
António Gelásio Frazão Isidro Teófilo

Mestre em Engenharia Electrotécnica e de Computadores

WiFi-Direct InterNetworking

Dissertação para obtenção do Grau de Doutor em

Informática

Orientador: Hervé Miguel Cordeiro Paulino,
Professor Auxiliar,
Universidade NOVA de Lisboa

Co-orientador: João Manuel dos Santos Lourenço,
Professor Auxiliar,
Universidade NOVA de Lisboa

Júri

Presidente: Professor Doutor José Augusto Legatheaux Martins
Arguentes: Professor Doutor Luciano Baresi

Professor Doutor Nuno Miguel Carvalho dos Santos
Vogais: Professor Doutor José Augusto Legatheaux Martins

Professor Doutor Rolando da Silva Martins
Professor Doutor Hervé Miguel Cordeiro Paulino

Agosto, 2019





WiFi-Direct InterNetworking

Copyright © António Gelásio Frazão Isidro Teófilo, Faculdade de Ciências e Tecnologia,

Universidade NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “novathesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt




To Ana.





Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisers Prof. Hervé Miguel

Cordeiro Paulino and Prof. João Manuel dos Santos Lourenço for the continuous support

of my Ph.D research, for their patience, motivation and knowledge.

Besides that, I would like to thank the remaining members of the thesis committee:

Prof. José Augusto Legatheaux Martins, Prof. Luciano Baresi, Prof. Nuno Miguel Car-

valho dos Santos and Prof. Rolando da Silva Martins, for their insightful comments and

encouragement, but also for the hard questions, which incite me to widen my research

from various perspectives.

I would also like to thank, once again, Prof. José Augusto Legatheaux Martins and

Prof. Rolando da Silva Martins, as members of the Thesis Accompanying Committee, for

their, once again insightful comments and encouragement, but also for the hard questions,

which incite me to widen my research from various perspectives

I would also like to thank the Hyrax Project (grant CMUP-ERI/FIA/0048/2013), the

NOVA Laboratory for Computer Science and Informatics (NOVA LINCS) and the Depart-

ment of Informatics (DI) of NOVA School of Science and Technology (FCT) for the partial

support for the research activities.

I would also like to thank Prof. Nuno Correia (PhD Coordinator) and Prof. Luís Caires

(Department chair) for their help in administrative processes in very stressed moments.

I would also like to thank all in DI and in particular the reading group in Computer

Systems for the fresh, creative, constructive and motivating environment. In special I

would like to thank Prof. Nuno Preguiça and Prof. João Leitão.

I would also like to thank, again, Prof. Nuno Preguiça as my initial PhD tutor.

I would also like to thank my PhD colleagues: João Silva, Diogo Remédios, Valter

Balegas and Paulo Araújo, which in a way or another they contributed to create a nice and

motivating research environment.

I would also like to thank all that contributed to keep the DI cluster of machines

running and updated. Without their precious support, I would not have been able to

conduct this research.

I would also like to thank, again, Diogo Remédios for the initial joint work. That was

a very enjoyable and important step in the research.

I would also like to thank all in the Departamento de Engenharia Eletrónica e Teleco-

municações e de Computadores (DEETC) of Instituto Superior de Engenharia de Lisboa

vii



(ISEL) of Instituto Politécnico de Lisboa (IPL) that contributed to this PhD. In particular,

I would like to thank: Diogo Remédios (again x2), Porfírio Filipe, Carlos Gonçalves, Pedro

Fazenda and Jorge Pais for their sacrifice to handle part of my work, which allowed me to

focus on the PhD. Without their help I doubt that I could have finished the PhD within

the deadlines. I would also like to thank Pedro Mendes Jorge (course coordinator of my

teaching activities) for the class timetables, at ISEL, which enabled me to focus on the

PhD.

I would also like to thank Rosário Ainslie for the help with the English.

I would also like to thank my friends for their patience and unconditional support.

Finally, my deep and sincere gratitude to my family, specially to Ana, for their contin-

uous love, help, patience and support.

viii



“Begin at the beginning,” the King said, very gravely,

“and go on till you come to the end: then stop.”
– Lewis Carroll, Alice in Wonderland





Abstract

We are on the verge of having ubiquitous connectivity. However, there are still sce-

narios where public communication networks are not reachable, are saturated or simply

cannot be trusted. In such cases, our mobile phones can leverage device-to-device com-

munication to reach the public network or to enable local connectivity.

A device-to-device communication technology, with at least WiFi speed and range,

will offer sufficient connectivity conditions for interconnection in areas/situations where

it is not currently possible. Such advance will foster a new breed of systems and appli-

cations. Their widespread adoption is, nonetheless, bound to their usage in off-the-shelf

devices. This raises a problem because the device-to-device communication technologies

currently available in off-the-shelf mobile devices have several limitations: Bluetooth is

limited in speed and range, Wi-Fi Direct is limited in speed and connectivity for medium

and large scenarios, and WiFi-Aware is a new and untested technology, whose specifica-

tion does not cover large scenarios.

In this thesis, we address this problem by presenting two communication topologies

and a network formation algorithm that enable the use of Wi-Fi Direct communication

between off-the-shelf mobile devices in medium and large scale scenarios. The commu-

nication topologies, named Group-Owner Client-Relay Group-Owner and Group-Owner

Group-Owner, allow for Wi-Fi Direct intergroup communication, whilst the network

formation algorithm, named RedMesh , systematically creates networks of Wi-Fi Direct

groups. The algorithm proved to be very effective, achieving full connectivity in 97.28%

of the 1 250 tested scenarios.

The RedMesh algorithm distinguishes itself for being the first one to use Wi-Fi Direct

communication topologies that can form tree and mesh structures, and for being the first

algorithm able to build networks that can rely only on unicast communication. We may

hence conclude that the work developed in this thesis makes significant progress in the

formation of large scale networks of off-the-shelf mobile devices.

Keywords: Wireless communication, Wi-Fi Direct, Autonomous networks, network for-

mation algorithms, mesh networks
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Resumo

Correntemente, estamos à beira de ter conectividade de forma ubíqua. Contudo ainda

há cenários que as redes públicas de comunicação não cobrem, ou que não podem ser

utilizadas por estarem saturadas ou por falta de confiança no seu uso. Em tais situações,

os nosso telemóveis poderiam utilizar comunicação dispositivo-a-dispositivo para chegar

à rede pública ou permitir comunicação local.

Uma tecnologia de comunicação dispositivo-a-dispositivo com a velocidade e o al-

cance do WiFi iria oferecer uma satisfatória conectividade em tais condições e permitir o

aparecimento de um novo tipo de sistemas e aplicações. No entanto, a sua ampla adoção

somente será garantida caso a sua utilização seja permitida nos telemóveis sem serem

alterados (com a garantia intacta). Contudo, as tecnologias de comunicação dispositivo-

a-dispositivo, disponíveis para esses dispositivos, têm varias limitações: o Bluetooth é

limitado em velocidade e alcance; o Wi-Fi Direct é limitado em velocidade e conectivi-

dade para cenários de media larga escala e o WiFi-Aware é uma tecnologia por testar mas

que a sua especificação não cobre cenários de larga escala.

Nesta tese nós abordamos esse problema apresentando duas topologias de comuni-

cação, chamadas de Group-Owner Client-Relay Group-Owner e Group-Owner Group-

Owner, que permitem a comunicação entre grupos de dispositivos Wi-Fi Direct e um

algoritmo, chamado de RedMesh , que permite a formação sistemática de redes pela inter-

ligação desses grupos. O algoritmo provou a sua eficiência ao atingir 97.28% de sucesso

em conseguir conectividade entre todos os nós em 1250 cenários.

O algoritmo RedMesh diferencia-se por ser o primeiro a utilizar conjuntamente to-

pologias de comunicação Wi-Fi Direct que permitem a formação de estruturas do tipo

árvore e malha e também por construir redes que permitem a utilização exclusiva de

comunicação por unicast. Tal leva-nos a concluir que o trabalho desenvolvido nesta tese

faz significativos avanços na área das redes em larga escala em dispositivos móveis não

alterados.

Palavras-chave: Comunicação em redes móveis, Wi-Fi Direct, redes autónomas, algorit-

mos de formação de redes, redes do tipo malha
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1
Introduction

The main research statement of this thesis is “It is possible to build large scale mesh networks
of Wi-Fi Direct (WFD) enabled devices”. This statement is decomposed into two: “It is
possible to do WFD intergroup connection and communication for large scale mesh networks”
and “It is possible to systematically form WFD large scale mesh networks”.

This Introduction presents the context and all the steps taken along the research pro-

cess driven by those statements. It is composed by the following sections: 1.1 Context; 1.2

Challenges and statements; 1.3 Proposed solutions; 1.4 Contributions and 1.5 Document

structure.

1.1 Context

According to Ericsson Mobility Report of November 2017 [22], the number of smartphone

subscriptions will increase from 4.4 billion in 2017, to 7.3 in 2023. The same report also

unveils that smartphone mobile data traffic will increase from 13.8% to 40% of total

data traffic, in the same period. Therefore we can state that smartphones will become

ubiquitous and users will become huge data producers and/or consumers.

To help this revolution, the capabilities of the hardware of the smartphones continue

increasing in every aspect. Table 1.1 shows the evolution of a well known mobile phone

model over the last 9 years. It shows an increase of CPU power by more than 8 times,

of main memory by 16 times, and of internal memory by 32 times. Battery power and

display area have also increased by factors of 2.2 and 2.3, respectively. Furthermore,

nowadays we can find mobile phones equipped with many communication technolo-

gies (GSM/CDMA/HSPA/LTE, Wi-Fi 802.11 a/b/g/n/ac, dual-band, WiFi-Direct, DLNA,

1



CHAPTER 1. INTRODUCTION

Table 1.1: Samsung Galaxy S evolution

Version of Samsung Galaxy S model

Property: S S II S III S4 S5 S6 S7 S8 S9 S10

Release year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
CPU (cores) 1 2 4 8 4 8 8 8 8 8
CPU (GHz) 1.0 1.2 1.4 1.4† 2.5 1.8† 1.95† 2.0† 2.25† 2.24†

RAM (GB) .5 1 1 2 2 3 4 4 4 8
SDRAM (GB) 16 32 64 64 32 128 64 64 256 512
Battery (Ah) 1.5 1.7 2.1 2.6 2.8 2.6 3.0 3.0 3.0 3.4
Display size (") 4.0 4.3 4.8 5.0 5.1 5.1 5.1 5.8 5.8 6.1

Source: www.gsmarena.com. SDRAM in maximum values. †, in average.

hotspot, Bluetooth, NFC, etc.), sensors (GPS, fingerprint, accelerometer, compass, gy-

roscope, proximity, ambient light, barometer, heart rate, SpO2, microphones, etc.) and

cameras. This hardware increase confirms the trend of the use of mobile devices to

become major players as data producers and/or consumers.

Current smartphone capabilities enable rich consumer interactions over the internet,

producing and consuming contents like music, photos, videos or data in general. Such

collaborative interactions should not be restricted to the internet, as users may demand

to have them even when there are no communication infrastructures (for example, in

isolated areas and disaster situations), the communication infrastructure is saturated

(such us in crowded venues, as in big sports and cultural events [22, 31, 48]) or when

the public network cannot be trusted (like in political demonstrations in countries that

censor network traffic or in the event of governmental actions in foreign countries) [58].

Collaborative systems, exclusively based on mobile devices, may not only help to

disseminate information (like messages and photos) but also to share resources among

users. These systems can act as a mobile cloud for data and computation [34], providing

users with the sum of all the connected resources. Real-world examples of applications

that can be used in such scenarios include:

• the USA military CBMEN (Content-Based Mobile Edge Networking) program1, aim-

ing at “enabling efficient, transparent distribution of content in mobile ad hoc network
environments” that will allow soldiers to share information in war scenarios, like

in Figure 1.1a1;

• a photo face recognition system to look for missing people in crowded scenarios, to

be used like in Figure 1.1e2;

• a video sharing system for sport events recorded and watched by in-place fans [12];

1 http://www.darpa.mil/program/content-based-mobile-edge-networking, accessed on Jul 26, 2019.
2 https://sverigesradio.se/sida/artikel.aspx?programid=83&artikel=7243712, accessed on Jul 26, 2019.

2
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• a system supporting the exchange of emergency messages in disaster scenarios, to

be used like in Figure 1.1c3;

• a system supporting the exchange of messages and videos for political demonstra-

tions, to be used like in Figure 1.1e2;

• a system to enable cave explorers/rescuers to communicate and transfer data, among

themselves and to the outside team, to be used like in Figure 1.1b4;

• an educational system to enable data exchange for outdoor classes, to be used like

in Figure 1.1f5; and

• a system for scientists or photographers, connecting mobile phones, sensors, photo

cameras, wireless flashes, external disks, offering a kind of a cloud to save and share

data and photos, to be used like in Figure 1.1d6.

1.2 Challenges and statements

However, the feasibility of such infrastructureless collaborative mobile systems is bound

to the ability to interconnect them. In that context, Bluetooth (BLT), Wi-Fi Direct (WFD),

WiFi-Aware, MCF and MeshTalk are (or will be) communication technologies that can be

used for direct interconnection of off-the-shelf mobile devices. Here we will give a brief

description of these technologies.

Before that, we have to clarify that devices may be non-rooted or rooted. Non-rooted
devices are the ones which are in the conditions they are sold. Thus, they keep their

manufacturer/seller warranty valid. Rooted devices are the ones which have their operat-

ing system changed outside the manufacturer/seller control and consequently they are

out of warranty. Rooted devices may incorporate any software, including a complete new

operating system. Its purpose is to explore the use of the hardware beyond what the

operating system from the manufacturer offers. Hence, rooted devices may improve their

use, but users usually reject it, as they are not interested in losing the warranty of their

phones. Therefore, we only target non-rooted, which is off-the-shelf, devices to allow a

general use of the intended device-to-device connectivity that we are looking for.

Bluetooth (BLT) [6] is a technology for device-to-device communication, conceived

for devices with few capabilities and reduced battery. Therefore, its communication speed

and coverage range are much more restrictive than those of Wi-Fi (WiFi) or WFD. Besides

that, there is a lot of work in BLT intergroup communication (named Bluetooth Scatternet

3 https://temblor.net/earthquake-insights/nasa-radar-maps-reveal-massive-extent-of-amatrice-
damage-from-italy-earthquake-1271/, accessed on Jul 26, 2019.

4 https://svhtt.thuathienhue.gov.vn/?gd=6&cn=1&id=187&tc=2109, accessed on Jul 26, 2019.
5 http://jonnelexplorer.blogspot.com/2014/06/mt-telakawa-capas-national-shrine.html, accessed on Jul

26, 2019.
6 https://blog.nature.org/science/2019/01/03/what-scientists-can-learn-from-sound-and-silence/, ac-

cessed on Jul 26, 2019.
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a: Autonomous military scenario b: Cave scenario

c: Earthquake scenario d: Scientific expedition scenario

e: Crowded scenario f: Outdoor educational scenario

Figure 1.1: Scenarios that can require autonomous connectivity

Formation (BSF)) like in [14, 28, 29, 40, 41, 54, 59, 60] and, also, recently BLT version 5

specification endorsed BSF in its Mesh networking Specification [3].

Wi-Fi Direct (WFD) [56] is an interesting technology as it may offer device-to-device

communication with WiFi range and speed. It is a WiFi-based protocol that can form

groups of devices, where one device named Group Owner (GO) acts as a coordinator of

the group, providing advertising and discovery of devices and services, group formation

and authentication, Dynamic Host Configuration Protocol (DHCP) and data forwarding

services for group members. Nevertheless, as a WFD group can usually support only

8 clients and all of them must be in the GO coverage range, crossing groups is funda-

mental for medium and large scale scenarios. The WFD specification does not tackle

group interconnection, leaving it open for research. Yet, once built, a WFD multi-group

communication network may provide long-range and fast data transfer in scenarios with

4



1.2. CHALLENGES AND STATEMENTS

off-the-shelf mobile devices and with no network infrastructure, paving the way for col-

laborative systems that can be useful in the situations already mentioned.

