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Cancer stem cells (CSCs) have recently raised great interest as a promising biological system for designing effective cancer therapies.
The scarcity of CSCs in vivo and the consequent low numbers obtained from biopsies represent a major hurdle to the development
of such strategies. It is therefore necessary to design robust scalable methods to enable efficient expansion of bona fide CSCs in vitro.
Here, we evaluated the applicability of computer-controlled bioreactors combined with 3D aggregate culture and microcarrier
technology, widely used in stem cell bioprocessing, for the expansion and enrichment of CSCs isolated from different types of
solid tumors—colorectal cancer (CRC) and non-small-cell lung cancer (NSCLC) from two patients. Results show that these
culture strategies improved cell expansion and CSC enrichment. Both patient-derived CSC lines were able to grow on
microcarriers, the best results being achieved for PPlus 102-L, Pro-F 102-L, Fact 102-L, and CGEN 102-L beads (5-fold and
40-fold increase in total cell concentration for CRC and NSCLC cells, respectively, in 6 days). As for 3D aggregate culture
strategy, the cell proliferation profile was donor dependent. NSCLC cells were the only cells able to form aggregates and
proliferate, and the flat-bottom bioreactor vessel equipped with a trapezoid-shaped paddle impeller was the most efficient
configuration for cell growth (21-fold increase in cell concentration achieved in 8 days). Serum-free medium promotes CSC
enrichment in both 3D aggregate and microcarrier cultures. The protocols developed herein for CSC expansion have the
potential to be transferred to clinical and industrial settings, providing key insights to guide bioprocess design towards the
production of enriched CSC cultures in higher quantity and improved quality.

1. Introduction

Cancer stem cells (CSCs) represent a promising target for
effective anticancer therapies [1, 2] as these immortal
tumor-initiating cells have the capacity to self-renew and dif-
ferentiate into the spectrum of cell types observed in tumors
[3–5]. Due to their characteristics (enhanced motility, inva-
sion, tumor-initiating ability, and resistance to chemother-
apy), CSCs are thought to be the basis for tumor initiation,

development, metastasis, and recurrence, thus contributing
to the failure of conventional cancer treatments [6, 7].

It has been reported that CSCs exist within almost every
solid tumor [5, 6] at a very small number (<0.04%) [4]. Dif-
ficulties in identifying these cells, their reduced number,
and the lack of protocols for efficient CSC expansion and
enrichment have hindered the development of effective
CSC-targeted therapies. The use of stirred culture systems,
previously applied to the (i) expansion and differentiation
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of human stem cells [8–11] and ii) cultivation of (primary)
cancer cells [12–14], can offer great advantages for CSC
expansion over static culture systems [15–18], including
higher cell production yields, reproducibility, scalability,
and easy transfer to clinic and industry [19].

In this work, computer-controlled stirred tank bioreac-
tors combined with 3D cell aggregate cultures as well as
microcarrier technology were applied for the first time to
expand and enrich CSCs from two different patient-derived
cell lines—non-small-cell lung cancer (NSCLC) and colo-
rectal cancer (CRC). The findings reported herein provide
novel knowledge to guide cell bioprocess design towards
the production of CSC in higher quantity and improved
quality, which are key requisites for their application in
drug discovery and in the development of new cancer
therapeutics.

2. Material and Methods

2.1. Cell Source. CSC lines were established in Merck Bio-
pharma, ImmunoOncology, following a proprietary proto-
col. Tumor cells were derived from lung and colorectal
cancer patients and purchased from Indivumed (Hamburg,
Germany). Classification of the tumors was large-cell carci-
noma, NOS, and colorectal carcinoma. CSC lines (CRC and
NSCLC) were routinely propagated in collagen I-coated
T-flasks as described in supplemental online data.

