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Abstract 

With the increase awareness for a healthier food regime and greener environmental processes, 

microalgae are being looked as a solution for a sustainable production of polyunsaturated fatty acids, 

such as omega-3 eicosapentaenoic acid (EPA). Nannochloropsis oceanica is an oleaginous 

microalga, well-known for the ability of EPA accumulation, although higher lipid productivities are still 

required to make the process competitive. Therefore, three cultivation parameters were tested in the 

present work (temperature, light cycles and nitrogen supply) in order to study the EPA profile in the 

polar and neutral fractions of the cells. In addition, an online monitoring tool based on a fluorescence 

spectroscopy technique was developed with the aim of increasing process knowledge at real time. 

The results of this work show that nitrogen depletion induces the highest variability in EPA 

accumulation in the neutral fraction (triacylglycerols). However, to increase the EPA content in the 

polar fraction a different strategy needs to be implemented, such as decreasing the cultivation 

temperature or the light available per cell. Chemometric models were developed through PCA 

(Principal Component Analysis) and PLS (Projection to Latent Structures), using only fluorescence 

spectra as inputs, enabling the monitoring of EPA in both fractions separately. High explained 
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variance was observed (above 85%) in both fractions, with R2 above 0.81 and slopes above 0.93 for 

both validation and training data sets. Lower values of cross-validation and prediction errors were 

observed (between 0.29 and 0.49 % g/gDW). The results obtained show that fluorescence 

spectroscopy is a powerful technique for online monitoring of non-fluorophore molecules, such as 

EPA, in complex process like microalgae cultivation.  

 

Keywords: eicosapentaenoic acid (EPA); omega-3 fatty acid; Nannochloropsis oceanica; 

Fluorescence spectroscopy; Chemometric modelling.  
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1. Introduction 

The importance of long-chain polyunsaturated fatty acids (PUFA), such as omega-3 (ω-3), has 

been extensively studied in the past years with the increased concern in the western world for a better 

and more equilibrated food regime. This class of lipids proved to have several pharmaceutical and 

nutraceuticals applications [1–3] and since they are essential for humans and most animals, and 

neither have the capacity to produce them, food and feed are considered the main vehicles for their 

supply [4]. Among the ω-3 fatty acids present in Nature, eicosapentaenoic acid (EPA, 20:5 ω-3), plays 

an essential role in long term health benefits of cardio and immune system [1–3,5]. 

The main source of EPA is fish and krill oil. To satisfy the human requirements, the World Health 

Organisation (WHO) advices a dietary intake of fish oil once or twice per week [6,7]. However, this 

solution is not sustainable in a long term since the supply of fish and krill oil is limited. As an alternative, 

marine photosynthetic organisms, like microalgae, are being regarded as a solution in aquaculture 

and terrestrial livestock feed as well as in human supplements, since they are the primary producers 

of PUFAs like EPA [2–4,8,9]. Microalgae can accumulate lipids in two distinct fractions, the polar lipids 

fraction (PL), mainly glycolipids and phospholipids; and the neutral lipids fraction (NL), in the form of 

triacylglycerols (TAG) [1,3,4]. There is some ongoing discussion about which of these two fractions is 

the best carrier of the EPA in food and feed, with some authors defending the TAG fraction [2] and 

others the PL fraction [10].  

Several strategies are used to increase the lipid content in microalgae cells, namely nutrient 

limitation (nitrogen or phosphorous deprivation), high salinity, temperature, and high light intensity 

[1,3,4,11,12]. It is well known that under nitrogen limitation, TAG concentration increases [3]. For 

example, Nannochloropsis sp., a well-known oleaginous microalgae specie, can accumulate between 

25 to 45% of total fatty acids under photoautotrophic conditions, among them the EPA [3–5]. It is also 

known that under different environmental conditions, the content and composition of fatty acids in PL 

and TAG fractions can vary substantially [1,5]. 

Using microalgae biomass has great advantages, such as the possibility to grow in non-arable 

land, using sea water and residual nutrients [2–4]. However, the production of lipids from microalgae 
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biomass still faces some challenges. Although Nannochloropsis genus is considered to be a model 

organism for lipid production [12], EPA content is still low, up to 4.3% on dry weight basis in N. 

gaditana [1,3,9] and between 2.7 and 5.2% in N. oceanica [3]. To make the process economically 

competitive, higher lipid productivities are required to decrease production costs [9] associated with 

high energy requirements for water management, and for lipid extraction of the biomass [2,4].  

When aiming for the production of fatty acids, specially EPA, a real time and online monitoring of 

the culture would bring great advantages. Fatty acid analysis is known for being a laborious method, 

involving several steps: extraction, separation into different fractions, methylation and quantification. 

Different organic solvents are needed in this method, making the process non-green, and most of 

these steps are time consuming. Thus, the development of an online monitoring tool will enable to 

understand the effect of the process parameters in the product accumulation at real time, allowing the 

possibility to take important decisions in the moment, such as harvesting the culture when the 

maximum product content is achieved. To achieve this goal the development of a sensitive probe is 

of great importance for the overall economic efficiency of the microalgae production and biorefinery. 