WiFi-Aware/Neighbor Awareness Networking (NAN) [1] is a device-to-device tech-

nology recently proposed by the WiFi Alliance. It organizes devices in clusters, called

NAN Clusters, sharing parameters like a cluster id, a synchronization clock and a main

master (anchor master). Clusters may merge to form a common cluster. Devices may

participate in several clusters, but that is not covered by the specification. Devices may

operate concurrently in a NAN cluster and also on WiFi infrastructure or WFD, but that

is also not covered by the specification. Communication is based on the WiFi 802.11

physical layer complemented with a NAN MAC layer. Google already defined an API

for WiFi-Aware in its Android 8.0 version7 and there are now some mobile phones, like

Google Pixel 3, with WiFi-Aware certification. Therefore, we conclude that WiFi-Aware is

now ready to be tested. However, it cannot be used in large scale scenarios, as: 1) clusters

have a single main (anchor) master, which will not be a scalable solution for large clusters;

and 2) neither multi-cluster operation, nor concurrent operation with other technology is

defined.

There are also the Multipeer Connectivity framework (MCF)8 developed by Apple.

This technology offers device-to-device discovery and communication, but also over the

WiFi infrastructure for iOS or over the internet for macOS. There is no public specification

and the on-line documentation only affirms that MCF uses peer-to-peer WiFi (Wi-Fi

Direct) and BLT for the underlying transport. It organizes devices, called peers, in groups,

called sessions. Sessions can have a total maximum of 8 devices. A peer may be connected

to several sessions and may transfer data among sessions. A peer can send/receive data

to/from another to peer in a common session. Hence, we conclude that MCF builds on

Wi-Fi Direct and BLT and should have their identified limitations for large scale scenarios.

MeshTalk is a device-to-device technology recently announced by the Oppo manufac-

turer9. This technology promises to allow device-to-device communication up to 3 Km

away, without using cellular networks, WiFi or BLT. They claim that this technology will

enable text messages and voices calls, and offer low-power consumption. They also claim

that devices will be able to last 72 hours in standby (with MeshTalk active). However, its

specification is not available and the technology is, for now, just a promise.

From BLT, WFD, WiFi-Aware, MCF and the possible MeshTalk we can conclude that

the mobile reality is moving strongly to enable device-to-device communication and a

connectivity solution for large scale is now, or in a near future, a real demand.

From the existing device-to-device technologies, when we had to make the selection,

we elected Wi-Fi Direct as it was the one that could provide WiFi range and speed. The

7 https://developer.android.com/guide/topics/connectivity/wifi-aware, accessed on Jul 26, 2019.
8 https://developer.apple.com/documentation/multipeerconnectivity, accessed on Jul 26, 2019.
9 https://www.gsmarena.com/oppo_meshtalk_can_make_calls_and_send_texts_with_no_carrier_or

_internet_connection-news-37791.php, accessed on Jul 26, 2019.
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WiFi-Aware is now available to be tested, but not ready at that time. Nevertheless, WiFi-

Aware needs a solution for large scale scenarios.

Focusing on WFD, the existing work in inter-group communication has several draw-

backs as it mainly forms tree like networks, it requires many nodes and transmissions

per group and it uses broadcast communication. However, for medium or large scale

scenarios, mesh networks offer advantages over tree ones, as they can be built in a dis-

tributed way and offer alternative traffic paths, which can reduce the average short path

length between devices and enable redundant paths. The main challenges here were: all

GOs have the same IP address and devices connected to two groups can only initiate

communications through their priority interface.

The meanwhile produced state-of-the-art in network formation algorithms for WFD

attempt to build tree networks which are not adequate for large networks or they create

mesh networks but with limited connectivity. Besides that, they use communication

topologies that use broadcasts, which are slow and energetically demanding. The main

challenges here were: to have and select a topology to use; define which nodes to use for

interconnection; and how to connect them.

This context motivated the main research question of this thesis:

MQ) “Is it possible to build large scale mesh networks of WFD enabled devices?”.

The answer to the main research question (MQ) raised two base questions:

Q1) “Is it possible to do WFD intergroup connection and communication for large scale mesh
networks?” and

Q2) “Is it possible to systematically form WFD large scale mesh networks?”.

However, as a solution using WFD will be the only existing solution for off-the-shelf

(non-rooted) devices, the main research question can be framed by the following wider

question:

WQ) “Is it possible to build large scale mesh networks of off-the-shelf mobile devices?”.

1.3 Proposed solutions

To overcome existing challenges, in relation to WFD group interconnection, we devel-

oped the Group-Owner Client-Relay Group-Owner (GOCRGO) and Group-Owner Group-

Owner (GOGO) connection and communication topologies. They, together, offer comple-

mentary ways to cross WFD groups and provide connection for any configuration of

nodes. They also accomplish two secondary goals of using only unicast communication

and requiring the minimum number of nodes and transmissions per group.

Building from GOCRGO and GOGO topologies, we developed RedMesh , a mesh

network formation algorithm for off-the-shelf WFD enabled devices. The conceived al-

gorithm defined several cluster interconnection rules, used gateway nodes in a way to

6



1.4. CONTRIBUTIONS

prevent the blockage of possible connections and used a second interconnection round

to improve connectivity. With these innovative aspects the algorithm achieved full con-

nectivity in 97.28% of the 1250 test case scenarios, with up to 250 nodes. An emulation

of the best state-of-the-art algorithm, meanwhile developed, even when added with our

innovative aspects, only achieved 84.88% of fully connected scenarios.

1.4 Contributions

This thesis makes the following contributions:

• two communication topologies, named Group-Owner Client-Relay Group-Owner

(GOCRGO) and Group-Owner Group-Owner (GOGO), which allow WFD inter-

group communication for up to large scale scenarios. The former enables to form

mesh like structures and the latter enables to form tree like structures. Both of them

use the minimum number of devices and allow the use of unicast communication.

• a secondary communication topology named Group-Owner 2 Client-Relay (GO2CR)

and a variant named Group-Owner Client-Relay UniCasts (GOCRUC), which allow

the use of unicast communication, but require more devices than the first two

topologies.

• a network formation algorithm, called RedMesh , which defines five cluster inter-

connection rules, uses three communication rounds, and manage gateway nodes to

increase connectivity.

• the identification of possible improvements in the RedMesh algorithm.

We also produced the following papers in the scope of this thesis:

• Core A, short paper: [49] A. Teófilo et al. “Group-to-Group Bidirectional Wi-Fi

Direct Communication with Two Relay Nodes.” In: 12th Int. Conf. on Mobile and
Ubiquitous Systems: Computing, Networking and Services. MobiQuitous’15. Coimbra,

Portugal: ACM, July 2015, pp. 275–276. isbn: 978-1-63190-072-3. doi: 10.4108/

eai.22-7-2015.2260272

• National conference, full paper: [50] A. Teófilo et al. “Comunicação Móvel Inter-

Grupo Baseada em TCP sobre Wi-Fi Direct.” In: 8th INForum - Simp. de Informática.

INFORUM’16. Lisboa, Portugal, 2016

• Core A, full paper: [51] A. Teófilo et al. “GOCRGO and GOGO: Two Minimal

Communication Topologies for WiFi-Direct Multi-group Networking.” In: 14th
Int. Conf. on Mobile and Ubiquitous Systems: Computing, Networking and Services.
MobiQuitous’17. Melbourne, Australia: ACM, 2017, pp. 232–241. isbn: 978-1-

4503-5368-7. doi: 10.1145/3144457.3144481
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Therefore, with the communication topologies and the network formation algorithm

created in this thesis, the ground is provided for systems that enable mobile resource

sharing without the support of a communication infrastructure. Thus, the way is now

paved to create autonomous mobile collaborative applications that can explore the ever

increasing capabilities of smart phones.

This work can also be used in hybrid systems that have some parts that require device-

to-device communication and other parts that may build bridges to a backbone, either by

cable or wireless (Wi-Fi/3G/4G/5G). In [47] one case of such hybrid systems is presented,

where, in simulation, data from mobile devices is shared by a Mobile Ad Hoc Network

(MANET) network supported by the devices and shared by an infrastructure network

where it is available. The work in this thesis could offer the background to bind the

MANET used, in the mentioned system, to a real communication support based on the

devices without the need to violate their warranty integrity.

1.5 Document structure

The reminder of this document is structured as follows.

Chapter 2 covers the research question “Is it possible to do WFD intergroup connec-
tion and communication for large scale mesh networks?”. Firstly, it presents the research

context in WFD intergroup connection and communication, its current solutions and

problems. Secondly, it contains our developed topologies for WFD intergroup connection

and communication and also their evaluation.

Chapter 3 covers the research question “Is it possible to systematically form WFD large
scale mesh networks?”. It starts presenting the current state-of-the-art algorithms for

WFD network formation and identifies their major problems to support large scale mesh

networks. Then it covers RedMesh , our developed WFD network formation algorithm

and present its evaluation, its limitations and some reflections about improvements.

Finally, Chapter 4 concludes this dissertation and presents future work and open

issues.
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2
WiFi-Direct Group Interconnection

This chapter covers the question “Is it possible to do WFD intergroup connection and com-
munication for large scale mesh networks?”.

Section 2.1 introduces WFD intergroup connection and communication and existing

challenges, and presents current solutions and their inefficiencies. Section 2.2 presents

our newly proposed topologies, for WFD intergroup connection and communication,

and their evaluation. Finally, Section 2.3 exposes our conclusions about the addressed

research question.

2.1 Context and problems

Here we present the context and problems in WFD group interconnection and commu-

nication. We start with an introduction to WFD in Section 2.1.1 and then we discuss the

problems to support WFD group interconnection and communication in Section 2.1.2.

Next, we present current solutions and its limitations to achieve WFD group interconnec-

tion and communication in Section 2.1.3 and conclude the topic in Section 2.1.4.

2.1.1 WiFi-Direct introduction

Wi-Fi Direct (WFD) is a technology that enables direct device-to-device communication

and is tailored to operate inside groups of devices. Its base services are device, and

service, advertising and discovery, group authentication and formation, DHCP and data

forwarding services.

Nodes start announcing their presence and trying to discover peer devices. They send

probe requests in 802.11 channels 1, 6 and 11, in the 2.4 GHz band, and listen for probes

of other devices. Each device elects one of these channels as its listen channel and only

9
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listen on that channel. They alternate between sending and listening stages, spending on

each state a randomly distributed amount of time between 100 and 300 ms.

After device discovery and before group formation, devices may announce their ser-

vices and query for peers with specific services using the Generic Advertisement Service

(GAS) (802.11u) [26]. Android devices may use the UPnP and the Bonjour [15] as high

level discovery protocols to query for services. In this thesis as we only use the Bonjour

protocol we call it: Bonjour Advertising Service (BAS). Devices also use this service to

broadcast generic data to spread information to neighbour peers. With advertised in-

formation nodes discover their neighbour nodes and their state and they can proceed to

group formation.

WFD groups have one node named Group Owner (GO) that acts as a group coor-

dinator. This coordinator acts as an Access Point (AP) providing group authentication

and formation, DHCP and data forwarding services to the remaining group members.

Group formation can be done in three ways: Standard Group Formation, Persistent Group
Formation and Autonomous Group Formation.

In Standard Group Formation two devices negotiate an intent value to be GO (a value

in [0..15]) and the one with the highest value is elected. When the intent values are equal,

devices use a random tie breaker bit (also sent) and the one with this bit active (generat-

ing new random bits if necessary) is the one elected. The elected node then defines the

channel where the group will operate, creates an IEEE 802.11 Access Point (AP) and be-

comes ready to accept requests, from devices in the neighbourhood, in Wireless Protected

Access - 2 (WPA2) [25]. The nodes then go through a Wi-Fi Protected Setup (WPS) [55]

phase, establishing a secure connection and where the non-GO device connects by the

WFD interface with the GO. Finally, the new client receives a DHCP address and is ready

to use group services.

In Persistent Group Formation, devices use group credentials previously stored (from a

past formed group with the involved devices). Hence, this case requires that, once a group

is formed, devices save the group credentials and later, on a new connection, the devices

will restore the GO and Client (CL) roles and re-stablish the saved group (between them).

This possibility saves time, skipping the negotiating phase.

In Autonomous Group Formation, a device autonomously creates a group, becoming a

GO on its own. Then, devices can discover this new GO and connect to it, also skipping

the GO negotiation phase.

Once a group is formed, the GO can accept WFD clients, called CLs, but also WiFi

clients, called Legacy Clients (LCs), if they know the Service Set Identifier (SSID) and

Pre-Shared Key (PSK) of the announced network/group. Normally, GOs can only accept

8 clients. In generic terms we define that value as L and then L = 8. If a GO leaves

the group, the group is broken and a new group has to be formed. There is no way of

transferring the GO role to another node. All clients of a GO must be in the GO range

and all the communication among them goes through the GO, being forwarded by the

GO at MAC level. A detailed description of WFD can be found in [8].
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Now we will analyse the sub-topics of: how to deal with Android WFD user connection

approval and WFD characteristics to support multi-groups.

Android WFD user connection approval

Here we approach the practical detail of Android user connection approval. In a GO, the

connection of a new client, for security reasons, requires a user approval action.

In this thesis as we would like to connect one device with several others and possibly

changing connections over time, we do not want the inconvenience of asking the user

for such confirmations. Therefore, to skip the user confirmation we set the GO device in

WPS mode (push button method) to accept connections from other nodes (as clients). In

this case the Android only shows a notification, but does not require a confirmation. That

is not the correct way of doing it, as it weakens the security, but it was done for practical

reasons.

This aspect calls for improvements in the Android interface, like having a way of

disabling these notifications. Other possible ways are to present them as normal notifica-

tions or avoiding them by allowing connections by sending a PIN or the PSK to the GO

and without having to activate the WPS push button method.

WFD characteristics to support multi-groups.

A WFD device can be connected to two WFD groups. It must be a LC in one group and it

can be CL or GO in the other group. When a device is connected to two groups it must

be active in only one of them at the time. Thus, when a device is inactive in a group, it

should notify the group.

The WFD defines two power saving protocols that can be used to suspend the partici-

pation in a group. They are the Opportunistic Power Save Protocol (OPS) and the Notice

of Absence Protocol (NoA).

The Opportunistic Power Save Protocol (OPS) allows clients to notify the GO that they

will go into the inactive state. That allows them to be absent from the group, entering in

a power save mode and be active in another group. This protocol also enables the GO to

enter in an inactive state when all clients are in that same sate. Therefore, we conclude

that this protocol can be used to allow the absence of clients by their own initiative.

The Notice of Absence Protocol (NoA) allows the GOs to notify clients of their absence

from the channel (group), regardless of clients being in the active or in the inactive state.

Those notifications establish NoA absence schedules using the parameters: delta time to

first period, period duration, time between periods, and number of periods. A schedule

can be cancelled or updated any time, with new notifications. Thus, we conclude that

this protocol can be used to allow GOs absence by their own initiative.

We then conclude that WFD has the means to coordinate devices inside and among

groups.
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2.1.2 Group interconnection challenges

WFD specification does not tackle group interconnection, leaving this functionality open

for research. Here we will see the challenges to connect two GOs directly and indirectly.

Two GOs can be connected directly if one connects its WiFi interface to the other.

However, GOs usually have the same IP address (192.168.49.1/24) in the WFD interface

and lower level communication layers eliminate packets from, or to, any address that is

considered local. Therefore, two connected GOs will not be able to communicate directly

using that address, as it is simultaneously a local and the destination address and that

causes address conflict.

