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UMA ABORDAGEM SIG PARA O PLANEJAMENTO SUSTENTÁVEL 
DA PECUÁRIA A PARTIR DA ANÁLISE DA DINÂMICA DO 

CARBONO 
 

Estudo de caso de uma fazenda pecuarista na  
Serra da Mantiqueira (Brasil)  

 

RESUMO 

A avaliação da dinâmica do carbono como indicador de serviços ecossistêmicos de 

regulação climática, através da modelagem de diferentes cenários sobre mudanças de 

uso e cobertura do solo (LULC), é amplamente utilizada em estudos de conservação 

ambiental para apoiar processos decisórios atrelados a políticas públicas. Todavia, são 

raros os estudos em escala local que analisam a relação de impacto e custo-benefício 

da simulação de cenários agrícolas sustentáveis na prestação de serviços 

ecossistêmicos. Neste trabalho, realizamos a quantificação, a avaliação econômica e o 

mapeamento da captura e do estoque de carbono de cenários LULC passados (2007-

2017) e futuros (2027), em uma fazenda pecuarista da Serra da Mantiqueira, para 

entender como diferentes mudanças de paisagens podem impactar o serviço de 

regulação climática e contribuir economicamente com o setor agrícola. Sob uma 

abordagem SIG, empregamos técnicas de detecção remota, para elaborar os mapas 

LULC, ferramentas de modelagem Integrated Valuation of Ecosystem Services and 

Tradeoffs (InVEST), para a construção dos cenários futuros e para avaliação das 

dinâmicas de carbono, e ferramentas de modelagem da família Sis para simular a 

produção resultante do manejo florestal. Todos os cenários avaliados promoveram o 

aumento da captura e do estoque de carbono na área de estudo, assim como 

revelaram oportunidades econômicas rentáveis associadas à sua implementação. A 

introdução de árvores de eucalipto no sistema de produção agropecuário é uma 

alternativa interessante para a diversificação e aumento de renda, contribuindo para o 

equilíbrio dos gases de efeito estufa (GEE) da atividade pecuária e agregando valor à 

produção. Esses resultados são úteis para apoiar o planejamento e o desenvolvimento 

de políticas de conservação ambiental e de produção agrícola sustentável.  
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A GIS APPROACH TO SUSTAINABLE LIVESTOCK PLANNING 
FROM CARBON DYNAMICS ANALYSIS  

 
A case study of a cattle ranch in Serra da Mantiqueira (Brazil) 

 
ABSTRACT 

The assessment of carbon dynamics as indicator of climate-regulation ecosystem 

services (ES) through the modeling of different scenarios on land use and land cover 

(LULC) changes is widely used in environmental conservation studies to support the 

decision-making process regarding public policies. However, studies at local scales that 

address the subject under the farm property perspective, through impact and cost-

benefit analyses of simulated sustainable farming scenarios on the provision of 

ecosystem services, are rare or nonexistent. In this paper, we performed the 

quantification, valuation and mapping of carbon capture and storage of past (2007-

2017) and future LULC (2027) sustainable scenarios in a cattle ranch of Serra da 

Mantiqueira to understand how different LULC change scenarios may affect the 

provision of ES and contribute to economic opportunities to the farming sector. Under 

a GIS-approach, we used remote sensing techniques to LULC mapping, Integrated 

Valuation of Ecosystem Services and Tradeoffs (InVEST) model for scenario building, 

carbon assessment and valuation, as well as Sis family software modeling for forest 

management production. All the sustainable scenarios contributed to the increase of 

carbon capture and storage in the study area, in addition to showing profitable 

economic opportunities arising from their implementation. The introduction of 

eucalyptus trees in livestock and agricultural production systems is an interesting 

alternative for diversification and income increase, contributing to the balance of 

greenhouse gases (GHG) from livestock activity and adding value to production. These 

results are useful to support the development and planning for both environmental 

conservation policies and sustainable farming production. 
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1 INTRODUCTION 

According to the recent report published by Food and Agriculture Organization of the 

United Nations (FAO), the gains made in ending hunger and malnutrition are being lost 

through climate variability and exposure to more complex, frequent and intense 

climatic extremes (FAO, IFAD, Unicef, WFP, 2018). Thus, it is imperative to accelerate 

and increase actions to strengthen the resilience and adaptability of food systems to 

achieve the goal of a planet without hunger and malnutrition by 2030 (FAO, IFAD, 

Unicef, WFP, 2018). One of these actions is limiting global temperature rise to 1.5 

Celsius degrees, instead of 2.0 degrees (UNFCCC, 2016). Data from the Global Forest 

Watch (GFW) project, coordinated by the NGO World Resources Institute (WRI) with 

the University of Maryland, USA, reinforce the importance of land use and land cover 

in this context and show that preserving green areas could represent up to 30% of the 

solution to problems related to climate change (GFW, 2018). The latest report 

published by the Intergovernmental Panel on Climate Change (IPCC) shows that, with 

some effort, it is possible to contain the rise in temperature to 1.5 degrees Celsius 

(IPCC, 2018). This implies promoting severe reductions in gas emissions from all 

sectors. In this regard, changes related to land use and land cover (LULC) represent 

major challenges for the sustainable management of its various applications, such as 

carbon storage and sequestration (IPCC, 2018).  

The ability to reduce carbon emissions and increase carbon sequestration are key 

factors in controlling the largescale impacts of man-made processes such as climate 

change and their effects on other ecosystem services (IPCC, 2014). Carbon storage and 

carbon sequestration are indicators of ecosystem services used to measure productive 

responsiveness and ecological resilience to changes in terrestrial ecosystems (Hicks et 

al., 2014; Teillard et al., 2016). Both are often used in studies as indicators in the 

spatial assessment of ecosystem services, i.e. climate regulation (de Groot et al., 2010; 

Maes et al., 2016; Vargas et al., 2019). Consequently, carbon has been the focus of 

numerous strategies which include cap-and-trade schemes, carbon taxation and 

payments for environmental services (PES) (Castro et al., 2018; Zammit, 2013).  
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According to Ezzine-de-Blas et al. (2016), PES have become an increasingly popular 

conservation incentive tool and they are being implemented on multiple geographical 

scales around the world. The PES central idea is that external environmental services 

beneficiaries make direct, contractual and conditional payments to local landowners 

and users in exchange for the adoption of practices to ensure the conservation and 

restoration of the ecosystem (Wunder, 2005). Among the different types of 

environmental services in evidence, the storage and sequestration of carbon is one of 

the types that currently stand out for showing remarkable commercial scale (Wunder, 

2005). Several successful PES programs based on carbon have been established around 

the world, such as in Brazil (Börner et al., 2017; Castro et al., 2018; Matzdorf et al., 

2014; Pagiola et al., 2013; Zammit, 2013). Due to its voluntary and directly measurable 

character (e.g. additional tons of carbon stored), which means a clear and objective 

scope of what is being bought, PES can be considered an alternative and an economic 

incentive for landowners in favor of the desired land use (Wunder, 2005). 

The quantification, mapping and evaluation of ecosystem services are of great interest 

to environmental policy and land use planning (Parron et al., 2015a). They can be 

implemented through a spatially explicit manner, which is an approach widely 

disseminated in the scientific literature (Maes, Joachim; Hauck, Jennifer; Paracchini, 

2012; Nelson et al., 2009; Serna-Chavez et al., 2014). To support these practices there 

are some tools available for general use that provide economic-ecological modeling, 

facilitating spatially explicit assessment (Jackson et al., 2017; Pakzad et al., 2015). 

These tools, such as ARIES - Artificial Intelligence for Ecosystem Services (Villa et al., 

2014), InVEST - Integrated Valuation of Ecosystem Services and Tradeoffs (Sharp et al., 

2016) and LUCI - Land Utilization and Capability Indicator (Jackson et al., 2013), 

perform an important role by providing information about ecosystem services, through 

the integration of spatially explicit indicators in the assessment. They also support 

landowners’ decision making by providing resources to the analysis of potential 

impacts of future land use change scenarios (de Groot et al., 2010). The most common 

approach to map and model the supply of ecosystem services, such as climate 

regulation, has been the quantification of carbon stocks associated with soil and 
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vegetation pools, and their behavior over time and space due to changes in LULC. 

(Jackson et al., 2017; Nelson et al., 2009; Pakzad et al., 2015; Parron et al., 2015a; 

Pavani et al., 2018; Zhang et al., 2017). 

LULC are important factors that affect the delivery of ecosystem services (Parron et al., 

2015a). LULC changes (LULCC) occur more rapidly in the tropics, where an imbalance 

between deforestation and secondary forest regrowth has significant consequences 

for the global carbon cycle (Hansen et al., 2013). In the last decade, around 30 percent 

of the Earth’s land surface was dedicated to livestock production through pastures (≈ 

25%) and feed crops (≈ 5%) (Monfreda et al., 2008; Ramankutty et al., 2008). A recent 

report has shown that Brazil led the deforestation rates among tropical countries in 

2014 and released, approximately, 1.6 Gt (gigatons) CO2e (carbon dioxide equivalent) 

to the atmosphere, mostly due to land use change caused by the cutoff of native 

forests and their replacement by pastures (Gurgel and Costa, 2015). Facing a scenario 

where dietary changes in emerging countries have been significantly increasing global 

demand for animal products, improving production while limiting its negative impacts 

on biodiversity becomes a challenge to the livestock sector (Teillard et al., 2016).  

However, it is complicated to isolate and to quantify the impact of livestock-related 

greenhouse gases (GHG) emissions on biodiversity (Teillard et al., 2016). Livestock can 

also have a positive effect on biodiversity in the face of climate change (Klein et al., 

2004). A growing number of studies show that sustainable initiatives like reforestation 

(Campanha, Mônica Matoso; da Costa, Thomaz Correa e Castro; Neto, 2017; Jandl et 

al., 2006; Oliveira et al., 2008); implementation of agroforestry systems (Amézquita et 

al., 2005; Jandl et al., 2006; Pandey, 2002); the introduction of urochloa (brachiaria) 

pastures (Amézquita et al., 2005; Rosendo and Rosa, 2012; Segnini and Milori, 2007); 

and the recovery of degraded pastures (Amézquita et al., 2005; Segnini et al., 2019; 

Seó et al., 2017) can mitigate the negative effects of livestock production and even 

represent an opportunity to the provision of ecosystem services. The effective 

transformation of this scientific evidence into public policy, or into public information 

to subsidize a proper and sustainable land use planning, can help identify and 
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implement carbon sequestration strategies. One way to address this challenge is to 

model the consequences of different scenarios on LULCC that reflect different 

management practices, such as natural areas conservation, agriculture, forestry and 

livestock practices, on carbon emissions (Bottalico et al., 2016; Garrastazú et al., 2015; 

Levrel et al., 2017; Liang et al., 2017; Nelson et al., 2009; Pavani et al., 2018; Tomasso 

and Leighton, 2014). The comparative analysis of alternative scenarios can provide 

information to support the decision-making process regarding public policies, enabling 

effective communication of these policies and their rationales to gain public buy-in 

(Bottalico et al., 2016; Malczewski, 2006; Zawadzka et al., 2017).  

