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Abstract

Population aging and low precautionary savings rates has put European public social systems
under strain. As a result, home-ownership among seniors as viable mean of income stream
enhancement and welfare for seniors has been boldly encouraged by governments. Thus, equity
release instruments for pensioners have been proposed by the market. These products are mostly
encompassed in North America where the elderly are less reluctant to express their desire to
transform housing into wealth. Still, southern European countries present large home-ownership
rates and an aging low income population that may well unlock future demand.
Whilst housing is a highly illiquid asset and emotional attachment as well as inconvenience of
moving barriers may occur, in recent literature relatively new approaches to monetize homes
have undergone major developments.
Particularly, this study will be mainly concerned with the risk and profitability analysis of
reverse mortgage schemes through actuarial and deep learning techniques in the attempt to
conceive a framework that fully encompasses the valuation needs of companies willing to
commercialize home equity based products.

Keywords: retirement, reverse mortgage, pricing, risk assessment, long short term memory
neural networks
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CHAPTER

ONE

INTRODUCTION

The aging dynamic of the population ushers new sustainable sources of long term care and health
funding for the elderly. How the funding should be aligned to the resources available is a large
topic of debate. Most people lack of competence and experience to manage their assets and gov-
ernments are not willing to increase sovereign debt to address retirement thereafter. Furthermore,
traditional annuity products have tarnished their reputation due to low flexibility and returns.
These developments are promoting markets and individuals to assess alternative ways to provide
for retirement. Thereby, Equity Release Scheme (ERS) have a particularly relevant role to play.
Unlike other instruments, ERS allow pensioners to access the wealth within their house without
the need to move out. Among these, in recent years Reverse Mortgage (RM) have progressively
gained ground. To address RM risk management and profit assessment needs various techniques
have been designed. These leave much room for innovation and application fields which will be
discuss throughout this study.

1.1 Background and Problem Identification

The past three centuries have witnessed a combination of socio-economic factors in highly indus-
trialized countries that have lead to a period of low natality and high longevity rates. The early
stages of this process, commonly addressed to as demographic transaction, have mostly affected
child mortality rates. Thus, producing overpopulation concerns.
However, the traditional high fertility reproductive behavior has substantially changed (Coale,
1989). This has contributed to a drastic decline in birth rates. And, improved health conditions
have provoked a dramatic increase in life expectancy rates that is still set to persist and even
intensify in the decades to come. Kontis et al. (2017) project an increase in the average years of
life to 2030 for 35 industrialized countries with a probability of 65% for women and of 85% for
men.
Carone and Costello (2006) notably identify four demographic developments occurring across
EU member states: fertility rates shrinking below natural replacement rates; increase in the old
age dependency ratio, i.e. the proportion of nonworking older population to the total population;
growing life expectancy at birth; high net migration inflows that cannot offset declining natality
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1.1 Background and Problem Identification 6

and population aging.
One of the most significant socioeconomic advancements to ever happen to mankind is increased
longevity. This process initiated no longer than two centuries ago in the then industrialized
economies and has since spread around the globe and across all socioeconomic groups (Ayuso,
Bravo, & Holzmann, 2017b, 2017a, 2019b).
Although longevity per se has a positive influence on growth, rising elderly dependency rates
negatively impacts savings and investments and provokes labour and productivity losses (H. Li,
Zhang, & Zhang, 2007; Leff, 1971). Longer lives and population ageing create challenges for all
societal institutions, public and private, particularly those providing retirement income, health
care, and long-term care services. This puts too much pressure on retirement systems (Bryant,
2004) that no longer benefit from taxes on younger working population. Consequently, excessive
public spending generated by increased pension liabilities is corroding continental Europe’s tradi-
tional Pay As You Go (PAYG) public pension systems (Cipriani, 2014; Nerlich & Schroth, 2018)
and promoting fiscally driven public pension reforms. The decreasing generosity of public health
care systems and of public annuities, with deep adequacy and poverty concerns in several coun-
tries and within certain groups of population (e.g. women, less-educated classes and migrants),
the reduction in the traditional family support at old-age as a result of sinking fertility rates,
urbanisation, migration and increasing retirement age, all have increased the need for additional
private savings to cover the old age income gap and to avoid relying on state-managed social
transfers to reverse the risks of poverty (Ayuso, Bravo, & Holzmann, 2019c; Bravo & Holzmann,
2014; European Commission, 2018).
Concern over prohibitive costs and deteriorating solvency ratios of conventional pension schemes
have produced a gradual shift from Defined Benefit (DB) pension plans to Defined Contribution
(DC) pension plans (Broadbent, Palumbo, & Woodman, 2006; Schmäl, 2007). Although private
pensions are becoming more widespread, the coverage rates are still small and the contribution
amounts insignificant in most cases (HFCS, 2016). Most DC scheme members have not con-
tributed enough to receive even a modest income stream in retirement. The consequence of this
is giving full responsibility to individuals for their future retirement income streams which is fail-
ing to provide steady income replacement rates for pension funding (Bodie, Marcus, & Merton,
1989).
This combines with major controversies arising from the traditional life cycle model as famously
designed by Brumberg and Modigliani (1954). The model introduced the idea of rational con-
sumption and savings patterns. Hence, in response to future income risk, the willingness to save
more in the present occurs, i.e. precautionary saving.
Still, empirical evidence has shown serious deviations from the life cycle-model mostly due to
the lack of experience in managing retirement saving assets. Yilmazer and Scharff (2014) show
how household savings don’t increase with increasing health risk. Similary, Fernández-Villaverde
and Krueger (2007) and Scholz, Seshadri, and Khitatrakun (2006) have proven that household
expenditure increases until late in life as there is no willingness to engage in precautionary saving
during working years producing poor wealth accumulation for retirement. And this can imply
again low standards of life for the elderly (Hubbard, Skinner, & Zeldes, 1994).
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The build-up and management of retirement income will be different for different individuals and
there is no guarantee that individuals optimize consumption over their active and retirement pe-
riod as predicted by the life-cycle hypothesis. Indeed, empirical studies suggest that the actual
wealth accumulation, preservation and decumulation behaviour before and after retirement is
often in conflict with life-cycle predictions, particularly when analysed considering the differ-
entiated approach across the three main tiers of the population (Holzmann, Ayuso, Alaminos,
& Bravo, 2019): (i) The lowest tier that typically does little saving and, as result, will have no
capacity to dissave after retirement; (ii) The top tier that continues the accumulation of financial
and non-financial asset after retirement and shows no sign of dissaving; (iii) The middle tier that
seems to be the only one showing sign of life-cycle saving and dissaving, particularly those with
no longevity insurance (public or private life annuity), but faces a number of constraints (e.g.
illiquid housing wealth assets, pension taxation, undeveloped financial and insurance markets).
Despite fierce encouragement from governments to increase responsibility to manage personal
funding, in Europe many still rely on public support to finance their retirement (Towers Watson,
2013). The effect of insufficient income planning and the decline of benefits arising from pension
schemes along with increased longevity produce a high risk of living longer in poor health con-
ditions and without cash.
This will undeniably impact how accumulated assets and the risks involved (longevity, invest-
ment and inflation) will be managed (Antolin, 2009). An obvious question rises: how to ensure
an adequate, secure, stable and predictable lifelong income stream for all retirees that will allow
them to maintain a target standard of living for however long the individual lives. In other words,
how to guarantee funding and service streams that cover expenditure needs of a lifestyle towards
which individuals aspire in retirement. To fund for longer lives, pensioners will ultimately rely on
a retirement wallet combining income and service flows from state, employer, social institutions,
family, own savings, housing wealth, continued labour income and insurance sources. The weights
will be determined by both personal and institutional circumstances (Bravo, 2019).
Markets responses to finance care and provide for seniors have been numerous. The lifetime an-
nuity is the classical product used to protect against longevity although, in the past few years
provision for this instrument has collapsed. Moreover, early death risk draws many people to-
wards less expensive term annuities that might be coupled with a differed annuity as a form of
decumulation. However, their return performance is poor and doesn’t offer room for flexibility
to address different needs that could materialize during retirement.
Long term care cost insurance has been designed to protect against contingent costs that might
occur in old age. Still, forbidding long term care insurance prices have been hindering demand
(Kenny et al., 2017). On the other hand, particularly in the UK the flexibility of drawn-down
pensions seems more appealing for retirement and long term care (Rashbrooke, 2018). However,
draw-down income partially remains subject to the risk of living far longer than the expected
life span (Mayhew, Smith, & Wright, 2018).
An alternative source for retirement consumption is housing. European countries have been thriv-
ing in home equity. In the Euro area alone, the household’s wealth (excluding pension wealth,
i.e. the present value of all future expected pension benefits) is primarily held in the form of
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real estate assets, which represent 82.2% of total assets owned by households (85.1% in Spain,
88% in Portugal) with the remaining assets (17.8%) being financial. The largest component of
real assets is the Household Main Residence (HMR), representing 60.2% of total real assets,
followed by other real estate property (22.3%). On average more than 70% of EU residence live
in owner-occupied accommodation (Hennecke, Murro, Neuberger, & Palmisano, 2017).
Home-ownership is higher in poorer countries and the proportion of home owners by age band
has been steadily increasing with each successive generation. Evidence-based observations indi-
cate that homeowners are generally wealthier than their non-home owning counterparts, and this
conclusion is valid both across the income or net wealth distribution and across countries.
Personal pensions and private home-ownership are the two main assets individuals have to fi-
nance and supplement their retirement consumption in an asset-based approach to welfare. As
such, individuals accept greater responsibility for their own welfare needs. This involves both
long-term saving and investment decisions over the life cycle. Investment and saving decisions
are motivated by potentially competing objectives and generate different options and outcomes
at old-age. Home wealth provides a stream of housing services starting at time of house acquisi-
tion and represents wealth which could be liquidated in old age if needed. The asset serves both
consumption and investment functions, which are assessed differently by different households
based on personal preferences.
In such situation, the house is seen as a tool against poverty that can cut expenses and increase re-
sources and consumption (Sass, 2017). Moreover Moscarola, D’Addio, Fornero, and Rossi (2015)
show how Italy and Spain would greatly benefit from poverty reduction as a result of access-
ing home-ownership equity. Furthermore, according to French, McKillop, and Sharma (2018)’s
estimates, releasing housing equity can boost the economy in the UK by 30%. This combines
with the findings of Nakajima and Telyukova (2011) that illustrate how home-ownership is a key
component in retirement saving over the life-cycle. Consequently, the home becomes central to
asset backed welfare approaches, where home-ownership is envisioned as a mean of individual
welfare (Ronald, Lennartz, & Kadi, 2017). As a matter of fact, Mayhew, Rickayzen, and Smith
(2017) have examined the benefits of employing home equity to provide for long term care ser-
vices. On top of this, governments are seeing housing assets as a way to offset public benefits’
decline (Prabhakar, 2018).
The increasing need of private savings for old-age is potentially in conflict with savings for
home-ownership. In many cases, an average household repays annually in mortgage capital a
substantially higher amount than that saved for retirement purposes. Together with taxation,
the resources required for paying for a home act as a strong disincentive to funded social secu-
rity and welfare. However, there is still no clear indication that allows us to conclude whether
households owning property and repaying mortgages save more than renters or to what extent
homeowners with a mortgage substitute any financial savings with mortgage payments or see
them as complements. If paying off a mortgage is perceived as equivalent to saving for retirement
there is no apparent trade-off. However, the existence of liquidity constraints and the need to
align and integrate the objectives and incentives for both investment and saving decisions might
become troublesome in practice.
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One possible manner of mitigating this potential conflict implies unlocking the wealth senior
individuals have accumulated in their homes to help fund retirement and long term care. Home-
ownership wealth could be collected by selling or renting out the home or through a series of
different ERS. Some of these mechanisms involve selling the dwelling and moving or even being
permitted to live in the house up until death (Towers Watson, 2013). In others accessing the
wealth accumulated in the form of housing is possible while also being able to continue living in
the same home up until death or move out to a residential care home (Ayuso, Bravo, & Holzmann,
2019a). The later form of ERS is the most customary among the two and will be the subject
of examination of the present dissertation. Among English speaking countries it is commonly
referred to as Lifetime Mortgage in the UK and as RM in Canada, USA and Australia. This
contract consists of a lien on a real estate asset that pledges the repayment of a loan (mortgage).
However unlike common housing mortgages where the loan helps the borrower purchase a home,
a RM contract acts in ’reverse’: it allows the borrower and owner of the estate to exploit his
unencumbered property rights and access a loan that will finance old age income needs.
In this study we will employ the term RM to refer to a medium-long term mortgage against the
value of a residential estate where the lender is a financial intermediary, e.g bank or insurance
company. The borrower, who will typically be 60 or older, is entitled to a lump sum or a stream
of payments equivalent to a predefined percentage of the value of the estate. The value of the
loan accumulates in time at a predefined interest. However the outstanding loan can never be
higher than the property value. The repayment of the loan can occur upon death of the borrower
or loan refinancing, typically move-out or selling the property.
90% of RMs have been marketed in the USA since the late ‘80s, where they are administered
by the Federal Housing Administration (FHA) (Shan, 2011). These institutionalized RMs are
known as Home Equity Conversion Mortgages (HECM) and can only be accessed once reached
a minimum age of 62 years old (Warshawsky, 2018). These have been largely used by low income
households to increase consumption in retirement (Makoto & A., 2017). And, only recently Equity
Release instruments have been introduced in the German, Spanish and Italian financial market.
Particularly, in Italy although the offer has been thriving, RMs have shown no exceptional suc-
cess in terms of demand (Fondazione Cariplo, 2017; Moscarola et al., 2015). Nevertheless, recent
results argue that RMs can considerably cut poverty (Baldini & Beltrametti, 2015) and benefit
life-cycle investment planing among Italian households (Crespi & Mascia, 2014).
At European level the first overview over ERS as of 2007 has been assessed in three reports by
Reifner, Clerc-Renaud, Pérez Carrillo, Tiffe, and Knobloch (2009a, 2009b, 2009c). Whereas, a
more recent comparative analysis of the impact of ERS on present and future generations of
seniors has been provided by Mudrazija and Butrica (2017).
Motivated by this, the present study will focus on the empirical risk valuation and profitability
profile of Italian RM instruments in the attempt to create a solid model that could enhance
pricing and risk management accuracy and favor marketability.
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1.2 Study Objectives and Relevance