Several spectroscopic techniques have been reported in the literature for the online monitoring and 

control of bioreactors, such as fluorescence spectroscopy, due to the possibility of tracking different 

metabolites simultaneously (substrates and products), and being a non-invasive and non-destructive 

tool. Fluorescence spectroscopy detects the presence of natural fluorophores of the media (extrinsic) 

and in the cells (intrinsic). The interaction between the two is rather complex, and for this reason, 

chemometric methods are often needed to deconvolute and find correlations between the 

concentration of substrates and products and the fluorescence captured [13–15].  

In the present study, N. oceanica was cultivated in highly controlled lab-scale photobioreactors 

under different environmental conditions in order to better understand the effect of process condition 

on EPA accumulation and to develop a monitoring tool specific for this fatty acid. Different 

temperatures (15, 20, 25 and 30 ºC), light cycles (24 hours of light or a day/night cycle of 16 hours: 8 

hours) and nitrogen supply (with or without) were tested. The EPA content was analysed in the PL 

and TAG fractions. To explore the possibility of using fluorescence spectroscopy as a monitoring tool 

for EPA production, excitation-emission matrices (EEMs) of the fluorescence spectra were acquired 
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during N. oceanica cultivation, and chemometric tools such as PCA (Principal Component Analysis) 

and PLS (Projection to Latent Structures) were used to develop prediction models.  

 

2. Material and Methods 

2.1. Strain, cultivation and pre-culture conditions 

Nannochloropsis oceanica was provided by NECTON, S.A. (Olhão, Portugal). Pre-cultures of N. 

oceanica were incubated in 250 mL Erlenmeyer flasks with 100 mL of culture, at 25 ºC, in an orbital 

shaker (90 rpm) with an incident light of 100 µmol.m-2.s-1 and 0.2% CO2. The cultures were kept under 

a day/night cycle light regime (16:8 hours) until further use. The cultivation media is constituted by 

natural sea water (Eastern Scheldt, the Netherlands) and filtered (0.2 µm) before use, supplemented 

with 10.7 mM of NaNO3 and 0.535 mM of KH2PO4. A nutrient solution was added, Nutribloom from 

Phytobloom®, containing: 4 µM ZnSO4.7H2O, 2 µM MnCl2.4H2O, 0.2 µM Na2MoO4.2H2O, 0.2 µM 

CoCl2.6H2O, 0.2 µM CuSO4.5H2O, 52.8 µM Na2EDTA.2H2O, 4 µM MgSO4.7H2O and 40 µM 

FeCl3.6H2O. HEPES buffer (20 mM) was added and the pH was set to 7.8 with NaOH 5M. The 

medium was directly filtered sterilized by Sartobran® Capsule 0.2 µm into the Erlenmeyer flasks or 

the bioreactor vessel. Prior to the photobioreactor inoculation, inoculums were placed under day/night 

cycle or continuous light, according to the light regime of the experiment.  

 

2.2. Photobioreactor setup 

All experiments were performed in a flat-panel airlift-loop photobioreactor, heat-sterilized, with a 

light path of 20.7 mm and working volume of 1.8 L (Labfors 5 Lux, Infors HT, Switzerland, 2010). The 

pH was controlled at 7.8 by CO2 injection, and the culture is homogenised by filter sterilized air with 

a flow rate of 1L/min. The temperature was controlled by a water-jacket in direct contact with the 

cultivation vessel. The incident light was provided by 260 LED lamps (28V, 600 Watt) on the culture 

side of the photobioreactor, with warm white spectrum (450 – 620 nm), and the back side was covered 

to prevent interference of the ambient light. The incident light started at 200 µmol.m-2.s-1 and was 

increased to 636 µmol.m-2.s-1 when the back light reached 50 µmol.m-2.s-1. The light supplied 
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corresponds to the light experienced in a Dutch summer day, consisting of 16 hours of light supplied 

with a sinus function with solar noon at 1500 µmol.m-2.s-1 [16]. 

2.3. Photobioreactor operation conditions 

In this study eight experiments were performed, in batch mode, following a two-step approach, 

except the control experiment.  

In the first step, bioreactors were inoculated at a cell concentration between 1.0 and 1.5 x107 

cells.mL-1 and run under replete nitrogen conditions. This was followed by a second step with nitrogen 

starvation. Briefly, the bioreactors were emptied, the biomass was centrifuged (2500 rpm for 15 

minutes) and washed with free-nitrogen medium, and the bioreactor was then refilled with the culture 

and free-nitrogen medium to prevent limitation of other nutrients, until a specific light supply rate of 

1x10-13 µmol.cells-1.s-1 (called N-starvation experiments).  