Two GOs may be connected indirectly by using a node as middle-point. That node

should connect its WiFi and WFD interfaces to the GOs and is called a gateway or Client

Relay (CR). Normally, it will not be able to address nodes from the groups of both GOs,

as they all share the same network address 192.168.49.x/24. In these cases, the Android

platform directs all packets to one interface, the priority interface. Consequently, relay

nodes cannot normally initiate communications through their non-priority interface.

To make matters worse, the priority interface behaviour is not uniform. Some devices

have WiFi as priority interface (e.g. Nexus 7), others have WFD (e.g. Nexus 5X, 6, 6P and 9)

and others only support one active interface at a time (e.g. Motorola G2 2nd generation).

Also, Duan [13] and Casetti [10] reported that when devices have WiFi as their pri-
ority interface, broadcasts are sent out by both interfaces (WiFi and WFD). However, the

opposite is not true, as we observed (in Nexus 6, Nexus 9 and OnePlus One) that when

WFD is the priority interface, broadcasts are not sent by the WiFi interface.

With these difficulties, most of past WFD work focused on dealing with a single group

or using a second communication technology or intermittent connections to cross WFD

groups.

2.1.3 Group interconnection current solutions

To cross WFD groups we can use intermittent or permanent connections, as well as other

technology. In Section 2.1.3.1 we discuss existing work when using another technology or

intermittent connections. The use of permanent WFD connections is the most interesting

solution as it offers WiFi speed and range, if devices can operate with both interfaces

simultaneously and in an independent way. To the best of our knowledge, the only

solution to offer WFD intergroup communication over persistent connections is from

Duan et al [13], which is presented in Section 2.1.3.2.

2.1.3.1 Interconnection with no permanent connections

Inside one WFD group we identified the following works: Menegato et al [7] and Demir

et al [11] proposed GO election schemes to form a group of WFD devices; Funai et al [18]

proposed a task distribution system, using WFD to interconnect five devices in a WFD
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group; Mao et al [33] studied data transmission strategies with three devices, inside one

WFD group; Penner et al [39] formed a cloud with WFD group with three devices, to

share tasks among devices; Pozza et al [42] used WFD to spread internet data through

one WFD group, using several sharing schemes and comparing with BLT; and Rodrigues

et al [44] benchmarked content dissemination in several wireless configurations, one of

them was inside one WFD group.

One possible solution to cross WFD groups is to use a second technology. In these

cases, WFD communication occurs just inside one group. Using Long Term Evolution

(LTE) or Bluetooth (BLT) to communicate between WFD groups or with WFD groups

and some internet service provider, we identified the following works. Asadi et al [2]

connected three WFD groups with mobile LTE, they use groups with ten members but

only in simulation; Pyattaev et al [43] analysed LTE traffic offloading onto WFD devices

to share data inside WFD groups; Trestian et al [52] analysed energy consumption in

multimedia data delivery comparing LTE, WFD and BLT, used one WFD group with

one GO and one CL and their tests showed that WFD required less energy to transmit

and receive data than BLT; and Gong et al [21] proposed a video streaming system, by

enabling a WFD group of three devices to access a video server connected by LTE.

Some works use the WFD Generic Advertisement Service (GAS) to spread data in an

augmented group of nodes. Marinho et al [35] implemented a routing messaging scheme

over GAS, which became saturated with only 6 devices; and Shahin et al [46] proposed

an alert dissemination protocol over GAS.

Nevertheless, the use of a second technology has the drawback of losing the WFD

benefits of speed and range.

Besides that, Jung et al [30] proposed a self-organizing multi-group WFD network

based on data location. However, they work in simulation and did not approach the

limitations of WFD multi-group communication.

Delay Tolerant Networks (DTNs) [53] are networks where one device interconnects

two WFD groups, but to transfer data, it connects to one of them at a time. DTNs enable

intergroup communication, but require buffering and impose delays in data delivery.

Example of works with WFD DTNs are: Hoang et al [23]; Felice et al [17]; Mizumura et

al [36]; Funai et al [19, 20]; and Wong et al [57]. As Android allows multicasts to be sent by

a specific interface, Funai et al [20] extended the DTN model, using multicasts to control

the connections and the direction of the communications. Nevertheless, multicasts are

almost as slow as broadcasts.

In summary, the address conflict and the priority interface limitations turn WFD

intergroup communication in a non simple task. Presented solutions confirm that, as they

use WFD but cannot make full use of WFD capabilities for intergroup communication.
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GO2

WF 49.11

WFD  49.1
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Figure 2.1: A 3 group scenario in GOCR topology.
GO nodes have identification and colour in top section. All nodes have, in their two lower

sections, the IP and colour of the destination GO for WiFi and WFD interfaces, when connected.
Similar scenarios use these features.

2.1.3.2 Group-Owner Client-Relay (GOCR) topology

The Group-Owner Client-Relay (GOCR) topology, proposed by Duan et al [13] and Casetti

et al [10], enables direct GO connection. GO nodes connect their WiFi interface to the next

GO, although they do not communicate directly. They use a client as an auxiliary node,

which acts as a relay node (CR) to avoid the address conflict. To enable communication

by the non-priority interface, GO nodes use broadcasts. This work assumes WiFi as the

priority interface.

To provide a global perspective, Figure 2.1 presents a three group scenario using this

topology. In this figure, and in similar ones, nodes contain identification and addresses

in WiFi and WFD interfaces. To keep figures and text clear enough, addresses are only

mentioned by their last two octets.

Figure 2.1 also shows interface radio connections (in black dash arrows), UDP unicasts

(in blue solid arrows) and UDP broadcasts (in red double arrows). Communications will

go over the established radio connections. In terms of message path and using GO2 to

GO3 as an example, from GO2 to GO3, GO2 sends a broadcast to CR23 and this one

relays the message in a unicast to GO3. CR23 can address GO3 because both are GO2

clients. The last message is addressed to 49.21 and packets are forwarded by GO2 at MAC

level. In the opposite direction, GO3 sends a unicast to the CR23, which resends it in

another unicast to GO2. GO3 can address CR23, as they are both GO2 clients and packets

are sent by GO3 priority interface (the WiFi interface). Furthermore, communication will

go from 49.21 to 49.22 without any conflict of address.

The relevant points in this topology are that GOs connect directly but communicate

through one relay (CR) node and GOs must broadcast data to their CRs.

IP messages between CRs and the next group GOs are forwarded at MAC level by the

GO of the CR, resulting in 2 MAC messages over the channel of the GO. We conclude

that GOCR requires: 2 nodes per WFD group (1 GO and 1 CR) and per additional Wi-Fi

Range (WFR)1, and 3 MAC messages to cross a WFD group in each direction. It needs

1 WFR is the conceptual communication range of WiFi and WFD.
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broadcasts and also 3 routing operations (2 by GOs and 1 by CRs) in each direction.

This topology, to have all nodes interconnected, forms tree like networks, as each

GO should connect its WiFi interface to another GO that is not its client or part of the

networks of its clients. The tree top GO will be the only node with a free WiFi interface,

which can be connected to any node. Nevertheless, it will not be enough to create a true

mesh network.

2.1.4 Conclusion

This section showed that crossing WFD groups is not currently done in a way of poten-

tially achieving WiFi speed and range. From all solutions, only GOCR topology goes in

what we identify as the best direction: the simultaneous use of WiFi and WFD interfaces.

Nevertheless, it presents many inefficiencies, namely requiring broadcasts, many nodes,

data transmissions and routing operations per group and can only form tree networks.

Therefore, it creates the opportunity and motivation to find topologies to use in WFD

mesh networks that only communicate by unicasts.

Thus, we conclude that the question “Is it possible to do WFD intergroup connection and
communication for large scale mesh networks?” is an open research question.

2.2 Solutions and results

Here we present the developed solutions and their results to address the question “Is it
possible to do WFD intergroup connection and communication for large scale mesh networks?”.

In Section 2.2.1 we present our proposed topologies for WFD group interconnection.

In Section 2.2.3 we evaluate existing and newly proposed topologies. Finally, in Sec-

tion 2.2.4 we present our conclusions about WFD group interconnection.

2.2.1 Proposed group interconnection topologies

To create large scale networks it is necessary to have non-GO nodes that connect their

WiFi and WFD interfaces to distinct groups. This solves the interconnections of LC2-

GO and LC-LC, assuming that one LC will turn into a GO. The GOCR topology may

complement these configurations providing interconnection for GO-GO.

Besides the LC-GO interconnection, we have the secondary goal of conceiving effi-

cient topologies that use unicasts, a minimum number of nodes per WFD group and a

minimum number of messages and routing operations to cross WFD groups.

With these goals, we present three new topologies that may rely only on unicasts:

the Group-Owner 2 Client-Relay (GO2CR) topology [49], which needs two CRs between

GOs for LC-GO interconnections; the GOCRGO topology [51] which needs just one CR

between GOs for LC-GO interconnections and the GOGO topology [51] that allows direct

2 Legacy Client (LC), a node that is client of a GO by connecting its WiFi interface.
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Table 2.1: Communication assessment

GO1 — WFDCRWiFi — GO2 GO4WiFi.41
— GO5WiFi.51

—
.61WiFiGO6

GO1↔CR CR↔GO2 GO4↔GO5 GO5↔GO6 GO4↔GO6
→ ← → ← → ← → ← → ←

TCP 3a 3a 7j 3c 7 7 7 7 7 7

UDP 3a 3a 7j 3d 7 .41f .61g .51g 7 7

T/U-WF – 7 3b – .51e 7 .61h .51h .61i .41i

T/U-WF: TCP and UDP sockets bound to WiFi interface

unicast communication between GOs in GO-GO interconnections. We also developed a

variant of GOCR topology that only needs unicast communication.

All our developed topologies enable the exclusive use of TCP channels or UDP uni-

casts between nodes.

Now we will present the communication assessment that enables us to develop the

topologies. After that we present the topologies.

2.2.1.1 Communication assessment

Android 5.0 (API 21) introduced the capability of binding TCP sockets to a specific

interface, being the feature extended to datagram sockets in Android 5.1 (API 22). So,

with Android 5 Compliant (A5C) devices it is possible to create sockets that force traffic

out through a specific interface, circumventing the priority interface. Given this context,

we will assess which communication possibilities are available to A5C and non-A5C

devices using their WiFi and WFD interfaces. Table 2.1 lists the communication behaviour

in two cases: two GOs interconnected by a relay node; and three GOs. Both cases were

tested with Nexus 6, Nexus 9 and OnePlus One devices, all with WFD as priority interface.

Table addresses just mention the last octet and they are mentioned only when they are

not obvious. In the first line of the table, the addresses mentioned are the ones in the

WiFi interface of each node. The addresses mentioned, in other lines, are the destination

addresses used in the messages/datagrams. As UDP broadcasts and multicasts have slow

communication speed, they are not used in the proposed topologies and are omitted from

the table. Nevertheless, broadcasts can only be sent via WFD interface, while multicasts

can be sent by both interfaces (if bound to the interface).

We begin by analysing the case of a CR in between GOs: case GO1-CR-GO2 in the

table. On the CR priority interface side, both the CR and the GO1 can send UDP datagrams

or create TCP sockets to the other (3a). On its non-priority interface side, the CR can

communicate with the GO2 by sending UDP datagrams or creating TCP sockets if bound

to the WiFi interface (3b). However, binding sockets to the WiFi interface is only available

in A5C devices. If CR is a non-A5C one, it has to wait for a TCP connection coming from

GO2 (3c) and leverage on the bi-directional nature of that connection. Although GO2

could send UDP datagrams to the CR (3d), the CR could not answer in the same protocol.
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We move now to the analysis of GO to GO communication in case GO4-GO5-GO6

in Table 2.1. We start by assessing the situation of GO4-GO5, where GO4 is a client of

GO5. As these GOs have the same IP address (192.168.49.1), they cannot communicate,

between them, using that address. Ergo, to communicate, these devices must send the

data addressed to the IP address, on the WiFi interface, of the other node: cases (.41f )

and (.51e). The former (.41f ) is only possible because, unlike TCP, the UDP stack, at GO4,

does not eliminate packets coming from an IP address that is also local (.1). The latter

(.51e) requires GO4 to create a unicast socket bound to its WiFi interface and direct all

communication (TCP or UDP) to the address in WiFi interface of GO5. This enables: a)

sockets to link to the correct interfaces, and to have a source address other than .1 (.41,

in this case) needed for TCP; and b) to have a destination address also other than .1 (.51,

in this case). The downside is that, to enable WiFi bounded sockets, GO4 must be an

A5C device. In summary, data exchange between a GOCL (GO4) that is a client of another

GOGO (GO5) is only possible if the GOCL is an A5C device and the GOGO has its WiFi

interface connected. In that case, GOCL can create a TCP connection to GOGO, or both of

them can use UDP datagrams.

Now we assess the GO5-GO6 connection. In this case GO5 and GO6 are both inter-

connected by their WiFi interfaces, and can communicate directly with UDP (.61g , .51g )

or using UDP or TCP with sockets bound to WiFi (.61h, .51h), if they are A5C devices.

All those sockets or datagrams must be directed to the IP address on the WiFi interface

of the destination device. Lastly, GOs that are clients of one common GO, as GO4 and

GO6, can communicate using UDP or TCP sockets bound to the WiFi interface and linked

(addressed) to the address on the other GO WiFi interface (.61i , .41i).

In conclusion, it is possible to communicate, using UDP or TCP unicasts: (i) between

GOs connected by a CR, if the CR is an A5C device or if it receives a TCP connection from

its non-priority interface; and (ii) between GOs, if both are in the same network, if they

have the WiFi interfaces connected, and, also, if the one that is client is an A5C device.

2.2.1.2 Group-Owner 2 Client-Relay (GO2CR) topology

In [49], we proposed the Group-Owner 2 Client-Relay (GO2CR) topology, which intercon-

nects a pair of GOs using two CRs. For that purpose CRs must connect their WiFi and

WFD interfaces, to the GOs, in a symmetrical way and each CR will only forward data

from the non-priority interface to the priority interface. Consequently, CRs will send data

only through their priority interface, and so they can depend only on unicast communica-

tion.

Figure 2.2 depicts the radio links (by WiFi and WFD interfaces) and communication

paths, in a three WFD group scenario using this topology. likewise in [49], due to the

characteristics of the devices used in tests, we consider WFD as the priority interface in

Figure 2.2, here and in the remainder of this document.

Communication-wise, the GO2CR topology is characterized by the fact that a CR can
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Figure 2.2: A 3 group scenario in GO2CR topology.

use its priority interface (WFD interface) to send unicasts directly, at IP level, to the next

CR, being relayed at MAC level by the intermediary GO. Consequently this topology:

needs an average of 1.5 nodes per WFR, as it needs 1 GO and 2 CRs per 2 additional

WFRs; needs 2 hops (data transmissions and routing operations) to cross 1 WFD group;

can use only unicasts; and enables to form mesh networks.

This topology can be used by devices with WiFi as the priority interface. It should be

applied the same rule: CRs symmetrically forward data from the non-priority interface to

the priority interface, which in this case is from the WFD interface to the WiFi interface.

2.2.1.3 Group-Owner Client-Relay Group-Owner (GOCRGO) topology

In [50, 51] we proposed the Group-Owner Client-Relay Group-Owner (GOCRGO) topology,

that interconnects a pair of GOs using only one CR. The CR device will connect to the

adjacent GOs using its WiFi and WFD interfaces.

In this topology, CRs have no problems creating TCP sockets or sending UDP data-

grams from their priority interface side. But from the non-priority interface side, CRs

cannot create any kind of socket without resorting to the features of Android 5. Yet, lev-

ering on the bidirectional nature of TCP connections, if a node from that side establishes

a TCP connection to the CR, the CR can use that connection to send data to that side.

