. In the
case of other deformations the sensitivity decreased to
81%, far below the 86% obtained in the S2 space.
The precision and specificity values for the normal
and sickle classes were lower, due to the fact that
more objects in the class of other deformed cells are
classified as normal or sickle. The specificity values
remain over 94% for all the classes, although they are
below those reached in the S2 space, and the F1-score
measure achieves lower values too, with an emphasis
on cells with other deformations class, which has 88%,
far below of 91% in the S2 space. The accuracy in this
case was 92.3%, much lower than 94.2% reached with
the new approach.

Both experiments, supervised classification and
classification using templates, were performed using
the metric of Younes et al. considering the elastic
characteristics of it. The results are shown in Table S1
and are overcome those obtained previously by Gual
et al. (2015b), which is the expected behavior due to
the elastic shape analysis of curves, which has proven
to outperform inelastic shape analysis, but they do not
exceed those achieved with the SRVF representation
of the curve. For supervised classification, accuracy
was 93.8%, greater than the 93.4% of the previous
work, but lower than the 94.3% achieved with SRVF,
and the accuracy achieved by classification using
templates was 93.7%, exceeding the results obtained
by Gual et al. (2015b), with an accuracy of 92.3%,
but not exceeding those achieved with the SRVF
representation of the curve, with 94.2%.

6
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Table S2 shows values of general performance
measures for all the classification experiments
performed as a whole. The accuracy and F1-Macro
(94% in both cases) achieved in the S2 space are
much greater than those in the other case (93% for
supervised classification and 92% for classification
using templates), and even in the case of classification
using templates the performance of the process was
very high.

These results allow us to conclude that the
supervised classification of erythrocytes in this case
is more efficient, and this is due to the possibilities
offered by the S2 space for optimally matching,
deforming, and comparing shapes, considering
deformations of curves resulting not just from bending
but from stretching as well, which makes it possible to
obtain more representative distances of the intra-class
and inter-class relationships and therefore significantly
improves the results of the classification.

The experiments with the other toolbox (available
from http://ssamg.stat.fsu.edu) also
yielded excellent results in the sensitivity values:
99.5% for normal class, 97.5% for elongated class, and
88.5% for the other deformations class. The accuracy
in this case was 95.1%. The results with both tools are
excellent; they only differ slightly due to the alignment
procedures of the shapes.

UNSUPERVISED CLUSTERING

For the study of sickle cell disease, the class
of interest is sickle cells. All analyses that can be
performed on their presence can be used by a specialist
to issue a criterion related to the severity of a patient’s
crisis. For this reason, the cell differentiation into
normal, sickle, or other abnormal cells that has been
studied by some authors (Wheeless et al., 1994;
Fernández et al., 2013; Gonzalez-Hidalgo et al., 2015;
Delgado et al., 2016; Gual et al., 2015a) is illustrative
for this pathology. However, the analysis of other types
of erythrocyte deformations present in blood samples
can be of interest, because there are other diseases that
can lead to this situation. Some authors have carried
out research related to the morphological classification
of erythrocytes in several classes (Dalvi and Vernekar
, 2016; Aziz , 2013; Durant et al., 2017; Frejlichowski,
2010), where homogeneous classes of deformations
characterized by the morphology of the cells are
defined. The use of distance between planar shapes as
a dissimilarity measure in an unsupervised clustering
algorithm for the S1 space to define homogeneous
classes of deformations was first proposed by Gual et
al. (2015b).

In this section, we present the use of this
distance in an unsupervised clustering algorithm for
the S2 space. These experiments were performed
only for the S2 space due to the superiority of
the results achieved in the supervised classification.
As a cluster procedure we will use a partitioning
method called Partitioning Around Medoids (PAM).
This method is a generalization of the well-known k-
means algorithm, which can be used with all types of
data and dissimilarity measurements between objects.
The PAM algorithm (like k-means) is based on finding
k representative objects (also known as medoids) from
the data set, in such a way that the total of the
dissimilarities within any given cluster is minimized.
Medoids are representative objects in the clusters
that always exist and we just have to compute the
dissimilarities between cells. Unlike k-means, there is
no need to calculate cluster Frechet means (Pennec,
2006), which would be a very complex task in the
shape space.

In most applications of clustering procedures and,
in particular, in the problem that concerns us here, the
number of groups k is not known in advance. In order
to select the appropriate number of groups, we will
run the clustering algorithm with different numbers of
groups and we will choose the result with the largest
average silhouette width.

It is proposed that the clustering should be
performed for k ≥ 3 because our problem requires
the differentiation of at least three classes: normal,
sickle, and other deformations. The results obtained in
the supervised classification for k = 3 groups, which
are shown in Table 1, will be used to validate the
performance of the clustering obtained for this k.
For more groups, the interest is to know how this
framework can group objects that move away from the
normal or sickle shape in the classes of greatest interest
for the study of sickle cell disease.