The experiments are divided in two categories according to the light regime – continuous light (24 

hours) or day/night (d/n) cycle (16:8 hours) (Figure 1). In the continuous light experiments, four 

temperatures were studied – 15, 20, 25 and 30 ºC, for a period of four days, starting at N-starvation 

(Batch names, respectively: “15”, “20”, “25” and “30”). The temperature was set in the beginning of 

the experiment and maintained during nitrogen depletion. In the d/n cycle experiments, three batches 

were performed to study the effect of N-starvation and sudden temperature decrease, versus a control 

batch, and followed for ten days. The first step of the cultivation was performed at 25 ºC, and in the 

second step the culture was either submitted to nitrogen-deplete medium (Batch name: “N-starv”) or 

the temperature was decrease to 15 ºC (Batch name: “25-15”). In the control experiment, the 

bioreactor was inoculated and followed for ten days (Batch name: “Control”).  

 

2.4. Offline measurements 

Biomass concentration was assessed by measuring dry weight (DW) and cell concentration. Dry 

weight was measured in triplicates, as described by Kliphuis et al [17], and 0.5 M ammonium formate 

was used to remove the salts from the culture. Cell concentration and cell size distribution was 
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measured in duplicates, using Isotone II diluent to dilute the samples, in a Multisizer II (Beckman 

Counter) using a 50 µm aperture tube. 

Biomass volumetric production rate was calculated according to the following equation (Equation 

1), where DW(t) and DW(0) correspond to the dry weight measured for day t and day 0, respectively, 

and t is the time of the experiment (4 or 10 days): 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑜𝑟𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑔. 𝐿−1. 𝑑−1)) =
𝐷𝑊(𝑡) − 𝐷𝑊(0)

𝑡
 

Lipid composition of N. oceanica was measured during the entire period of the cultivation, before 

and after the point of stress induction by nitrogen starvation or temperature decrease. Biomass 

samples were centrifuged, washed with 0.5 M ammonium formate, and stored at -20 ºC until 

lyophilisation. Lipids were extracted, separated into triacylglycerol (TAG) and polar (PL) fractions, and 

quantified as reported by Breuer et al [18] and Leon-Saiki et al [19]. Briefly, 10 mg of lyophilized 

biomass was disrupted with a beat beater and lipids were extracted with chloroform:methanol (1:1.25, 

v:v) containing the internal standards for TAG and PL fractions, 170 µg.mL-1 of tripentadecanoin (9:0) 

and 170 µg.mL-1 of 1,2-dipentadecanoyl-sn-glycero-3-[phosphor-rac-(1-glycerol)] (sodium salt) (15:0) 

respectively. TAG and PL fatty acids were separated by different elution solvents, hexane:diethylether 

(7:1, v:v) and methanol:acetone:hexane (2:2:1, v:v) respectively, in a SPE silica gel column (Sep-Pak 

Vac 6cc, Waters). Both fractions were methylated and quantified by gas chromatography (GC-FID).  

The results are expressed in gEPA/gDW.  

Fluorescence spectroscopy excitation-emission matrices (EEMs) were measured in a Shimadzu 

RF-6000 spectrofluorophotometer with a cuvette. Each analysis takes around 5 minutes, where no 

cell sedimentation was observed. The spectra were acquired through an excitation wavelength range 

between 250 and 790 nm, with 5 nm steps, and emission wavelength range between 260 and 800 

nm, also in 5 nm steps. Excitation and emission monochromator slit widths were 3 nm, with a scan 

speed of 12000 nm/min.  

 

2.5. Chemometric models development 

The development of the chemometric models included three steps: 
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1) Spectra pre-treatment: water scatter peaks, like Rayleigh scatter of first and second order, can 

be a source of interference when aiming for a quantitative analysis using 2D fluorescence spectra. 

This wavelength-dependent scatter (peak emission ± 10 nm at each excitation wavelength) was 

removed with the use of an algorithm developed by Bahram et al [20], and replaced by interpolation 

of the surrounding data points. The program is available at www.models.kvl.dk.   

2) Principal Component Analysis: through PCA is possible to compress and reduce the 

information in the EEMs, with minimal loss of information, by dividing the initial data into n linear 

combinations that have to follow two main rules, be uncorrelated and be ordered according to the 

explained variance they captured. The first principal component (PC1) will capture maximum 

variance in a certain direction (axis); then PC2 will be orthogonal to PC1 and will capture less 

variance; and so on. In total, 73 fluorescence spectra were compressed into 20 PCs, capturing more 

than 99% of the variance. 

3) Projection to Latent Structures modelling: in order to correlate the fluorescence PCs (inputs) 

with the EPA concentration in TAG and PL fractions of N. oceanica (outputs), multivariate statistical 

modelling was used, namely PLS. In PLS modelling two sub data sets were created, one for training 

(calibration) the model, i.e. to build the function that better correlates the outputs with the inputs, and 

another for validation (prediction), to test the quality of the model to predict a new data set. Two 

validation approaches were studied, first using each batch at a time (batch-by-batch), and secondly 

using a random data set corresponding to 25 % of the total data. The cross validation (CV) of the 

models was performed with the remaining data, used for calibration (seven batches in the case of 

batch-by-batch validation, or random 75 % of all data). Shortly, several models were created using 

an independent set of data, selected by leave one out strategy (LOO) and repeatedly evaluating the 

errors of the models (RMSECV). Not all the PCs provided as inputs are required. Thus, to select the 

useful PCs for each model, an iterative stepwise elimination (ISE) was used [21]. To assess the 

quality of the models several parameters are evaluated, such as the variance captured (%), the root 

mean square error of cross-validation (RMSECV) and prediction (RMSEP), and the R2 and slopes 

of the validation and training sets.  
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All multivariate statistical analysis were performed using n-way toolbox for MATLAB - MathWorks® 

[22]. 