Carbon storage and sequestration, as both a regulatory policy and an economic 

opportunity, should be analyzed at broad scales as well as at the regional and local 

scale (Nelson et al., 2009; Serna-Chavez et al., 2014). However, studies at local scales, 

which address the subject under the farm property perspective through impact and 

cost-benefit analyses of simulated sustainable farming scenarios on the provision of 

ecosystem services, are rare or nonexistent. These studies could help the sector by 

providing key information to the planning and decision-making processes related to 

sustainable land management. This study fills this gap by providing a comprehensive 

case study for the Serra da Mantiqueira, in Brazil. Given their biological importance 

and being considered a priority for the conservation of endemic springs and species 

(Cunha and Guedes, 2013; Le Saout et al., 2013), many environmental projects have 

been developed in Serra da Mantiqueira (Pagiola et al., 2013) in order to reverse the 

damage caused by deforestation throughout its historical occupation until the end of 

the twentieth century (Mendes Jr, 1991; Fundação SOS Mata Atlântica/INPE, 2019). In 

this context, our study contributes to the discussion of LULC changes and their impact 

on the local provision of ecosystem services. It also assesses the way the 

implementation of different sustainable initiatives in the farming sector, based on 

future scenarios analysis, can affect carbon storage and sequestration indicators, as 

well as contribute economically to the sector. 
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The objective of this study is, based on a geographic information system (GIS) 

approach, to analyze the carbon balance as a result of past and future LULCC scenarios 

in a cattle ranch of Serra da Mantiqueira, as well as to assess the different economic 

opportunities arising from its implementation, in order to support the development of 

sustainable farming planning. The results are expected to broaden our understanding 

of how different scenarios of LULCC can contribute or affect the provision of 

ecosystem services and the generation of economic opportunities to the farming 

sector, as well as provide relevant information to the planning of sustainable farming. 
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2 MATERIALS AND METHODS 

2.1 STUDY AREA 

The study was conducted in a cattle ranch, a 971 ha mountain area, which intersects 

the districts of Bocaina de Minas and Carvalhos (Figure 2.1), located in the state of 

Minas Gerais, southeast Brazil (lat 22°09’18”S to 22°06’36”S, long 44°27’44”W to 

44°30’29”W). The region ranges from 1150 to 1800 meters in altitude, in a warm and 

temperate climate. Summers are rainy, while winters have very little rain. The average 

temperature is 13.6 °C in the coldest months and 20°C in the hottest months, with an 

average annual rainfall of 2077 mm (Guimarães et al., 2010). According to the Köppen-

Geiger classification, this climate can be categorized as Cwb, featuring a temperate 

climate with cool and humid summer at an altitude of over 1100 m (de Sá Júnior et al., 

2012; Dubreuil et al., 2018). 

The area is part of the Serra da Mantiqueira, an ecosystem of the Atlantic Forest 

biome. It is characterized by the presence of Montane Semideciduous Seasonal Forest; 

High montane Dense Humid (Ombrophylous) Forest; Montane Dense Humid Forest; 

Rupestrian Fields; Urochloa (Brachiaria) pastures; and plantations of Eucalyptus 

Grandis spp. In 2017, the study area consisted of 39.48% of High Montane Dense 

Humid Forest (Dl) and 10.27% of Montane Dense Humid Forest (Dm), according to the 

patterns established by the vegetation classification of 2009 Forest Inventory (IDE-

Sisema, 2019), conducted by the State Forest Institute of Minas Gerais. 
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Figure 2.1 – Study area location. 
Notes: Brazil with the indication of its biomes, and the state of Minas Gerais (upper left); the study area location 
regarding its state and city boundaries (upper right); and a closer perspective of the study area limits, overlaid by 
2017 LULC map (lower right).   

The Dense Humid Forest, also known as Tropical Rainforest, is characterized by dense 

vegetation in all strata (arboreal, shrubby, herbaceous and lianas) consisting of ferns, 

arborescent trees, bromeliads and palm trees (SNIF, 2019). The Montane 

Semideciduous Seasonal Forest (Fm), covering 5,65% of the area, has its vegetation 

conditioned by the dual climatic seasonality: a tropical one, with intense summer rains 
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followed by severe drought and another subtropical one, without dry season, but with 

physiological drought caused by intense winter cold, when the vegetation loses its 

leaves. The Rupestrian Field (18,65%), classified as Park Savannah (Sp) by the Brazilian 

Institute of Geography and Statistics (IBGE), is characterized by low trees and spaced 

shrubs. It is associated with grasses and usually has markedly tortuous and grayish 

trunks and branches (SNIF, 2019). The brachiaria pasture is resistant to leafhoppers 

and is characterized by high forage production, persistence, good regrowth, tolerance 

to cold, drought and fire. It is recommended for breeding, rearing and fattening cattle. 

It is also well accepted by buffalo, sheep and goats. It supports rotational grazing, hay 

production and silage (Nunes et al., 1984). Its coverage in the study area is divided into 

cultivated pastures (Pa) and degraded pastures (Pd). The first one, representing 

15.06% of the total area, supported by adequate management, and the second one 

with 9.66%. The Eucalyptus Grandis, covering 1.24% of the area, is characterized by 

very tall (45 to 55 meters) and thick (1.2 to 2m DBH) trees usually with a smooth shaft 

in the upper 2/3 or 3/4 of the stem (IPEF, 2019).  

The predominant soil is the dystrophic red-yellow latosol, with the presence of 

dystrophic humic cambisol in the high rupestrian complexes, according to the criteria 

of the Brazilian Soil Classification System (Santos et al., 2013). Beef cattle raising is the 

main activity of the farm, focusing on cattle breeding. The current cattle population is 

approximately 200 Nellore cattle and 7 Angus breeders. Besides the native forests, the 

study area has a vast hydric richness (Figure 2), composed of dozens of streams and 

springs, which turn the site into a potential point of interest for the implementation of 

payment for environmental services (PES) projects. 
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Figure 2.2 – Study area digital elevation model. 

2.2 RESEARCH FRAMEWORK 

We assessed the impacts of landscape change in the study area through the 

quantification, valuation and mapping of carbon storage and sequestration, 

considering the LULC changes observed between 2007 to 2017 and the future changes 

based on four sustainable scenarios projected for 2027.  

In summary, we did extensive research about the study area regarding its geographic 

characteristics (e.g. biodiversity, topography, climate, hydrography, soil, etc.) and on 

the subject under study. In addition, we extracted, transformed and loaded all the data 

required to perform the work (e.g. shapefiles of study area limits, streams, water 

springs, preservation areas, isolines, etc.). In sequence, we developed the study area 
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LULC maps in the observed periods (2007 and 2017) and we generated alternative 

LULC maps related to four scenarios predicted for 2027 (Subsections 2.2.1 and 2.2.2).  

The InVEST Carbon model (version 3.7) was used for carbon dynamics assessment, 

economic valuation and scenario building (Nelson et al., 2014; Sharp et al., 2016). 

InVEST is a set of models used to quantify, map and value the services provided by 

ecosystems. It aims to support decision makers to explore the likely outcomes of 

alternative management and climate scenarios and to assess tradeoffs among sectors 

and services. The toolkit currently includes more than a dozen distinct InVEST models, 

suitable for terrestrial, freshwater and marine ecosystems. 

In order to support the model execution, we provided LULC spatial data for the three 

dates under analysis, the carbon data on above (AGB) and belowground live biomass 

(BGB), dead organic matter (DOM) and soil organic carbon (SOC) for each LULC class 

(Subsection 2.2.2). These data are used to estimate the amount of carbon currently 

stored in a landscape and the amount of carbon sequestered overtime (Nelson et al., 

2014). In addition, to contribute to the decision-making process, we conducted the PES 

scheme assessment under two different approaches and the sale of eucalyptus wood 

as an economic opportunity for scenarios 3 and 4 (Subsection 2.2.3). Aiming to obtain 

the income of eucalyptus timber production per hectare, we used two forest 

management simulators (SisEucalipto and SisILPF), which estimate the average timber 

volumes per hectare, as well as set the timber commercial use volumes according to its 

diameter (energy and sawmill). Finally, the results were compiled, analyzed and later 

compared with similar studies to foster a rich reflection and discussion on the subject 

(Subsection 2.2.3). Figure 2.3 shows the general work flowchart with the main 

processes carried out during the study (See ANNEXES for further details). 
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Figure 2.3 – Case study general flowchart. 

 

2.2.1 LULC mapping and generated scenarios 

The first stage of the study consisted of gathering information about the study area 

through CAR (an acronym in Brazilian Portuguese which stands for “Cadastro 

Ambiental Rural” or “Rural Environmental Register” in English), a mandatory federal 

registration that delimits areas designated as legal reserve (LR) and permanent 
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preservation areas (PPAs), as well as native vegetation, and anthropic areas (Brasil, 

2012). This information, along with conducting extensive research, allowed us to 

obtain geospatial data and the information required to perform the subsequent steps 

(e.g. study area boundaries, springs, watercourses, LULC classes, topography, climate, 

soil type, among others). 

The LULC mapping used two orthorectified images, scene 218/75 of July 2007 and 

September 2017, from Landsat-5 Thematic Mapper (TM) and Landsat-8 Operational 

Land Imager (OLI) satellites, respectively. Both images have a spatial resolution of 30 

meters, have no clouds and cover the entire study area. The training data were 

collected based on visual interpretation of very high resolution (VHR) spatial images 

taken by World View 01 satellite on June 20, 2008 (0.5 m resolution) and taken by 

Word View 03 on September 12, 2017 (1 m resolution). These images were provided 

by Digital Globe Foundation (Digital Globe, 2019) and were also used as reference data 

in the accuracy assessment procedures. We selected a different number of samples for 

each LULC class, considering the proportionality of each one concerning the total area. 