The confusion matrix and measures for clustering
procedure considering k = 3 are shown in Table 3.
The sensitivity values obtained for the normal and
sickle classes remain high, with 91% and 96% for
each, respectively. In the other deformation class, the
sensitivity increased to 97%. The values of precision
are greater than 93% for all cases, and the specificity
values are greater than 97% for the three classes
analyzed. The F1-score measure achieves values above
92% in all the cases, and accuracy was 94.7%, similar
to the supervised classification case. However, in this
case there are normal elements that are classified as
sickle and vice versa, even when the accuracy remains
high.
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Table 3. Results of unsupervised clustering in both
cases for k = 3. Classes N: Normal, S: Sickle, O: Other
Deformations

S2
Confusion Matrix Measures
N S O TPR TNR P F1

N 181 13 6 0.91 0.97 0.93 0.92
S 7 193 0 0.96 0.97 0.94 0.95
O 6 0 194 0.97 0.98 0.97 0.97

S1
Confusion Matrix Measures
N S O TPR TNR P F1

N 200 0 4 0.98 0.91 0.84 0.91
S 0 200 10 0.95 0.94 0.90 0.92
O 37 23 151 0.72 0.97 0.91 0.80

These results were very superior to the results in
the other case (Gual et al., 2015b) shown in Table
3, where the sensitivity of the normal and sickle
classes was very high (98% and 95% respectively),
but the class of other deformations achieved only 72%
of sensitivity, and the accuracy was 88%, far below
94.7% in S2. The average silhouette width for k = 3
in S2 space was 0.58.

Experiments for k > 3 were performed. Table 4
shows the results for k = 4 and k = 5, with average
silhouette width (ASW ) values for each one. For higher
values of k, the average silhouette width was less than
0.56 (0.52, 0.51, 0.43 for k = 6,7,8 respectively). For
the normal class the distribution remains stable, the
fact that no normal cell was classified as sickle and
vice versa persists. Fig. S2 shows the medoids of each
class for k = 5.

Table 4. Unsupervised clustering in S2 space: k ≥ 3
groups generated.

N S G1 G2 G3
k = 4 (ASW = 0.49)

N 194 0 6 0 -
S 0 103 1 96 -
O 6 19 171 13 -

k = 5 (ASW = 0.56)
N 194 0 6 0 0
S 0 102 1 90 7
O 5 3 102 14 46

Even though the database used does not
contain differentiated elements for other erythrocyte
deformations, the experiment shows that it is possible
to obtain clusters with good results using the S2
space, maintaining quality in the main classes of cells
for the study of the pathology: normal and sickle
cells. Nevertheless, we should stress that this is a

preliminary experiment. To determine with certainty
the effectiveness of using the measurement, more
experiments need to be carried out with a greater
amount of cell deformations, the images used are
all of blood samples of sickle cells, where the
principal deformation found is the characteristic of
the pathology.

DISCUSSION

For an in-depth analysis of the results, considering
that the method has demonstrated its efficiency in
the morphological classification of erythrocytes, it
is necessary to assess the feasibility of using it for
possible tools to support the clinical diagnosis of
patients with sickle cell disease. In the study of this
disease, sickle cells are the most important class of
cell, mainly due to two issues: the first is that this
type of cell is the one that can cause the events that
trigger vaso-occlusive crises; the second is that in a
real study environment of a patient, there will always
be a much smaller amount of sickle cells than other
cells in the sample, so an algorithm that is not capable
of performing well in this class is not recommended.
The method must achieve good performance in the
sensitivity and precision of the classification of normal
and sickle cells because they are the most important
classes, but the most complex class to process is that
of other deformations, because it will be composed
of elements that can have shapes close to the circular
or elliptical, which therefore affects the accuracy of
classification in the other two classes.

Table 5 summarizes the sensitivity and precision
values achieved for each class separately, for all the
experiments carried out. For the normal class, all the
values of the measures obtained in S2 exceed those
obtained in S1, except for the sensitivity in clustering,
where 91% is obtained, lower than the 98% of S1.
In all cases, the precision in S2 is greater than in
S1. For sickle class, all the values of the measures
obtained in S2 exceed those obtained in S1, except
for the sensitivity in the classification from templates
for sickle cells, where 98% is obtained, lower than
the 99% of S1, although it remains very high. In all
cases, the precision in S2 is much greater than in S1.
Regarding the class of other deformations, the results
of the sensitivities obtained in the three experiments
in space S2 far exceed those of space S1, with more
than 86% in all, when in S1 the highest sensitivity
was 84%, reached in the supervised classification.
Values of precision are very high in S2 for this
class. Therefore, the proposed method achieved high
sensitivity and precision in the classification of normal
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and sickle erythrocytes, and in the other deformations
class, it considerably improved on the previous results,
reaching sensitivity values of 87% or close to this.