In the previous lines, the key role that home equity based products play in alleviating poverty
among elderly has been outlined. To date, the use of RM has been very limited within European
countries. Still, the combination of life expectancy lengthening, downsizing of public resources
and high home-ownership rates pave the way to market expansion as RM instruments emerge as
an appealing mean to access housing wealth.
The most common equity release products incorporate a clause that prevents the loan to be
higher than the value of the property. This guarantee bears substantial risks that makes equity
release schemes difficult to price (Huang, Wang, & Miao, 2011). Thus, appropriately evaluating
the risks and profitability it incorporates is not an option but a regulation wise mandatory oper-
ation for any institution that desires to market and generate profit margins from RM products.
As a consequence, a fledgling large body of research over RM risk measurement and pricing has
proliferated. Still, methodological controversies have arisen and left plenty of room for advance-
ment which will be exploited throughout this study. Carefully examining the limitation these
techniques bear and proposing innovative improvements implies providing companies with a re-
liable risk and profit assessment system that would aid the industry in developing sustainable
and lucrative products as well as comply with regulation. Hence, throughout this dissertation
empirical and theoretical methodologies will be devoted to provide a result for the following
research questions:

1. Employ diverse approaches to assess the risks within RM instruments and the
determinants of profitability.
The present dissertation will employ cross disciplinary approaches, e.g. actuarial, financial
and deep learning methodologies, to integrate and potentially improve state-of-the-art RM
risk and profit valuation.

2. Introduce artificial intelligence to jointly evaluate house property pricing, in-
terest rate and inflation risk with specific application to RM products.
Since the ‘90s there has been a plethora of research and applications of Artificial Intelligence
for real estate price prediction and financial management of assets, particularly Neural Net-
work systems. As such, this research will attempt to extend these findings to house pricing,
interest rate and inflation risk computation and possibly introduce innovation within the
RM risk assessment framework.

3. Asses exposure to loss and produce a final aggregated risk measure.
The ultimate objective is to perform a product-specific risk analysis and conduct several
sensitivity analysis. In this regard, a final aggregated risk measure is required. This should
account for all contingent factors.

4. Determine the value of the loan and profitability of the lender.
The options inherited in different RM instruments generate pay-off structures. These can be
assessed through pricing theory to explain risk adjustments that maximize loan providers’
profit.
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Eventually, to produce knowledge outside the research environment, this study will be trans-
formed into practice when applied to real world products, i.e. Italian commercialized RMs. This
will allow to introduce a final objective:

5. Investigate over the Italian state-of-the-art RM market.
In Italy the RM loan program has been very recently introduced and it presents several
peculiarities. Therefore, we will need to explore the current Italian market and adapt the
resulting risk and profitability valuation framework accordingly.

1.3 Structure of the Paper

This paper consists of six chapters among which the above introduction and a final chapter where
the main conclusions of the study are drawn. Within the introductory chapter we have presented
a general overview over the primary topic and the objectives of research.
In the following chapter, we will explore literature concerning the equity release market and
various valuation approaches. A number of valuation frameworks illustrated below will specifically
deal with reverse mortgages, while others will introduce unexplored methods in this area.
Chapter three will focus on providing an overview of the reverse mortgage market conditions
within the first section. Whereas section two will be entirely dedicated to presenting the current
Italian reverse mortgage offer, demand and regulation.
In Chapter four we will illustrate the different techniques employed to determine a future value
for all identified stochastic variables. These will be subsequently used in Chapter five to generate
cash flow projections of various reverse mortgage schemes. As such, this chapter will first present
the quantitative features of all contract structures under study and subsequently provide the
final results and considerations in terms of net pay-off and risk measure valuation.
The final remarks will be drawn in the last chapter of this paper. Here we will illustrate a
final outline of the present investigation and introduce further recommendations on research
advancements on the subject of this study.



CHAPTER

TWO

LITERATURE REVIEW

A strand of literature has been concerned with equity release products and particularly with the
reverse mortgage market and valuation techniques. Understanding market conditions through
related literature will then allow for the design of proper risk and profitability modelling. Many
of these studies will be outlined throughout this chapter. These will supplement and complement
the present research at a further stage of investigation.

2.1 Equity Release Market

Different interrelated forces affect the Equity release market. A study on this topic is provided
by Sulaiman, Ishaq, and Ghani (2018). The authors provide an outlook on all different factors
and sub-factors influencing the RM market and identify four major components: institutional,
economic, socio-cultural and behavioral. Moreover, they show that many households rich in home
equity might encounter various obstacles when attempting to access house value. Terry (2007)
investigates over practical solution and provides guidance on how to make equity release easily
accessible.
A broad view of the international equity release market is presented by Haurin and Moulton
(2017), Gwizdala (2015) and Fondazione Cariplo (2017). While as previously mentioned, an EU
specific study has been conducted in three paper studies by Reifner et al. (2009a, 2009b, 2009c)
and more recently by Hennecke et al. (2017). Additionally, with particular regard to insurance
companies, Towers Watson (2013) explores the potential of the equity release market in the EU.
These studies provide a wide overview over several country-specific equity release markets.
Whereas, existing studies conducted in key ERS markets, i.e. North America, Australia, UK
and Ireland, will be illustrated below.

North America

ERS have been particularly popular in North America with the United States market as one
of the most developed ERS market worldwide. A historical overview on the US RM market is
provided by Huan and Mahoney (2002). The HECM is the widest equity release program in the
US accounting for 90% of the market (Gwizdala, 2015). This type of reverse mortgages along

12
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with other mechanisms designed to allow for equity release are illustrated in Kaul (2017) and
Warshawsky (2018)’s studies. These explore and exhaustively present the market distribution
and endorsement in recent years. While Michelangeli (2008)’s research shows how the decision
to apply for a reverse mortgage in the US affects household gains and losses and life-cycle con-
sumption. Also, the convenience of RM in the US is furtherly investigated by Nakajima (2012).
Shan (2011) shades light on the determinants of the US RM market expansion.
Interestingly, the US has also experienced the development of the institutionalized HECM sec-
ondary markets. A key role in bringing liquidity to HECM lenders has been played by the gov-
ernment sponsored Federal National Mortgage Association, a.k.a. Fannie Mae (Begley, B. Fout,
LaCour-Little, & Mota, 2017).
In Canada RM programs are solely available through a regulated banking institution named
HomEquity Bank. This Canadian RM is known as Canadian Home Income Plan and shares
many features with the HECM scheme (Fondazione Cariplo, 2017).

Australia

Equity release products have gained a certain recognition in the Australian financial services
market over the past decades. The RM contract has received most attention among all equity
extraction products and it takes mostly the form of a lump sum loan (Haffner, Ong, & Wood,
2013).
Furthermore, Brownfield (2014) cites equity release instruments as the fourth retirement income
pillar for senior Australians and gives a broad overview of Australian equity release schemes
among which the RM is the most common. An important study (Australian Actuaries Institute,
2016) discusses the costs and biases encountered in the Australian market and suggest reforms to
unlock equity release benefits and enhance product expansion. Additionally, Jefferson, Austen,
Ong, Haffner, and Wood (2017) analyze the barriers and reluctant behaviors that Australians
might encounter when purchasing an ERS.