For the map classification, we used maximum likelihood supervised algorithm and 

majority filter (8 x 8 pixels) was applied for the refinement of the LULC maps, 

reassigning the LULC class to the center of the square (Caprioli and Tarantino, 2001). A 

confusion matrix was built to compare the classification with ground-truth data 

obtained through a stratified random sampling approach based on the 

representativeness of the LULC class (Adefioye, 2014; Banko, 1998; Foody, 2002). The 

total number of samples (reference or control points) for each map was (Neves, 

Strauch and Ajara, 2017; Hall et al., 2018):   

Ts = (10. Sc). Sc  
Equation 1 – Total number of samples for accuracy assessment 

where Ts is the total number of samples and Sc, the total amount of classes on each 

map. After building the confusion matrix, we computed some statistics related to 

accuracy assessment (Classes’ accuracy, User’s accuracy, Producer’s accuracy and 

Mapping accuracy) as well as the overall accuracy and the overall Kappa coefficient, 

which is a measure of agreement or accuracy (Congalton and Green, 1999).  
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The software used to support the activities performed at this stage was ArcGIS 

Desktop, version 10.5.1. 

In order to understand the impact of different landscape changes on carbon storage 

and sequestration dynamics, we used the InVEST Scenario Generator module to create 

four alternative scenarios for the year 2027 (Table 2.2). The four scenarios (Figure 2.3) 

were designed based on best practices for environmental service delivery in 

agricultural and forestry systems in the Atlantic Forest biome (Parron et al., 2015a). 

Meetings were also held with the farm's owners to analyze the feasibility of 

implementing these scenarios in the medium and short term. 

▪ Preservation and natural forest regeneration (Scenario 1): simulates the 

preservation of the current forest area (2017) and the natural regeneration of 

forest loss (25 ha) of the last ten years over the pasture edges. We define it as a 

low management scenario and the base for the next three alternative 

scenarios. 

▪ Recovery of degraded pasture (Scenario 2): simulates the preservation of the 

current forest area (2017) and the natural regeneration of forest loss (25 ha) 

over degraded pastures and the recovery of remaining degraded urochloa 

(brachiaria) brizantha pastures (40 ha), indicating a moderate management 

level scenario. 

▪ Forest plantation (Scenario 3): simulates scenario 1 and the planting of an 

additional 60 ha of eucalyptus grandis over pastures, with 2 x 3 m spacing.  

▪ Silvopastoral system implementation (Scenario 4): simulates scenario 1 and 

the implementation of 60 ha of silvopastoral system (brachiaria pasture + 

eucalyptus grandis) with 8 x 4 m spacing. Scenarios 3 and 4 demand a more 

intensive management level. 

Thus, a total of 8 classes were defined for LULC maps (Table 2.2): Montane 

Semideciduous Seasonal Forest (Fm); High montane Dense Humid Forest (Dl); 

Montane Dense Humid Forest (Dm); Park Savannah (Sp); Urochloa (Brachiaria) Pasture 

(Pa); Degraded Brachiaria Pasture (Pd); Eucalyptus Grandis (Eu); and Silvopastoral 

system (Si). 
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2.2.2 Carbon storage and sequestration  

According to Liang et. al. (2017), the carbon storage Sm, i, j for a given grid cell (i, j) with 

land use type m can be calculated as:   

Cm, i, j = A × (Cam, i, j + Cbm, i, j + Csm, i, j + Cdm, i, j)  
Equation 2 - Carbon storage per grid cell. 

where A is the actual area of each grid cell (30 m) and Cam, i, j, Cbm, I, j, Csm, i, j, and Cdm, i, j  

represent the densities of the referred carbon pools (Mg C ha−1) for grid cell (i, j) with 

land use type m. Thus, carbon storage C and sequestration S across the region can be 

calculated as: 

∑n
 m=1 C m, i, j   

Equation 3 - Carbon storage per region 

S = CT2 - CT1   
Equation 4 – Carbon sequestration per region 

where CT2 and CT1 indicates static carbon storage at years T2 and T1 (T2 > T1) 

respectively.  

Carbon data required to run the model was obtained for each of these pools through 

careful literature research (Table 2.1). Carbon storage information for each LULC class 

was estimated for four pools: AGB; BGB; DOM; and SOC. Even though reference values 

for carbon pools are available in InVEST for different land uses, we chose to prioritize 

regional and local values with similar topographic and edaphoclimatic characteristics 

to the study area. These data were obtained from official sources, academic thesis and 

scientific papers. This approach increases the reliability of the research and its results 

since significant discrepancies were found between what was provided by the InVEST 

model and those found in the literature for the study area (InVEST, 2019). 

The method adopted to obtain carbon values is supported and used by some authors 

(Brown, 2002; Gibbs et al., 2007; Paixão et al., 2006). According to Gibbs (2007), the 

use of literary sources to acquire carbon stock values, as well as correlating carbon 

pools to estimate carbon stock, is a common practice and can generate adequate 

estimates. Gibbs (2007) and Brown (2002) used the correlation of 20% between root 

biomass and aboveground forest carbon stock as an example, while litter carbon stock 

is generally accepted as equivalent to 10-20% of aboveground forest carbon, 
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approximately. Paixão et al. (2006) applied correlation factors, where dead organic 

matter and root biomass contribute, on average, with 12.26% and 20.68% of total 

carbon, respectively. As we did not find values for all carbon compartments, we 

applied the correlations used by the authors.  

LULC 

class 
AGB Source BGB Source 

SOC 

(1m) 
Source 

DOM 
Dead 

Source 

Fm 48.78 (SNIF, 2019) 9.76 (SNIF, 2019) 114.72 (Segnini et al., 2019) 4.88* 
(Gibbs et al., 

2007) 

Dl 1 63.5 (SNIF, 2019) 15 (SNIF, 2019) 146.4 (Parron et al., 2015) 10.6 
(Parron et al., 

2015) 

Dm 1 63.5 (SNIF, 2019) 15 (SNIF, 2019) 146.4 (Parron et al., 2015) 10.6 
(Parron et al., 

2015) 

Sp 2.44 (SNIF, 2019) 9.83 (SNIF, 2019) 90.46 (Morais et al., 2013) 0.24* 
(Gibbs et al., 

2007) 

Pa 5 (InVEST) 4 (InVEST) 142.81 (Segnini et al., 2019) 1 (InVEST) 

Pd 5 (InVEST) 4 (InVEST) 99.88 (Segnini et al., 2019) 1 (InVEST) 

Eu 81.8 
(Scolforo, J. 

R., 2008) 
25.36* 

(Paixão et 
al., 2006) 

112.89 (Gatto et al., 2010) 14.72* 
(Paixão et al., 

2006) 

Si 75.141 
(Schettini et 

al., 2017) 
23.3* 

(Paixão et 
al., 2006) 

393.7 
(Tonucci et al., 

2011) 
13.52* 

(Paixão et al., 
2006) 

Table 2.1 - Carbon stock values (Mg C/ha) and respective sources for each LULC class and carbon compartment.  
Note: * - Value calculated according to the author (see source column); 1 - Values regarding dense humid forest, due 
to the lack of enough data in the literature the for Dl and Dm forest subformations; The value in parentheses refers 
to the depth of the soil considered. 
 

2.2.3 Economic valuation 

Regarding the economic valuation model, to support the decision-making process from 

the perspective of financial opportunities, we based our analysis on three 

complementary approaches. 

Firstly, we used the historical average price of carbon US$ 5.9/tCO2 (US$ 21.64/tC 2) 

traded on the voluntary market (Peters-Stanley et al., 2013). Although the InVEST 

model strongly recommends using the social value of carbon (Nelson et al., 2014), we 

decided to use the voluntary market, because it is accessible (Goldstein, 2015) and, 

despite having a large oscillation due to several factors such as project costs, buyer’s 

 
1 Value calculated for a ten-year eucalyptus, from the average annual carbon increment rate (IMAc), 6.27Mg 

C ha−1 year−1, and the value of carbon stock in a six-year eucalyptus (50.1Mg C ha−1). 
2 Obtained from the conversion factor 0.2727, calculated by the relationship between the molecular weight 

of carbon dioxide and carbon (44/12) (Spellman, 2015). 



16 
 

preferences and the volume of the transaction (Hamrick and Gallant, 2018), it is in line 

with the prevailing and expected prices for the region, even when compared to other 

payment schemes. For example, the price adopted is aligned with Norway’s 

International Climate and Forest Initiative, which made payments of US$5/tCO2 for the 

Brazilian Amazon Fund, a REDD+ payment scheme (McNeish et al., 2011). The same 

can be observed in Latin American countries where US$5/tCO2 carbon taxes, over 

fossil fuels used for combustion (Colombia) and over air emissions from contaminating 

compounds (Chile), were implemented in 2017  (World Bank et al., 2017). Brazil is 

currently assessing different carbon pricing instruments, including an emission trading 

system (ETS) and a carbon tax (ICAP, 2019). Since 2013, a group of leading companies 

has been participating in a voluntary ETS simulation to gain experience and develop 

proposals for emission trading system in the country that can reduce national GHG 

emissions at the lowest possible cost (ICAP, 2019). According to information presented 

by Votorantim Cimentos (one of the group's participating companies) at the Latin 

American Carbon Price Forum, on June 25 and 26, 2018, the estimated price for Brazil, 

between 2020 and 2025, is US$ 5/tCO2 approximately (GVces, 2018) , which is also 

similar to the historical average price of carbon used in this study.  

To determine the market discount rate of 6% we used the average effective inflation 

between 2007 and 2017, released by the Central Bank of Brazil (BCB, 2019a). This rate 

is very close to the base interest rate recorded at the end of 2017 by the same 

institution (BCB, 2019b), which allowed us to apply the same discount rate for both the 

observed and future scenarios. The annual adjustment rate of 3.4% on carbon price 

was estimated for the future scenarios based on the average of carbon tax price 

change in Colombia, between 2017 and 2019 (World Bank, 2019).  