 

3. Results and Discussion 

In this work, the effect of several environmental conditions on the accumulation of EPA was studied 

in apolar (TAG) and polar (PL) fractions. The environmental conditions studied were light – continuous 

light (24 h) or day/night cycles (16 h : 8 h); temperature – low temperatures (15 and 20 ºC) and high 

temperatures (25 and 30 ºC); and nitrogen starvation. Samples were taken along the entire length of 

the experiments to measure fatty acid profile and obtain the EEMs.   

To evaluate the effect of different stress factors on EPA accumulation, the fatty acid profile of the 

culture was compared in the beginning of the “stress phase”, by nitrogen depletion or decrease of 

temperature, until the end of the batch, in a total of 4 days for 24 h light experiments, and 10 days for 

d/n cycle experiments. To monitor the evolution of the EPA during the experiments, models were 

performed with all the samples acquired through each batch, before and after the “stress phase”. This 

strategy enables a higher data set to be used to calibrate and validate the models and also captures 

the variability expected in these experiments, from inoculation until EPA production.  

 

3.1. Biomass concentration and cell size  

In the experiments where light was provided during 24 h (Figure 2A), no differences were found in 

the biomass concentration between cultivation at 20, 25 and 30 ºC after 4 days of nitrogen depletion. 

The biomass volumetric productivities were on average 0.9 gDW.L-1.d-1 for 20 and 30 ºC, and 1.0 gDW.L-

1.d-1 for 25 ºC. As expected, the biomass volumetric production rate was lower in the 15 ºC batch, 0.3 

gDW.L-1.d-1.  

In the d/n cycle experiments (Figure 2B), the biomass concentration shows a similar profile in all 

three experiments for the first 4 days. However, nitrogen depletion seems to have a negative effect 

on the final biomass concentration than decreasing the temperature from 25 to 15 ºC. The biomass 

volumetric production rates were on average 0.5, 0.8 and 0.9 gDW.L-1.d-1 for nitrogen starvation, 
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decrease in temperature and control experiment, respectively. In the decreased temperature and in 

the control experiments, no differences were found in the final biomass concentration.  

The environmental conditions imposed to the culture also had an influence on the cell size (Table 

1). For all experiments performed with 24 h of light and nitrogen depletion, it is possible to notice an 

increase in cell size. Nitrogen starvation is one of the strategies often used to increase the TAG 

concentration in microalgae cells, which is done in lipid bodies leading to an increased volume. Only 

in the experiment performed at 15 ºC (when the optimal growth temperature is around 25 ºC [23]) the 

final cell size was slightly lower than in the beginning of the starvation phase, indicating that the culture 

was probably already accumulating TAG when the nitrogen depletion was performed. This result can 

also explain why the biomass dry weight was higher in the beginning of the starvation phase of this 

experiment (d0) when compared with the other temperatures tested.  

In the d/n cycle experiments, when the temperature was decreased (from 25 to 15 ºC), the cell size 

increased in the first two days (to 3.5 µm), but immediately after that it decreased to 3.00 and remained 

stable until the end of the batch. Cell concentration was constant on the first four days, only increasing 

after that (data not shown). This increase in the cell size can be explained by the accumulation of fatty 

acids inside lipid bodies, as an acclimation to the decrease in temperature, and a consequent 

decrease in the growth rate. The cells of the control batch without starvation or any other stress factor, 

increased size gradually throughout the experiment, accompanied by an increase in cell 

concentration. The process of increasing the amount of membrane surface was reported before as 

an adaption to low light conditions, as the one observed in the control batch, in order to increase the 

photosynthetic capacity to capture more light [9].  

When comparing the two experiments with nitrogen depletion at 25 ºC and different light regimes, 

the same final cell size was achieved in the end of the experiments (d4 and d10), although the cell 

size increased faster for the culture exposed at 24 h of light as expected.  

 

3.2. EPA production 

Nitrogen starvation, a well-known methodology to induce lipid accumulation in microalgae lipid 

bodies, was performed at four different temperatures, 15, 20, 25 and 30 ºC (Figure 3A).  
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For lower temperatures (15 and 20 ºC) it is possible to notice a higher content of EPA in the TAG 

fraction in the beginning of the starvation (d0) than for higher temperatures (25 and 30 ºC). In fact, 

the EPA content in TAG fraction is inversely proportional to the temperature, i.e., higher contents were 

observed in lower temperatures, and vice-versa. This might be due to the combined effect of 

temperature and light per cell, since at lower temperatures the biomass productivity decreases, which 

means that the culture will take longer to multiply, so more light will be available per cell. As a result, 

TAG content was already higher before starting the nitrogen starvation phase. Yet, when comparing 

the EPA accumulation in the TAG fraction during the four days of nitrogen starvation (final content of 

EPA compared to the initial), higher temperatures led to higher TAG productivities. For 30 ºC, the 

EPA accumulated in the TAG fraction was 0.017 gEPA/gDW, 0.012 gEPA/gDW for 25 ºC, 0.007 gEPA/gDW 

for 20 ºC and 0.005 gEPA/gDW for 15 ºC. This effect of increase long chain FA accumulation with high 

temperatures was also noticed by Ӧrdӧg et al. in three Chlorella strains [24]. 