United Kingdom and Ireland

The UK has one of the most sophisticated and largest equity release market among European
countries (Gwizdala, 2015). With around 40 suppliers, equity release products in the UK mainly
take two forms: Lifetime Mortgage (a.k.a. Reverse Mortgage) and Home Reversion Plan. These
products must comply with specific regulation required by the Equity Release Council (Fon-
dazione Cariplo, 2017).
A recent empirical assessment over UK demand and supply components has been run by French
et al. (2018) which sheds light on equity withdrawal behavior among British seniors.
With respect to Northern Ireland, Fiona Boyle Associates (2010) have presented an overview of
various equity release forms and their availability.
Ireland also plays an important role in the European equity release market. The market rules
applied in Ireland present similar features as the ones applied in the UK market (Gwizdala,
2015).
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2.2 Valuation of Reverse Mortgages

Growing literature has been concerned with risk valuation and pricing of reverse mortgage
schemes. This section will explore different studies related to RM risk identification and prod-
uct pricing. These will be then used as background and support for the subsequent theoretical
modelling phase.

2.2.1 Risk Valuation Literature

Kumar, Divakaruni, and Sri Venkata (2008) identify the main risks impacting RMs: Crossover
Risk, Longevity Risk, Anti-selection, Moral Hazard and Litigation. In this paper the Crossover
risk is split into four different components: Occupancy Risk, Mobility Risk, Interest Rate Risk
and Home Appreciation Risk. On the other hand, C. C. Lee, Chen, and So De Shyu (2015) have
a different definition of Crossover Risk: Crossover Risk represents the risk of heaving a value
of the outstanding balance greater than the value of the property. In such case, the Crossover
Risk would comprise Longevity Risk. Moreover L. Wang, Valdez, and Piggott (2008) consider
Crossover Risk as the result of Occupancy, Longevity, Interest Rate, House Price, Maintenance
and Expenses Risk. On the other hand Alai, Chen, Wanhee Cho, Hanewald, and Sherris (2014)
identify the risks that might cause the loan balance to exceed the property value as being:
Termination Risk, Interest Risk and House Depreciation Risk. In such case, Termination Risk
would comprise Mobility and Longevity Risk.
The following lines will present literature that explores RM Crossover Risk, Termination Risk,
Longevity Risk, House Price Risk and Interest Rate Risk individually.

Crossover Risk Literature

The Crossover Risk identifies the risk that the loan’s outstanding balance at termination will be
higher than the collateral value, since the lender can only recover the proceeds of the sale of the
house. An increase in the crossover risk can be determined by an increase in lifespan, an increase
in the interest rate at which the loan interest accumulates and through house value depreciation
(H. Chen, Cox, & S Wang, 2009). Multiple pricing models for crossover risk have been proposed,
for instance, by Huang et al. (2011), Chinloy and Megbolugbe (1994) and H. Sun (2015).

Termination Risk Literature

The termination risk implies that the borrower may unexpectedly end the contract. Ji, Hardy, and
Li (2012) have assumed that the termination of a reverse mortgage contract could be triggered
by three different factors. The first termination state is attributed to death. The remaining states
occur when the home is sold and the loan paid back due to either entrance into a long-term care
facility as a consequence of health deterioration or move out for other non-health related reasons,
i.e. refinancing and downsizing.
Various multistate models for termination risk have been studied and empirically applied by
Szymanoski, Enriquez, and DiVenti (2007), D. Cho, Hanewald, and Sherris (2015) and Sherris and
Sun (2010). And, in particularly Ji (2011) developed a solid Markovian multiple state termination
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risk model that jointly encompasses all drivers that might lead to unexpected contract cessation.

Longevity Risk Literature

The guarantee implied by equity release contracts inherit longevity risk (Ji et al., 2012). This is
even more evident when the capital disposal is in the form of an annuity (Y. T. Lee, Wang, &
Huang, 2012). Y. Chen and Wu (2014) also observe that the interest and principal payment of
the loan can get much higher than the value of the property when the borrower’s life expectancy
unexpectedly increases determining the risk of delayed termination. Therefore, reverse mortgages
are longevity-dependent products and assessing longevity risks becomes crucial for RM lenders
(Yang, 2011).
Numerous techniques can be applied to provide an estimation of population longevity (see, for
instance, Booth and Tickle (2008), Cairns, Blake, and Dowd (2008), Mitchell, Brockett, and
Muthuraman (2013)). In particular, the effects of longevity risk models on reverse mortgage
evaluation are analyzed within different studies, e.g. Y. T. Lee et al. (2012), J. L. Wang, Hsieh,
and Chiu (2011), D. Cho et al. (2015) and Sherris and Sun (2010).

House Price Risk Literature

The value of the collateral might be subject to depreciation. And when the RM provider sells
the property, it might have a lower price than anticipated. Thus, the lender has to account for
the risk of real estate prices not conforming to expectation. To generate a risk measure for house
price risk and evaluate profitability, a predictive model is required.
Hanewald and Sherris (2011) analyze different house pricing evaluation frameworks. Typically,
in the evaluation of equity release programs, two types of models are most widely used: the Vec-
tor Auto-Regressive (VAR) methodology and its extensions (D. W. Cho, Hanewald, & Sherris,
2013; Shao, Sherris, & Hanewald, 2012) and Brownian-based techniques (J. L. Wang et al., 2011;
Sherris & Sun, 2010). Alternatively, C. C. Lee et al. (2015) employs a Poisson based model to
explain house price risk and simultaneously interest rate risk.
Moreover, hitherto there appears to be no literature over Artificial Intelligence or Machine Learn-
ing with specific application to RM valuation. Nonetheless, research over these methodologies
applied to property price prediction has been available since the ‘90s, e.g. Wiśniewski (2017),
Chaphalkar and Sandbhor (2013) and Visit, Christopher, and Lee (2004). Not to mention the
impressive advancement made in technological applications, i.e. mobile application that produce
real estate price prediction (Aaron & Deisenroth, 2015; Borde, Rane, Shende, & Shetty, 2017).

Interest Rate Risk Literature

Variation in interest rates generate additional uncertainty for RM providers (H. Chen et al.,
2009). As such, measuring interest rate risk is required when releasing RM instruments into the
market. Along real estate valuation the VAR techniques can also model other economic variables
among which interest rate. Another popular model in reverse mortgage risk valuation is the
Cox-Ingersoll-Ross (CIR) model (Boehm & Ehrhardt, 1994; Y. T. Lee, Kung, & Liu, 2018; J. L.
Wang et al., 2011).
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Literature over stochastic interest rate risk measurement models is extremely vast. Among others,
Huang et al. (2011) uses the log-normal model to describe the interest rate risk when evaluating
the crossover risk. And, with specific application to RM valuation, Zheng and Xikun (2016) have
proposed a Poisson distribution based model.
Neural networks have also been applied in the field of interest rate modelling (Abid & Ben
Salah, 2002). Although, neural networks have been mostly designed for a broader usage in risk
management and financial forecasting (Maciel & Ballini, 2010; Lazo, Pacheco, & Vellasco, 2002;
Toulson, 1996; W. Sun, Rachev, Chen, & Fabozzi, 2008; Bahrammirzaee, 2010), these studies
can be effectively adapted to generate predictions for interest rate time series.

No-Negative-Equity-Guarantee Literature

Either for regulatory or commercial reasons, most RM contracts are sold with a Non Negative
Equity Guarantee (NNEG), a.k.a. non-recourse clause in the US RM market. This clause protects
the borrower from owing to the lender more than the property value (Y. T. Lee et al., 2018).
Consequently, to recover the loan the RM provider cannot claim more assets than the value of
the collateral (Y. T. Lee et al., 2012). The structure of the guarantee resembles a European put
or call option. As a result, many studies have used the Black & Scholes formula for valuation
purposes (H. Chen et al., 2009; Ji, 2011; J. S.-H. Li, Hardy, & Tan, 2010). Others preferred
stochastic discount factors that would reflect house price, interest rate, inflation and rental risk
to compute the present value of cash flows (Alai et al., 2014; D. W. Cho et al., 2013; Shao et al.,
2012). While C. W. Wang, Huang, and Lee (2014) chose a close formula approach to model the
Loan to Value (LTV) ratio from which the NNEG could be consequently derived. And, Andrews
and Oberoi (2015) computed the loan’s initial value as dependent on an NNEG charge that would
be determined through simulation. Other risk-neutral valuation approaches have been developed
by Kogure, Li, and Kamiya (2014) and Kim and Li (2017).



CHAPTER

THREE

THE REVERSE MORTGAGE MARKET

To provide valuable contribution, the quantitative framework has to be put into practice to
generate suitable outputs to be then used in RM lending policies. As such, this chapter will
attempt to preliminary explore the main features of the largest RM markets and subsequently
it will provide an outline of the reverse mortgage regulation and market in Italy. This will grant
critical information when designing a structure for the ultimate modelling process.

3.1 Worldwide Market

The RM market has been having particular success in Anglo-Saxon countries. Specifically in the
US, the RM program started in 1963 in Oregon with mortgage loans aimed at poverty reduction
among seniors. And, in 1979 the Reverse Annuity Mortgage scheme has been also introduced in
California. Still, the largest RM plan began in the ’80s with the federal HECM. Further consol-
idation was achieved in the 2000s when the RM market reached a rate of 2% of mortgage loan
plans. The minimum age to access these programs in the US is set at 62. The payment of the
loan can be done through a lump sum, periodical installments, in the form of line of credit or
a combination of all the above. The amount of the loan will depend on the entire value of the
property or a percentage of it. The loan, service commission, expenses and accumulated interest
are reimbursed at termination, e.g. death of the borrower. To protect heirs, the loan balance
cannot exceed the market value of the property, i.e. NNEG. Moreover, the RM programs are
classified into two different types: conforming and non-conforming. The conforming RM, among
which the HECM, can only be offered by institutions authorized by the FHA and cannot exceed
a predefined fixed sum. The second RM category has no regulatory maximum amount and can
only be delivered by private companies with no federal guarantee.
The Canadian market shares similar features with the US market. Whilst the RM products are
less popular among elderly Canadians, the demand has exceed initial estimates and is predicted
to grow at a rate of 25-30% (HomeEquity Bank, 2015). The federally regulated HomEquity Bank
is the sole national RM lender that supplies a form of Equity Release called Canadian Home In-
come Plan (CHIP). This contract provides a loan of up to 50% of the home value to over 55 years
old seniors without any credit scoring or income requirements. Typically, to provide longevity