As a second approach, considering the growing number of PES schemes in Brazil 

observed in the variety of local and regional programs in various states and 

municipalities (Pagiola et al., 2013), we assessed the economic benefits on the total 

forest area and on the total of legally exploitable forest (LEF) of the study area (Table 

2.2). LEF can be understood as forest areas not belonging to permanent preservation 
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areas (PPAs) and legal reserve areas (LR). Given the hydrological characteristics of the 

study area and its proximity to the “Conservador das Águas de Extrema” project, in 

Minas Gerais, we used the value3 of US$82.91 ha−1 year−1 paid by the project in 2016 

(Pagiola et al., 2013). Even though the referred project pays for the total property area, 

we decided to use a more conservative approach based on other PES projects that 

usually solely consider the native forest area (Pagiola et al., 2013). The annual 

adjustment rate of 1.33% was calculated based on historical payments made between 

2006 and 2016 (Pagiola et al., 2013; Secretaria de Meio Ambiente de Extrema, 2017).  

Identification Area (ha) Area (%) 

PPAs 147.63 15.20 

LR 239 24.61 

Overlapping Areas (LR over PPAs) 31.92 3.28 

Total Protected Forest 354.71 36.53 

LEF (2017) 180.43 18.58 

LEF (2027) 205.45 21.15 

Total Forest Area 560.16 57.69 

Table 2.2 - Size of forested areas and their percentage proportion to the study area. 

Lastly, based on Paixão et al. (2006) and Oliveira et al. (2008) studies, we also 

calculated the economic opportunity of selling eucalyptus timber, considering the 

costs4 per hectare in 2017 (Table 2.3) of a low-tech, low-resource reforestation project, 

as well as the market prices of stand timber for firewood (US$9.10/m³) and for sawmill 

(US$37.81/m³ ) (CEPEA, 2017). We chose not to consider the annual adjustment rate of 

the standing timber price since we did not find a pattern in the eucalyptus market 

prices that could contribute to the calculation of its price over time. According to 

Rocha et al. (2015), eucalyptus price variability, between the period of low and high 

prices, results in great uncertainty for producers and consumers over the years. 

 
3 Amount related to the conversion of R$262.00 (Brazilian reais) at the exchange rate of 3.16, registered on 

August 12, 2016 by the Central Bank of Brazil (BCB, 2019a). 
4  The costs and stand timber prices were converted into American dollars at the exchange rate of 3.30, as 

recorded  on December 28, 2017 by the Central Bank of Brazil (BCB, 2019a). 
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Item Scenario 3 

(US$/ha) 

Scenario 4 

(US$/ha) 

Planting 533.07 355.22 

Land annual cost * 62.72 62.72 

Maintenance (first year) 128.99 128.99 

Maintenance (annual cost) 45.55 40.11 

Total for 10 years 1744.76 1512.51 

Table 2.3 - Estimated operational costs. Sources: EMATER-MG, 2019 (land annual cost) and IFAG, 2017. 
Note: * - The annual cost of land was calculated by multiplying the value of the land by the interest rate used (Alves 
et al., 2015). Our study used the amount of R$3,000/ha for the annual cost of land in the district of Bocaina de 
Minas (EMATER-MG, 2019) and an annual interest rate of 6.90% (BCB, 2019b). These data refer to the end of 2017. 

In order to estimate the average timber volumes per hectare, we used the forest 

management software SisEucalipto, for scenario 3, and SisILPF, for scenario 4 

(EMBRAPA, 2019). Provided by the Brazilian livestock-agriculture research company 

(EMBRAPA), the Sis family software is a set of free simulators for management, 

economic analysis, modeling, growth and production of planted forests used to assist 

in thinning planning (EMBRAPA, 2019; Oliveira, 2019).  In order to obtain the 

eucalyptus growth and yield forecasts for each scenario, as well as the total wood 

volumes for energy and sawmill use according to DBH (diameter at breast height) 

classes, we provided the inventory forest data required by both simulators (Table 2.4). 

Although eucalyptus thinning generally occurs around 7 years (Oliveira et al., 2008; 

SCOLFORO, 2008), and considering that economic rotation can provide lower 

profitability when no thinning is performed, (Soares et al., 2003), we chose to simulate 

the thinning of 40% of the planted area in the tenth year.  

The quantitative economic criteria considered for scenario analysis was the net 

present value (NPV), which represents the net value, or benefit, over the useful life of 

a given project (Cavatassi, 2004). The economic assessment results were consolidated 

and presented under two approaches: economic influence on the study area; and 
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economic influence on landscape change, making it possible to compare them with the 

farm’s annual operating cost5 (US$ 47.43 ha−1 year−1), recorded in 2017. 

Parameters 
Scenario 3 

(SisEucalipto) 

Scenario 4 

(SisILPF) 

Simulation E. Grandis  ILF - E. Grandis  

Site index 30 m 30 m 

Trees planted per hectare 1667 312 

Initial survival  75% * 75% * 

Listings option Generate results for ages 1 to 10, every 1 year 

Diameter Class Range for Production 4 cm    NR 

Minimum dimensions of use for sawmill 15 cm (diameter) x 2.4 m (length) 

Minimum dimensions of use for energy 3 cm (diameter) x 1.2 m (length) 

Number of tree rows NR 1 

Distance between tree rows NR 8 m 

Planting Homogeneity NR medium 

Table 2.4 – Inventoried forest data for scenarios 3 and 4. ILF: Integrated Livestock-Forestry system. NR: Not required 
by the software. * Average survival rate of eucalyptus grandis found by Parron et al. (2015). 

 
5 Amount related to the division of the annual cost (R$152,000.00) by the total farm area (971 ha) and 

subsequent conversion to American dollars at the exchange rate of 3.3, as recorded on December 28, 2017 by the 
Central Bank of Brazil (BCB, 2019a). 
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3 RESULTS  

3.1 LULC MAPS AND FUTURE SCENARIOS 

LULC maps revealed the landscape changes over time and in different scenarios 

predicted for 2027 (Figure 3.1). Park savannah was the LULC class with the largest area 

losses due to urochloa pasture advancement, mainly in the northern region of the 

study area (Figures 3.1 and 3.2).  

 
Figure 3.1 - LULC maps of the study area observed in 2007 (a) and 2017 (b) and scenarios predicted for 2027: 

Scenario 1 (c), Scenario 2 (d), Scenario 3 (e) and Scenario 4 (f).   

Regarding the accuracy assessment, LULC maps generated for 2007 and 2017 

presented an overall accuracy of 89.17% and 85.43%, respectively, indicating its 
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appropriateness for the study. According to Thomlinson et al. (1999), an overall 

accuracy of 85% with no class less than 70% accurate is sufficient not to require 

mandatory reclassification or class aggregation. Softer criteria are also seen in similar 

studies (Foody, 2002). Based on the Kappa coefficient (Table 3.1), the resultant values 

of the supervised classification also demonstrated excellent performance for both 

maps (Landis and Koch, 1977). However, highest percentages of omission and 

commission errors were seen in classes Fm, Dm and Eu, as well as lowest percentages 

of accuracy in their mappings. According to Lu and Weng (2007), a remote sensing 

classification depends on several factors, such as the availability of a sufficient number 

of representative samples, geometric errors between images, high quality remotely 

detected images, the methods involved in the classification, just to name a few. Given 

these factors, there was a direct correlation between the lack of sufficient 

representative samples and the precision results of the previously mentioned classes. 

The number of samples used to classify each of these classes are less than the 

minimum of 50 samples recommended as a general rule (Banko, 1998). 

 LULC 2007  LULC 2017 

LULC 
Ref. 
Pts. 

Classes 
Acc. 

Om. 
Error 

Com. 
Error 

Mapping 
Acc. 

 Ref. 
Pts. 

Classes 
Acc. 

Om. 
Error 

Com. 
Error 

Mapping 
Acc. 

Fm 29 79.3% 20.7% 17.9% 67.7%  18 78.3% 21.7% 35.7% 54.5% 

Dl 164 93.3% 6.7% 3.8% 90.0%  187 86.6% 13.4% 5.1% 82.7% 

Dm 18 72. 2% 27.8% 40.9% 48.2%  32 84.2% 15.8% 30.4% 61.5% 

Sp 87 90.8% 9.2% 12.2% 80.6%  78 91.8% 8.2% 15.2% 78.8% 

Pa 42 85.7% 14.3% 10.0% 78.3%  65 85.5% 14.5% 12.2% 76.5% 

Pd 20 85.0% 15.0% 19.0% 70.8%  42 85.7% 14.3% 10.6% 77.8% 

Eu Ne. Ne. Ne. Ne. Ne.  7 100% 0% 30.0% 70.0% 

 Overall accuracy: 89.17%  Overall accuracy: 85.43% 

 Kappa coefficient: 0.8480  Kappa coefficient: 0.8248 

Table 3.1 - Accuracy assessment results from observed LULC maps.  
Notes: Ref. Pts. means the number of reference points (ground truth pixels) used for classification of each class. 
Classes Acc. stands for the classes accuracy or classifier sensibility, which is obtained by dividing the total pixels 
correctly classified for each class in the reference data by the total pixels for that class in the reference data.  
Om. Error means omission error or producer accuracy, which is calculated by dividing the total pixels not correctly 
classified for each class in the reference data by the total pixels for that class in the reference data/image.  
Com. Error means commission error or user accuracy is calculated by dividing the number of pixels not correctly 
classified for each class in the classification by the total number of pixels for that class in the classification.  
Mapping Acc. is the mapping accuracy for each class. It is stated as the number of correctly identified pixels within 
the total in the displayed area divided by that number plus error pixels of commission and omission.  
Ne. means Nonexistent. 
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During the observed period (Figure 3.1 a, b and Figure 3.2) it is possible to note the 

advancement of brachiaria pastures (Pa) in the northern part of the study area, which 

represented an increase of 34.8% regarding its original area. The expansion of Pa 

caused a considerable impact to park savannah (Sp), being responsible for the 

suppression of 60.9 ha (23.3%) of the LULC class, and also affected the dense humid 

forests (Dl and Dm), with 6.21 ha loss (1.45%) (Table 3.2). The southern part of the 

study area revealed an increase of 35.82 ha (62.3%) of degraded pastures (Pd) and a 

significant reduction of 20.52 ha (27.3%) montane semideciduous seasonal forest (Fm). 

It was also possible to see the appearing of 12 ha of eucalyptus grandis (Eu) in areas 

previously occupied by pastures. 