Figure 2.3 showcases the use of this topology, resorting only to the TCP protocol. It

uses TCP connections from CL1 to CR1249.11 (meaning address 49.11 in CR12), from

CR12 to CR2349.23, and from CR23 to CL349.33 or from CL3 to CR2349.31, which will

enable communication between CL1 and CL3. Communication from the CRs with the

GOs is also possible, if for example each GO creates TCP connections to connected CRs.

Furthermore, if CRs are A5C devices, it is also possible to communicate using only UDP

datagrams.

To conclude, this topology needs an average of 1 node per WFR (1 GO and 1 CR per

2 WFRs) and needs 2 MAC messages and 2 routing operations to cross a WFD group. It

can only resort to unicasts and can form mesh networks.
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Figure 2.3: A 3 group scenario in GOCRGO topology.

This topology can be used directly by devices with WiFi as priority interface. With non-

Android 5 Compliant (non-A5C) devices, each CR should receive a TCP connection from

its non-priority interface interface. In Figure 2.3, considering WiFi as priority interface, we

can create TCP connections from CL3 to CR2349.31, from CR23 to CR1249.21 and from

CR12 to CL149.13 (or from CL1 to CR1249.11).

2.2.1.4 Group-Owner Group-Owner (GOGO) topology

In [50, 51] we also proposed the Group-Owner Group-Owner (GOGO) topology, which

enables direct GO-GO connection and communication. This topology has the goal of

being more efficient than GOCR topology.

In this topology3, GOs must have their WiFi interface connected to another GO. To

communicate by TCP, a GO, connected by WiFi to another GO, can establish a channel

(socket) to the other but it must go out by WiFi interface, requiring an A5C device. The

channel must target the address in the WiFi interface on the other GO. This last require-

ment avoids the conflict of address and can be used because nodes decode that address

as a local one. Having a TCP channel created, which is bidirectional, both nodes can

exchange messages. To communicate by UDP, a GO (GO1), connected by WiFi to another

GO (GO2), the first one (GO1), if it is an A5C device, can send unicasts from the WiFi

interface (non-priority interface) to the second (GO2), if they are addressed to the WiFi

address of the second (GO2). In the same scenario, GO2, if it is an A5C device, can send

UDP unicasts to GO1 if sent from the WFD interface (priority interface) and targeted to

WiFi address of GO1. These UDP unicasts are not suppressed by the Android/Linux

communication layers. GO1 like nodes, must be A5C devices to allow UDP unicasts to

be sent through the non-priority interface.

Figure 2.4 depicts the use of this topology in a 3 group scenario. It can be seen that

all GOs have the WiFi interface connected, offering an alternative IP address, other than

49.1, to avoid conflicts of address. For data communications we use the notation “Di 

Ea”4 to denote a data transmission from device D, bound to interface i, to address a of

device E. If i is omitted, it means that transmission uses priority interface or the only

connected interface. As now expected, transmissions by non-priority interface must be

bound to that interface.

3 By default, we consider WFD as priority interface.
4 To make it simple, addresses only mention the last octet.
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Figure 2.4: A 3 group scenario in GOGO topology.

In that scenario, a UDP communication from CL1 to CL3 follows path CL1 GO1.1,

GO1WiFi GO2.167, GO2 GO3.241, and finally GO3 CL3.33
5. In turn, a communica-

tion from CL3 to CL1 follows the path CL3 GO3.1, GO3 GO2.167, GO2 GO1.51,

and finally GO1 CL1.13
6.

To use TCP, between CL1 and CL3, we can establish the following bidirectional con-

nections: CL1 GO1.1, GO1WiFi  GO2.167, GO2WiFi  GO3.241 and finally GO3 

CL3.33.

Consequently, this topology needs 1 node per WFR, and needs 1 MAC message and

1 routing operation to cross a WFD group. It can also only resort to unicasts and it forms

tree like networks (like GOCR).

If GOs have WiFi as the priority interface, and even if devices are non-A5C, each GO

can create TCP sockets from its WiFi interface to the WiFi address of next GO, allowing

bi-directional communication between them. In Figure 2.4 we can create the following

TCP sockets (or paths to UDP datagrams): GO1 GO2.167; GO2 GO3.241; and GO3

 GO2.167. Furthermore, GO2 can create UDP sockets to GO1.51, but only if bound to

the WFD interface (A5C property). Therefore, this topology, with WiFi as the priority
interface, can use TCP connections with no restrictions, but needs A5C devices to allow

UDP communication.

The GOGO topology is better than GOCR in every aspect, except that it requires

A5C GOs while GOCR does not impose any restrictions. We present a detailed compara-

tive analysis between all four topologies (GOGO, GOCR, GOCRGO and GO2CR) in the

immediate section (2.2.2).

2.2.2 Topologies analysis

In this section we perform a comparative analysis of the proposed topologies (GO2CR,

GOCRGO and GOGO) and the current state-of-the-art topology (GOCR) concerning their

spatial node requirements, communication speed, routing demands, frequency usage,

network redundancy, connection flexibility and behaviour in extreme situations.

5 Path can be shortened in 1 hop by either: GO1WiFi GO3.241; or GO2WiFi CL3.33.
6 Path can be shortened in 1 hop by either: CL3 GO2.167; or GO3WiFi GO1.51.
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Table 2.2: Topologies spatial node requirements.

Topology #GOs #CRs Range (in WFRs) #nodes/WFR

GOCR 1 1 1 2
GO2CR 1 2 2 1.5
GOCRGO 1 1 2 1
GOGO 1 0 1 1

#GOs and #CRs columns contain the nodes per additional group,
which extends the range by the value in the Range column.

Spatial node requirements

We begin by analysing the node density (the number of nodes) imposed by each topology.

For that purpose, we consider the conceptual measure Wi-Fi Range (WFR), which denotes

the maximum coverage distance of a WiFi (and WFD) radio for a mobile device.

GOCR topology requires 1 GO and 1 CR per additional WFD group, which extends

the coverage range by WFR, giving 2 nodes per WFR. GO2CR topology requires 1 GO and

2 CRs per additional group, extending the coverage range by 2 WFRs, giving an average

of 1.5 nodes per WFR. GOCRGO topology requires 1 GO and 1 CR per additional group,

extending 1 WFR, giving an average of 1 node per WFR. Lastly, GOGO topology requires

1 GO per additional group, extending 1 WFR, giving 1 node per WFR. This information

is summarized in the Table 2.2.

We, then, conclude that the GOGO and GOCRGO topologies present the best average

values for #nodes/WFR. Among them, GOGO provides the best radio coverage as it

builds only on GO nodes.

Communication speed

We now want to assess the maximum communication speed in one direction, while in

the presence of bi-directional simultaneous communications. For our analysis we make

three assumptions: i) GOs operate on independent WiFi channels without any interfer-

ence; ii) devices can communicate simultaneously on both interfaces; and iii) for sake of

simplicity, we make the rough approximation of considering the same speed for TCP and

UDP communications. We consider the following conceptual measures/terms:

Wi-Fi Speed (WFS) – the unicast maximum communication speed in WiFi (and WFD);

Broadcast Speed (BCS) – the maximum broadcast speed;

Broadcast Factor (BCF) – the factor between the maximum unicast and the broadcast

speed (BCF = WFS/BCS);

Smax – the maximum communication speed in one direction, when the topology is used

in a single direction; and
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Table 2.3: Topologies communication speed.

Topology Smax (Mbps∗) SBDmax (Mbps∗)

GOCR wfs/(2 + bcf) = 4.9,wfs/3 = 18.0 wfs/(5 + bcf) = 3.86
GO2CR wfs/2 = 27.0 wfs/4 = 13.5
GOCRGO wfs/2 = 27.0 wfs/4 = 13.5
GOGO wfs/1 = 54.0 wfs/2 = 27.0

SBDmax – the maximum communication speed in one direction, when the topology is

simultaneously used in both directions.

For example, between two directly connected devices, UDP unicast communication has

Smax = WFS and SBDmax = WFS/2, since, in the latter, the channel has to be shared

between two unicast communications.

To give a sense of proportion, we consider the concrete values of WFS = 54Mbps and

BCS = 6Mbps, leading to BCF = 9, that is, one broadcast will be equivalent to 9 unicast

messages over the channel. Every result computed from these assumptions is marked

with ∗.

For short, we will use term “message” to denote either UDP unicast datagrams or data

over TCP channels. Additionally, both IP and MAC messages will be, by default, unicast

messages. On the other hand, UDP broadcasts will be mentioned as just broadcasts. The

results of our analysis are summarized in Table 2.3.

In GOCR, and considering Figure 2.1, from right to left, a GO has to handle 1 IP

message from the GO at its right to its CR (2 MAC messages), and 1 IP message from

the CR to the GO itself. That sums up 3 MAC messages in the channel of the GO, and

so Smax = WFS/3 = 18Mbps∗. From left to right, a GO has to send a broadcast to its

CR, which must forward the message as an IP message to the GO at its right, taking 2

MAC messages in the channel of the GO. This sums up 2 + BCF MAC messages, thus

Smax = WFS/(2 + BCF) = 4.9 Mbps∗. Consequently, each GO channel has to support

3 + 2 +BCF messages, resulting in SBDmax = WFS/(5 +BCF) = 3.86 Mbps∗.

In GO2CR, communication is symmetric, and in each direction requires 1 IP message

between CRs, resulting in 2 MAC messages over the channel, hence Smax = WFS/2 =

27 Mbps∗, leading to SBDmax = WFS/4 = 13.5 Mbps∗.

In GOCRGO the behaviour is similar to GO2CR, 1 IP message between CRs, so the

results are the same.

Finally, in GOGO every GO channel carries a single IP message in either direction.

Ergo, Smax = wfs = 54 Mbps∗ and SBDmax = wfs/2 = 27 Mbps∗.

From these values, we conclude that GOGO is the fastest topology.
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Table 2.4: Topologies routing operations.

Topology # IPRO # MACRO # RO # RO/W

GOCR 1 GO + 1 CR 1 GO 3 3 / 1 = 3
GO2CR 1 CR 1 GO 2 2 / 2 = 1
GOCRGO 1 CR 1 GO 2 2 / 2 = 1
GOGO 1 GO 0 1 1 / 1 = 1

Routing operations

Here we discuss the routing operations needed to cross WFD groups, for each of the

four topologies under analysis. Here, we want to see how many MAC and IP routing

operations are needed to cross a group. For sake of readability, we will use IPRO and

MACRO to designate a routing operation at IP and MAC level, respectively.

The GOCR is a symmetric topology with respect to routing. Considering Figure 2.1

once again, starting at GO2, this device performs an IPRO and sends a broadcast to CR23,

which, in turn, performs another IPRO and sends a message to GO3 requiring one MACRO

by GO2. In the opposite direction, the routing behaviour is symmetrical. Hence, in each

direction, communication requires 3 routing operations (2 IPROs and 1 MACRO) to cross

one group.

The GO2CR topology is symmetric with relation to routing, but each CR routes traffic

in a single direction. This topology requires 1 GO MACRO and 1 CR IPRO, in a total of 2

routing operations, in each direction.

The GOCRGO behaves similarly to GO2CR, but CRs route all the traffic in the channel.

Therefore it needs 2 routing operations.

The GOGO communicates directly between GOs, so it requires a single GO IPRO to

cross a group (1 routing operation).

Finally, given that the topologies present distinct spatial behaviours, to ensure fairness,

our analysis must also take into consideration the number of routing operations per WFR,

we designate it RO/W and use it in terms TOPOLOGY
RO/W

. In both GOCR and GOGO

topologies, 1 WFD group can extend the network by 1 WFR, hence GOCR
RO/W

= 3/1 = 3

and GOGO
RO/W

= 1/1 = 1. In the case of both GO2CR and GOCRGO topologies, 1 WFD

group can extend the network by 2 WFRs, so GO2CR
RO/W

= GOCRGO
RO/W

= 2/2 = 1.

This information is summarized in Table 2.4, where the first three columns with values

contain the number of routing operations (IP, MAC and total) per WFD group.

Thus, we conclude that all proposed topologies (GO2CR, GOCRGO and GOGO) per-

form optimally in terms of number of routing operations per distance, as they require

1 operation per WFR. However, in crowded scenarios, as we will seen in Extreme Situa-

tions analysis, when GOs are near each other, and CRs will not make any useful extension

of range, the number of routing operations per group is more relevant. In those cases,

GOGO should be the preferred topology, as it only offers one routing operation to cross

groups.
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Network frequency usage

Here we want to know the number of non-overlapping frequencies needed, by the topolo-

gies, to offer interference-free communication.

Concerning frequency, or radio channel, analysis, GO2CR and GOCRGO are identical,

as they need intermediary nodes (1 or 2) to connect GOs. Likewise, GOCR and GOGO

topologies are also identical, as both require direct GO-GO connection. Thus, for sake of

simplicity, we confine our analysis to GOCRGO and GOGO, here and in the remaining

analyses.

Therefore, to support our comparison and analysis, Figures 2.5 and 2.6 illustrate the

application of those topologies to the same bi-dimensional7 (2D) scenario. These figures

use L = 8, meaning that GOs support eight clients. They depict the radio connections

(WiFi or WFD) between CLs/CRs and GOs, always directed from the client to the GO,

and display the channels in use by the GOs with colours and letters (in their own nodes).

Figure 2.6 also shows the direction of the WiFi interface connections in GO-GO connec-

tions. We should note that GO4 and GO5 are double connected, because, in GOGO, all

GOs must have their WiFi interface connected.

The GOCRGO, in conflict-free radio communication and considering GOs in straight

line (1D), needs only two non-overlapping frequencies. Nevertheless, as CRs should

communicate without interferences, it requires that consecutive GOs with the same fre-

quency should be more than three WFRs apart. This can be observed in the GO1-GO3

row of nodes in Figure 2.5. Regarding bi-dimensional scenarios, we empirically claim

that GOCRGO needs at least six non-overlapping frequencies to avoid interference. For

example, Figure 2.5 with three frequencies may have interferences between the southwest

CL of GO2 and one possible CL of GO5 positioned near the northeast coverage area of

GO5. In Figure 2.7a we can see that if we have nodes positioned in a grid, with cell size

of WFR, the scenario does not have interferences if six channel frequencies are used. We

can see that, in the scenario, GOs are more than three WFRs apart from other GOs using

the same frequency.

The GOGO, in straight line conflict-free communication between GOs, requires four

non-overlapping frequencies. GOs using the same frequency, should have three GOs

between them and be at more than three WFRs apart. Frequencies should be assigned

in a circular way, like A, B, C, D, A, B, ..., as can be observed in the GO4-GO8 line

of nodes in Figure 2.6. To expose why four frequencies are needed, lets consider those

GO4-GO8 nodes. From the perspective of GO6: GO5 and GO7 should have distinct

frequencies and GO8 should not use frequency of GO6 in order not to cause interference

in GO7. Therefore, a frequency can only be used once every four GO nodes in line.

Regarding bi-dimensional scenarios, we empirically claim that GOGO needs at least

ten non-overlapping frequencies to avoid interference. For example, Figure 2.6 with six

frequencies may have interferences between the southwest CL of GO2 and one possible

7 Relative to node disposition.
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Figure 2.5: GOCRGO topology applied to a 2D scenario.
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Figure 2.6: GOGO topology applied to a 2D scenario.

CL of GO9 positioned near the northeast coverage area of GO9. In Figure 2.7b we can see

that if we have nodes positioned in a grid, with cell size of WFR, the scenario does not

have interferences if ten frequencies are used. We can also see that in this scenario GOs

are more than three WFRs apart from other GOs using the same frequency.

Thus, we conclude that GOCRGO and GO2CR topologies cover more area per WiFi

channel and need fewer non-overlapping frequency channels to communicate without
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Figure 2.7: GOCRGO and GOGO in a 2D grid scenario.
Small grey circles are available nodes (that can be CRs, CLs or LCs) and big white circles are GOs

nodes. Letters mean channel frequencies.

collisions, than GOGO and GOCR.