2.2. Culture of CSC Lines as Aggregates in Stirred Tank
Bioreactors. CSC lines were inoculated as single cells in
computer-controlled stirred tank bioreactors at a concen-
tration of 0.25× 106 cell/mL and cultured during 8 days
in two different bioreactor configurations—round-bottom
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Figure 1: Effect of bioreactor configuration and culture medium composition on the expansion of NSCLC cells. Cells were inoculated at
0.25× 106 cells/mL and cultured in a round-bottom bioreactor vessel equipped with a pitched 4-bladde impeller (BR-R/P4b) or in a
flat-bottom bioreactor vessel equipped with a trapezoid-shaped paddle impeller (BR-F/T) using serum-containing medium (SCM) and
serum-free medium (SFM). (a) Fluorescence microscopy images of NSCLC cultures at days 1, 4, and 8 of the three bioreactor experiments.
Viability analysis of cultures stained with fluorescein diacetate (FDA—live cells, green) and propidium iodide (PI—dead cells, red). Scale
bars: 100 μm. (b) Growth curve expressed in terms of cell number per volume of medium (determined by crystal violet nuclei stain assay;
error bars denote SD of 3 measurements). (c) Aggregate size (average diameters of aggregates were determined by ImageJ software; error
bars denote SD of measurements from 100 aggregates). (d) Flow cytometry analysis of NSCLC culture in bioreactors and in monolayer
static systems: percentage of ALDH+ cells at day 8 of culture. The left panel shows the dot blot of ALDEFLUOR™ assay with an inhibitor
(DEAB), and the right panel shows the dot blot without an inhibitor. The ALDH+ cell population is identified in green. (e) Fold increase in
ALDH+ cells obtained at day 8 of culture in bioreactors and monolayer static culture systems in relation to the inoculum population.
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bioreactor vessel equipped with a pitched 4-bladde impeller
(BR-R/P4b) and flat-bottom bioreactor vessel equipped
with a trapezoid-shaped paddle impeller (BR-F/T) (DASGIP
CellFerm-Pro bioreactor system, Eppendorf AG). Two culture
medium formulations (serum-containing medium (SCM)
and serum-free medium (SFM)) and four cell aggregate

dissociation protocols were tested (more information avail-
able in the supplemental online data).

2.3. Culture of CSCs on Microcarriers. CSC lines were inocu-
lated as single cells with empty microcarriers (2.0× 104
cell/cm2) in ultra-low-attachment plates and cultured for 6
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Figure 2: Results from harvesting studies of NSCLC cell aggregates cultured in stirred tank bioreactors. Cells were cultured in BR-F/T using
serum-free medium (SFM) and harvested at days 4 and 8 of culture using different cell dissociation protocols, namely, Standard protocol,
Accutase+Collagenase III+DNase I (A+C+D), Trypsin 0.05%, and TrypLE Select. (a) Percentage of viable cells recovered after each dissociation
protocol. Values were estimated by the Xt/Xti ratio, where Xt is the number of total cells recovered after dissociation protocol (determined by
trypan blue exclusion assay) and Xti is the number of total cells harvested from the bioreactor (determined by crystal violet nucleic stain assay)
(error bars denote SD of 2 measurements). (b) Flow cytometry analysis of NSCLC culture after cell aggregate dissociation by A+C+D, trypsin
0.05, and TrypLE Select protocols: percentage of ALDH+ cells recovered at days 4 and 8 of culture. The left panel shows the dot blot of
ALDEFLUOR™ assay with an inhibitor (DEAB), and the right panel shows the dot blot without an inhibitor. The ALDH+ cell population is
identified in green. (c) Readhesion and expansion capacity of NSCLC cells harvested at days 4 and 8 using different dissociation protocols.
Cells were dissociated and plated in collagen I-coated flasks and cultured for 4 days in static culture conditions using serum-containing
medium. Left panel: fold increase in total cell concentration (estimated by crystal violet nucleic stain assay; error bars denote SD of 2
measurements). Right panel: percentage of ALDH+ cells determined after 4 days of culture (error bars denote SD of 2 measurements). (d)
Number of tumor spheres per well generated by NSCLC cells derived from the inoculum and harvested from bioreactor culture at days 4
(left panel) and 8 (right panel) using different dissociation protocols. The number of tumor spheres was estimated up to five passages. Error bars
denote SD of measurements from 4 wells. Statistical significance is indicated as follows: ∗p < 0 05, ∗∗p < 0 01, and ∗∗∗p < 0 001.
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days at 37°C in a humidified atmosphere of 5% CO2 using
SCM or SFM. Eight commercially available microcarriers were
tested: Cytodex1™, Cytodex3™, PPlus 102-L, Pro-F 102-L,
Fact 102-L, CGEN 102-L, Cytopore2™, and CultiSpher®-S as
described in the supplemental online data.

2.4. Analytical Methods. Protocols for CSC characterization
are included in the supplemental online data.

3. Results and Discussion

Primary CSC lines generated from colorectal cancer (CRC)
and non-small-cell lung cancer (NSCLC) from two patients,
when routinely cultured in static adherent culture systems,
show percentage of ALDH+ cells higher than 50% and have
the capacity to generate tumor spheres (SFUs) (data not
shown). For their expansion, different bioreactor configura-
tions and aggregate dissociation protocols were evaluated.
In addition, microcarrier-based cultures were investigated;
eight different microcarriers (selection made based on previ-
ous works performed with human stem cells [10, 11], supple-
mental online Table S1) were screened for CRC and NSCLC
cell expansion. The impact of culture medium composition
(serum-containing medium (SCM) and serum-free medium
(SFM)) on the cell expansion ratio and CSC enrichment
was also evaluated.