 
Figure 3.2 – Column chart showing distribution of LULC classes in percentage for each scenario in the study area. 
Notes: Fm stands for Montane Semideciduous Seasonal Forest; Dl is High montane Dense Humid Forest; Dm is 
Montane Dense Humid Forest; Sp is Park Savannah; Pa is Urochloa (Brachiaria) Pasture; Pd is Degraded Brachiaria 
Pasture; Eu is Eucalyptus Grandis, and Si is Silvopastoral system. 

Regarding the projected future landscapes, the LULC map of scenario 1 (Figure 3.1 c) 

revealed an almost unnoticeable change in the study area, due to the spaced natural 

regeneration of 25.02 ha of Dl over the grasslands ends (Pa and Pd). However, scenario 
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2 (Figure 3.1d) clearly showed the reduction of Pd, largely due to the 40.86 ha recovery 

of degraded areas and the natural regeneration of 25.02 ha of Dl over its edges, 

remaining only 27.45 ha (2.84%) of degraded pastures. LULC maps of scenarios 3 and 4 

also revealed visible landscape changes, arising from the 60.03 ha (500%) expansion of 

eucalyptus grandis in scenario 3 and the silvopastoral system implementation in 

scenario 4. Both implementations occurred to the detriment of 30 ha of Pd and 30 ha 

of Pa, located next to the 2017 eucalyptus forests, as well as the 25-ha natural 

regeneration of Dl over the brachiaria pasture borders (Table 3.2).  

 Observed  Simulation for 2027 

 2007  2017  Scenario 1  Scenario 2  Scenario 3  Scenario 4 

LULC 
Area (%)  Area 

(%) 
Change 

(ha) 
 Area 

(%) 
Change 

(ha) 
 Area 

(%) 
Change 

(ha) 
 Area 

(%) 
Change 

(ha) 
 Area 

(%) 
Change 

(ha) 

Fm 7.75  5.65 -20.52  5.65 0  5.65 0  5.65 0  5.65 0 

Dl 44.06  39.48 -45.45  42.07 25.02  42.07 25.02  42.07 25.02  42.07 25.02 

Dm 6.19  10.27 39.24  10.27 0  10.27 0  10.27 0  10.27 0 

Sp 24.89  18.65 -60.93  18.65 0  18.65 0  18.65 0  18.65 0 

Pa 11.18  15.06 37.26  15.06 -19.17  19.29 40.86  9.36 -55.08  9.36 -55.08 

Pd 5.94  9.66 35.82  9.66 -5.85  2.84 -65.88  6.56 -29.97  6.56 -29.97 

Eu 0  1.24 11.97  1.24 0  1.24 0  7.45 60.03  1.24 0 

Si 0  0 0  0 0  0 0  0 0  6.21 60.03 

Table 3.2 - Percentage distribution of LULC classes in the study area in 2007, 2017 and four scenarios projected for 
2027 and changes (in hectares) observed for each class between the analysis periods (2007-2017; 2017-2027). 

3.2 CARBON CAPTURE AND STORAGE SPATIAL DISTRIBUTION MAPS 

During data processing, InVEST creates intermediate results that map carbon stocks 

separately by carbon compartment (AGB or C above, BGB or C below, SOC or C soil and 

DOM or C dead) and by time (current and / or future). Based on these 8 intermediate 

raster maps, InVEST produces two LULC scenarios (current and future) in the same 

spatial resolution of the input maps (30m) used to run the model and creates a log file 

with the simulation parameters. As output, InVEST generates four raster maps that 

display the amount of carbon stored in each LULC class, for the current and future 

scenarios, the carbon sequestered in this period (for the calculation of the difference 

between future and current scenario) and the net present value, representing gains 

(sequestration) or losses (emissions) for each unit area (pixel) of the map. InVEST also 
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creates an HTML page to consolidate the results of carbon storage (current and 

future), carbon sequestration and its economic valuation at net present value. The 

LULC maps generated by the InVEST carbon module for each scenario were organized 

into two general carbon storage and sequestration maps to aid visual interpretation 

and comparison of their results over time (Figures 3.3 and 3.4). 

 
Figure 3.3 – Study area carbon stocks (Mg C/900m²) in 2007 (a), 2017 (b), Scenario 1 (c), Scenario 2 (d), Scenario 3 
(e) and Scenario 4 (f). 

The spatial distribution of carbon storage and sequestration between 2007-2017 has 

shown higher levels of emissions on the northern side of the study area, where the 

advancement of brachiaria pastures impacted the high montane dense humid forest. 

On the southern side, lower emissions were observed on degraded pastures. It is also 

possible to observe throughout the study area that the higher levels of carbon storage 

are present in forested areas. Regarding the increase of carbon sequestration around 

the study area, replacement of park savannah by brachiaria pasture, growing of 
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eucalyptus grandis over older pastures and natural regeneration of forests were the 

main factors that contributed to it. 

 
Figure 3.4 – Carbon sequestration and emission (Mg C/900m²) between 2007 and 2017 (a), and between 2017 and 
2027 for scenarios one (b), two (c), three (d) and four (e). 

During the 2017-2027 period, forest areas remained the highest carbon storage pools 

of the study area. The resultant carbon sequestration map of scenario 1 (Figure 3.4 b) 

highlighted where the natural forest regeneration occurred on landscape, due to its 

expansion over grassland ends. Similarly, in addition to indicating the landscape 

locations where carbon was captured, scenarios 2, 3 and 4 revealed their 

sequestration levels regarding the recovering of degraded pastures, the eucalyptus 

reforestation and silvopastoral system implementation, respectively.  

Thus, it was possible to observe the future scenarios’ contribution to the provision of 

climate-regulation ecosystem services, as well as the high potential of scenarios 3 and 

4.  
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3.3 CARBON STORAGE AND SEQUESTRATION IN THE 2027 PREDICTED SCENARIOS  

Future scenarios simulation (2027) has shown that all four alternatives would increase 

the total of carbon captured and stored in the study area when compared to 2017 

(Figures 3.5 and 3.6). The overall distribution of carbon stored between pools followed 

the same patterns observed in 2007 and 2017 (Figure 3.5).  

 
Figure 3.5 – Study area carbon stocks in observed and future scenarios. 

Notably, carbon is mostly stored on soil, followed by the AGB, BG and DOM. Soil at 1-

meter depth revealed to be the most important carbon pool in the landscape, being 

responsible for around 70% of all carbon stored in the landscape in all periods (Figure 

3.5).  
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Figure 3.6 – Carbon sequestered in the study area of observed and future scenarios. 

The soil compartment also showed the highest carbon densities in all scenarios (Table 

3.3), showing values up to 2.3 times higher than the sum of the other carbon pools. 

Date/Scenario C above C below C soil C dead Total 

2007 37.07 11.40 126.57 5.92 180.95 

2017 36.86 11.09 128.09 5.99 182.03 

Scenario 1 38.37 11.38 128.44 6.24 184.42 

Scenario 2 38.37 11.38 131.09 6.24 187.08 

Scenario 3 43.12 12.70 127.65 7.09 190.56 

Scenario 4 42.70 12.57 144.97 7.01 207.26 

Table 3.3 - Carbon density (Mg C ha−1) in the study area of observed and future scenarios. 

The natural regeneration of 25 ha of high montane dense humid forest (Dl) over 

grasslands (Pa and Pd), represented by scenario 1,  would be enough to revert carbon 

emissions arising from forests loss in the 2007-2017 period and to capture a total of 

2320 Mg C in the study area, around two times more than the total amount of carbon 

sequestered in 2017 (Figure 3.5), with a carbon sequestration rate of 0.24 Mg C ha−1 

year−1 (Figure 3.7). In scenario 2, the association of 25 ha natural regeneration of Dl 

over Pd areas with the 40 ha recovery of Pd would contribute to storing a total of 

181,651 Mg C, capturing 4,897 Mg C (Figure 3.6) in the study area with a sequestration 

rate of 0.5 Mg C ha−1 year−1 (Figure 3.7). 
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Figure 3.7 – Carbon sequestration rate in the study area in the observed and future scenarios. 

The implementation of both eucalyptus (60 ha) reforestation and natural forest 

regeneration (25 ha) over the pastures edges, accordingly projected for the scenario 3, 

would significantly contribute to total carbon capture and storage in the study area, 

with 8,276 Mg C ha−1 and 185,030 Mg C respectively (Figures 3.5, 3.6 and Table 3.2). 

However, it revealed one of the lowest carbon densities of SOC (soil C), with 127.65 

Mg C ha−1 (Table 3.2). It was also the only one to release carbon from this pool at a 

discrete emission rate of almost 0.05 Mg C ha−1 year−1 (Figure 3.7). Lastly, scenario 4 

would provide the largest amounts of carbon storage and sequestration for the study 

area with 201,249 Mg C and 22,094 Mg C ha−1, respectively. Its carbon sequestration 

rate was 2.27 Mg C ha−1 year−1, 2.7 times greater than scenario 3. Based on these 

results, the combination of the silvopastoral implementation with the natural forest 

regeneration would be the best alternative to the provision of climate-regulation 

ecosystem services. 

All future scenarios revealed higher carbon sequestration rates when analyzing their 

contribution only to the changed areas. In this case, scenario 2 revealed the lowest 

rate, with 7.43 Mg C ha−1 year−1, followed by scenario 1 (9.27 Mg C ha−1 year−1), 

scenario 3 (9.73 Mg C ha−1 year−1) and scenario 4, with the highest rate of 28.8 Mg C 

ha−1 year−1. 
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3.4 ECONOMIC VALUATION 

Based on the inventoried forest data inserted in Sis Family software, we obtained the 

eucalyptus growth and yield forecasts simulations for each scenario, as well as the 

total wood volumes for energy and sawmill use according to DBH (diameter at breast 

height) classes (Table 3.4). These values made it possible to calculate the sale of 

standing timber at NPV and, subsequently, its consolidation in the economic 

opportunity table (Table 3.5).  

All LULCC in the 2007-2027 period contributed to carbon sequestration in the study 

area, showing monetary values ranging from US$ 17,693.48 to US$ 365,262.68 on the 

voluntary carbon market (Table 3.5). 