17
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and house pricing risk coverage the interest rate, which is annually updated, is above ordinary
mortgage rates.
The Equity Release plan in the UK is not particularly new. The first product was introduced
in the ’60 but due to lack of transparency, consumer trust and overwhelming complexity there
has been no particular market expansion. As a consequence, in the ’90s equity release providers
founded the Safe Home Income Plans, today Equity Release Council, to promote qualitative
market standards to safeguard consumers. Among these standards, the NNEG and the possibil-
ity of living in the property up until death were introduced. Furthermore, in 2004 a government
authority, the Financial Services Authority, also started regulating and controlling the equity
release market. This has positively impacted the market and has considerably raised demand.
And, starting from the same year insurance companies began marketing equity release prod-
ucts. Thereafter, insurance companies have been progressively substituted banks as the main
providers.
The North American RM equivalent in the UK is referred to as Lifetime Mortgage. The mini-
mum age is set by the Equity Release Council at 55 and it allows a home owner to take a loan
in the form of lump sum, periodical installments and draw-down income against a mortgage
on the home. When the homeowner has a spouse, the contract is considered terminated only
if both spouses are deceased. Interest-Only Mortgage and Fixed-Repayment Mortgage are two
different forms of Lifetime Mortgage. An Interest-Only Mortgage is provided against monthly
payments of the accrued interest. While the Fixed-Repayment Mortgage does not accrue any
interest whatsoever in exchange of a contracted higher loan repayment at termination.
In the early ’90 the Australian government started subsidizing a form of equity release. Never-
theless, only in the 2000s RM contracts took off and still today represent the most common form
of ERS. Among these, several schemes have been specifically designed to aid funding costs tradi-
tionally covered by the government, e.g. South Australia’s Seniors Rate Postponement Scheme.
In 2014 the estimated RM market size was around $3.66 billion AUD with a 1.5% penetration
rate and four active loan providers, the majority of which are banks.
Within continental Europe an instrument similar to the Anglo-Saxon RM, Hipoteca Inversa,
has been regulated with Law 41\2007 (Sánchez, 2009). In Spain the loan can only be provide
to over 65 or severely disabled seniors. Also in this case, the NNEG is mandatory. Typically,
the Hipoteca Inversa is complemented by a lifetime annuity that can only be provided by an
insurance company.
In France a type of RM, prêt viager hypothécaire, has been introduced in 2008. The minimum
age is set at 65 and can only be provided by banks. To date, only one institution, Crédit Foncier,
operates on the French RM market.

3.2 Italian Market

RM products have only been adopted by financial institutions in Italy in 2005 and go under the
name of Prestito Vitalizio Ipotecario (PVI). To date, these products didn’t achieve any particular
success. Still, the current demographic, retirement system and housing conditions pave the way
to future demand expansion.
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3.2.1 Regulation

PVI plans have been originally regulated in Italy through Law n. 248\2005 and Legislative De-
cree 20/09 /2005 n. 203. This legislation has been revisited in 2015 with Law n. 44 \2015 and
its implementation regulation D.M. 22/12/2015, n. 226. This legal framework dictates several
mandatory common rules for all institutions that are willing to commercialize RM plans in Italy.
The implementation regulation has three Articles. The first two articles define the contractual
class and frames the general standards. While the third article draws the rules for unilateral
termination rights for the loan provider when the value of the house suffers severe depreciation.
The definition provided by the 2015 legislation is based on the Anglo-Saxon RM market expe-
rience: medium - long term loan against a mortgage on residential housing provided by banks
and other authorized financial intermediaries. The law imposes a minimum age for loan access
of 60 years old1 and the interest and expenses have to be capitalized annually. The contract has
to be signed by both spouses if they are both over 60 and legally married for at least 5 years
even when only one spouse is the legal owner of the estate. The loan repayment can consist of
a final repayment at termination or periodical repayments of interests or of the entire loan’s
outstanding balance. The termination of the contract can occur: upon death of both spouses2;
when property or housing rights are transferred to a third party; when the property has been
significantly modified without the lender’s approval; when the estate has been intentionally or
with serious misconduct damaged by the borrower; when family members other than the signa-
tories take up residency in the home; when the property undergoes enforcement proceedings for
more than 20% of its value. Upon death of both spouses the heir will still inherit the property.
If in the subsequent 12 months the outstanding loan, interest and expense balance will not be
repaid, the lender can recover the proceeds from the property. In these 12 month the heir can
himself sell the property and repay the loan.
To protect consumers, the non-negative equity guarantee is mandatory. And for this reason, the
contract has to include simplified estimated funding scenarios that comprise every expense due
at contract date for a number of years equal to the difference between 85 and the age of the
youngest signatory at contract data with a minimum of a 15 year projection3. When the interest
rate is variable the scenarios have to be at least two: a base line scenario at current interest rates
and a worst case scenario with a 300 points rise in interest rates.

3.2.2 Product Offer

Despite Reverse Mortgages being envisioned as a suitable tool to alleviate poverty in Italy, in
2017 the amount of total loans were just around a few hundred million euros. The first two
PVI providers were EUVIS and Monte dei Paschi di Siena. Along several major banks today
PVIs have also been commercialized by smaller financial service institutions. Among these, it
is possible to find such products offered by Unicredit, Deutsche Bank, Intesa Sanpaolo, BNL,
Monte dei Paschi di Siena, Barclays, Banca Popolare Sondrio and Imprebanca.

1
In 2005 this minimum age was set at 65.

2
When both spouses are signatories.

3
In formulae: max{85-age youngest spouse, 15}.
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The main PVI contracts are typically supplied to seniors that have a minimum age of 60 or 65
and a maximum age of 85, 90 or 100. The products commonly have a minimum and a maximum
amount for the initial loan. And frequently, this loan presents itself as an upfront sum. Still, Monte
dei Paschi di Siena offers the borrowers the option to receive an annual sum for a maximum of
20 years. This annual installment considers a fixed interest rate for its computation. While the
interest rate accumulating over the loan amount can be fixed or variable, typically linked to IRS
or EURIBOR3M rates.
In most contracts the reimbursement is due at termination. However, some products provide an
option for the borrower to pay annually or monthly the interest accrued. A penalty might be
due if the homeowner decides to repay the loan before a fixed term. The amount of the loan is
normally a percentage of the value of the house, i.e. LTV. This percentage varies from contract
to contract and generally tends to increase with the age of the borrower at contract stipulation
date.



CHAPTER

FOUR

RISK DRIVERS

In the previous lines we have seen that the valuation of PVI contracts depend on several risk
factor: mortality, refinancing, interest rate, inflation and house prices. In the following lines we
will attempt to model termination risk, which will simultaneously shape mortality and refinanc-
ing risk, thus providing also for correlation modelling. Separately, we will build a model that
encompasses interest rate, inflation, property pricing risk and their inter-dependencies. This is
a consequence of the common actuarial assumption of independence between demographic and
economic contingent factors. The only interaction among these risk drivers occurs within catas-
trophic risk, which for the purpose of this investigation will be ignored.

4.1 Neural Networks

To develop a model predicting time-dependent risk factors we will employ deep learning algo-
rithms, specifically Artificial Neural Networks (ANN).
Artificial Neural Networks were originally designed by McCulloch and Pitts (1943) and Wiener
(1948) to mimic the functioning of neurons within the human brain. Still, the very first attempt
to use this architecture for classification machine learning purposes was made by Rosenblatt
(1958) paving the way to the introduction of the Widrow - Hoff ADALINE algorithm (Widrow
& Hoff, 1960).
Werbos (1974) solved the problem of Multilayer Perceptron (MLP) propagation conceived by
Minsky and Papert (1969). This led a decade later to new and robust architectures for both
classification and regression (Rumelhart, Hinton, & Williams, 1988; Widrow & Lehr, 1990).
To briefly present the intuition behind ANNs, we will employ the framework provided by Kriesel
(2007).
The simplest neural network version is referred to as Single Neuron Perceptron. Its structure can
be visualized below:

21
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Figure 4.1: Single Neuron Perceptron

This model applies an activation function, f(), to the the sum of the weighted input vector,
x = {x1, x2, x3}, and a bias term, ✓, to create a final output, y.
In mathematical terms, an output neuron will be given by:

y = f

✓ 3X

i=1

w

i

x

i

+ ✓

◆
. (4.1)

The ANN is characterized by a learning phase where it "learns" the problem by modifying the
weights w

i

of its synapses through the above learning rule.
The architecture can be transformed to capture a more complex configuration of the inter-relation
between multiple inputs and also their relationship with a single output. Figure 4.2 illustrates
the case in which the structure of the neural network has one layer of multiple neurons between
the input layer and output layer, i.e. hidden layer with more than one neuron.
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Figure 4.2: Neural Network with One Hidden Layer

The mathematical equivalent would be:

y = f(WX), (4.2)

where W and where X represent the weight and input matrices respectively. The weights w
ij

are
updated for each hidden neuron based on error back-propagation. The number of neurons in the
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hidden layer and the number of hidden layers mainly depend on the complexity of the problem
and nature of the data (Kabir & Ahsan Akhtar Hasin, 2013).
Some problems might require to deliver n different regression outputs starting from an input
vector of cardinality m. In other words, we will need to transform an m-dimensional input space
into an n-dimensional output space:

Rm � > Rn

, (4.3)

Figure 4.3 illustrates a neural network with 4 input neurons, one single hidden layer with 5
neurons and 3 output neurons.
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Figure 4.3: Multiple Output Neural Network with One Hidden Layer

In this case, the generic output y

k

will be the result of (Bishop, 1995):
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◆�
, (4.4)

with w

ji

as the weight between input i and hidden neuron j and �

kj

as the weight between
hidden neuron j and the output neuron k.
For MLPs (see Figure 4.4) back-propagation is the most notable learning rule (Le Cun, 1986;
Parker, 1985). This technique propagates backwards the errors of the output neurons to the
hidden neurons. This is particularly useful when the correct solution for the neurons is unknown,
therefore we cannot directly calculate the error.
The back-propagation method is defined in two steps: one forward step and one backward step.
Within the forward step, the outputs of the network are calculated propagating the inputs
through the neurons of the network, while the weights of the connections remain unchanged.
The backward step consists of a two sided modification of the weights of each connection as
follows:

• For the output neurons, the weights will be modified through the Delta Rule. More specifi-
cally, the weights of the connection between the last hidden layer and the network’s output
layer will be iteratively re-calibrated by comparing the calculated output with the desired
output and generating an error through an error function, e.g, mean squared error. The pro-
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cess will terminate when the error function will be lower than a predefined value (Widrow
& Hoff, 1960).

• For the hidden neurons, the remaining weights will be re-determined by propagating back-
wards the above-mentioned error assuming that the error attributed to one neuron is the
sum all errors in all subsequent directly connected neurons.