As studied before [9], nitrogen depletion leads to an increase of TAG content associated with a 

decrease in the PL fraction. One of the mechanisms proposed is the de novo synthesis of TAG by 

conversion of the membrane lipids, which consists mainly of PL. In this study it is possible to confirm 

that the increase observed in the TAG fraction was accompanied by a decrease in the PL fraction.  

The decrease in the temperature was reported to increase the EPA content in the cell membranes, 

especially during growing conditions [1,25]. Lipid accumulation occurs during the day period, while 

cell division occurs at night [26,27]. Aiming to increase the EPA content in the PL fraction of N. 

oceanica, a second set of experiments were performed, keeping the culture under d/n cycle: nitrogen 

depletion (N-starv), temperature decrease (from 25 to 15 ºC) and a control batch, where the algae 

were allowed to grow without any imposed stressed (Figure 3B). 

In the beginning of the experiments, N-starv and control batches started with a similar EPA content 

in the TAG fraction. Nevertheless, after ten days of nitrogen depletion media, the culture accumulated 

a large amount of EPA in the TAG fraction at the expense of the content in the PL fraction (Figure 3B, 

N-starv d0 and d10). These results confirm what was stated by other authors regarding the effect of 

nitrogen starvation [9,12,28]. The effect of lowering the temperature resulted in a slight increase of 

EPA in PL fraction, accompanied with a decrease in the TAG fraction (Figure 3B, 25-15º d0 and d10). 
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According to previous studies in Nannochloropsis salina, Phaeodactylum tricornutum and Chlorella 

sp. [3,29,30], temperature reduction increased the content of EPA and PUFA’s, due to the need of 

increasing membrane fluidity. However, these studies point to previous research [31] where the FA 

were analysed in total lipid profile of the whole cell, and no distinction was done between TAG or PL 

fractions. The highest content of EPA in the microalgae membranes (PL fraction) was achieved in the 

control batch, where the temperature was maintained at 25 ºC with d/n cycle (Figure 3B, d0 and d10). 

In this experiment, the EPA content in TAG fraction decreased after ten days from 0.005 g/gDW to 0 

g/gDW.  

 Although there is no difference on the final dry weight between the control experiment and the 

decreased temperature (Figure 2), the cell size may be the contribution for the higher content of the 

EPA in PL fraction in the control batch. A higher cell concentration was achieved (data not shown), 

meaning that less light was available per cell. To adapt to this environmental condition, the microalgae 

increase the plastid membrane intending to increase the photosynthetic apparatus, and consequently 

the EPA content in this fraction increases [9]. And, as mentioned before, a cell size increase was 

noticed in this experiment (Table 1). 

The experiments performed resulted in several scenarios in the accumulation of EPA by N. 

oceanica. Nitrogen depletion enables the accumulation of EPA in lipid bodies (TAG fraction) 

independently of the temperature, although higher temperatures led to higher accumulation. For 

nitrogen replete cultivation conditions, light played an essential role. Although the incident light was 

the same in all experiments, the biomass concentration of the control batch was higher, so the cells 

perceive lower light, and this led to an increase of EPA in PL fraction. Also, temperature decrease 

might slightly increase the EPA content in the PL fraction. When performing nitrogen depletion at 25 

ºC, a similar EPA final content in the biomass was reached for both 24h and d/n cycle batches, with 

the main difference being the time needed.  

 

 

3.3. EPA monitoring 
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The experiments in this study led to several responses in N. oceanica biomass regarding cell 

concentration, size and physiological state (from non-stressed green cells, to yellowish when TAG 

synthesis is induced). This variability in the cells originates fluorescence EEMs with different 

characteristics. Changes in the media composition, such as nitrate concentration, were also reported 

in other microalgae cultivations to originate a different fluorescence profile [32]. Also, the variability of 

EPA content that can be found in the two fractions of the cell, apolar (TAG) and polar (PL), increases 

the complexity of monitoring such product. Depending on the commercial destination of the lipid 

enriched biomass, having information about the content and location of the EPA in the cell can be 

extremely useful namely for its recovery. Thus, a tool that can distinguish the content of EPA in both 

fractions of N. oceanica cells, simultaneously, was developed.  

When aiming for industrialisation, a batch-by-batch validation approach seems logical, since the 

final model acquired with these experiments will then be validated with new data acquired from a new 

batch. However, the experiments of this work were thought to lead to a wider range of EPA 

concentrations, to be able to have broader range of scenarios. For that reason, some of the batches 

are not representative of a cultivation to produce EPA but were important to acquire concentration 

points in a lower or higher data ranges. Thus, a random data set was also used to create a general 

model, that would be more suitable for future use. 