Network path redundancy

Here we analyse the potential to create networks with redundant paths, for the GOGO

and GOCRGO topologies. They are representative of GOCR and GO2CR topologies,

respectively. We start by characterizing the network structure of the topologies and,

subsequently, analyse their potential to create redundant paths.

Network structure. The GOCRGO topology can be used to connect GOs and CRs

according to a mesh structure, like in Figure 2.5. In turn, GOGO forcibly connects GOs in

a tree structure, due to the need to connect the WiFi interface of every GO to another GO

(not in the client network of the first one). The tree top node is the only exception and

can be used to connect the WiFi interface forming a loop, like the connections between

nodes GO4 and GO5 in Figure 2.6.

Path redundancy. The mesh structure of GOCRGO may originate multiple paths be-

tween distant nodes (per example, paths: GO1-GO2-GO3-GO7 and GO1-GO5-GO6-

GO7, in Figure 2.5), as well as between adjacent GOs (per example, paths: GO2-GO4

and GO2-GO1-GO4 also in Figure 2.5). Thus, GOCRGO may have path redundancy at

any scale.

Conversely, the tree-based structure of GOGO cannot build redundant paths. The

only exception are the ones that use the loop that connects the top of the tree to another

GO (GO4-GO5, in Figure 2.6).

Thus, in GOCRGO, we may leverage on the multiple redundant paths to perform net-

work traffic splitting. For instance, given that in GOCRGO the maximum communication

speed per link (Smax) is WFS/2, n alternative paths between two areas may increase

such speed to n×WFS/2.

In turn, in GOGO, the top tree GO has to support all the traffic between the GOs

connected to it and their trees of connected nodes, which will cause a major bottleneck.
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Redundant paths enable the choice of shorter paths and that improves the energy ef-
ficiency of the network. Redundant paths also enable the choice of paths with better

resources, like more battery, or less load, and that may prevent node energy exhaustion

and defer network reconfigurations as much as possible. That leads to better energy
management and less network maintenance costs.

Path redundancy in GOGO is confined to the previously mentioned top loop, but

that alone should not be enough to avoid long and congested paths. In Figure 2.6 we can

observe that traffic between clients of GO2 and GO3 must follow a long path (GO2, GO6,

GO7, GO8 and GO3), albeit the proximity of these nodes, and, as already mentioned,

traffic between nodes at opposite edges of the network must always travel across GO4,

GO5, GO6, GO7 and GO8, contributing to a communication bottleneck.

In summary, one can leverage on the path redundancy provided by GOCRGO to

implement a smart routing strategy that makes use of traffic splitting to improve commu-

nication speed and reduce energy consumption and network reconfiguration (due to the

lack of battery power).

Network flexibility

Here we assess how topologies react to node churn, which is the egress and ingress of

nodes.

In GOCRGO, path redundancy provides general resiliency to node churn and in

particular to the egress of CRs. For instance, in Figure 2.5, if we remove a single CR,

any other node will remain connected. Even if both CR1 and CR2 leave the network,

connectivity may be re-established by replacing CR2 by CL2, or by promoting CL1 to

the role of Group Owner to interconnect GO2 and GO3, using CL3 and CL4 as CRs. The

egress of a GO will require some reconfiguration to reconnect its clients, but the operation

should be mostly local if there are nodes available nearby. Broader reconfigurations may

occur when node distribution is very sparse. Usually, the exit of a GO can be solved by

electing a nearby CL to become a GO.8 However, if there are still unconnected nodes,

another GO, or GOs, must be elected to connect them. For example, in Figure 2.5, if GO1

runs out of battery, CL6 can become a new GO (GOx6). However, as GOx6 cannot reach

either CL7 or CR3, CL7 may also become a GO (GOx7) and connect to CR3. In such

reconfiguration, with the exception of CR3 and CL7, all the former clients of GO1 should

connect to GOx6.

In GOGO, the egress of GOs may require significant and non-local changes because

the tree-like structure must be preserved, with the GOs WiFi connections directed to the

root of the tree. Looking once again at Figure 2.6, if GO7 fails, we can promote CL2 and

CL3 to GOs to create a path between GO6 and GO8. However, if for some reason those

nodes are not available, we will have to resort to CL1 or CL4. Promoting CL1 to a GO

(GOx1) that interconnects GO2 and GO3, forces GOx1 to connect its WiFi interface to

8 The electing criterion is out of the scope of this thesis.
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GO2, requiring GO3 to disconnect its WiFi interface and connect it to GOx1, and GO8 to

disconnect and connect to GO3. A similar situation arises if we promote CL4 to a GO, to

interconnect GO11 and GO10. Admittedly, the extent of connection reversal depends on

the place in the tree where the reconfiguration must be performed. So, unlike GOCRGO,

node egress in GOGO may require non-local reconfigurations even when node distribution

is dense.

Regarding node ingress, there are many scenarios to consider. Nonetheless, in all

the scenarios we analysed, GOGO always required more actions than GOCRGO. We

showcase how the topologies can react to a new node with two paradigmatic scenarios.

Scenario 1: a new node, Xa, comes in reach of (and only of) CL5, at the bottom left

in both Figure 2.5 and Figure 2.6. In GOCRGO: 1) Xa becomes a GO (GOa); and 2) CL5

connects its available interface to GOa. In GOGO: 1) CL5 disconnects from GO9; 2) CL5

switches into a GO (GOb); 3) GOb connects via WiFi interface to GO9; and 4) Xa connects

to GOb.

Scenario 2: two non-connected networks, Na and Nb (replicas of Figure 2.5 or of

Figure 2.6), get in range of each other, with Na located at bottom left and Nb at the top

right, and only nodes CL9 from Na (CL9Na) and CL5 from Nb (CL5Nb) are in range of

each other. In GOCRGO (both Na and Nb are replicas of Figure 2.5): 1) CL9Na discon-

nects from GO3Na; 2) CL9Na becomes a new GO (GOx); 3) CL4Na connects with its free

interface to GOx; and 4) CL5Nb connects to GOx. In GOGO (both Na and Nb are repli-

cas of Figure 2.6), both GO3Na and GO9Nb have their WiFi interfaces connected to other

nodes, thus the networks cannot be interconnected without reconfiguring the structure

of at least one of them. Hence, a runtime analysis is necessary to choose which network

will require fewer structural changes to be connected to the tree of the other network,

forming a single global tree. If we choose to connect Nb to Na, the following actions

are necessary: 1) CL5Nb disconnects from GO9Nb; 2) CL5Nb turns into a GO (GOx5Nb);

3) GO4Nb disconnects from GO5Nb; 4) GO4Nb connects to GO9Nb; 5) GO9Nb disconnects

from GO4Nb; 6) GO9Nb connects to GOx5Nb; 7) CL9Na disconnects from GO3Na; 8) CL9Na

turns into a GO (GOx9Na); 9) GOx9Na connects to GO3Na; and lastly, 10) GOx5Nb con-

nects to GOx9Na. Alternatively, connecting Na to Nb requires changing the connections

between nodes GO5, GO6, GO7, GO8 and GO3 of Na.

In summary, the GOCRGO mesh structure, with redundant paths, can tolerate some

structural network changes without requiring compensation actions, and when some

adjustment actions are required they should be mostly local. In GOGO, structural net-

work changes will often require reconfigurations that reach far beyond the place where

the change occurred. In the light of these findings, we conclude that GOCRGO is more

flexible than GOGO.
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GO CR WF connection. WFD connection

C

Figure 2.8: Application of GOCRGO topology to a sparse scenario.

GO WiFi connection WiFi or WFD connectionCL

Figure 2.9: Application of GOGO topology to a sparse scenario.

Extreme situations: sparse and crowded scenarios

Here we discuss the behaviour of the topologies in the extreme cases of sparse and

crowded scenarios.

In sparse scenarios, nodes are at the limit of the radio range. Figures 2.8 and 2.9

illustrate the application of the GOCRGO and GOGO topologies, respectively, in the

same sparse scenario. Both figures show the radio range of one node and the nodes

disposed in a grid of equally sized square cells. In this scenario, nodes are so sparse

that it is very difficult to create redundant paths with GOCRGO. Thus, GOCRGO has

Smax = WFS/2 and GOGO has Smax = wfs. Also, as every node in GOGO can be a GO,

GOGO provides better radio coverage than GOCRGO.

The fact that the nodes are at the coverage boundaries precludes the use of the GO2CR

topology, because there are not enough nodes to interconnect two adjacent GOs, over

all the scenario. However, GOCR topology can still be used in this particular scenario,

because it follows a 4 × n node distribution. In those cases, both middle lines should
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Figure 2.10: A crowded scenario with GOCRGO topology.

WiFi conn. WiFi or WFD conn.

GO

CL

Figure 2.11: A crowded scenario with GOGO topology.

be composed only by GOs and the other lines composed by CLs, where each CL should

connect to the nearest GO and act as its relay node. In the top/bottom line of GOs, each

GO should connect its WiFi interface to the GO on its left/right, respectively. Finally the

top left GO should connect its WiFi interface to the bottom left GO.

In crowded scenarios, like in a stadium, nodes are very close to each other. Figure 2.10

and Figure 2.11 depict, respectively, the application of the GOCRGO and GOGO topolo-

gies in the same crowded scenario. In this kind of scenario, all the nodes are in radio

coverage range of all the others, so any node can connect to any other. With nodes so

close, every simultaneous transmission in the same or in neighbour WiFi channels will
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Table 2.5: Topologies comparison

Nodes Comm. Routing Freqs Freqs RP TS

per Speed per per needed SP BEM ES
Topology WFR SBDmax WFR 2 WFRs 1D/2D RC ECS NF S/C AD

GOCR 2 wfs/14∗ 3 2 4 / 10† + 7 7/– any

GOGO 1 wfs/2 1 2 4 / 10† + 7 +/+ a5c

GO2CR 1.5 wfs/4 1 1 2 / 6† – 3 7/– any

GOCRGO 1 wfs/4 1 1 2 / 6† – 3 –/– any

∗
SBDmax = WFS/(5 +BCF), and using BCF = 9 (WFS = 54, BCS = 6)
† Empirical value.
Acronyms: RC, Radio coverage; RP, Redundant Paths; TS, Traffic Splitting; SP, Short
Paths; BEM, Better Energy Management and Efficiency; ECS, Extended Communica-
tion Speed; NF, Network Flexibility; ES, Extreme Situations; S/C, Sparse / Crowded
scenarios; AD, Android Device; A5C = Android 5 Compliant device.

cause radio interferences. Consequently, in GOCRGO, redundancy with short paths and

traffic splitting cannot be helpful, because every communication will probably overlap

with many others. Also, when in the presence of high interference, each communication

should be as close as possible, otherwise success will be very limited. In turn, GOGO

will use less bandwidth than GOCRGO because it only requires 1 message to cross WFD

groups, against the 2 messages required by GOCRGO. Furthermore, GOGO also only

needs one routing action to cross WFD groups, against the two required by GOCRGO. It

is thus expected that GOGO will be faster and more energy efficient than GOCRGO in

these kind of scenarios.

From the above we conclude that GOGO can offer better communication speed in

sparse and crowded scenarios.

Final analysis

Table 2.5 summarizes our findings. Given that GOGO is similar to GOCR, as they both

use direct GO to GO connection, and GOGO is always better than or equal to GOCR, we

choose GOGO as the best option from both. The only exception is that GOGO needs A5C

devices, but nowadays that should not be a problem. The same happens with GOCRGO

and GO2CR, as both need relay nodes in-between GOs and as the former is always better

than or equal to the latter, GOCRGO is the best option.

Comparing GOGO and GOCRGO, the strong points of GOGO, in relation to the other,

are communication speed, radio coverage and behaviour in extreme cases. While the

strong points of GOCRGO, in relation to the other, are network path redundancy, traffic

splitting, shorter paths, better energy management and efficiency, extended communica-

tion speed, better network flexibility, better frequency usage and the ability to be used by

any Android device when only using TCP connections. Taking into consideration these

31



CHAPTER 2. WIFI-DIRECT GROUP INTERCONNECTION

GO2

WiFi 49.11

WFD  49.1

GO3

WiFi 49.21

WFD  49.1

CL1

WFD  49.13

IP unicasts

Radio connection

TCP connection

GO1

WFD  49.1

CR12

WFD  49.12

CR23

WFD  49.22

CL3

WFD  49.33

Figure 2.12: A 3 group scenario in GOCRUC variant.

results, our conclusion is to choose GOGO for extreme scenarios and GOCRGO for all the

other cases. Furthermore, both topologies can co-exist in networks with a wide diversity

of node concentration, being GOGO suitable for building tree networks and GOCRGO

for mesh networks.

2.2.3 Topologies evaluation

We evaluate the performance of all topologies (GOCR, GOGO, GO2CR and GOCRGO)

regarding communication speed and energy consumption.

The experimental testbed is composed of Nexus 6 and Nexus 9 phones, all with WFD

as priority interface.

Given that GOCR was proposed for devices with WiFi as priority interface, we develop

a variant, which we named Group-Owner Client-Relay UniCasts (GOCRUC) [51] to allow

the use of that topology in our devices.

Therefore, before presenting the evaluation, we first present the GOCRUC variant.

Group-Owner Client-Relay UniCasts (GOCRUC) variant

GOCRUC is, thus, a variant of GOCR that has WFD as priority interface. To respect the

nature of GOCR, GOCRUC keeps its radio connections and does not use Android 5 capa-

bilities. In this setting, since GOs cannot send unicast traffic through their WiFi interface,

they must accept a TCP connection in that interface and use its bi-directional nature to

communicate data to that interface. Hence, each CR of a GO (say GOi) must establish a

TCP socket to every GO that is a client of GOi .

To adapt Figure 2.1 to reflect this variant, we can use TCP or UDP communication

between pairs CL1-CR12, GO2-CR23, and GO3-CL3, and should use the following

TCP connections: CR12 GO2 and CR23 GO3.

In Figure 2.12 we present a scenario with 3 groups in this variant.

Given that communication in GOCRUC is symmetric, for each direction it requires 1 IP

unicast from the GO to its CR, and another from the CR to the next GO, resulting

in 3 MAC unicasts over the GO channel. Therefore, Smax = WFS/3 = 18 Mbps∗, and

SBDmax = WFS/6 = 9.0 Mbps∗.
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Figure 2.13: Experimental scenario for each tested topology.
Solid dark red and dashed pink arrows depict, respectively, WiFi and WFD interface connections

in the arrow direction (A→ B, means A connects the interface to B).

GOCRUC, then, uses WFD as priority interface, but keeps GOCR node configuration

and data path, and only uses unicasts.

GOCRUC is then more efficient than GOCR, as it does not use broadcasts, which are

slower and more energy demanding. This variant is, then, an improved version of GOCR

and should present performance values better than the original version.

As a side note, if we revert to the case of having WiFi as priority interface, the GOCRUC

variant or the GOCR topology can resort exclusively on unicasts, if each CR creates a TCP

connection to its GO and the connection is used bi-directionally.

We can conclude that GOCRUC requires the use of TCP connections. To support the

exclusive use of UDP unicasts it requires A5C devices.

Evaluation

Experiments report the communication speed computed from the round-trip of transmit-

ting 100MB between two GOs (GO2 and GO3) over TCP channels and using 1KB data

buffers. The exclusive use of TCP communication provides a homogeneous setting for

all topologies, as TCP is required in GOCRUC. All reported values are the average of 10

successful experiments conducted with a level of interference smaller than -80dBm in

the channels of the GOs. Test scenarios are similar to those of Figures 2.12, 2.2, 2.3

and 2.4, having UDP communications replaced by TCP connections. Test scenarios are

then presented in Figure 2.13 and use the TCP connections presented in Table 2.6.
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Table 2.6: Experimental setup.