 

Source 

 

Trees/ha 

Average 
Diameter 

(cm) 

Average 
Height 

(m) 

Total 
Volume 
(m³/ha) 

Total for 
Energy 
(m³/ha) 

Total for 
Sawmill 
(m³/ha) 

SisEucalipto 
(Year 10) 

1168 20.7 28.9 442.3 166.5 273.6 

SisILPF 
(Year 10) 

233 33.2 31.8 250.9 15.5 234.5 

Table 3.4 – Estimates of eucalyptus growth and production in the tenth year, generated by the Sis family software, 
for scenarios 3 and 4. 

The observed period (2007-2017) revealed the lowest monetary value and the lowest 

economic rates, when compared to the simulated period (2017-2027), which resulted 

in the indication of PES payment strategies as the best alternatives for that period. The 

PES strategies are also economically better than simulated scenarios in VM alternative, 

except in scenario 4 with PES - LEF. However, if we consider adding the economic 

opportunity of selling standing timber arising from the thinning of 40% of the trees, 

scenarios 3 and 4 would present significant monetary values of US$ 332,570.66 and 

US$ 521,669.79, respectively. 

Considering the economic rates calculated for the study area, the PES - Forest would 

be the best payment strategy, reducing the farm's operating cost by 80%, regardless of 

the scenario analyzed. This cost reduction could be transformed into a profit of US$ 
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12.25 ha−1 year−1 and US$ 6.82 ha−1 year−1 if the revenues from the selling of standing 

timber from scenarios 3 and 4 are computed. 

Economic alternatives 
(NPV) 

2007-2017  2017-2027 

Observed  Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Total in 10 years 

Voluntary carbon market 17,693.48  34,595.82 73,024.60 123,404.78 365,262.68 

PES - LEF  119,300.32  135,843.54 135,843.54 135,843.54 135,843.54 

PES - Forest 353,834.57  370,377.79 370,377.79 370,377.79 370,377.79 

Stand timber      209,165.88 156,407.51 

Rate per study area  

Voluntary carbon market 1.82  3.56 7.52 12.71 37.62 

PES - LEF  12.29  13.99 13.99 13.99 13.99 

PES - Forest 36.44  38.14 38.14 38.14 38.14 

Stand timber      21.54 16.11 

Rate per changed area 

Voluntary carbon market 
14.24 

(124.29 ha) 
 

138.27 
(25.02 ha) 

110.84 
(65.88 ha) 

145.10 
(85.05 ha) 

429.47 
(85.05 ha) 

PES - LEF  66.12 
(180.43 ha) 

 66.12 
(205.45 ha) 

66.12 
(205.45 ha) 

66.12 
(205.45 ha) 

66.12 
(205.45 ha) 

PES - Forest 
66.12 

(535.14 ha) 
 

66.12 
(560.16 ha) 

66.12 
(560.16 ha) 

66.12 
(560.16 ha) 

66.12 
(560.16 ha) 

Stand timber      245.93 
(85.05 ha) 

183.90 
(85.05 ha) 

Farm operating costs in 
2017 

 - 47.43  - 47.43 - 47.43 - 47.43 - 47.43 

Table 3.5 - Total economic income (US$) of each payment strategy, its rates (US$ ha−1 year−1) under the study area 
(971 ha) and changed area perspectives; and farm operating costs in 2017 (US$ ha−1 year−1).  
Note: PES stands for payment for environmental services. LEF: legally exploitable forests. Forest: total preserved 
forest area. Values in parentheses refer to the area considered for each scenario or payment scheme. 

The rates calculated for the changed area revealed that scenarios 1 (US$ 138.27 ha−1 

year−1), 3 (US$ 145.10 ha−1 year−1) and 4 (US$ 429.47 ha−1 year−1) have high potential to 

generate revenue from trading sequestered carbon in the voluntary market when 

compared to other scenarios or PES strategies. 

The results also show the potential for combining the different payment schemes 

arising from sustainable scenarios. In this sense, scenarios 3 and 4 are great references 

for integrating all three alternatives. In an ideal arrangement, both scenarios could 

benefit from: the PES scheme implementation over the current native forest area; the 

trading of sequestered carbon in the voluntary market over the landscape change 

implemented by each scenario; and the selling of standing timber arising from the 

planned thinning of the trees.  
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4 DISCUSSION 

4.1 CONTRIBUTING TO A CASE STUDY ON ES AT FARM LEVEL 

The assessment of carbon storage and sequestration, both biophysically and 

economically, through the use of GIS and modeling tools technologies, are widely 

adopted by researchers in order to understand their impact to the provision of 

climate-regulation ecosystem services at broad and local scales (Arunyawat and 

Shrestha, 2018; Bagstad et al., 2013; Chaplin-Kramer et al., 2015; Levrel et al., 2017). 

This information, when analyzed under different scenarios perspective, is of great 

value to support the development of environmental policies and sustainable land use 

planning (Bottalico et al., 2016; Malczewski, 2006; Zawadzka et al., 2017). Considering 

that there are no local scale studies that analyze this subject from the point of view of 

a farm property, the understanding of how different LULCC scenarios can affect the 

provision of ecosystem services and contribute to economic opportunities to the 

sector will lead to the development of new local and regional scale studies, and will 

generate relevant information to the planning and management of sustainable 

farming. 

4.2 CARBON STORAGE AND SEQUESTRATION ASSESSMENT 

In this study, we carried out carbon dynamics assessments in a cattle ranch of Serra da 

Mantiqueira, Brazil, to understand the impacts and the economic opportunities from 

the provision of ecosystems services, based on four simulated future LULCC scenarios. 

Under a GIS approach, supported by the combined application of geoprocessing 

techniques (ArcGIS Desktop), ecosystem service modeling tools (InVEST Carbon model 

and InVEST scenario generator) and forest management simulators (SisEucalipto and 

SisILPF), we concluded scenario 4 as being the best alternative to be implemented  in 

the study area, which provided the highest amounts of carbon capture and storage 

and showed the highest monetary results when considering its participation in 

different ecosystem services payment strategies. Scenario 4 was also the best 

alternative, considering its contribution to the total changed area. 
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The significant difference between scenario 4 and the other ones is due to the high 

amounts of SOC found at one-meter depth in silvopastoral systems, once the amount 

of 393.7 Mg C ha−1 found by Tonucci et al. (2011) was used in our study. When 

compared to other studies at the same soil depth, e.g. in a cambisol soil in two 

different silvopastoral systems of Costa Rica, with 132 and 183 Mg C ha−1 year−1  

(Amézquita et al., 2005); and in a latosol soil of an agroforestry system of cocoa–

gliricidia in Indonesia with 160 Mg C ha−1 year−1 (Smiley and Kroschel, 2008), we can 

infer that this disparity may have generated an overestimated result for this particular 

scenario. However, according to Ramachandran Nair et al. (2010), "estimates of C 

stored in agroforestry systems can range from 0.29 to 15.21 Mg C ha−1 year−1 

aboveground, and 30 to 300 Mg C ha−1 year−1 up to 1-m depth in the soil", which leads 

us not to discard the actual carbon storage and sequestration potential of this 

scenario. Pandey (2002), in his study, appointed carbon sequestration rates in Indian 

agroforests varying from 19.56 Mg C ha−1 year−1, in north Indian state of UP, to 23.46 – 

47.36 Mg C ha−1 year−1 in tree-bearing arid agroecosystems of Rajasthan, a value range 

that encompasses the sequestration rate found in scenario 4. Another fact that 

reinforces our result refers to a field research conducted by Simas (2002) in Serra 

Verde, an area located 8 km away from our study area. Simas (2002) found a total 

average SOC (C soil) stock of 344 Mg C ha−1, which may indicate the potential for 

carbon storage and sequestration in the region soils. 

The soil depth (1 meter) considered to this study, allied with the lack of methodologic 

patterns for soil sampling and C determination in different studies (Corazza et al., 

1999; Da Silva et al., 2004; Zinn et al., 2002), makes comparing the scenarios results a 

difficult task. In addition, tree communities of Serra da Mantiqueira are characterized 

by high vegetation heterogeneity (Pompeu et al., 2014), which can affect local-scale 

results due to its specificities (e.g. climate, altitude, soil type, location, etc.). However, 

by way of comparison, Gatto et al. (2010) estimated that eucalyptus plantations in 

Minas Gerais can capture up to 13.63 Mg C ha−1 year−1  from atmosphere, a value 

48.7% higher than Scenario 3. Regarding natural forest regeneration, Feldpausch et al. 

(2004) estimated total C accrual of 7.04 Mg C ha−1 year−1 in both aboveground and soil 
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(0-40cm) pools in a post-pasture tropical forest recovery of Central Amazonia, an 

amount 24% lower than scenario 1. Lastly, Trujillo, Fisher and Lal (2006) estimated that 

the input of soil organic carbon, under well-managed pastures of Brachiaria 

dictyoneura alone in the Eastern Plains of Colombia, is 10.3 Mg C ha−1 year−1, which is 

38.62% higher than scenario 2. However, according to Fisher (2007), soil carbon 

accumulation under introduced pastures in Brazil is substantial, but not enough to 

exceed half of the SOC values found on the eastern plains of Colombia. In this case, 

scenario 1 would be 44.27% higher than the maximum rate expected for Brazil. 

4.3 MANAGING AND PLANNING SUSTAINABLE FARMING: SOME INSIGHTS 

In general, all future LULCC scenarios shown to be benefic to the provision of climate-

regulation ecosystem services. Our results revealed that a forest management 

approach mainly directed at natural or commercial reforestation (scenarios 1, 3 and 4) 

at the local provide better carbon sequestration rates over changed areas in 

comparison with the recovery of degraded areas (scenario 2). A forest management 

approach mainly geared towards maximizing economic incomes from wood production 

(scenario 3) reduces the carbon sequestration rate potential by approximately 66% 

compared to scenario 4. 

Based on a new concept for sustainable meat called carbon neutral Brazilian beef, the 

study has also shown that the implementation of any of the analyzed future scenarios 

would be enough to neutralize ruminal methane emission of the cattle in the study 

area (Table 4.1). 