The weight between a generic neuron i and a generic neuron j are at each stage updated through:

w

ij

= w

ij

+�w

ij

, (4.5)

with �w

ij

depending on the error function E:

�w

ij

= �⌘

@E

@w

ij

. (4.6)

The above equation implies that the algorithm moves towards a solution by means of the gradient
descent method where a specified learning rate, ⌘, is employed as movement length (Ranganathan,
Nakai, & Schonbach, 2018). In practical terms, the weights are continuously modified in the
negative direction of the gradient of the error. The algorithm will stop and the weights will no
longer be modified when the minimum of the error function is reached, i. e. the derivative of E
is zero.
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Figure 4.4: Feed-Forward Neural Networks
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4.1.1 Recursive Neural Networks
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Figure 4.5: Single Neuron Perceptron with Time Dependent Input Data

The ANN results inadequate to forecast time sequential data sets, where each element in the
input vector will depend on the time it was measured, as illustrated in Figure 4.5. This means
that the input at time t will have a certain dependency to the input observed at time t� 1.
Up until now, we have examined neural networks where the information flows in one single
direction, from the input to the output, i.e. feed forward neural networks. Still, it is possible to
build neural networks where the information moves in one direction but also in the opposite
direction generating loops which allows for information to persist. These are referred to as
Recursive (or Ciclic) Neural Networks and were discovered by Hopfield (1982), Rumelhart,
McClelland, and PDP Research Group (1986). Recursive neural networks result particularly
effective when dealing with time series, provided their ability to learn sequentially (Gamboa,
2017).
Figure 4.6 and Figure 4.7 illustrate the transition of information within the structure of a
vanilla Recursive Neural Network and within a generic Recursive Neural Network architecture
respectively.
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Figure 4.6: Unfolded Recurrent Neural Network with one input, one output, one hidden layer
and one recurrent layer

In the above figure, a network h captures the information from a sequential input x and generates
an output y. The network h consists of a collection of states {h0, h1, h2, . . . , ht}. These initially
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read each input incrementally and subsequently the network constantly loops all over again while
keeping memory of all the processed information.
Each state h can contain different neurons within different layers. Figure 4.7 shows an example
of Recursive Neural Network (RNN) where all states hold three interconnected layers, each with
n different neurons. Moreover, the final layer of a certain state at time t will be connected with
the first layer of the subsequent state at time t+ 1.

h

1
t�1

h

n�m
t�1

h

n
t�1

yt�1

xt�1

h

1
t�1(1)

h

n�m
t�1(1)

h

n
t�1(1)

h

1
t�1(2)

h

n�m
t�1(2)

h

n
t�1(2)

h

1
t

h

n�m
t

h

n
t

yt

xt

h

1
t(1)

h

n�m
t(1)

h

n
t(1)

h

1
t(2)

h

n�m
t(2)

h

n
t(2)

h

1
t+1

h

n�m
t+1

h

n
t+1

yt+1

xt+1

. . . . . .

Figure 4.7: Unfold Recurrent Neural Network with multiple inputs, outputs and layers

The output at current time step, y
t

, of a vanilla RNN, provided the input at current time step,
x

t

, and the hidden state, h, at time step t� 1, can be defined as (Finsveen, 2018):

y

t

= f(L[x

t

, h

t�1]), (4.7)

L[x

t

, h

t�1] = W1xt +W2ht�1 + ✏. (4.8)

Where L is a linear transformation function, f is typically a non-linear function, W1 and W2

are weight matrices and ✏ is the remaining bias.
While for a MLP RNN dynamic, given layer l and time t, the state transition from the previous
to the current neuron can be defined as a function (Zaremba, Sutskever, & Vinyals, 2014):

RNN : h

l�1
t

, h

l

t�1 ! h

l

t

, (4.9)

with:
h

l

t

= f(L[h

l�1
t

, h

l

t�1]). (4.10)

4.1.2 Long-Short Term Memory Neural Networks

One problem that frequently arises when using RNN for time series forecasting is their "for-
getfulness". They are unable to record long term dependencies and typically retain unnecessary
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information (Bengio, Simard, & Frasconi, 1994; Petneházi, 2018). A variant of RNN, the Long
Short Term Memory (LSTM) network, was introduced by Hochreiter and Schmidhuber (1997)
to memorize long term patterns when necessary, recall what it needs to be recalled and learn
only what needs to be learned.
A LSTM layer can be composed by one or more LSTM units. Within each unit the LSTM struc-
ture consists of a new hidden state that will act as the memory of the networks, i.e. cell. The
memory of the cell can be altered through a single neural network layer called gate. The weights
of these networks need to be learned during the training phase.
The gates of a LSTM will enable the process of retaining the necessary memory from the current
input, forgetting unnecessary patterns and generating a current output based on the present and
past memory. Each LSTM unit will receive three inputs: the previous short term output, the
long term memory cell state generated by the previous unit and the current input. Subsequently
the forget gate, output gate and input gate along with additional gates that perform regularisa-
tion will process the information and deliver a long term memory cell and a short term memory
output.
Formalizing, an LSTM unit receives at a generic time t a cell c

t�1 and the short term memory
output h

t�1 from the previous LSTM unit and the current input x

t

. Provided the parameters
W1, W2 and ✏

f

, the forget gate will generate an output f

t

through the sigmoid function, �:

f

t

= �(W1,fxt +W2,fht�1 + ✏

f

), (4.11)

and this defines the unnecessary memory to be erased (Goel, Melnyk, Oza, Matthews, & Banerjee,
2016).
At this point we can determine what memory needs to be added to the new cell state c

t

as
follows:

i

t

= �(W1,ixt +W2,iht�1 + ✏

i

), (4.12)
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= tanh(W1,cxt +W2,cht�1 + ✏

c

), (4.13)
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+ f

t

� c

t�1, (4.14)

where � is the Hadamard element-wise product and c̄

t

represents a candidate state.
The last missing element is the output of the cell state at time t, h

t

, which can also take the
form of the final output of the LSTM structure, y

t

. This is defined through the output gate as
below:

o

t

= �(W1,oxt +W2,oht�1 + ✏

o

), (4.15)

h
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t

� tanh(c

t�1). (4.16)

Figure 4.8 illustrates the structure of a single LSTM unit.
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Figure 4.8: LSTM unit diagram

4.1.3 Monte Carlo Dropout

The typical actuarial modus operandi implies predictive uncertainty estimates. In deep learning
there is no clear way to determine Bayesian estimates. Gal and Ghahramani (2016) proposed
to train a model with a variational dropout method to extract Monte Carlo samples. This will
allow for inference on the posterior distribution of the neural network weights provided a prior
distribution of the weights.
Given Bayesian theory, we can determine a posterior probability of an observed vector of weights
of a generic neural network, !, given data X, as (Shahroudi, 2019):

p(!|X) =

p(!|X)p(!)

p(X)

, (4.17)

where p(!|X) is the probability of X conditional to the current weights, p(!) is the prior distri-
bution of the weights and p(X) is the probability related to the input data.
The probability of observing one single point, x̄, provided all inputs and parameters of the model
can be determined through:

p(x̄|X,!) =

Z
p(X|!)p(!|X)d!. (4.18)

Let X and Y be two separate data sets, the prediction of a point ȳ given a new data point x̄

will be determined as below:

p(ȳ|x̄,X,Y,!) =

Z
p(ȳ, x̄|!)p(!|X,Y)d!. (4.19)

Typically, the prior distribution of the weights is assumed to be distributed as a standard normal
random variable for each layer and the bias vector is presumed to take the form of a point
estimate.
The dropout (at training time) is a process that randomly ignores neurons within a specified
set and it generally serves as a regularisation tool to prevent over-fitting. However, Gal and
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Ghahramani (2016) performed a dropout process in the form of variational inference, i.e. at test
time, to approximate the prediction. Consequently, the predictions at test time will no longer be
deterministic. But, the output will depend on which neurons were ignored. Thus, by performing
dropout at test time and assuming a Normal distribution for the weights, we can approximate
p(ȳ|x̄,X,Y,!) as an average of the results, i.e. Monte Carlo Dropout (MCD):

p(ȳ|x̄,X,Y,!) ⇡ 1

T

TX

t=1

p(ȳ|x̄, !̂
t

), (4.20)

where !̂

t

represents the estimated weight vector.

4.2 Termination Risk

Termination Risk is a risk related to the uncertainty of the PVI contract term. Different situa-
tions might cause unexpected termination, e.g. downsizing, refinancing and significant intentional
damage to the property.
However, this product has been designed to finance old age income streams and thus to cease
upon death of both signatory spouses. For such reason and provided the available information,
we will consider longevity risk as the sole termination risk driver. This will require a model to
fit and predict mortality. A particular stochastic technique has been dominating mortality mod-
elling: the Lee Carter Mortality Model (LCMM) (R. D. Lee & Carter, 1992). This will be used
to determine Italian mortality components.
The necessary input mortality data for the Italian population is retrieved form the Human Mor-
tality Database (2019). Additionally, we will adopt and expand the model through the LSTM
approach developed by Richman and Wüthrich (2018), Nigri, Levantesi, Marino, Scognamiglio,
and Perla (2019). The framework will be employed to forecast the time dependent parameter of
the LCMM. All these methodologies will be again expanded by adding MCD.

4.2.1 The Lee Carter Mortality Model

The LCMM is the current mortality forecasting standard model. It designs a structure for the
central mortality rate, m

x,t

. This is the proportion of deaths on the exposed to death recorded for
age x during year t. Its architecture was derived from averaging log mortality rates and applying
Support Vector Decomposition (SVD) to the residuals to achieve the following form:

log(m

x,t

) = ↵

x

+ �

x

k

t

+ ✏

x,t

, (4.21)

where ↵

x

, k
t

and �

x

are the parameters of the model which can be interpreted as the logarithm
of the geometric mean of empirical mortality rates, the time trend of mortality and the age-
specific mortality deviations from the overall trend, respectively. Whereas, ✏

x,t

represents the
random effects of age and time which in traditional time series models is formulated as a series
of independent normally distributed random variables.
Additionally, to achieve unique solutions the following constraints are necessary:

X

x

b

2
x

= 1 and
X

t

k

t

= 1. (4.22)
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R. D. Lee and Carter (1992) estimate parameters ↵
x

, �
x

and k

t

through a two stage least square
error approach. First ↵

x

was estimated as:
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log(m

x,t

) (4.23)

and ˆ

�

x

and ˆ

k

t

were computed through a singular value decomposition of matrix [log(m

x,t

)� ↵̂

x

].
If used alone, this procedure doesn’t guarantee that the observed number of deaths equals the
fitted number of deaths. Hence, a second estimation stage was introduced to fit k

t

such that:

d

t

=

X

x

exp{(↵
x

+ �

x

k

t

)⇥ E

x,t

}, (4.24)

where d

t

is the number of deaths at time t and E

x,t

is the population of age x exposed to death
at time t.
The estimates of ↵

x

, �

x

and k

t

using LCMM with the two-step procedure on yearly Italian
mortality rates observed between 1872 and 2014 for ages between 0 and 110 are illustrated in
Figure 4.9.

Figure 4.9: LCMM parameter estimates

The estimated k

t

will serve as time series base for the forecasting technique outlined in the
following section.