NSCLC cells were able to grow as aggregates in
computer-controlled stirred tank bioreactors independently
of the medium used (SCM or SFM) (Figures 1(a) and 1(b)).
Importantly, cell growth kinetics (Figure 1(b)) and aggregate
size (Figure 1(c)) seem to be driven by hydrodynamics, eval-
uated through the use of different vessel designs and impeller
geometries (see Material andMethods). BR-F/T was the most
efficient configuration as it allowed (i) cell growth as spheri-
cal aggregates of uniform size (Figures 1(a) and 1(c)) and (ii) a
21-fold increase in cell concentration after day 8 (Figure 1(b)).
The maximum cell concentration (Figure 1(b)) and cell
expansion factors achieved in our study are within the range
of values reported by our group [10] and others [20–22] for
the expansion of human pluripotent stem cells as 3D aggre-
gates in bioreactors. The small variations observed in the cell
growth profile may reflect the distinct cell types and the

different culture conditions used in those studies, such as
the culture medium formulation and feeding strategy. Lower
cell concentrations were obtained in BR-R/P4b configuration;
the cell growth arrest observed for this bioreactor at day 4
might be related to oxygen diffusion limitations within the
aggregate as suggested by the high heterogeneity and size of
aggregates analyzed (Figure 1(c)), and the values reported
to exhibit hypoxia regions (diameter > 400 μm) [23]. Note-
worthy, aggregates cultured in BR-F/T presented the highest
percentage of ALDH+ cells (>70%) (Figure 1(d)). Culture
medium composition impacts on CSC enrichment. Indeed,
a 1.2-fold increase in ALDH+ cells relative to inoculum
was observed in SFM (BR-F/T; SFM), contrasting to SCM
cultures where no increase was attained (BR-F/T; SCM)
(Figure 1(e)).

Aggregates were harvested at two time points, days 4
and 8, and the impact of different aggregate dissociation
protocols on the ability of NSCLC cells to readhere to col-
lagen I-coated flasks and to form tumor spheres was inves-
tigated (Figure 2). Results indicate that recovery yields of
viable cells (7-15%) (Figure 2(a)) and ALDH+ subpopula-
tions (74-83%) (Figures 1(d) and 2(b)) are independent of
the protocol used. Nonetheless, A+C+D and Trypsin 0.05
were the enzymatic solutions best suited for dissociation
of NSCLC cell aggregates. Both protocols improved cell
readhesion and expansion capacity (up to 2-fold) and
enhanced cells’ ability to generate tumor spheres when
compared to the standard protocol for the two harvesting
days (Figures 2(c) and 2(d)). In contrast, TrypLE Select
showed lower percentage of ALDH+ subpopulation than
A+C+D and Trypsin 0.05 (Figure 2(c)), and the ability to
generate tumor spheres was negligible (data not shown).
The evaluation of other digestion reagents such as those
recently reported for the isolation of human glioma stem cells
[24] may be considered in the future to improve cell recovery
yields from NSCLC cell aggregates.

When NSCLC cells were cultured in microcarriers,
higher expansion ratios (up to 48) were obtained in less
culture time (6 days) when compared to aggregate culture
in bioreactors, the exception being Cytopore2™ beads
(Table 1). In addition, cells efficiently attach and grow on
microcarriers using both SCM and SFM (Figures 3(a) and

Table 1: Effect of the microcarrier type on CRC (colorectal cancer) and NSCLC (non-small-cell lung cancer) cell growth using
serum-containing medium.

Microcarrier type Cytodex1™ PPlus 102-L Fact 102-L Cytodex3™ CGEN 102-L Pro-F 102-L Cytopore2™ CultiSpher®-S

CSC line CRC

Xinoc (×104 cell/cm2) 2.0

X6d (×104 cell/cm2) 2 9 ± 0 5 6 6 ± 0 3 6 0 ± 0 1 2 9 ± 0 4 7 3 ± 1 5 8 8 ± 0 2 1 9 ± 0 1 1 5 ± 0 2
Expansion ratio∗ 1 4 ± 0 3 3 3 ± 0 1 3 0 ± 0 1 1 5 ± 0 2 3 6 ± 0 8 4 4 ± 0 1 1 0 ± 0 1 0 8 ± 0 1
CSC line NSCLC