Based on this performance, it can be considered
that the proposal is valid to be used in automated tools
to support the clinical diagnosis of patients with sickle
cell disease and demonstrates that this S2 metric is
more suitable for classification in the shape space,
considering both bending and stretching to obtain
the smallest geodesic distance. All the experiments
showed accuracy of the classification processes with
greater values in S2 than the previous case.

Table 5. Performance of all the experiments in
both cases for each class: TPR True positive rate;
P Precision; (SC) Supervised Classification; (CT)
Classification using templates; (C) Clustering.

SC CT C
S1 S2 S1 S2 S1 S2

Normal Class
TPR 1.00 1.00 0.98 0.98 0.98 0.91
P 0.89 0.91 0.89 0.92 0.84 0.93

Sickle Class
TPR 0.96 0.98 0.99 0.98 0.95 0.96
P 0.96 0.97 0.92 0.95 0.90 0.94

Other Deformations Class
TPR 0.84 0.87 0.81 0.86 0.72 0.97
P 0.96 0.91 0.96 0.96 0.91 0.97

Performing the analysis of erythrocyte shapes
in a different space, such as the shape space, has
advantages compared to the feature space used in the
proposals put forward so far. The main advantage
is that it is not necessary to obtain characteristics
about the shape, only its functional representation
using the SRVF, which establishes an analysis
framework that allows more sophisticated studies on
cell deformation, not just classification according to
the shape, something that can be useful, for example, in
cases where it is necessary to follow the development
of the deformation process itself over time. Another
advantage is that the distances between the pairs of
shapes are almost explicitly available.

As a comparison with previously proposed
methods that are based on the use of shape
characteristics, we present the results obtained by two
recent methods proposed in Gual et al. (2013) for
morphological analysis of erythrocytes, which reached
high performance values. These methods propose the
use of integral geometry functions W (φ) and Cρ(φ)
to describe the contour exhaustively, and they obtain
excellent results in the supervised classification of

erythrocytes in the three evaluated classes. Table S3
shows the confusion matrix and the measurements
obtained using these functions. It can be seen that
they achieve higher sensitivity in the class of other
deformations; more than 93% for both descriptors with
respect to the 87% obtained in S2. In the two most
interesting classes, normal and sickle cells, supervised
classification in S2 remains with high sensitivities.
Table 6 shows the general performance measures for
the two descriptor functions and the three experiments
performed with the method proposed in this paper
for S2: supervised classification, denominated S2-SC;
classification using templates, denominated S2-T; and
unsupervised clustering, denominated S2-C. It can be
seen that the measure values in S2 are very high,
more than 94%, and remember that in the case of S2-
T it is possible to drastically reduce the amount of
calculations to be made since only the distances to the
two templates are needed, and for S2-C it is verified
that it is possible to obtain quality clustering using this
metric under the conditions of the studied data. In Gual
et al. (2015b) the superior performance achieved by the
classification in the shape space with respect to other
methods is shown. Those methods are not exposed in
this work given that the superiority of the performance
of the classification in the space S2 with respect to the
previous case has been proven.

Table 6. Performance measures of supervised
classification in both feature and shape spaces: W (φ)
weighted generalized support function, Cρ(φ) Crofton
descriptor, S2-SC supervised classification, S2-T
classification using templates, S2-C unsupervised
clustering.

W (φ) Cρ(φ)
S2

S2-SC S2-T S2-C
F1-M 0.96 0.96 0.94 0.94 0.95
Acc 0.96 0.96 0.94 0.94 0.95

These results confirm that the elastic metric in the
SRVF framework proposed by Srivastava et al. (2011)
can be used to perform the morphological analysis
of erythrocytes in sickle cell disease sample images,
representing the boundaries of the erythrocytes as
closed planar curves in this space and obtaining
distances and geodesics between the curves for
their classification. The experimentation carried out
showed the superiority of the proposal in supervised
classification of erythrocytes in normal, sickle, or
cells with other deformations, compared to other
proposals in the shape space. The performance of the
classification procedure was also studied considering
the distance to circle and ellipse templates, taking into
account the similarity that the objects of interest have
to them, and it has been concluded that this variant
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can be used to reduce the computational cost of the
classification process. The behavior of the metric in the
process of unsupervised clustering was also studied,
which achieved high accuracy in the experiment
generating the three classes and maintained stability
in the normal and sickle cell classes, while three
new groups of other deformations were determined.
Finally, the framework can be used to obtain the
interpolation between curves within a geodesic path
that is more representative of the process.

These excellent results are due to the
characteristics of the proposed elastic metric, which
allows us to obtain deformations of curves resulting
not just from bending but from stretching as well.
With these results it can be affirmed that the method
is feasible for use in erythrocyte morphology study
applications and can be used to support clinical
diagnosis of the state of a patient with sickle
cell disease. The methodologies introduced in this
paper could be extended to other similar clinical
applications. As future work, experiments must
be done for images obtained from the complete
visual field of view under the microscope, where
the imbalance of classes is considerable, so the
performance of the classification must be evaluated
with appropriate measures for unbalanced classes.
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