4.2.2 Single-Output LSTM Modelling

Provided the above theoretical framework, we’ve created a MCD LSTM model to forecast future
values of k

t

and consequently mortality rates separated by male, female and total population. To
this end, first the univariate LSTM parameters have been calibrated with a number of neurons
and training epochs depending on the gender modelled. The data set has been divided into an
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80% training set and a 20% test or validation set. These two data sets were used to tune all
hyper-parameters of the model, i.e. number of layers, number of neurons per layer and tuning
epochs.
For this purpose, the error in terms of a pre-defined loss function produced by the LSTM model
applied to the training set has been compared with the validation set error function. This al-
lowed for over and under-fitting diagnosis. A higher loss function originating from the test set is
typically characteristic of an under-fitted model. While, a lower test set loss function is symptom
of an over-fitted network.
The validation set’s error path would indicate whether capacity could be improved by re-
calibrating neurons, hidden layers or training epochs. As such, when the validation set would
produce a flat higher error amount, the number of hidden layers and/or neurons were increase.
Alternatively, if the error function would present a lower value than the training set and a flat
tendency, this would suggest an under-fitting diagnosis which could be improved by reducing
hidden layers and/or neurons. If the error trend was decreasing for higher test set loss amounts
or increasing for lower error values, the number of training periods would need to be raised1.
Subsequently, we’ve generated 1000 random simulations using MCD modelling for the first future
steps. These random simulations were used to generate each one path for 60 time steps which
were then used in formula 4.21 to generate 1000 simulations for mortality rates for a given age.
From these we’ve extracted the average value which would ultimately define the final prediction
for the next 60 years. Figure 4.10 displays mortality for the input dates along with the predicted
mortality for a population aged 65.

Figure 4.10: Mortality predictions for a population aged 65.

While the 1000 future mortality simulations are shown in Figure 4.11 separately by female and
male population.

1
The optimal parameters are shown in Appendix A.
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Figure 4.11: Mortality simulations for females and males both aged 65 displayed on the left side
and on the right side respectively.

4.3 Financial Risk

Along with termination risk any RM contract presents a second class of risks: Financial Risks.
These originate from the uncertainty within interest rates, mortgage rates and property appre-
ciation or depreciation rates and, when the annuity is indexed to prices, i.e. inflation rates.
It has been proven that all these variables are correlated (Alai et al., 2014; D. W. Cho et al.,
2013). In a VAR perspective that generates stochastic scenarios, these variables would be mod-
elled together to take advantage of the their correlation when predicting future values. The VAR
analysis would typically include also Gross Domestic Product (GDP) in the modelling phase
to generate a more accurate prediction, provided its high correlation with the above-mentioned
variables. Thus, we will employ all these variables to produce our financial risk model.
However, Verstyuk (2018) has shown that an LSTM approach outperforms the VAR technique
when modelling economic variables. Therefore, a MCD LSTM perspective appears more suitable
for our risk assessment problem.
The economic data set used to estimate the parameters of the predictive model is composed by:

1. House Price Index (HPI), quarter availability between Q2 2010 and Q1 2019 (ISTAT,
2019b);

2. Euro Area Interest Rate (IR) with maturity 30 years, daily availability between September
6, 2004 and June 20, 2019 (European Cntral Bank, 2019);

3. Consumer Price Index (CPI) for the entire Italian territory and products, monthly avail-
ability between January 1997 and June 2019 (ISTAT, 2019a);

4. GDP variation, annual availability between 2002 and 2019 (ISTAT, 2019c);

5. Loan Rate (LR), monthly availability between January 1995 and April 2019 (Banca d’Italia,
2019).

Provided the availability of HPI, the input data consists of quarterly variables for the periods
between Q2 2010 and Q1 2019. Additionally, for homogeneity purposes the HPI, CPI and GDP
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series were transformed into compounded variation rates.
The multi-variate predictive model built on an 80% training set and a 20% validation set,
has three LSTM layers on top of each other, i.e. stacked LSTM, and one output layer. The
hyper-parameter calibration process followed the same steps mentioned in the previous section.
Depending on the loss function path and value, neurons, layers and training epochs have been
increased or reduced accordingly2.
In the simulation stage we’ve adopted again a similar procedure to the above mortality mod-
elling. First, 1000 scenarios were generated for the initial future step with the MCD technique.
These were used to produce each one path of 200 time steps, i.e 50 years.
Figure 4.12 shows present and future predicted values for HPI, GDP, CPI, LR and IR calculated
as an average of all generated scenarios. These results show constant predictions of future
developments. This is a consequence of insufficient data availability. The model assigns much
higher importance to few newly observed data points and doesn’t allow to perfectly capture
financial variability. This is additionally confirmed when observing the 1000 simulations for
each input variable illustrated in Figure 4.13 where all simulations appear confined within close
boundaries. To improve performance more observations should be added.
The predictions obtained for mortality and financial risks will be used to generate pay-offs
and risk assessments of various PVI contract structures. This process will be outlined in the
following chapter.

Figure 4.12: HPI, GDP, CPI, LR and IR predictions for 50 years.

2
More details are illustrated in Appendix A.
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Figure 4.13: Model simulations for HPI, GDP, CPI, LR and IR.



CHAPTER

FIVE

PRICING AND RISK ASSESSMENT

The loan payment of the PVI might take different forms. This will influence the determinants
of the present value of all future cash flows originating from the contract and thus the pricing
formula and risk profile. In this chapter we will first introduce a pay-off framework for various PVI
schemes and subsequently we will assess the riskiness enclosed within these different structures.

5.1 Pricing and Pay-off Assessment

This section will examine the drivers of the main PVI schemes: the lump sum structure and the
income stream structure. These will be then employed to generate a risk premium added to a
mortgage rate that generates the borrower’s total debt.

5.1.1 Lump Sum Structure

In a lump sum structure the borrower will receive a single sum determined as a proportion of the
value of the property at contract initiation. The architecture of this product will be explored in
the following lines using the notation and framework provided by Mottura (2016) and Castellani,
De Felice, and Moriconi (2006).
Let:

• x be the age of the borrower at contract stipulation date;

• y be the age of the borrower’s spouse at contract stipulation date;

• I0 be the initial value of the property;

• ↵ be the LTV percentage;

• S be the financing cost;

• s̄ be the stochastic term of the contract;

• m

s̄

be the outstanding balance at termination determined through annual capitalization;

• I

s̄

be the value of the property at termination;

35
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• � be the transaction cost for selling the house.

The balance at termination, m
s̄

, can be determined by compounding the value of the loan through
a contractual interest rate i+ µ :

m

s̄

= ↵I0(1 + i+ µ)

s̄ (5.1)

where i is the base risk-free rate and µ is the risk adjusted premium (D. W. Cho et al., 2013).
Ma and Deng (2006) calculated the maximum LTV ratio as follows:

↵ =

Q
T

x̄y

k=1(1 + g

k

)

Q
T

x̄y

k=1(1 + i

⇤
k

)

, (5.2)

with T

x̄y

is the last survivor joint life expectancy of the borrower and spouse, g
k

is the property
appreciation rate at time k and i

⇤
k

is the interest rate through which the lender can raise money
on the market, i.e. LR.
By considering only one termination risk factor for an individual of age x with a spouse of age
y, i.e. last survivor joint mortality, the capital at a generic termination date, n, can be expressed
as follows:

Y

n

=

(
min{m

n

, (1� �)I

n

} in case of death of both spouses
0 otherwise

(5.3)

Thus, the the pay-off of the PVI capital at termination will be determined as below:

Y

s̄

= min{m
s̄

, (1� �)I

s̄

}. (5.4)

Consequently, we can represent this by using the put decomposition:

Y

s̄

= m

s̄

�max{m
s̄

� (1� �)I

s̄

, 0}, (5.5)

which implies that the borrower has to stipulate a loan with the PVI provider with capital at
termination m

s̄

without providing any collateral. This has to be combined with the purchase of
a put option from the same PVI provider on the value of the property with stochastic term and
strike.
Alternatively, the decomposition can be done in terms of a call option by selling the property
and buying a call option on the value of the property with stochastic term and strike:

Y

s̄

= (1� �)I

s̄

�max{(1� �)I

s̄

�m

s̄

, 0}, (5.6)

The call option can also be read as the right of the heirs to purchase the property at price m

s̄

.
With this formulation we can produce a first structure for the Net Asset Value (NAV) at time 0
as follows (Mottura, 2016):

NAV (0) = V (0, Y

s̄

)� V (0, S

s̄

) = V (0, Y

s̄

� ↵I0), (5.7)

where V (0, Y

s̄

) is the value in 0 of the amount payable by the borrower at termination. This can
be expressed in actuarial terms as:

NAV (0) =

!�min{x,y}X

k=1

V (0, Y

k

� ↵I0)
k�1|1qx̄y, (5.8)
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with ! as the extreme age and:

Y

k

=

(
min{m

k

, (1� �)I

k

} with probability
k�1|1qx̄y

0 otherwise
(5.9)

with
k�1|1qx̄y as the forward death probability of the borrower and spouse and I

k

as:

I

k

= I0

kY

t=0

(1 + g

t

) (5.10)

When using the put decomposition the resulting equation can be written in terms of the NNEG
as:

NAV (0) = V (0, NNEG

s̄

� ↵I0) =

=

!�min{x,y}X

k=1

(NNEG

k

� ↵I0)⇥
k�1|1 qx̄y ⇥ v[0,k],

(5.11)

where v[0,k] is the discount factor:

v[0,k] =

kY

t=1

(1 + i

⇤
t

)

�1 (5.12)

and the NNEG:
NNEG

s̄

= m

s̄

�max{m
s̄

� (1� �)I

s̄

, 0}, (5.13)

NNEG

k

= m

k

�max{m
k

� (1� �)I

k

, 0} (5.14)

5.1.2 Income Stream Structure

We have seen that PVI contracts may provide the option for the borrower to receive an income
stream up until termination rather than a lump sum. This payment can take different forms: it
can be fixed or variable and dependent on a pre-defined price index, typically CPI.
Assuming an annual payment and a joint life model, the present actuarial value of the fixed
income stream with premium P

1, is determined as (D. W. Cho et al., 2013):

P

1
!�min{x,y}�1X

k=0
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)

#
(5.15)

where
k

p

x̄y

is the probability of at least one of two lives of age x and y to survive k years.
While, the expected value of a CPI indexed income stream provided up until termination is given
by:

P
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⇢
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)

�
, (5.16)

where c

t

is the inflation rate between a generic year t� 1 and t.
To determine payment P

1 and payment P

2 we need to set the above expected values equal to
the lump-sum amount, hence:

P

1
=

↵I0

P
!�min{x,y}�1
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⇤
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)

# (5.17)
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and:
P
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↵I0
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Provided the above amounts we can compute the accumulated loan outstanding balance for the
above contracts at time k in terms of a fixed contractual rate as follows:

m

1
k

= kP

1
kX

t=0

(1 + i+ µ)

t

, (5.19)

m

2
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= kP

2
tX

t=0

kY

z=1

(1 + i+ µ+ c

z

). (5.20)

In the case of an income stream the total liability at time k will depend on the number of
payments made up until time k. Therefore, we can determine the total liability S as:

S

1
k

= kP

1 (5.21)

and
S

2
k

= kP

2
. (5.22)