Scenario 
Nelore on B. brizantha 
(47.3 kg CH4 head−1 year−1)  

Tier 1 IPCC 
(56 kg CH4 head−1 year−1) 

Tier 2 IPCC 
(70 kg CH4 head−1 year−1) 

Scenario 1 0.7 0.6 0.5 

Scenario 2 1.5 1.3 1 

Scenario 3 2.6 2.2 1.8 

Scenario 4 7 6 4.8 

Table 4.1 – Amount of neutralized bovines (ha−1 year−1) according to the carbon sequestration rate of each scenario 
(Mg C ha−1 year−1) in the study area. 
Notes: Nelore on B. brizantha means ruminal methane (CH4) emission by Nelore beef steers, grazing on Brachiaria 
brizantha during the four seasons of the year (90 days/season), by average live weight of 375kg (Primavesi et al., 
2014). 

Value in parentheses shows the amount of annual methane emission from a bovine, used as a reference for CO2e 
conversion. 
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A quantity of GHG can be expressed as CO2e by multiplying the amount of GHG by its global warming potential 
(GWP). The GWP of CH4 is 25 (Eckaus, 1992). 

A quantity of C can also be expressed as CO2e by dividing the amount of C by its conversion factor 0.2727, 
calculated by the relationship between the molecular weight of carbon dioxide and carbon (44/12) (Spellman, 
2015). 

Concerning the economic assessment, the decision on which payment scenario and 

strategy to implement should be supported by prior analysis of the payment schedule, 

as well as the revision of its initial investment costs. For example, PES schemes 

generally used to pay immediately after its implementation, which does not occur in 

VM and selling standing timber. In scenarios 3 and 4, the potential economic 

opportunities arising from their implementation demand an initial investment of US$ 

662.06 ha−1 and US$ 484.21 ha−1 respectively, as to their maintenance and planting 

costs. The introduction of eucalyptus trees in livestock and agricultural production 

systems is an interesting alternative for diversification and income increase, 

contributing to the balance of GHG from livestock activity and adding value to 

production. 

The evidence of the importance of future LULC changes to the provision of climate-

regulation ecosystem services, as well as their potential monetary value related to the 

implementation of different sustainable scenarios and the choice of different payment 

strategies, can be relevant to support decision-making regarding planning and 

management in this and other similar farming landscapes. 

4.4 LIMITATIONS AND SIMPLIFICATIONS 

During the study period, we faced some difficulties that led us to discuss some 

limitations and simplifications found, as well as workarounds and impacts on results. 

The first limitation we found is related to the spatial and temporal resolution of the 

images chosen for LULC mapping and the images chosen for mapping validation.  

During the creation of LULC maps, the use of high spatial resolution images (30 m) 

from LANDSAT 5 and 8 satellites was not enough to prevent overlap of certain LULC 

classes. On the 2017 LULC map, part of montane semideciduous seasonal forest (Fm), 

located at the extreme south of the study area, was overlaid by the eucalyptus forest 
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planted next to Fm in 2007 due to the height of its crowns that hid the original forest, 

giving a false idea of change and impacting the Fm loss result during 2007-2017 period, 

as well as the carbon storage and sequestration values calculated for this forest 

fragment.  

The temporal resolution may also be considered as a potential limitation on studies 

requiring VHR satellite images of past periods. In our study, we used these images to 

support the creation of training samples related to the supervised map classification 

and to perform its validation. However, we did not find VHR images taken in 2007. As a 

workaround, we used an image taken in 2008 and asked farm owners to point out any 

changes in the landscape during the time frame that was not recorded by the image. 

The resultant LULC maps of 2007 and 2017 also revealed a meaningful change related 

to the classification of Dl and Dm, in the altitude zone that defines the transition area 

of these two classes (Figure 3.1). The class Dm gained 39 ha at the expense of the class 

Dl. Although the change did not impact the results of this study, since we used carbon 

pools data of dense humid forest for both classes, it could change the results in similar 

studies. According to Helmer et al. (2000), in tropical mountain regions, different 

illumination angles may obscure the differences between the spectral responses of 

forests and consequently affect LULC mapping with satellite imagery. 

Although InVEST plays an important role to perform this study, limitations and 

simplifications are also present in the different models available (Sharp et al., 2016), 

which makes it relevant for users to consider them carefully, investigating the possible 

consequences in their specific analysis. These limitations and simplifications are 

explained in InVEST’s user guide and may be consulted according to the model used.  

In our study, we observed some simplifications related to carbon pools, such as the 

SOC. The absence of a procedure or standard for data gathering may confuse the 

model parameters insertion. For example, the SOC may vary according to the depth 

analyzed. We considered carbon in the 100 cm of soil depth because studies of carbon 

spatial variability have shown deep carbon incorporation in pastures under adequate 

management (Boddey et al., 2010; Fisher et al., 2007; Segnini et al., 2019). 
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Additionally, according to Beare et al., (2014), as cited in Lefèvre et al., (2017), soils at 

greater depth have a higher capacity of storing additional carbon compared to topsoils 

because of a larger difference between the existing SOC content and the SOC 

saturation value. On the other hand, according to Ontl and Schulte (2012), main 

changes in SOC take longer times to occur, which should be taken into consideration 

when analyzing the results of this study. 

In general, it can be stated that the amount of information for all carbon 

compartments is a difficulty that any user will face and may be aggravated if certain 

land uses and coverages have not been studied in relation to carbon. In our study, for 

example, we defined LULC forest classes (Fm, Dl, Dm and Sp) based on spatial data 

from the 2009 Minas Gerais forest inventory (IDE-Sisema, 2019). However, we did not 

find carbon stock information in the four carbon pools for the LULC Dl and Dm classes 

(High montane and Montane dense humid forest). Alternatively, we use the values 

provided by the national forest information system (SNIF, 2019) for the Dense Humid 

Forest class (more generic) in both mapped classes. Similarly, we did not find adequate 

values for three carbon pools (C above, C below and C dead) of urochloa pastures. 

Given the low relevance of these pools when compared to SOC, we chose to use the 

reference values of the InVEST model. 

We also observed some limitations appointed by Sharp et al. (2016), where the InVEST 

model does not consider any factors affecting carbon storage dynamics other than the 

change of LULC class. Another carbon storage dynamics limitation is related to its static 

behavior in the model calculations, once the InVEST model does not consider trees 

decay processes to move carbon from one pool to another, as well its linear 

accumulation flows, ignoring the carbon sequestration dynamics over time. 

4.5 GUIDELINES FOR FUTURE DEVELOPMENTS 

Due to the SOC relevance to the obtained results in this study, a sensitivity analysis 

considering other soil depths (e.g. 0-40 cm and 0-60cm), as well as its carbon change 

dynamics over time, would help us to understand how this carbon pool impacts the 

overall results. In the same sense, we did not consider the impacts of spatial variability 
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on carbon stocks change within the same forest. According to some authors 

(Amézquita et al., 2005; Caldeira et al., 2015; Parron et al., 2015a), the amount of 

carbon stored in a forest is directly related to characteristics like topography, age, 

altitude and its successional stage, aspects not addressed by this study in depth. The 

accuracy of results can be improved when more detailed carbon stock data are 

available and updated for all carbon pools and LULC classes in Serra da Mantiqueira. 

Future studies will include LULC mappings from VHR satellite images and the 

development of specific LULC classes based on carbon-storage dynamics factors (e.g. 

altitude, topography, age, successional stage, soil, among others). 
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5 CONCLUSION 

This exploratory and awareness-raising study assessed the provision of climate-

regulation ecosystem service, in both biophysics and economic aspects, through the 

analysis of the carbon storage and sequestration indicators at the landscape level as an 

outcome of LULCC observed between 2007 and 2017, and in four alternative scenarios 

for 2027 in a cattle ranch of Serra da Mantiqueira. The main objective of this study was 

to introduce and apply a GIS approach, supported by forest management and 

ecosystem services modeling tools, for spatial-temporal assessment of carbon, predict 

changes and estimate economic opportunities arising from the implementation of 

different sustainable scenarios in a farm property. The study also aimed to contribute 

to planning, decision-making and management processes for effective land use and 

sustainable forest management. The results found can be useful in management and 

planning for both environmental conservation policies and sustainable farming 

development. Since there are no studies biophysically and economically assessing the 

carbon capture and storage under the farm property perspective and objectives, the 

method presented in this study can help and foster new quantitative and economic 

assessments. The results also revealed that LULCC could have important impacts on 

carbon dynamics over time and space in the study area, where the decision about 

which scenario to implement can potentially provide significant immediate or long-

term benefits.  
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ANNEXES  

ANNEX A – DATASET 

Name Type Description / Source / Available at 

Mapa de Áreas de Reserva Legal conforme Cadastro 
Ambiental Rural - CAR (Figure A.1) 

CAD in 
PDF  

Map of Legal Reserve Areas according to 
Rural Environmental Registry - CAR used in 
the extraction of layers relevant to the 
study. 
Source: Farm Owners 
Available at: Not publicly available 

08JUN20131023-P2AS_R17C1-059275572010_01_P001 
08JUN20131023-P2AS_R16C1-059275572010_01_P001 
08JUN20131023-P2AS_R02C2-059275572010_01_P001 
08JUN20131023-P2AS_R03C2-059275572010_01_P001 

GeoTIFF 

World View 01 VHR panchromatic images of 
the study area token in June 20, 2008 used 
to support the map classification and 
validation processes. 
Source: DigitalGlobe Foundation 
Available at: 
https://discover.digitalglobe.com/ 
(University partnership program) 

17SEP12133046-M2AS_R02C1-059275572030_01_P001 
17SEP12133046-M2AS_R02C2-059275572030_01_P001 
17SEP12133046-M2AS_R03C1-059275572030_01_P001 
17SEP12133046-M2AS_R03C2-059275572030_01_P001 

GeoTIFF 

World View 03 VHR multispectral images of 
the study area token in September 12, 2017 
used to support the map classification and 
validation processes. 
Source: DigitalGlobe Foundation 
Available at: 
https://discover.digitalglobe.com/ 
(University partnership program) 

LC08_L1TP_218075_20170905_20170917_01_T1 GeoTIFF 

Landsat 8 OLI multispectral image of the 
study área token in September 5, 2017 used 
for classification of LULC 2017 map 
Source: USGS 
Available at: https://earthexplorer.usgs.gov 

LT05_L1TP_218075_20070708_20161112_01_T1 GeoTIFF 

Landsat 5 TM multispectral image of the 
study area token in July 8, 2007 used for 
classification of LULC 2007 map 
Source: USGS 
Available at: https://earthexplorer.usgs.gov 