The prediction models are represented in a graphic (Figures 3 and 4 for the TAG fraction; Figures 

5 and 6, for the PL fraction) where the observed values (y-axis) are plotted against the predicted 

values by the model (x-axis). Two parallel lines were added to each graphic corresponding to two 

times the standard deviation of all the experimental data acquired. Points represented outside these 

lines may be considered outlier observations. 

Model parameters including variance explained (%), root mean square error of cross-validation 

(RMSECV) and prediction (RMSEP), validation and training R2 and slopes, and the number of inputs 

selected, are shown in Tables 3 and 4 for TAG and PL fractions, respectively. The quality of a model 

can be described by a high explained variance, with coefficient of determination (R2) and slope near 

to 1. Lower values of root mean square errors are preferable, and the values between the cross-
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validation and prediction errors should be close, which means that both data sets (validation and 

training) are representative of all data variability.   

 

3.3.1. Prediction models for EPA in TAG fraction 

As mentioned before, the batches performed aimed to acquire a wide range of EPA concentration 

values. In Figure 4 it is possible to see that the experiments of d/n cycle (the validation data in the 

upper three graphics in Figure 4) show different data distribution. For instance, the decrease in 

temperature did not increase the EPA content in the TAG fraction. A similar distribution was observed 

in the control batch. For that reason, the EPA concentration range observed in these two batches is 

limited, meaning that when these batches are used for validation, the combination of R2 and slope of 

the validation set is low (Table 2). Also, for both models, a high number of inputs is necessary (16 for 

both models) to explain the variance captured (around 91 % for both models). For the experiment N-

starv, the validation set has four outliers (of a total of ten data points), experimental points represented 

above the line of two times the standard deviation of all data. This means that, without the data points 

of this batch to train the model, the prediction ability decreases (52.6 % of variance explained), 

together with a low R2 (0.26) for the validation set and with the highest root mean square errors (0.58 

and 0.69 % g/gDW for RMSECV and RMSEP, respectively).   

The models obtained using the experiments performed at 24 h of light and nitrogen starvation as 

validation data set were more consistent (Figure 4, four lower graphics). Nitrogen depletion is known 

to induce the TAG accumulation in the cells, giving a broad range of concentrations through each 

experiment. The variance captured by these models was above 80 %, with RMSECV ranging from 

0.32 to 0.41 % g/gDW and RMSEP between 0.26 and 0.31 % g/gDW (Table 2). The fact that the values 

of RMSECV and RMSEP are close reveals that the validation data set is representative of values of 

the training set.  

For the model using as validation set the experiment performed at 20 ºC, a lower R2 was found for 

both validation and training set (0.64 and 0.80, respectively). When using the batch performed at 30 

ºC as validation set, the training R2 was also lower (0.81). This can be explained by the fact that in 

both models only seven PCs were selected to build the model, and some outliers can be found in the 
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data distribution. Nevertheless, the remaining models, the R2 of the validation were above 0.81, and 

above 0.89 for the training set, revealing the robustness of the fluorescence spectroscopy as a 

technique to monitor EPA concentrations in TAG fractions of N. oceanica. 

 

A general model was built using 25 % of the total data as a validation set, randomly chosen, and 

the remaining 75 % as training set. As it can be seen in Figure 5, the validation set is widely spread 

through the entire concentration range of EPA found in the TAG fraction. Thirteen PCs, of twenty 

inputs given, were selected to explain 92.1 % of the variance captured by the model, which means 

that the fluorescence spectroscopy is a robust method for capturing the variability found in these 

experiments. The RMSEC and RMSEP were close (0.30 and 0.29, respectively) and both validation 

and training R2 and slopes were high (all above 0.87).  

The variability found in the quality of the models shows the importance of the calibration data set 

used. Not only it is important to provide as much data as possible, but also that data should be 

representative of the several scenarios that can be found. Overall, fluorescence spectroscopy proved 

to be a strong tool to monitor EPA concentration in the TAG fraction of N. oceanica. EPA is a fatty 

acid and therefore it is known for not being a natural fluorophore. Fluorescence spectroscopy was 

reported to be a scanning technique able to detect natural fluorophores, but also the interaction of 

those with the medium and other non-fluorophores components can provide information about the 

matrix constitution. For this reason, the monitoring of a non-fluorophore molecule like EPA, reveals 

the potential of this technique to monitor other lipid components.  