Provided these values, the NAVs can be calculated as below:

NAV (0)
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=
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5.1.3 Mortgage Risk Premium and Fixed Rate

To price a reverse mortgage with either fixed or variable contractual accumulation rate we need
to determine the risk premium µ.
This can be done by assuming that the non-recourse clause is entirely charged to the borrower
in the form of annual premium. Consequently, to calculate µ the expected present value of the
annual premium charged, ⇡, is set equal to the expected present value of the NNEG:

V (0, NNEG) = V (0,⇡), (5.25)

In this case, we consider as NNEG only the put component (D. W. Cho et al., 2013). As such,
the actuarial present value at time 0 of the NNEG will be:

V (0, NNEG) =

!�min{x,y}X

k=1

k�1|1qx̄yE
�
0,max[m

⇤
k

� (1� �)I
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, 0]

 
, (5.26)

where m

⇤
k

is the accumulated mortgage amount at risk-free rate i.
While, the expected value of the premiums assume the form of:

V (0,⇡) = µ

!�min{x,y}X

k=1

k

p

x̄y

v[0,k]m
⇤
k

. (5.27)

The results will clearly differ depending on the payment structure of the loan.
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5.2 Cash Flow Simulation

In this section we will present the results of the above PVI valuation framework. To this purpose,
we will assume the following base case scenario:

• A female borrower of age 60;

• A male spouse of age 63, provided the average three year age gap between male and female
spouses in Italy (Bonarini, 2017);

• An initial value of the property equal to the average value of a home in Italy: e168932
(Agenzia delle entrate, 2017);

• 6% property selling transaction costs as in D. W. Cho et al. (2013);

• 01-01-2019 as stipulation date;

• A 0.88% base risk-free rate in line with the observed 30 year euro yield at stipulation date.

This information will be used to determine risk premiums and present values of lump sum and
income stream PVI contracts.

5.2.1 Risk Premium

To calculate the total NAV we first need to obtain the risk premium, µ. This will require the
present value of a put option. Typically, we can value a put option either through the Black and
Scholes formula (Black & Scholes, 1973) or through Monte Carlo simulation of the underlying
asset. In this study we will use Monte Carlo simulation, specifically we will employ HPI variation
predictions originating from the multi-output neural network built in the previous chapter. These
applied to the current property value are illustrated in Figure 5.1. We can easily remark the
dropping value of housing properties which might undermine the final NAV of the lender.

Figure 5.1: Simulations of the property value using MCD simulations of house price variation.
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For comparison purposes, we have also ran 1000 Geometric Brownian Motion (GBM) simulations
on the value of the property with parameters estimated on historic HPI values. Again, we can
observe falling estimated prices. However, the variability produced by the GBM paths is lower.

Figure 5.2: Simulations of the property value assuming a GBM for house value variation.

Once obtained the simulations we can calculate the average of the resulting put amounts and
apply the discount factor to determine the expected present value of the option. With this amount
we can calculate the risk premium.
The values of the risk premiums obtained for a lump sum contract and simple, CPI indexed and
floored indexed1 annuity contracts are reported in Table 5.1. For the sake of comparison, we
illustrate both MCD and GBM results.

Lump Sum Simple Annuity Indexed Annuity Floored Indexed Annuity
MCD 0.0002704107 0.02202597 0.02030348 0.02193752
GBM 0.0001423631 0.02202535 0.02030286 0.0219369

Table 5.1: Risk Premium Results.

The value of the lump sum risk premium originating from the MCD model is almost double the
value of the GBM risk premium for the same contract. This is a consequence of the higher house
price variability captured by the MCD technique. The income stream contracts do not show the
same result since the value of the NNEG is mostly driven by the outstanding balance and less
by the value of the property. Therefore the variability of house prices has a smaller impact on
annuity-type contracts.
Once determined the risk premium we can generate cash flow projections for lump sum and
income stream contracts. These will be outlined in the following section.

5.2.2 Lump Sum Reverse Mortgage

Provided a joint life lump sum contract, in Figure 5.3 we can observe a growing outstanding loan
balance and a falling property value trend. Within the current falling prices scenario, around 40

1
Indexed annuity with compounded CPI over time floored at 0.
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years from inception the value of the outstanding balance will overtake the estimated present
value of the property.
On the right side of Figure 5.3 the lender’s positive and negative cash flows are illustrated.
Although property value drops, the present value of the NNEG always remains above the present
value of the liability with a peak at 32 years from contract stipulation date. This generates positive
net asset values for the lender throughout the contract duration.

Figure 5.3: Loan balance and property value from valuation date to maximum life span on the
left and present value of NNEG, costs and NAV from valuation date to maximum life span on
the right.

Table 5.2 shows the resulting LTV, total value of assets and liabilities and the total NAV of a
lump sum contract within the base case assumptions.

LTV V(0,NNEG) V(0,S) NAV
0.2999367 35453.25 27185.83 8267.424

Table 5.2: Lump Sum Base Case Results.

The base parameters can be altered to examine potential contractual scenarios. To this end, the
age of the lender has been modified to 65, and the initial value of the property has been shifted
once down to e150000 and a second time up to e190000. Table 5.3 provides the results for these
scenarios.

LTV V(0,NNEG) V(0,S) NAV Risk Premium
x=65 0.3692248 46010.86 37077.89 8932.977 0.0005499383
I0=150000 0.2999367 31480.05 24139.15 7340.904 0.0002704107
I0=190000 0.2999367 39874.73 30576.25 9298.478 0.0002704107

Table 5.3: Alternative Scenarios Lump Sum Results.

Altering the age implies a different life expectancy. Hence, the LTV is clearly affected by the age
shift, which will impact the initial lump sum amount. This along with new probabilities applied
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to the actuarial present value generate higher values for all amounts analyzed in Table 5.3, thus
higher profitability.
When reasoning in terms initial property value these considerations hold true: lower property
values negatively impact the initial loan which is reflected on lower values for the risk premium,
value of liabilities and value of assets. This negatively affects profitability. The exact opposite
reasoning can be applied to higher property values at contract initiation.

5.2.3 Income Stream Reverse Mortgage

Figure 5.4 depicts projections for the previously-mentioned income stream contracts: simple
annuity, CPI indexed income streams and floored CPI indexation. We can easily noticed that
floored indexed income stream cash flows resemble simple annuity cash flows. This is a result of
the dropping CPI trend.
On the left side of Figure 5.4 we can observe that the Outstanding Loan Balance (OLB) overtakes
the property value earlier than observed for a lump sum contract. However this doesn’t under-
mine the total NAV which is higher than the lump sum NAV for all income stream contracts.
The additional profitability within these contracts is generated by larger values of the NNEG
particularly, in the early years of the contract when the outstanding value of income stream
contracts increases at a higher pace than the outstanding value of lump sum contracts.
The net projected cash flows are mostly positive with a peak after 28 years from contract stip-
ulation date. Still, contrarily to the lump sum structure, net cash flows fall under zero after 37
years from initiation without jeopardizing the total asset value.

Figure 5.4: Loan balance for income stream contracts from valuation date to maximum life span
on the left and Present value of the NAV for income stream contracts from valuation date to
maximum life span on the right.

Table 5.4 illustrates the results obtained for the three income stream RM contracts in terms of
premium, total present value of assets, total present value of liabilities and the net asset value.
We can observe that the floored indexed income stream contract presents the highest NAV, thus
the most profitable among the three.
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Premium V(0,NNEG) V(0,S) NAV
Simple Annuity 1841.912 41404.58 30424.33 10980.25
Indexed Annuity 1942.32 40998.67 32082.85 8915.8298
Floored Indexed Annuity 1833.422 41366.78 30284.1 11082.68

Table 5.4: Income Stream Results.

Table 5.5 contains the results for income stream contracts using the lump sum alternative sce-
narios. The observations done for the lump sum architecture remain valid for income stream
contracts. A positive shift in the lender’s age generates higher values for all amounts considered.
The same is true for higher initial home values. Contrarily, lower property values at stipulation
date result in lower amounts for all variables and contractual forms.

x = 65 Premium V(0,NNEG) V(0,S) NAV Risk Premium
Simple Annuity 2542.422 50459.04 38850.6 11608.44 0.0267058
Indexed Annuity 2648.12 50079.65 40465.78 9613.8628 0.025021
Floored Indexed Annuity 2529.198 50396.72 38648.55 11748.17 0.02658335
I0=150000 Premium V(0,NNEG) V(0,S) NAV Risk Premium
Simple Annuity 1635.491 36764.21 27014.71 9749.502 0.02202408
Indexed Annuity 1724.6463 36403.75 28487.36 7916.384 0.02030159
Floored Indexed Annuity 1627.953 36730.66 26890.2 9840.457 0.02193564
I0=190000 Premium V(0,NNEG) V(0,S) NAV Risk Premium
Simple Annuity 2071.622 12349.85 334218.63 12349.85 0.02202762
Indexed Annuity 2184.552 46112.03 36083.99 10028.03 0.02030515
Floored Indexed Annuity 2062.074 46525.98 34060.92 12465.06 0.02193918

Table 5.5: Alternative Scenarios Income Stream Results.

5.3 Risk Analysis

In the previous section all contracts have been evaluated though the best estimate lens. As
such, we have used an average value of all risk drivers’ projections and delivered the final NAV.
However to properly evaluate any contract we require an analysis of deviations from the average
value and analyse risks. Specifically our concern will be assessing negative deviations from best
estimates that potentially generate loss.
The assessment of risk is typically condensed in specific risk measures. The most commonly used
risk measures are the Value at Risk (VaR) and its variants. When evaluating loss, this measure
provides the total loss amount on a given time horizon with a pre-defined probability. In terms of
solvency requirements this amount will represents the capital that the lender needs to set aside
for compliance approval.
Using the notation provided by Jorion (2006), given a time horizon and probability ↵ the VaR
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can be computed as:

V aR

↵

(X) = �inf{ x : F

X

(x) � ↵} = F

 
X

(1� ↵), (5.28)

where F

X

(x) is the cumulative distribution of a random variable X and F

 
X

(1� ↵) is the 1� ↵

quantile of the cumulative distribution.
This measure might not be enough to capture tail events. Therefore, in this study we will also
adopt one version of the VaR: the Tail Value at Risk (TVaR). This measure quantifies the
expected value of a random variable once an event outside a pre-defined probability has occurred.
To formalize:

TV aR

↵

(X) = E[�X|X < �V aR

↵

(X)] (5.29)

Assuming normality, E[X|X < V aR

↵

(X)] can be computed by averaging all ordered amounts
under V aR

↵

(X).
To calculate both VaR and TVaR we require a distribution. This can be achieved by modelling
stochastic factors through simulation which will allow for the computation of averages and quan-
tiles, thus best estimates and risk measures.
To this end, the MCD simulations will be employed to determine the VaR for the two previously
examined risk factors with probability 99.7% for time horizon x� !. This will generate two loss
amounts for each risk measure: one amount will be the result of financial risk and the second
will account for mortality exposure.
Under the assumption of independence and normality, the total VaR of two generic risks, X and
Y , can be determined as:

V aR

↵

(X + Y ) =

p
V aR

↵

(X)

2
+ V aR

↵

(Y )

2 (5.30)

Similarly, the total TVaR will be the result of:

TV aR

↵

(X + Y ) =

p
TV aR

↵

(X)

2
+ TV aR

↵

(Y )

2 (5.31)

5.3.1 Results

Given the above formalization, Table 5.6 illustrates VaR and TVaR results with a probability
of 99.7% on time horizon ! � x in terms of negative deviation from the NAV for all examined
contacts and scenarios. Both measures are calculated separately for financial and longevity risk
and subsequently aggregated by assuming normality and independence.
To determine financial risk, house price, loan rate and CPI simulations have been inputted in
the NAV formulae to produce a NAV distribution and calculate the 1� ↵ quantile. This will be
then subtracted from the original NAV best estimate to determine the final amount at risk.
A similar approach has been used to compute longevity risk measures. However, just one variable
impacts the amount exposed to longevity risk. Thus, there is no need to evaluate joint effects of
more than one variable. This implies that we can directly calculate the 1� 99.7% percentile on
simulated longevity rates which will be then used for cash flow projections to compute a value
for the total loss. Since the main concern for the lender is that the borrower might live longer
than expected, the 1�99.7% quantile needs to consider mortality improvements, i.e. lower death
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probabilities.
In all scenarios risk measures VaR and TVaR show that a lump sum contract is less risky from
the lender’s perspective than income stream contracts when accounting for both financial and
mortality risk factors. Income stream contracts show higher levels of severity, particularly for
mortality risk which is always positioned above the best estimate NAV for all annuity-type
contracts.
Longevity appears as the major factor of risk irrespective of contract class or specification. The
longer the borrower lives the more the debt raises. This produces higher chances that the value
of the property drastically falls under the value of the total accumulated debt. The effect is
even more dramatic for income stream contracts where the debt raises not only through the
compounding effect but mostly due to the increase in the number of income payments.
Financial risk has a relatively low impact compared to longevity, particularly for contracts with
a stream of payments, where unlike longevity it doesn’t erode the average NAV. While, VaRs for
lump sums under different scenarios appear more similar.
When reasoning in terms of scenarios, the most profitable scheme, x = 65, is also the most
exposed to risk. And, the less risk capital demanding scenario, I0 = 150000 produces the lowest
best estimate. As for the contacts themselves, the commitment that generates higher losses is
the simple annuity. However, the indexed annuity floored at 0 appears as the most lucrative.
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Base Case Lump Sum Simple Annuity Indexed Floored Indexed
V aR

fin

99.7 611.5571 2505.908 2337.282 2497.274
V aR

long

99.7 894.2531 12379.84 12192.05 12379.84
V aR99.7 1083.37 12630.92 12414.06 12576.96
TV aR

fin

99.7 685.2351 2830.81 2706.049 2821.208
TV aR

long

99.7 1229.475 13809.69 13647.54 13753.03
TV aR99.7 1407.535 14096.85 13913.24 14039.41
x=65 Lump Sum Simple Annuity Indexed Floored Indexed
V aR

fin

99.7 985.536 2740.208 2764.973 2722.146
V aR

long

99.7 1902.718 15338.67 15233.62 15249.42
V aR99.7 2142.806 15581.51 15482.52 15490.47
TV aR

fin

99.7 1123.474 3124.583 3003.862 3108.888
TV aR

long

99.7 2363.663 17104.99 17026.66 17010.22
TV aR99.7 2617.078 17388.03 17289.6 17291.99
I0=150000 Lump Sum Simple Annuity Indexed Floored Indexed
V aR

fin

99.7 543.0206 2225.017 2075.276 2217.351
V aR

long

99.7 794.0352 10992.25 10825.45 10944.93
V aR99.7 961.9581 11215.18 11022.58 11167.28
TV aR

fin

99.7 608.4416 2513.51 2402.721 2504.984
TV aR

long

99.7 1091.689 12261.86 12117.83 12211.54
TV aR99.7 1249.794 12516.83 12353.74 12465.82
I0=190000 Lump Sum Simple Annuity Indexed Floored Indexed
V aR

fin

99.7 687.8261 2818.489 2628.849 2808.778
V aR

long

99.7 1005.778 13923.99 13712.83 13864.04
V aR99.7 1218.48 14206.38 13962.54 14145.7
TV aR

fin

99.7 770.6927 3183.909 3043.599 3173.109
TV aR

long

99.7 1382.806 15532.16 15349.85 15468.43
TV aR99.7 1583.073 15855.14 15648.69 15790.53

Table 5.6: VaR and TVaR calculated for all examined contracts.
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CONCLUSION

Seniors are faced with low precautionary saving rates and the lengthening of their life expectancy.
Funding old age income has become a matter of concern for social systems and saving services
providers across the globe. Releasing housing equity in various forms to provide for retirement
is a popular practice in North America and Australia. One particular class of home-ownership
equity release known as reverse mortgage has been recently introduced in Europe with immediate
little success but high long term potential provided the favorable market conditions outlined in
Chapter One.
The principal objective of this investigation has been to provide an analytical setup to value long
term commitments that responds RM suppliers’ requirements and with particular focus on the
existing Italian market. This has been achieved by initially exploring worldwide product offer to
create a proper valuation framework.
In such framework we have identified several stochastic variables that needed modelling before
projecting cash flows. These variables have been grouped into two independent processes which
concerned financial uncertainty on one side and mortality on the other. Both risk drivers have
been modelled through a neural network approach. The eventual output has been used to estab-
lish what affects profits, losses and exposure to risk of RM products from a lender’s perspective.
A reverse mortgage loan payment can take different forms. This translates into different pay-out
structures. As a result, in this study we have investigated particularly over lump sum and income
stream schemes.
In terms of profitability our findings show that at current Italian market conditions annuity prod-
ucts outperform lump sum structures. Among income stream payment schemes the CPI indexed
annuity with a compounded floor at zero appears as the most lucrative. Additionally, this study
also that when the signatory’s age and the initial value of the property increase this positively
impacts the final net asset value. We have also seen that as a result of sinking projected house
prices, the outstanding loan balance will overtake the property value if the borrower and spouse
survive a certain age.
When assessing negative deviations from the estimated net asset value, we have found that
longevity risk prevails over financial exposure. Risk measures show major potential losses par-
ticularly for income stream payment schemes due to mortality improvements. When reasoning
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in terms of different scenarios, the contractual cases that generate more profit are also a higher
source of exposure to value deterioration.

6.1 Further Advancements

In our study we have assumed that termination only occurs upon death of the borrower. However,
PVI contracts also include different termination clauses. Particularly, the borrower might decide
to repay the loan. Ji (2011) assumes that the borrower would wish to terminate the contract
when willing to move into long term care for serious health issues. This would allow for the
introduction of a multi-state termination model which we leave for further exploration.
When discussing MCD, Gal, Islam, and Ghahramani (2017) argue that this valuation procedure
can be interpreted as an ensemble of neural networks, where many neural networks are used
jointly to learn a problem. However, a neural network ensemble does not typically only refer to
altering dropout rates, but might include various neural networks classes, with a different number
of neurons and layers. Averaging the weighted value of many models at hand typically produces
a more accurate result (Zhou, Wu, & Tang, 2002).
Additionally, we have used MCD just for one period ahead. Alternatively the drop-out can be
randomly picked n times at each time step generating a nested monte-carlo prediction. This
can be subsequently evaluated on the validation data set and verify whether there have been
substantial accuracy improvements.
One major drawback in using neural networks is the difficulty of explaining the contribution of
each input to the total result. Arras et al. (2019) proposed the use of a Layer-wise Relevance
Propagation (LRP) to determine what drives the estimation of an LSTM network. This tech-
nique can become convenient when willing to understand the behaviour of our neural network
model adopted to estimate risk when market conditions vary.
The Italian house market differs across the country. The average variation amounts of housing
value per region stretched from -11.4% to +4.5% between 2013 and 2014 (Agenzia delle entrate,
2017). Rather than using an overall index for the whole country, a more correct approach would
be estimating HPI variations considering geographical circumstances.
When formulating cash flows contracts, contractual cases where the entire or part of the out-
standing balance could be re-payed at specific periods in time were not contemplated. Typically,
the accumulated interest on the loan could be paid by the borrower in installments. As such,
further research could investigate the impact on the lender’s net pay-off and risks of loan re-
payment contractual clauses.
To value risk premiums D. W. Cho et al. (2013) used stochastic risk discount factors adjusted to
financial risk to account for deviations from the expected value of house value and interest rates.
Moreover, in the present study we have observed a severe negative impact on risk capital due
to longevity risk. Therefore, a more appropriate methodology of estimating risk premium would
consider additional mortality volatility.
For Mergers & Aquisitions purposes a lender might require pay-off and risk analysis at portfolio
level. This could be achieved by considering a portfolio composed by PVI products with various
contractual specifications and providing a total portfolio NAV and an overall risk measure.
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APPENDIX

A

LONG SHORT TERM MEMORY NEURAL NETWORKS
PARAMETERS AND OUTPUTS

A.1 Termination Risk Model

Layer Number of Neurons Activation Function
LSTM 60 ReLu
Dense 30 sigmoid
Dense 30 sigmoid
Dropout Layer 30 none
Output Layer 1 linear

Table A.1: Network Layers - Female

Epochs 53
Loss function Mean Squared Error
Optimizer Adaptive Moment Estimation

Table A.2: Other Specifications - Female

Figure A.1: k
t

expected vs. predicted with epistemic and aleatory uncertainty (left) and predic-
tions with confidence intervals at 97.5% (right) - Female.

60



A.2 Financial Risk Model 61

Layer Number of Neurons Activation Function
LSTM 50 ReLu
Dense 25 sigmoid
Dense 25 sigmoid
Dropout Layer 25 none
Output Layer 1 linear

Table A.3: Network Layers - Male

Epochs 51
Loss function Mean Squared Error
Optimizer Adaptive Moment Estimation

Table A.4: Other Specifications - Male

Figure A.2: k
t

expected vs. predicted with epistemic and aleatory uncertainty (left) and predic-
tions with confidence intervals at 97.5% (right) - Male.

A.2 Financial Risk Model

Layer Number of Neurons Activation Function
LSTM 50 ReLu
LSTM stacked 50 sigmoid
LSTM stacked 25 sigmoid
Dropout Layer 25 none
Output Layer 5 linear

Table A.5: Network Layers



A.2 Financial Risk Model 62

Epochs 165
Loss function Mean Absolute Error
Optimizer Root Mean Square Propagation

Table A.6: Other Specifications

Figure A.3: Mean Absolute Error (left) and loss function behaviour for both training and vali-
dation set (right).
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