Topology TCP connections

GOCRUC GO2 CR23, CR23 GO3
GO2CR GO2 CR23, CR23 GO3, GO3 CR32, CR32 GO2
GOCRGO GO2 CR23, CR23 GO3
GOGO GO2 GO3

GOCRUC GO2CR GOCRGO GOGO
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Figure 2.14: Topologies communication speed.

Topologies communication speed

Here we want to test the communication speed. Figure 2.14 depicts the resulting average,

maximum and expected communication speed. The maximum relates to the maximum

speed observed in 1 second period at reception in the final (and initial) node (GO2). The

average conveys the average speed from the instant when the initial/final node (GO2)

starts the test until it receives the last data byte. For the expected value, we considered

the maximum speed Smax = 100 Mbps, as the actual measured value was 103.8Mbps in

a TCP connection from a CL to its GO.

As depicted in Figure 2.14, the maximum and average communication speeds are con-

siderably lower than the expected values. That is due to the fact that the communication

speed slows down when devices use both interfaces simultaneously, making evident the

hardware limitations of the smartphones and an inefficient use of absence control pro-

tocols: Notice of Absence Protocol (NoA) and Opportunistic Power Save Protocol (OPS)

(see 2.1.1).

GOCRUC was clearly the worst performing topology of all. It should be noted that the

performance of the GOCR would be far worse than GOCRUC as the expected speed of

GOCRUC variant is SBDmax = 16.7 Mbps (wfs / 6), while the expected speed of GOCR

topology is SBDmax = 4.6 Mbps (considering wfs = 100 Mbps and bcs = 6 Mbps, as

the measured broadcast speed (bcs) from a GO was 5.5 Mbps).

Between GO2CR and GOCRGO topologies, the former performed slightly better than
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Figure 2.15: Topology consumed energy.

latter. That happens because in the former the load is distributed between the CRs, where

each one of them carries the traffic in just one direction. In the latter, its unique CR has

to carry the load in both directions.

The results confirm that GOGO is, as expected, the fastest topology, given that it

requires fewer messages per GO channel.

Topologies consumed energy

Here we want to evaluate the consumed energy by each topology.

In tests we also extracted, every second, the instantaneous values for current and

voltage from devices using the Android services, to get the consumed energy in the

experiments.

Figure 2.15 contains the results for consumed energy in the experiments done for all

tested topologies. Values are presented in Joules/MB.

Due to the differences between devices, to get more truthful values we subtracted

their expected energy consumption at rest. We measured the energy at rest in Joules/sec

and subtracted a proportional value, to the time used in experiments, from the obtained

values. All tests were performed with the screens turned on.

As expected, energy consumption depends mainly on the number of data transmis-

sions.

Comparing GOCR topology and GOCRUC variant: GOCR is expected to spend more

energy than GOCRUC, as the use of broadcasts requires more than 10 times the energy of

unicasts. We measured the average energy required by a GO (Nexus 6) to send data, and

the results are (joules/MB): 4.72 for broadcasts and 0.35 for UDP unicasts.

Another important measure is the energy consumed per wfr. Given that the GOCRGO

and GO2CR scenarios cover 2 wfrs, we tested GOGO with 3 aligned GOs to cover that

same distance, transferring only 1MB. GOGO’s average speed was 7.4 Mbps and the

energy consumed was 2.9 joules/MB. As the speed decreased significantly, the power
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increased due to the difficulties in the communications, revealing the hardware limits of

the devices when a GO is using both interfaces simultaneously. We thus conclude that

GOGO (with 2.9 per 2 wfrs) is less energy efficient, per wfr, than GOCRGO (with 2.6

per 2 wfrs).

These values show that GOCRUC is the one that consumes more energy. Therefore,

the GOCR topology should consume even more. Between the GOGO and GOCRGO

topologies, the former consumed less energy per group, while the latter may consume

less energy per distance (depending of the position of the CR nodes).

2.2.4 Conclusion

From the conducted experiments we observed that: a) GOGO is better than all other

topologies when it comes to communication speed and energy per group; and b) GOCRGO

is faster than GOCRUC/GOCR and more energy efficient than the GO2CR when it comes

to energy per distance.

The GOCRGO topology can be used to provide connection for LC-LC and LC-GO

cases and the GOGO topology can do it for GO-GO, thus covering all situations.

The GOCRGO can be used to connect groups in mesh like structures and the GOGO

can be used to complement those connections and create tree like structures. This allows

us to use GOGO to extend groups, where client nodes also turn into GOs and have their

own clients, creating extending group structures, called clusters. Clusters are then bigger

structures than a group. They are managed by a central GO, called Dominant Group

Owner (GOD). Clusters may then be interconnected by the use of GOCRGO, but also

with GOGO when GODs can be used for interconnection.

We also proposed GO2CR, which needs two CR nodes between two GOs and can only

use unicasts. We then proposed GOCRUC, a variant for GOCR, which can be used with

devices that have WFD as priority interface and can use TCP connections.

Finally, we conclude that proposed topologies present better expected and experi-

mented values than the existing one (GOCR) and offer complementary ways to intercon-

nect WFD groups.

2.3 Conclusions

In this chapter we first identified that the existing WFD intergroup connection and com-

munication topology (GOCR) is not efficient for large-scale scenarios and then we pro-

posed three topologies (GO2CR, GOCRGO and GOGO) to overcome existing limitations.

These topologies can interconnect WFD groups in mesh and tree configurations and can

only rely on unicasts.

We then analysed how these topologies should perform in relation to several aspects,

concluding that developed topologies perform better than the existing topology. There
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are some exceptions (GOGO needs A5C devices and GO2CR and GOCRGO have poor

radio coverage per node), but these are minor issues.

We then proposed one variant (GOCRUC) to enable the use of the existent topology

(GOCR) by our mobile devices.

Finally, we evaluated the communication performance and energy consumption for

all topologies and concluded that our developed topologies should perform better than

the existing one.

Therefore, we affirmatively conclude that “It is possible to do WFD intergroup connection
and communication for large scale mesh networks”.

Having WFD group interconnection solved, we will move to WFD network formation

using these topologies.
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3
WiFi-Direct Network Formation

This chapter approaches the question “Is it possible to systematically form WFD large scale
mesh networks?”.

In Section 3.1 we present current WFD network formation algorithms and identify

their weaknesses in large scale scenarios. It also contains a review from network formation

algorithms from nearby areas.

In Section 3.2 we present our newly proposed algorithm, called RedMesh , for WFD

network formation in large scale scenarios. It also contains the algorithm evaluation, its

limitations and reflections about possible improvements.

Finally, in Section 3.3 we expose our conclusions about the addressed research ques-

tion.

3.1 Context and problems

Here we focus ons the context and problems in WFD network formation algorithms for

large scale scenarios. In Section 3.1.1, we present the existing WFD network formation

algorithms and showcase their problems. In Section 3.1.2, we survey network formation

in the related areas of Bluetooth Scatternet Formation (BSF) and Mobile Ad Hoc Networks

(MANETs) formation. Finally, in Section 3.1.3, we conclude the topic.

3.1.1 Existing WiFi-Direct network formation algorithms

To the best of our knowledge, only Baresi et al [5] and Casetti et al [9] presented algorithms

to create networks with WFD off-the-shelf devices, with the simultaneous use of WiFi

and WFD interfaces.
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MAGNET network formation algorithm

The network formation algorithm in [5] (we name it MAGNET), is based on a communi-

cation topology (we name it MAGTOP), which uses unicasts and broadcasts and creates

mesh group formations, by using CR nodes, i.e. LC/CL ones, among GOs.

In MAGTOP, CR nodes connect their WiFi and WFD interfaces to neighbour GOs,

similarly to GOCRGO. However, unlike GOCRGO which can only use unicasts, the

MAGTOP uses broadcasts to send data from the non-priority interface. As GOCRGO can

also use broadcasts, we conclude that the MAGTOP is not a new topology, but a possible

configuration of GOCRGO.

The MAGNET algorithm has the following stages:

1. Neighbourhood discovering and GO election where nodes advertise their existence and

discover their neighbourhoods. Nodes advertise their intention value, calculated

as a function of their processing power, battery life and intention to move. Nodes

start in an active state. In a neighbourhood, nodes with the highest intention value,

become GOs and move to the capturing state.

2. Group creation where GOs enslave up to 8, not slaved, neighbours. When a node

finishes the capture it moves to an inactive state. Enslaved nodes also move to an

inactive state. The active (unconnected) nodes with no capturing neighbours and

with the highest intention value between active nodes become new GOs. Enslaved

nodes inform their GO about neighbour groups they are aware of.

3. Group interconnection where each GO tries to connect to all neighbour groups by se-

lecting the best local and remote nodes for interconnection. This is done in a global

way running a Depth-First Search (DFS) algorithm to minimize node distance.

Hence, MAGNET algorithm uses a slower configuration of GOCRGO, as it uses one

CR between GOs and uses broadcasts. The algorithm forms clusters with only GOs and

their direct slaves and GOs try to connect to all their neighbour groups, possibly forming

a mesh structure.

We conclude that this algorithm may be used to create large scale mesh networks. Yet,

it has the following drawbacks:

1. it offers limited connection possibilities, as it uses only connections by CR nodes;

2. it uses clusters of depth 1, however, clusters of any depth create bigger clusters,

which reduce the number of clusters and consequently the number of cluster inter-

connections needed; and

3. the greedy and local strategy to inter-connect all neighbour groups, may block con-

nection to some of them and consequently create network segmentation. In our
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evaluation, in Section 3.2.4.14 (Results from cluster connections with/without in-

termediation), we observed that connecting to all neighbour clusters is less efficient

than just doing it to the ones that are not neighbours among them.

SGF network formation algorithm

Casetti [9] proposes the Smart-Group-Formation (SGF), a network formation algorithm

that uses the GOCR communication topology and has the following stages:

1. Neighbourhood discovering and GO election where nodes acquire 2 hops away neigh-

bourhood (neighbours of neighbours) information and then are elected as GOs the

nodes that their (1-hop) neighbourhood cannot be covered by a larger neighbour-

hood (with more nodes) of another node;

2. Group creation where GO nodes enslave up to 8 not enslaved neighbours;

3. Group interconnection where each GO connects its WiFi interface to the GO with

the highest rank value (depending on node resources and MAC address) in its

neighbourhood and then accepts other GOs as slaves; and

4. Relay node election where each GO elects as relay node the slave with the highest

rank value.

In this algorithm, each GO connects to another GO using its WiFi interface. If a GO

has two neighbour GOs with higher rank values and these GOs are not themselves in

radio range, it will connect to the highest, creating two separate tree segments that may

never merge. Consequently, this algorithm may create several disjoint trees. Besides that,

it does not take into account that GOs after the Group creation stage may not be able to

accept all GOs that want to connect to them. Thus, the interconnection of groups may

fail, creating unconnected groups.

Thus, we conclude that this algorithm is neither appropriate for creating large scale

mesh nor tree networks.

3.1.2 Network formation algorithms from BSF and MANETS

Here we want to know if there are network formation algorithms, which can be used in

large scale scenarios with WFD enabled devices, from the areas of Bluetooth Scatternet

Formation (BSF) and Mobile Ad Hoc Networks (MANETs).

To enable the comparison of distinct technologies we establish a succinct way to high-

light the differences between them. We denote as masters:slaves property, the number of

masters and slaves that a node can have. The reference is the masters:slaves property of

WFD nodes, which is 1:8 or 2:0, whether they are GOs or not.
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Network formation algorithms from BSF

Here we verify if the Bluetooth Scatternet Formation (BSF) may provide an algorithm to

create large scale networks with WFD devices.

Bluetooth (BLT) is a wireless communication technology for short range, low energy

consumption and reduced data rate exchanges. It organizes devices in groups, like WFD,

that are named piconets. A set of interconnected piconets is called a scatternet. In a

piconet the group head node is called master and the others nodes are called slaves, which

corresponds to GO and CLs or LCs, respectively, in WFD. Similarly to WFD, a master

node in BLT forwards data among group members.

BSF nodes have a masters:slaves property of any:256, as a node can have any number

of masters. A master can have 256 slaves, but only 7 of them can be in the active state.

Remaining slaves are in the parked state, meaning that they are registered in the master,

but they cannot communicate in the group (piconet). They have to be unparked, to change

to active state and to enable communication. Hence, masters have to manage their slaves,

parking and unparking them.

To avoid parked nodes, which reduce the communication inside groups (piconets),

some BSF algorithms only allow masters to have a maximum of 7 slaves. Therefore, in

these algorithms we consider that BSF has a masters:slaves property of any:7. We found

the following BSF algorithms that are any:7 and form mesh networks: BlueMesh [41],

BlueMIS I [59] and Eliminate [28]. However, as any:7 is much more permissive than what

WFD nodes can support, these algorithms cannot be used to form mesh networks with

WFD devices.

There are also BSF algorithms that form tree networks. From them BSFWAVY-ODL [27]

and BSFWAVY-ODL1 [27] are any:7 and only BlueTrees-ODL [60] is 1:7. So, BlueTrees-

ODL is the only BSF algorithm that can be used to form WFD networks, but unfortunately

it only forms tree networks.

We conclude that there is no BSF algorithm that respects 1:8 and 2:0 and can be used

to form WFD mesh networks.

Network formation algorithms from MANETs

Here we check if the Mobile Ad Hoc Network (MANET), which is another related area to

WFD, may provide an algorithm to create large scale networks with WFD devices.

In Mobile Ad Hoc Networks (MANETs) [24], nodes use the ad hoc radio mode and

they are free to communicate with any node in their radio neighbourhood. Thus, in gen-

eral, MANET nodes have a masters:slaves property of any:any. A master-slave relation,

here, is just an organization relation, not a technological one. We only found the fol-

lowing MANET algorithms which limit the number of slaves to a number K, thus they

have any:K, as they do not limit the number of masters: Flexible Weight Based Cluster-

ing Algorithm [16], Vote-Based Clustering Algorithm [32], Energy Conservation Cluster

Algorithm [45], and Adaptive Multi-hop Clustering [38].
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However, as any:K is not compatible with the WFD restrictions, we did not find any

suitable MANET algorithm to be used with WFD devices.

3.1.3 Conclusion

In this section, we analysed the existing solutions to systematically form large scale

networks of WFD devices. We saw that MAGNET is the only algorithm that can be used

for that purpose. However, it has some drawbacks in order to achieve good connectivity

in large scale scenarios, as it offers limited connection possibilities and uses clusters of

depth 1 and a greedy strategy to connect neighbour clusters.

From the related areas of BSF and MANET formation we did not find any suitable

algorithm to build WFD mesh networks.

So, we conclude that “Is it possible to systematically form WFD mesh networks in large
scale scenarios?” is a research question that needs an effective solution.

3.2 Solutions and results, the RedMesh algorithm

Here we present our solution, the algorithm called RedMesh and its results for WFD

network formation in large-scale scenarios with off-the-shelf devices.

In Section 3.2.1 we present some preliminary considerations for RedMesh . In Sec-

tion 3.2.2 we introduce RedMesh and describe its stages. In Section 3.2.3 we present the

algorithm auxiliary procedures. In Section 3.2.4 we evaluate the algorithm and compare

it with the other existing algorithms (MAGNET and SGF). In Section 3.2.5 we present

the connectivity limitations of the algorithm and present possible improvements. In Sec-

tion 3.2.6 we reflect about possible improvements in the algorithm in relation to network

redundancy and tolerance to node churn. Lastly, in Section 3.2.7 we present the final

considerations about this research goal.

3.2.1 Algorithm preliminary considerations

Here we discuss and establish the base principles that will be used in the algorithm. We

discuss: the use of groups or clusters; which interface should nodes use when enslaved;

if we can just use the GOGO or the GOCRGO topology; and if we may use scenarios

modelled by Unit-Disk Graphs (UDGs) and Arbitrary Graphs (AGs). At the end we

present our conclusions.