 

3.3.2. Prediction models for EPA in PL fraction 

In Figure 6 it is possible to see that the experiments of d/n cycle (the validation data in the upper 

three graphics) show different patterns. In the control batch, where the culture was allowed to grow 

at optimal conditions (25 ºC, d/n cycle), at a certain point the light became a limiting factor. It was 

shown in literature that decreasing light per cell increases EPA content, due to the increase of cell 

membranes [9]. This justifies the fact that EPA concentration was the highest in this batch. Decreasing 

the cultivation temperature was also reported to increase the unsaturated fatty acids in the PL fraction 
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of the algae, and it is possible to observe a high content of EPA in this experiment. However, and as 

reported for the models of EPA in TAG fraction, this means that using these data as validation set 

(meaning they are not used for calibration) is not a correct approach. Both models reach 89.5 % of 

variance explained, but there is a wide gap between RMSECV and RMSEP, and the combination 

between R2 and slope of the validation set was not ideal (Table 3). When using the N-starv batch as 

validation, six of the ten points used for validation are considered outliers. Also, while observed values 

of EPA content varied between 1 and 6 % g/ gDW, no prediction was performed above 4 % g/ gDW. As 

described previously in the model of the EPA in the TAG fraction, the quality of the model decreases 

when these data points are not used to build the prediction model. Although the variance explained 

was 93.1 %, the difference between RMSECV and RMSEP is the highest observed in these models, 

with the lowest validation R2 (0.01) and slope (0.21) (Table 3). 

In the models obtained for the batches performed at 24h light and nitrogen starvation, a wider 

range of EPA concentration was observed (Figure 6, four lower graphics). Except for the batch at 20 

ºC, the variance captured was above 85 %, with RMSECV ranging from 0.41 to 0.46 % g/gDW and 

RMSEP between 0.31 and 0.47 % g/gDW (Table 3). Using as validation set the data of the batch 

performed at 20 ºC, more outlier values were observed, and lower number of PCs were selected as 

inputs, resulting in a model with lower variance explained (67.4%), higher difference between 

RMSECV and RMSEP (0.6 and 0.29 % g/gDW, respectively) and the lowest R2 of the training data set 

(0.67) (Table 3).  

When using 25 % of random data as validation set (Figure 7), eleven of the twenty PCs were 

selected to explain 84.8 % of the variance and no outliers were observed. The quality of the model 

was high, with errors ranging between 0.37 and 0.49 % g/gDW (RMSECV and RMSEP, respectively). 

Both R2 of validation and training set were higher than 0.80 and slopes near 1.00. 

As mentioned previously, a suitable calibration data set should be selected in order to capture the 

entire concentration range of EPA in the PL fraction, and thus, build a model representative of the 

different scenarios that can be encountered. The ability of the fluorescence spectroscopy to monitor 

EPA concentration in the cell membrane of N. oceanica is of high importance for the industrial 

application of this microalgae in the food and feed industry. It was described that the fatty acids 
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present in the microalgae membrane are more bioavailable for fish metabolism [10]. Having a tool 

able to determine EPA concentration at real time, with a fast and non-invasive methodology, allow 

the monitoring of the process as well as stirring it in order to have the desire amount of EPA in the 

biomass, improving the cultivation efficiency and thus the economic gain of the overall process.  

 

4. Conclusions 

For the first time, fluorescence spectroscopy coupled with chemometric tools was used to monitor 

EPA in microalgae biomass.  

To enable the development of PLS prediction models, different environmental cultivation conditions 

were tested to induce different biological responses in the biomass profile and EPA accumulation. 

Stress factors, like nitrogen depletion and low light per cell, led to an increase in the cell size of N. 

oceanica. Nitrogen depletion led to an increase of EPA in the TAG fraction of the cells, while low light 

or decreased temperature lead to an increase of EPA in the PL fraction. 

Statistical modelling combined with fluorescence spectroscopy is a step forward in the real 

monitoring of complex biological systems like microalgae cultivation. In this work, prediction models 

were developed that enable the monitoring of EPA content in both TAG and PL fractions of the cell. 

Two validation strategies were studied, batch-by-batch and random 25% of the total data, to access 

the importance of the batch conditions in the prediction capability of the method. The models 

developed demonstrate the potential of using fluorescence spectroscopy as a monitor tool of non-

fluorophore molecules, such as EPA, revealing the potential of this technique to monitor lipid 

components. The use of such technology enables not only the possibility to monitor the cultivation 

system, but also of taking decisions at real time, empowering the optimisation of the cultivation of N. 

oceanica when aiming for EPA production. 
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Tables 

Table 1: Cell size (µm) of N. oceanica at the first day of the “stress phase”, and after 4 and 10 days. 
Experimental error inferior to 2.3% (calculated for duplicates of 23 samples) 

Batch Day 0 Day 4 Day 10 

15 3.08 2.98 - 

20 2.92 3.14 - 

25 2.88 3.08 - 

30 2.98 3.28 - 

N-starv 2.85 2.85 3.04 

25-15 3.10 3.30 3.00 

Control 2.79 3.05 3.34 
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Table 2: Statistical parameters of the prediction models of eicosapentaenoic acid (EPA) content (% g/gDW) 
in triacylglycerols (TAG) fraction of N. oceanica. Total number of observations used: 73 