Xinoc (×104 cell/cm2) 2.0

X6d (×104 cell/cm2) 95 8 ± 19 2 66 7 ± 1 4 89 6 ± 5 9 62 0 ± 18 4 85 4 ± 8 8 77 1 ± 3 0 31 8 ± 0 7 66 1 ± 0 7
Expansion ratio∗ 47 9 ± 9 6 33 3 ± 0 7 44 8 ± 2 9 31 0 ± 9 2 42 7 ± 4 4 38 5 ± 1 5 15 9 ± 0 4 33 1 ± 0 4
∗Fold increase in total cell concentration attained at day 6 of culture determined by the ratio between cell concentration achieved at day 6 (X6d) and cell
concentration used at inoculum (Xinoc), respectively.
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Figure 3: NSCLC and CRC cell culture in four different microcarriers: PPlus 102-L, Pro-F 102-L, Fact 102-L, and CGEN 102-L. Cells were
inoculated at 0.2× 104 cell/cm2 and cultured for 6 days under static culture systems using two different culture media: serum-containing
medium (SCM) and serum-free medium (SFM). (a) Fold increase in NSCLC (upper panel) and CRC (lower panel) cell concentration at
day 6 of culture on microcarriers using both culture media. Total cell concentration was determined by crystal violet nucleic stain assay.
(b) Phase-contrast and fluorescence microscopy images of NSCLC and CRC cells cultured on PPlus 102-L microcarriers. Viability analysis
of cultures stained with fluorescein diacetate (FDA—live cells, green) and propidium iodide (PI—dead cells, red). Scale bars: 100μm. (c)
Flow cytometry analysis of NSCLC and CRC cell population at inoculum and after 6 days of culture in microcarriers using serum-free
medium. The left panel shows the dot blot of ALDEFLUOR™ assay with an inhibitor (DEAB), and the right panel shows the dot blot
without an inhibitor. The ALDH+ cell population is identified in green.
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3(b)). The use of SFM did not compromise ALDH activity of
NSCLC cells (percentage of ALDH+ cells obtained at day 6 is
similar to that of the inoculum) (Figure 3(c)).

Microcarrier-based culture was also suitable for the
expansion of CRC cells, and the highest increase in cell con-
centration (>3-fold) was observed for PPlus 102-L, Fact
102-L, CGEN 102, and Pro-F 102-L beads (Table 1). The
culture medium seems to have a negligible impact on the
expansion ratio and microcarrier colonization (Figures 3(a)
and 3(b)). In particular, higher percentages of ALDH+ sub-
populations in relation to the inoculum were observed for
cultures using SFM (Figure 3(c)). The two macroporous
microcarriers evaluated (CultiSpher®-S and Cytopore2™)
did not support CRC cell expansion. Although initial cell
attachment to the bead surface was observed, cell prolifera-
tion inside microcarriers did not occur (supplemental online
Figure S1, Table 1). In addition, these patient-derived CSC
lines did not proliferate when cultured as aggregates in
computer-controlled stirred tank bioreactors, showing low
aggregation and expansion capacity regardless of the
different media and inoculum concentrations (0.1, 0.25,
and 0.4× 106 cells/mL) tested (supplemental online
Figure S2). The differences in aggregation and growth
observed between NSCLC and CRC cells may be related to
the distinct sources (tissues and patients) from which the
cells were derived. Alternative/complementary approaches
(e.g., cell microencapsulation in hydrogels as reported for
human cancer cell lines [13, 14]) might be considered in
the future for the scalable expansion of CRC cells.

4. Conclusion

This work describes, for the first time, the successful applica-
tion of computer-controlled stirred tank bioreactors com-
bined with 3D aggregate cultures as well as microcarrier
technology to expand and enrich human CSCs. Despite the
fact that there is no universal culture strategy capable of
embracing different types/patient-derived CSCs, the proto-
cols developed herein for CSC expansion can be easily
screened prior to their transfer to clinical and industrial set-
tings. This study also provides key insights to guide biopro-
cess design towards scalable production of patient-derived
CSCs with improved quality. This will potentiate their appli-
cation in drug discovery and for the development of new can-
cer therapeutics.
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Supplementary Materials

Figure S1: Phase-contrast and fluorescence microscopy
images of CRC cells cultured on macroporous microcarriers,
Cytopore2™ and CultiSpher®-S, at days 1, 4, and 6. Viability
analysis of cultures stained with fluorescein diacetate
(FDA—live cells, green) and propidium iodide (PI—dead
cells, red). Scale bars: 100μm. Figure S2: Fluorescence
microscopy images of CRC cultures at day 4 on BR-F/T
using culture medium with serum (a) and serum-free
medium (b). Viability analysis of cultures stained with fluo-
rescein diacetate (FDA—live cells, green) and propidium
iodide (PI—dead cells, red). Scale bars: 100μm. Figure S3:
Representative image of the ImageJ mask for aggregate size
distribution analysis. Table S1: Main characteristics of micro-
carriers tested. Classification of microcarrier type was indi-
cated according to Chen et al. [11]. ECM: extracellular
matrix. (Supplementary Materials)
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