3.2.1.1 Clusters or Groups

In a scenario we can use groups, which are formed by a GO and its slaves or we can use

clusters, which are formed by one central GO and its slaves, and slaves of slaves of any

depth. Clusters are then a group of groups connected together with any depth.

Groups are limited to 9 nodes, one GO and 8 slaves, while clusters do not have a limit,

as they can have any depth. Groups will, then, be smaller structures than clusters, and

43



CHAPTER 3. WIFI-DIRECT NETWORK FORMATION

A B

C

D

?

a: Radio visibility.

A B

C

D

?

b: B connects by WFD in-
terface.

A B

C

D

c: B connects by WiFi in-
terface.

Figure 3.1: Slave interface connection.
Red, dark blue and blue nodes depict, respectively, GOs, CRs and LC nodes. Solid brown and

dashed pink arrows depict, respectively, WiFi and WFD interface connections in the arrow
direction (A→ B, means A connects the interface to B).

consequently in scenarios with many nodes, they will have more groups than clusters.
More groups will require more group interconnections.

We chose to use clusters firstly to minimize the number of interconnections and sec-

ondly because bigger structures will make network management easier (with less struc-

tures (clusters) to manage). One example of that simplicity occurs in routing: with less

big structures (clusters) routing between then will probably require shorter route paths

than when using small structures (groups).

Clusters usually use an initial GO, which we name Dominant Group Owner (GOD),

that is elected as the node that ranks higher in its neighbourhood.

In our algorithm we use clusters and nodes that have a unique identifier (see Sec-

tion 3.2.2, Algorithm introduction and stages) that is used to rank them.

3.2.1.2 Slave interface connection

A node can be a slave (client) of a GO by either connecting its WiFi or WFD interface. If

the node connects the WFD to the GO, the node may connect its WiFi interface to another

GO. Whereas, if the node connects the WiFi interface to the GO, the node may connect

the WFD interface to another GO, or it may create a group and provide connection for up

to 8 nodes.

Figure 3.1 contains a scenario that we will use to discuss this choice. The figure

contains nodes A, B, C and D, with the radio visibility shown in Figure 3.1a and node A

is a GO that wants to enslave node B.

If node B connects the WFD interface to node A, node B can connect its WiFi interface

to node C, but will not be able to provide connection for node D, creating two separate

segments, as can be seen in Figure 3.1b.

If node B connects the WiFi interface to node A, node B can create a group and receive

nodes A and D as clients, as can be seen in Figure 3.1c.

We conclude that nodes should be slaves by connecting their WiFi interface to the

GOs, as in that way they have more future connection possibilities.
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Figure 3.2: Connectivity scenario.
Red, dark blue and blue nodes depict, respectively, GOs, CRs and LC nodes. Solid brown and

dashed pink arrows depict, respectively, WiFi and WFD interface connections in the arrow
direction (A→ B, means A connects the interface to B).

3.2.1.3 GOGO or/and GOCRGO

Here we discuss the use of GOGO and/or GOCRGO topologies for group/cluster inter-

connection. Concretely, we want to know if they can offer connection for every situation.

To make it simple, we only use clusters.

For both topologies we use the scenario in Figure 3.2a, which contains the nodes N4,

N2, N1, and N3, positioned in line and in that order, where each node is in WiFi radio

range of only its immediate left and right neighbour nodes (when they exist). Further-

more, the outer nodes N4 and N3 are dominant nodes, as they have the highest identifier

in their neighbourhood and are then GOs. We also consider that N4 (GO4) enslaved

N2 and that N3 (GO3) enslaved N1. As already seen, by default, a node is enslaved by

another node, by connecting its WiFi interface to the other.

If we consider the exclusive use of the GOGO topology to connect these two clusters,

N2 and N1 nodes should turn into GO nodes, as GOGO requires a path with only GO

nodes, but as none of them have any free interface to connect to the other, they cannot be

connected. Therefore, GOGO topology cannot offer connectivity in this case.

If we consider the exclusive use of the GOCRGO topology to connect these two clus-

ters, we will need a path with a CR between two GOs. However, we cannot turn N1

into a GO, because in that case, N1 and N3 will require the GOGO topology to achieve

connection between them. That equally happens if we try to change N2 into a GO. Thus,

we conclude that the GOCRGO topology cannot offer connectivity in this case either.

However, the above scenario can become fully connected, having all nodes connected

in a single network, if we use both topologies. We can achieve full connectivity if we

start from the initial scenario, then N2 becomes a GO and finally N1 connects its WFD

interface to N2. This way, GOGO topology is used between N4 and N2 and GOCRGO

is used between N2, N1 and N3. To make the scenario complete, we need to have the

GOGO topology well formed. That means that N4 has to connect its WiFi interface to N2.

The resulting network can be seen in Figure 3.2b.

Therefore, GOGO and GOCRGO topologies provide connectivity in all situations

(CL-CL and CL-GO with GOCRGO and GO-GO with GOGO) and their combined

usage improves the chances of achieving full connectivity.
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Figure 3.3: Scenario modelled in a UDG and in an AG.
Gray lines depict the radio visibility. Brown rectangles depict obstacles.

WiFi-Direct scenarios modelled in Unit-Disk Graphs (UDGs) or/and in Arbitrary

Graphs (AGs)

In general, scenarios can be based on Unit-Disk Graphs (UDGs) or Arbitrary Graphs

(AGs). Here, we would like to know if WFD can ensure node/device connectivity in both

types of scenarios. As we are mentioning graphs, we will use the term nodes instead of

devices, but from now on they have the same meaning in this thesis. We will also use the

terms master and slave, respectively, to denote a GO node and a client of a GO node.

In a scenario modelled as a Unit-Disk Graph (UDG) it is assumed that if two nodes

are in range, they will be radio visible to each other.

However, the radio visibility is not only affected by range, as it can be reduced or

cancelled by obstacles, radio interferences due to other nodes/devices, reflections (from

its own node/device radio waves, or from waves from other nodes/devices), or by natural

electromagnetic atmospheric phenomena. Thus, as scenarios modelled as UDGs do not

consider all aspects that can affect radio visibility, they cannot be considered as very

realistic.

In a scenario modelled as an Arbitrary Graph (AG) it is assumed that if two nodes are

in range, they may be radio visible to each other. Therefore, nodes may be in radio range,

but not visible by radio (unconnected in the radio visibility graph). That is what happens

many times in reality, due to obstacles or other sources of radio interferences.

Thus, in a UDG two nodes in radio range are always visible, however, in an AG they

may be visible or not. Hence, in the same scenario, any UDG model could be described

by an AG model, but the opposite is not always true.

With 5 ≤ L ≤ 81 we affirm that we can always connect all nodes in a UDG modelled sce-

nario of WFD nodes in a single network. That occurs because in UDGs, 5 is the maximum

number of independent sets of neighbour nodes of a node (u), that can cover all neigh-

bour nodes of that node (u) [41, 59]. That kind of set is called a Maximal Independent Set

(MIS). A MIS, or a set of nodes Vmis, is defined by: “Given a graph G = (V ,E), Vmis ∈ V is

1 L is the maximum number of slaves/clients that a master can have.
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Algorithm 1 Maximal Independent Set (MIS) Calculation

1: function computeMIS(u) . u : node
2: MIS←Ø
3: X←Nf (u)\N (S(u))
4: while X ,Ø do
5: n← getNode(X)
6: MIS←MIS ∪ {n}
7: X← X \ ({n} ∪N (n))
8: end while
9: return MIS

10: end function

independent if none of its nodes are neighbours to each other and it is maximal if Vmis is

not a subset of any independent set of G.”, from [27]. Here, V is the set of nodes in the

scenario and E is the set of radio visibility links among those nodes. With 5 ≤ L ≤ 8, we

enable the formation of a MIS for all nodes (which requires 5 ≤ L) and respect the WFD

masters:slaves restriction of 1:8 (which requires L ≤ 8).

To connect all the nodes in a scenario we can use the following approach: consider

one node as enslaved; and enslaved nodes enslave their not enslaved neighbours. This

approach builds a tree with the all nodes. Nodes, however, should not enslave more

than L nodes. Hence, we can use the following algorithm: promote node 0 to a master;

masters enslave the MIS of their free (neither slave nor master) neighbour nodes; and

enslaved nodes turn into masters. Nodes get the MIS of their free neighbour nodes set

by executing the following actions until that set is empty: 1) select to MIS one node

from free neighbour nodes set and 2) remove from free neighbour nodes set the selected

node and all its neighbours. Algorithm 1 describes the function to get that MIS. In that

algorithm: Nf (u) is the set of free neighbour nodes of u, S(u) is the set of slaves of u,

getNode(X) is a function that returns one node from the set of nodes X and N (u) is the

set of neighbour nodes of node u or if u is a set, then N (u) is the set of all neighbour nodes

of all nodes in u. However, due to concurrency, a node from the MIS of a master may be

enslaved by another master. When that happens, the former master should rebuild its

MIS, using the updated version of Nf (without the nodes that it knows that are no longer

free nodes, including its slaves) and without the neighbours of its slaves (grey action in

the algorithm). This way, a node u will be enslaved for sure, if not enslaved before, by the

last neighbour node to be a master. That happens, because that last neighbour master m

has no other free neighbour node of u (and neighbour of m) that can be used to enslave

u; therefore m must enslave u. Therefore, all nodes will be enslaved by some neighbour

master and because maximal independent groups of neighbour nodes are not more than

5, we conclude that this procedure ensures that all nodes in the scenario will be connected

in a tree with nodes that do not have more than 5 slaves/clients.

We thus conclude that using 5 ≤ L ≤ 8 ensures connectivity in UDG modelled scenar-

ios of WFD devices.
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Figure 3.4: An AG modelled scenario not connected by WFD.
Solid dark red and dashed pink arrows depict, respectively, WiFi and WFD interface connections

in the arrow direction (A→ B, means A connects the interface to B). Brown rectangles depict
obstacles. Grey line depicts the radio visibility.

In relation to scenarios modelled as AGs, we affirm that a communication technology

that has nodes with limited number of slaves and masters, cannot guarantee connection.

To prove that, we took into consideration the scenario in Figure 3.4 with: one node in

the centre; 10 nodes around the central node and equally spaced; walls between the outer

nodes that only enable communication to the central node; and nodes are WFD nodes

and only accept 8 slaves (in the WFD interface) and can only have one master (connected

by the WiFi interface). In this scenario, the central node can only connect to 9 nodes,

8 as slaves by the WFD interface and one as master by be WiFi interface. Therefore, in

the figure, node K cannot be connected and we conclude that it is not possible to achieve

connection in the scenario.

In general, a communication technology that has nodes with limited number of slaves

and masters, nodes will not achieve connection in AG scenarios with cases of nodes with

more neighbours, not visible among themselves, than the sum of the number of slaves

and masters that a node can have.

We then conclude that to ensure connection, we should use WFD in scenarios model-

led by a Unit-Disk Graph (UDG).

3.2.1.4 Conclusions of preliminary considerations

We will use cluster instead or groups, in order to reduce cluster interconnections. Nodes

will be enslaved by connecting its WiFi interface to the GO.

We will use both GOGO and GOCRGO topologies. We will use the GOGO topology

inside clusters to provide cluster extension. We use this topology because it has a better

radio coverage per node than GOCRGO topology. We will use the GOCRGO and the

GOGO topology for cluster interconnection. However, we will use the GOGO topology
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only when the dominant node can be used for cluster interconnection. In those cases, the

dominant node will connect its WiFi interface to a node in the other cluster.

3.2.2 Algorithm introduction and stages

The RedMesh algorithm should systematically form mesh networks that interconnect

WFD-enabled off-the-shelf mobile devices in small to large-scale scenarios, establishing

connections that may only use unicast (TCP or UDP) communication. The main design

goal of the algorithm is to maximize network connectivity.

The algorithm has the following requisites: nodes have an immutable and unique

identifier, nodes are static, nodes are A5C, all nodes start the algorithm at the same time,

nodes do not fail, communication does not have any interferences, and scenarios are

modelled as Unit-Disk Graphs (UDGs).

Node identifiers should be unique and manifest the intention of a node to be a GOD,

a GO or a LC node, with higher values for a GOD and successively lower values for

a GO and with the lowest values for a LC node. The identifier can be a metric that

considers node resources, like battery power available, CPU, memory available, intention

to move and complemented with the MAC address to break ties. The metric based on

the node resource availability enables to rank them by current characteristics, avoiding,

for example, the selection of a node almost empty of battery to be a GOD. However, in

this thesis we do not consider changes in the identifiers over time and therefore they are

immutable.

The algorithm should start with WFD groups, then extend those groups to form

clusters and finally do cluster interconnection. The networks formed should provide

TCP connections or enable UDP datagrams between neighbour connected nodes and will

require an addressing and a routing scheme on top of them.

The algorithm applies the following sequence of stages, which will be described in

the next subsections:

1. Dominant Node Election (DNE);

2. Cluster Building (CLB);

3. Cluster Neighbourhood Gathering (CNG);

4. Main Cluster Interconnection (MCI); and

5. Final Cluster Interconnection (FCI).

Before describing each stage, we introduce some notation and base definitions. Nodes

are ranged over by u, v and w and have a unique identifier denoted by id(u) ∈ Node-
Identifier, being NodeIdentifier a totally ordered set. A set of nodes is denoted by U . The

set of neighbours of u is denoted by N (u), being the notation extended to sets: N (U ) =

49



CHAPTER 3. WIFI-DIRECT NETWORK FORMATION

WiFi Range
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28 29

30

31

32

33

34

35
36

37

38

39

40

41

42

43

44

45

46

47
48

49

Figure 3.5: Running scenario after DNE stage.
Yellow squares, grey circles and grey lines depict, respectively, dominant nodes (GODs), other

nodes, and radio visibility.

⋃
u∈U N (u). The set of neighbours of u with identifier lower than u is given by Ns(u) =

{v ∈N (u) | id(v) < id(u)}. The set of slaves of u is denoted by S(u).

Lastly, we use L as the usual maximum number of slaves allowed per GOs. So, as

L ∈ [5,8] ⊂ N, we will set L = 5 as it is the most restrictive case. Neighbourhood coverage is

obtained by computing the MIS [59] of the radio visibility network of the neighbourhood.

3.2.2.1 Dominant Node Election (DNE) stage

In the first stage of the algorithm, Dominant Node Election (DNE), every node u begins

by discovering its neighbours (N (u)) and the neighbours of those neighbours, which is

the 2 hops away neighbourhood (N (N (u))).

For that purpose, u initializes its WFD interface and announces itself broadcasting its

identifier via BAS2. Once nodes discover all their direct neighbours, they broadcast that

information, allowing nodes to compute their second level (2 hops away) neighbourhood.

From their direct neighbours, each node can individually determine if it is a dominant
node, i.e., if it is the node with the highest id in its neighbourhood. Dominant nodes then

turn into GOs and we call them Dominant Group Owners (GODs).

Figure 3.5 depicts the result of this process for a 50 node scenario that we will use as

a running example. In the figure we can see 9 GODs (yellow squares), which are the only

nodes that have the highest id in their neighbourhood.

2 All broadcasts are BAS broadcasts and carry the RedMesh service tag to enable system identification.
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Algorithm 2 Candidate Slave Set Calculation

1: function computeCSS(u,EBO) . u : node, EBO : set of nodes enslaved by others
2: CSS←Ø
3: Candidates←Ns(u) \ (EBO∪ S(u)∪N (S(u)))
4: while Candidates ,Ø do
5: n← getHighestRankedNode(Candidates)
6: CSS← CSS ∪ {n}
7: Candidates← Candidates \ ({n} ∪N (n))
8: end while
9: Candidates←Ns(u) \ (EBO∪ S(u)∪CSS)

10: while #CSS < L and Candidates ,Ø do
11: n← getHighestRankedNode(Candidates)
12: CSS← CSS ∪ {n}
13: Candidates← Candidates \ {n}
14: end while
15: return CSS
16: end function

3.2.2.2 Cluster Building (CLB) stage

The Cluster Building (CLB) stage starts on GODs and builds their clusters.