 
Var RMSECV RMSEP Validation Training Nr of 

inputs (%) %g/g DW R2 Slope R2 Slope 

N-starv (nval=10) 93.1 0.29 1.55 0.01 0.21 0.93 1.00 16 

25-15 (nval=11) 89.5 0.42 0.21 0.78 0.53 0.89 1.00 14 

Control (nval=9) 89.5 0.46 0.21 0.49 0.69 0.89 1.00 17 

15 (nval=10) 85.9 0.46 0.31 0.68 1.23 0.86 1.00 11 

20 (nval=9) 67.4 0.62 0.29 0.79 0.92 0.67 1.00 5 

25 (nval=7) 89.9 0.42 0.47 0.74 0.99 0.90 1.00 14 

30 (nval=7) 89.6 0.41 0.31 0.93 0.77 0.90 1.00 15 

Var – variance captured by the model; 
RMSECV – root mean square error of cross-validation; 
RMSEP – root mean square error of prediction; 
nval – number of observations used for validation. 
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Table 3: Statistical parameters of the prediction models of eicosapentaenoic acid (EPA) content (% g/gDW) in 

the polar (PL) fraction of N. oceanica. Total number of observations used: 73 

Var – variance captured by the model; 
RMSECV – root mean square error of cross-validation; 
RMSEP – root mean square error of prediction; 
nval – number of observations used for validation. 

 

 

 

 

 

 

 

 

  

 
Var RMSECV RMSEP Validation Training 

# Inputs 
(%) % g/gDW R2 Slope R2 Slope 

N-starv (nval=10) 93.1 0.29 1.55 0.01 0.21 0.93 1.00 16 

25-15 (nval=11) 89.5 0.42 0.21 0.78 0.53 0.89 1.00 14 

Control (nval=9) 89.5 0.46 0.21 0.49 0.69 0.89 1.00 17 

15 (nval=10) 85.9 0.46 0.31 0.68 1.23 0.86 1.00 11 

20 (nval=9) 67.4 0.62 0.29 0.79 0.92 0.67 1.00 5 

25 (nval=7) 89.9 0.42 0.47 0.74 0.99 0.90 1.00 14 

30 (nval=7) 89.6 0.41 0.31 0.93 0.77 0.90 1.00 15 
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Figure 1: Photobioreactor operating conditions; environmental conditions tested. N-starv: nitrogen depletion. 
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Figure 2: Average biomass concentration and respective standard deviation bars (n=3), expressed as dry 
weight, (DW in g/L), measured over time, from the moment of stress induction. A) For 24h of light and nitrogen 
starvation, comparison between different temperatures: 15 (circles), 20 (squares), 25 (triangles) and 30 ºC 
(diamonds); B) For day/night cycle (16/8), comparison between nitrogen starvation (N-starv, triangles), 
decrease of temperature from 25 to 15 ºC (25-15º, circles) and a control experiment (no starvation and no 
decrease of temperature, squares) 
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Figure 3: EPA (eicosapentaenoic acid) content expressed per dry weight of biomass (g EPA/g DW) in the 
triacylglycerols (TAG, dark grey) and polar lipids (PL, light grey) fractions. Error bars calculated as standard 
deviations (n=2). A) For 24h of light and nitrogen starvation, comparison between different temperatures: 15, 
20, 25 and 30 ºC. B) For day/night cycle (16/8), comparison between nitrogen starvation (N-starv), decrease of 
temperature from 25 to 15 ºC (25-15) and a control experiment (no starvation and no decrease of temperature) 
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Figure 4: Prediction models of eicosapentaenoic acid (EPA) content in triacylglycerols (TAG) fraction of N. 
oceanica. Predicted values (x-axis) are plotted against observed values (y-axis). Training (●) and validation (▲) 
data are represented in percentage of grams of EPA per grams of biomass dry weight (% g/gDW). Total number 
of observations used for each model 73 
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Figure 5: Prediction model of eicosapentaenoic acid (EPA) content in triacylglycerols (TAG) fraction (total 
number of observations 73) using 75 % of the data for training (●) and 25 % for validation (▲), represented in 
percentage of grams of EPA per grams of dry weight (% g/gDW). Model performance parameters: variance 
captured (Variance); root mean square error of cross-validation (RMSECV); root mean square error of prediction 
(RMSEP); coefficients of determination (R2) and slopes of linear regression between observed and predicted 
data obtained respectively for the training and validation data sets; total number of inputs used by the model (# 
inputs) 
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Figure 6: Prediction models of eicosapentaenoic acid (EPA) content in polar lipids (PL) fraction of N. oceanica. 
Predicted values (x-axis) are plotted against observed values (y-axis). Training (●) and validation (▲) data are 
represented in percentage of grams of EPA per grams of biomass dry weight (% g/gDW). Total number of 
observations used for each model 73 
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Figure 7: Prediction model of eicosapentaenoic acid (EPA) content in polar lipids (PL) fraction (total number 
of observations 73) using 75 % of the data for training (●) and 25 % for validation (▲), represented in percentage 
of grams of EPA per grams of dry weight (% g/gDW). Model performance parameters: variance captured 
(Variance); root mean square error of cross-validation (RMSECV); root mean square error of prediction 
(RMSEP); coefficients of determination (R2) and slopes of linear regression between observed and predicted 
data obtained respectively for the training and validation data sets; total number of inputs used by the model (# 
inputs) 

 

 