SF-23-Z-A GeoTIFF 

Arc Second SRTM Elevation (res. 90m) used 
to create the digital elevation model and the 
isolines of the study area 
Source: EMBRAPA Monitoramento por 
Satélite 
Available at: 
http://www.relevobr.cnpm.embrapa.br 

1502_mg_mapa_solos_pol Shapefile 

Map of Soils of Minas Gerais used to gather 
information about the study area 
Source: IBGE 
Available at: 
http://200.198.57.191:8080/geoserver/ows
?service=WFS&version=1.0.0&request=GetF
eature&typeName=WebGis:1502_mg_mapa
_solos_pol&outputFormat=SHAPE-ZIP 

1601_mg_zonas_climaticas_pol Shapefile 

Minas Gerais climate zones used for climate 
analysis in the study area 
Source: IBGE 
Available at: 
http://200.198.57.191:8080/geoserver/ows
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Name Type Description / Source / Available at 

?service=WFS&version=1.0.0&request=GetF
eature&typeName=WebGis:1601_mg_zona
s_climaticas_pol&outputFormat=SHAPE-ZIP 

31MUE250GC_SIR Shapefile 

Districts of Minas Gerais in scale 1: 250,000 
used in the presentation of the study area 
Source: IBGE 
Available at: 
https://www.ibge.gov.br/en/statistics/social
/population/18890-meshes.html?=&t=sobre 

Biomas_5000 Shapefile 

Biomes of Brazil at scale 1: 50000,000 used 
to locate and identify the biome of the 
study area 
Source: IBGE 
Available at: 
http://www.geoservicos.ibge.gov.br/geoser
ver/wms?service=WFS&version=1.0.0&requ
est=GetFeature&typeName=CREN:biomas_
5000&outputFormat=SHAPEZIP 

BRUFE250GC_SIR Shapefile 

Brazilian Federation Units in scale 1: 
250,000 used in the presentation of the 
study area 
Source: IBGE 
Available at: 
https://www.ibge.gov.br/en/statistics/social
/population/18890-meshes.html?=&t=sobre 

invf_mapeamento_2009 Shapefile 

Forest cover map of Minas Gerais in 2009 
used for recognition and support for the 
definition of LULC classes in the study area 
Source: IBGE 
Available at: 
http://200.198.57.38/imagem/ief/invf_map
eamento_2009.zip  

Koppen_Brazil_2013 Shapefile 

Köppen climate classification (refined by 
ALVARES et al 2013) in high resolution only 
for Brazil (IPEF) 
Source: IPEF 
Available at: 
http://www.ipef.br/geodatabase/repository
/651da1d8va615cz1ad1da8s4rq8146a1dsa2
132c1zn1/Koppen_Brazil_2013.rar 

lim_pais_a Shapefile Country limits used in the presentation of 
the study area 
Source: IBGE 
Available at: 
https://www.ibge.gov.br/en/statistics/social
/population/18890-meshes.html?=&t=sobre 

Mapa de Solos de Minas Gerais Shapefile 

Map of Soils of Minas Gerais used to gather 
information about the study area 
Source: IDE-Sisema 
Available at: 
http://idesisema.meioambiente.mg.gov.br/ 

Table A.1 – External dataset used in the case study. 
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Figure A.1 – Rural Environmental Register (CAR – Cadastro Ambiental Rural) used to extract the shapefiles for the 
development of the study. 
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ANNEX B – RESEARCH FLOWCHARTS 

Start   
Collect/ETL 

Collect study area 
information

Literature

CAR

Data & 
Datasources 

of Study Area

IDE-SISEMA 
Forest 

Inventory

Collect Data from 
farm owners

Enough data?

NO

YES

Extract, Transform 
and Load Data of 

Study Area

CAR

SRTM 
Elevation 

raster

GIS database
Shapefiles 

and Rasters

Carbon Pools 
Database

All data 
processed?

YES

NO

Generate GIS Sub/
Products Study 

Area Map

Study 
Area DEM

End    
Collect/ETL 

E.g. Location, climate, altitude, 
soil type, land cover, forest 

formations, hydrography, main 
activities, carbon stock, etc. 

 
Figure B.1 – Flowchart of “Research and Collect Data of Study Area” and “Extract, Transform and Load Data of 
Study Area” processes with their main inputs and outputs. 
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Start   Maps 
Classification 

Select / Get 
LANDSAT images

earthexplorer
.usgs.gov 

(LANDSAT)

Appropriate 
images?

NO

YES

Extract/Delimit 
Study Area Images

GIS database 
(Study Area 
Sat. Imgs.)

Create Spectral 
Band Stacks

End Maps 
Classification

GIS database
Shapefiles 

and Rasters

Images 
Files

discover.digit
alglobe.com 
(World View)

Create Training 
Samples

GIS database
(Study Area 

Train. Samp.)

Create Spectral 
Signatures

GIS database
(Study Area 

Spectral Sig.)

Create LULC Maps

Run Raster Map 
Generalization

GIS database
(LULC Maps)

GIS database
(Final LULC 

Maps)

Study area limits shapefile 

  
Figure B.2 – Flowchart of “Perform Maps Classification” process with its main inputs and outputs. 
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Start Maps 
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Calculate Total 
Control Points per 

Map
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Accuracy 

Assessment Pts. to 
LULC classes
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(Ref. Points)

Convert Accu. 
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Raster

End Maps 
Validation

Total Ctrl. 
Points 

Params.

Combine Assess. 
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Analyze Validation 
Results
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Maps)
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Figure B.3 – Flowchart of “Perform Maps Validation” process with its main inputs and outputs. 

 



55 
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Generation 
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Future Sustainable 
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End Scenarios 

Generation 

LULC 
Change 
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NO
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(Future LULC 
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Literature
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GIS database
of Study Area

Perform 
meetings 
with the 
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Appropriate  
future scenarios?

YES

Generate 
Scenarios (InVEST 

Scenario Gen.)

 
Figure B.4 – Flowchart of “Define Future Scenarios” and “Generate Future Scenarios” processes with their main 
inputs and outputs. 
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Start InVEST 
Carbon Model 

Load 
Required Data

End InVEST 

Carbon Model 

LULC 
Change 
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Carbon Pools 
Database

GIS database
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(LULC Maps)
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Carbon Model

Financial
Params.

GIS database
(Carbon 
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Valuation of C on 

VM
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Calculate 
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Opportunity of PES 
Scheme

Data & 
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of Study Area

 
Figure B.5 – Flowchart of “Load Data of Carbon Pools & Economic Valuation”, “Run InVEST Carbon Modeling 
Tool”, “Compile Economic Valuation of C on VM”, “Parse/Compile Carbon Maps” and “Calculate Economic 
Opportunity of PES Scheme” processes with their main inputs and outputs. 
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Model 
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table
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Data & 
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Modeling 
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Table of 
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Figure B.6 – Flowchart of “Perform Forest Growing Model with Sis Family Tools” and “Calculate Potential Income 
of Selling Wood” processes with their main inputs and outputs. 
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Results
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Information

Results 
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Figure B.7 – Flowchart of “Compile Economic Opportunities by Scenario”, “Analyze/Show Results” and “Compare 
Results of Similar Studies” processes with their main inputs and outputs. 
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ANNEX C – LULC MAPPING RESULTS 

 Observed Predicted (2027) 

 2007 2017 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

LULC Area Area Change Area Change Area Change Area Change Area Change 

Fm 75.06 54.54 -20.52 54.54 0 54.54 0 54.54 0 54.54 0 

Dl 426.87 381.42 -45.45 406.44 25.02 406.44 25.02 406.44 25.02 406.44 25.02 

Dm 59.94 99.18 39.24 99.18 0 99.18 0 99.18 0 99.18 0 

Sp 241.11 180.18 -60.93 180.18 0 180.18 0 180.18 0 180.18 0 

Pa 108.27 145.53 37.26 126.36 -19.17 186.39 40.86 90.45 -55.08 90.45 -55.08 

Pd 57.51 93.33 35.82 87.48 -5.85 27.45 -65.88 63.36 -29.97 63.36 -29.97 

Eu 0 11.97 11.97 11.97 0 11.97 0 72 60.03 11.97 0 

Si 0 0 0 0 0 0 0 0 0 60.03 60.03 

Table C.1 – Distribution of major LULC classes in the study area in 2007, 2017 and in four scenarios projected for 
2027 and changes observed for each class between periods of analysis (2007–2017; 2017–2027). 

 

 

ANNEX D – INVEST SCENARIO GENERATOR CONVERSION RESULTS 

 Scenario 1  Scenario 2 Scenario 3 Scenario 4 

Basemap (30) LULC 2017 Map Scenario 1 Map Scenario 1 Map Scenario 1 Map 

LULC A.C. (ha) P.C. A.C. (ha) P.C. A.C. (ha) P.C. A.C. (ha) P.C. 

Pa 19.17 213 0 0 35.91 399 35.91 399 

Pd 5.85 65 60.03 667 24.12 268 24.12 268 

Total 25.02 278 60.03 667 60.03 667 60.03 667 

Table D.1 – LULC classes changed in each scenario generation relative to the provided basemap.  
Notes: A.C. means area converted, P.C: number of pixels converted, Pa: brachiaria pasture, Pd: degraded 
brachiaria pasture. Value in parentheses refers to the basemap pixel size. 
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ANNEX E – INVEST CARBON MODEL RESULTS 

 
Figure E.1 – Summarized results of InVEST Carbon model execution for the observed scenarios (2007-2017). 
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Figure E.2 – Summarized results of InVEST Carbon model execution for the observed scenario 1 (2017-2027). 
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Figure E.3 – Summarized results of InVEST Carbon model execution for the observed scenario 2 (2017-2027). 
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Figure E.4 – Summarized results of InVEST Carbon model execution for the observed scenario 3 (2017-2027). 
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Figure E.5 – Summarized results of InVEST Carbon model execution for the observed scenario 4 (2017-2027). 
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ANNEX F – SISEUCALIPTO AND SISILPF OUTPUTS 

 
Figure F.1 – Growth and production tables output from SisEucalipto software.  
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Figure F.2 – Graph with the basic variables for proper forest management generated by SisEucalipto. 

 
Figure F.3 – Growth and production tables output from SisILPF software. 



67 
 

 
Figure F.4 –Graph of forest production, CO2e and CH4 compensation generated by SisILPF. 
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