GODs trigger this stage by trying to enslave their neighbours. Once enslaved, nodes

turn into GOs and then try to enslave their lower (id) neighbours, causing the enslaving

process to flow downwards from higher to lower id nodes.

Each GO will: 1) ensure that all lower neighbours are enslaved by a node; and 2) try

to enslave the maximum possible number of lower neighbours, which is L. With 1) we

ensure connectivity, that is, all lower neighbours will be connected by a node. Therefore,

after this stage, all nodes are grouped into clusters dominated by GODs. With 2), we

maximize the number of slaves, hence reducing the number of GOs. Fewer GOs, as

fewer masters in BLT require less radio transmissions, enable faster routing (as there are

less groups to cross), reduce radio interferences and network maintenance costs [27, 32].

Consequently, better and more energy efficient networks will be formed.

To achieve the goals of both 1) and 2), we start with a MIS and complement it with

more nodes to fulfil the L quota. So, for a GOD u, we get from the set of lower neighbour

nodes (Ns(u)) the set of L highest neighbour nodes that can enslave all remaining nodes

in Ns(u). We call this set Candidate Slave Set (CSS).

However, due to concurrency, the enslaving process may fail. Thus, each time a GOD

receives an enslave rejection, or perceives from BAS traffic that a CSS node has already

been enslaved, it stores those nodes in a set called Enslaved By Others Set (EBO) and

rebuilds the CSS. CSS successfully enslaved nodes are removed from CSS.

Algorithm 2 presents the function to compute CSS. It begins by setting CSS to a

MIS of Ns(u) (lines 2 to 8), excluding Enslaved By Others Set (EBO), S(u) and N (S(u))

nodes (S(u) is initially empty). This part is similar to the base MIS actions presented in
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Algorithm 1 (Section 3.2.1.3), but here we want to produce a descendant wave, so nodes

only take in consideration their lower neighbours (those with lower ids) and from them

they select the higher nodes first. Thus, getHighestRankedNode(X) is a function

that returns the node with the highest rank from the set of nodes X. Next, the algorithm

increases CSS with the remaining highest ranked Ns(u) nodes (lines 9 to 14) to fulfil the L

quota. When the enslaving process ends (CSS = ∅), the nodes without slaves revert from

being a LC/GO to being just a LC. At the end, every node broadcasts its state as a tuple

〈u,GOD,isGO,WFDGO,WFGO,S(u),N (u)〉

where u is the node id, GOD is the id of the dominant node of u, isGO is true if u is

GO, WFDGO and WFGO are the ids of the connected GOs by those respective interfaces

of u; and S(u) and N (u) are respectively the slave and neighbour list of u. Nodes also

broadcast that tuple every time they change their state.

When this stage ends, each GO u has a maximum of L slaves and every node v ∈Ns(u)

is a slave of u or in range of another GO w, with id(v) < id(w) < id(u). The reflexive

transitive closure of the slavery relation S applied to a GOD u, i.e. the closure of S(u),

forms what we call a cluster. From the perspective of a cluster, nodes belonging to the

cluster are called local nodes, while the others are called remote nodes. All slave to master

(GOs) connections use the WiFi interface, leaving the WFD interface free to allow these

nodes to either become GOs themselves or to connect to some other GO, maximizing

future connection opportunities. Figure 3.6 illustrates our running example at the end of

this stage. In the figure we can see the 9 GODs, their clusters and the WiFi connections

of the GODs (when they have a GO slave).

3.2.2.3 Cluster Neighbourhood Gathering (CNG) stage

The goal of the Cluster Neighbourhood Gathering (CNG) stage is fourfold:

1. send node-level neighbourhood information to GOs;

2. identify the nodes that can interconnect clusters;

3. promote some of such nodes to GOs; and

4. send cluster-level neighbourhood information to higher neighbour clusters.

Firstly, we clarify that nodes whose neighbourhood extends beyond the boundaries

of their own cluster and reaches nodes from other clusters, may be used for cluster inter-

connection and are called candidate gateway nodes. Besides that, from the perceptive of

a cluster, a local candidate gateway node is a candidate gateway that belongs to the cluster

and a remote candidate gateway node is a candidate gateway from another cluster.

Nodes start this stage upon the reception of the final broadcasts from the previous

stage (CLB). Then, LC nodes send local and received CLB information to their GOs.
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Figure 3.6: Running scenario after CLB stage.
Circular lines delimit clusters. Yellow squares, larger pink/lighter circles and smaller

blue/darker circles depict, respectively, dominant nodes (GODs), LC/GO nodes and LC nodes.
Brown arrows u→ v are master-slave relations from u to v nodes, where v connects its WiFi

interface to u. Grey lines are the radio visibility.

GOs then combine their own local information with the one received from all slaves and

propagate it to their own GOs. GODs will finish this step knowing the node state, neigh-

bourhood information from all local nodes and from remote candidate gateways in range

and, also, their neighbour clusters (the ids of their GODs). With this information, they

build a table, called visibility table, with all pairs of possible local and remote candidate

gateways.

GODs then proceed with the selection of local candidate gateways that are the only

nodes able to interconnect two or more neighbour clusters. These nodes are then pro-

moted to GOs, becoming LC/GO nodes and called LCsToGOs. This step is of the utmost

importance as it prevents higher clusters – with higher ranking GODs – to ask these gate-

way LCs to connect to them, transforming LC nodes into CR ones and precluding them

from connecting to any other cluster. It is then, a preparatory measure to prepare connec-

tion points for neighbour clusters.

Lastly, gateway and LCsToGOs information is propagated upwards from lower to

higher GODs. These messages are sent, between GODs, from the source GOD to the local

gateway (on the way to the destination GOD and obtained from the visibility table), then

sent to remote gateway and finally addressed to the remote GOD. So, GODs will know the

complete neighbourhood information, which includes LCsToGOs, from lower neighbour

clusters. That information enables them to start cluster interconnection in a descending

round.
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In all the algorithm, communication between unconnected nodes goes by broadcasts

(BAS) and otherwise by unicasts.

3.2.2.4 Main Cluster Interconnection (MCI) stage

The Main Cluster Interconnection (MCI) stage is where more cluster interconnections

occur. It starts in the highest GODs, among neighbour clusters, and goes down until

the lowest clusters. Thus, it is a descending round. GODs start it by receiving MCI-end

notifications from all their higher neighbour clusters and updating the visibility table with

that information.

Then, they put in cltsToConnect list the ids of all their lower neighbour GODs/clusters

and in a descending order. Next, they use Cluster Interconnection Procedure (CIP),

described in Section 3.2.3.1, to interconnect those clusters following that order. After each

cluster interconnection, GODs update the visibility table accordingly. However, before

each interconnection, GODs check if there are LCs that are the unique nodes to connect

more than one remote cluster and, if so, they turn them into LCsToGOs (LC/GO). This

is necessary to avoid local gateway LC nodes to act as CR nodes and to use the WFD

interface to connect to only one cluster, when they must connect to two or more. This is,

thus, a second round of LCsToGOs.

After processing all cltsToConnect, GODs check which unconnected clusters can be

connected by an intermediate path of clusters and lastly send MCI-end notifications to all

neighbour lower clusters. This is done in End of Interconnections Procedure (EIP), which

is described in Section 3.2.3.2. A MCI-end notification contains cluster connections done

and achievable through intermediation, and cluster interconnections that cannot be done.

Figure 3.7 shows our running scenario after this stage. It highlights the cluster inter-

connections done in thick arrows. There are 4 interconnections by WFD: 14→ 40 (by

R1 rule, see Section 3.2.3.1), 3→ 16 (R1), 7→ 42 (R2) and 23→ 34 (R1), and 3 by WiFi:

3→ 45 (R3), 20→ 43 (R3) and 25→ 49 (R3).

3.2.2.5 Final Cluster Interconnection (FCI) stage

The Final Cluster Interconnection (FCI) stage starts when the lowest GODs, between

neighbour ones, receive MCI-end notifications from all their higher neighbour clusters.

It starts on other GODs when they receive FCI-end notifications from all their lower

neighbour clusters. This stage will then flow upwards from the lowest to the highest

clusters and it is, thus, an ascending round.

GODs put higher clusters to connect, sorted ascendantly, in cltsToConnect list and

execute again Cluster Interconnection Procedure (CIP) over the list.

After that, GODs run again the End of Interconnections Procedure (EIP), using all

the data from the MCI and FCI stages, making a final decision about which clusters are

connected directly by an intermediate sequence of clusters or not connected at all. Once

concluded, they send their FCI-end notifications to their higher neighbour clusters.
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Figure 3.7: Running scenario after MCI stage.
Circular lines delimit clusters. Yellow squares, larger pink/lighter circles and smaller

blue/darker circles depict, respectively, dominant nodes (GODs), LC/GO nodes and LC nodes.
Brown (thin and thick) arrows u→ v are master-slave relations from u to v nodes, where v

connects its WiFi interface to u. Pink dashed arrows are WFD connections, similar to WiFi ones.
Thick arrows, brown and pink, are cluster-interconnections. Grey lines are the radio visibility.

In our running scenario, this stage only connected nodes 3 and 17 (3→ 17), as shown

in Figure 3.8. Node 17 stopped being a GO and connected its WFD interface to node

3, using R5 interconnection rule (see Section 3.2.3.1, Cluster Interconnection Procedure

(CIP)). Therefore, the application of this final stage created just one cluster interconnec-

tion. However, it enabled to conclude the formation process in just a single connected

network.

3.2.3 Algorithm auxiliary procedures

The algorithm has the following auxiliary procedures or managements that will then be

described: Cluster Interconnection Procedure (CIP), End of Interconnections Procedure

(EIP), WiFi Management, and Routing Management.

3.2.3.1 Cluster Interconnection Procedure (CIP)

Due to the highly restrictive nature of WFD, we designed the RedMesh algorithm aiming

at maximizing the overall connectivity. To achieve this goal we minimized the cluster

interconnections done to the minimum necessary. This way, we maximize the possibilities

of success for the really necessary cluster interconnections.

In this procedure, GODs in MCI and FCI stages try to connect to all the clusters in

the cltsToConnect list. They do it sequentially, by the order the clusters are in the list and
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Figure 3.8: Running scenario after FCI stage.
Focused on the new cluster interconnection: 3→ 17 (R5). Circular lines delimit clusters. Yellow
squares, larger pink/lighter circles and smaller blue/darker circles depict, respectively, dominant

nodes (GODs), LC/GO nodes and LC nodes. Brown (thin and thick) arrows u→ v are
master-slave relations from u to v nodes, where v connects its WiFi interface to u. Pink dashed

arrows are WFD connections, similar to WiFi ones. Thick arrows, brown and pink, are
cluster-interconnections. Grey lines are the radio visibility.

until the list is empty. For each cluster, firstly GODs try to get a connected intermediate

path through neighbour clusters, using the information received from MCI-end and FCI-

end (if available) notifications and local connections already established. If such path is

found, the cluster is moved to the intermedClts set and the path is stored in a map called

intermedPaths in pairs with 〈destination, intermediation〉. If there is no known connected

path to that cluster, GODs proceed to build such path. Then they try to get a cluster

interconnection rule that matches an existing pair of local and remote (from the desired

cluster) candidate gateways. To achieve that, they use the visibility table and the rules

presented in Table 3.1 and described next in Cluster Interconnection Rules. If no rule is

found, the cluster is placed in the notConnClts set, otherwise GODs execute the actions

of the interconnection rule and, in case of success, the cluster is moved to connClts set. If

the interconnection rule fails, GODs update the visibility table, with received information

and repeat this procedure for the same cluster.

Now, we will describe the Cluster Interconnection Rules, the Cluster Interconnection
Rules Pair Selection, the Cluster Interconnection Generic Rule Actions and the Cluster Inter-
connection Delegation Rule (R5) Actions.

Cluster interconnection rules

We use five interconnection rules, named R1, . . . , R5, summarized in Table 3.1. The

table presents for each rule: the name, the initial and final states for the local and remote

gateways and the connection details (WFD or WiFi and direction). Rules R1, R3 and

R4 are applied firstly in the version/direction presented in the table, but they are also
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Table 3.1: RedMesh cluster interconnection rules.

Initial configuration Final configuration

Rule local remote local conn remote

R1 LC LC/GO LC/CL L99 LC/GO
R2 LC LC LC/GO 99K LC/CL
R3 GODFL LC/GO LC/GOD ←− LC/GO
R4 GODFL LC LC/GOD ←− LC/GO
R5 LC/GOD LC/GO LC/CL L99 LC/GO

Notes: FL, WiFi free or locally connected (in cluster); D , can delegate all slaves; A −→ B / A 99K B,
master slave relation from A to B and B connects WiFi / WFD interface, respectively, to A.

applied in the reverse direction if the presented version failed. For each Ri for i ∈ {1,3,4},
we denote the version presented in the table by Ria and the reverse by Rib, e.g., for R1,

the initial configuration of R1a is local = LC and remote = LC/GO, whilst in R1b it is

local = LC/GO and remote = LC. The algorithm first applies the a rule versions, as we

usually favour remote GOs over local ones, because a remote GO may be used by the

remote cluster to connect to a third cluster or receive other nodes as slaves (R5). The

procedure returns the first rule version that finds a matching pair of nodes. The default

rule testing order is R3 :: R1 :: R2 :: R4 :: R5, which was obtained empirically from

extensive evaluation.

Concerning rule details, in R1, LC gateways connect their WFD interface to a LC/GO

gateway in the other cluster. In R2, local LC gateways turn into LC/GO and receive

a WFD connection from a remote LC. R3 connects GODs WiFi interface to a LC/GO

gateway (that supports one more slave) in the other cluster. The WiFi interface of the

GODs must be free or locally connected, i.e. connected to a node in the same cluster. If

connected, GODs must disconnect it first. R4 connects the WiFi interface of the GODs to

a LC gateway in the target cluster. R4 complements R3 and requires the LC gateway to

firstly change into a LC/GO. R3b and R4b accept remote GODs with any WiFi interface

configuration, as the local (in charge) GOD may be unaware of what happened meanwhile

to those nodes. Remote GODs reject these rules (R3b and R4b) when they have the WiFi

interface already connected to a gateway in another cluster. Consequently, local GODs,

once having received those rejections, disable future selection of these rules for the same

nodes. R5 requires a local LC/GO gateway that can delegate all its slaves and a remote

LC/GO gateway that can receive one more slave. The local gateway must delegate all

slaves only to local nodes that are GOs or are LCs that can be turned into GOs. Then, it

should stop being GO and connect its WFD interface to the remote gateway.

Cluster interconnection rules pair selection

A cluster interconnection rule may match more than one pair of gateways. Each rule

applies, then, a criterion of pair selection to elect the most favourable one. The criterion

consists of a series of clauses, electing the pair that consecutively verifies more of them
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(based on appearance order). The selection clauses for each rule follows. R1: LC neigh-

bour of fewer networks3; LC/GO with fewer slaves; higher (id) LC; higher LC/GO. R2: re-

mote LC neighbour of fewer networks3; higher local LC; higher remote LC. R3: LC/GO

with fewer number of slaves; higher LC/GO. R4: LC neighbour of fewer networks3; higher

LC. R5: local GO that can delegate all slaves; if local GO has the local GOD as a WiFi

slave, there must be a receptor for the WiFi interface of the GOD; local GO with fewer

slaves; remote GO with fewer slaves; higher local GO; higher remote GO.

Cluster interconnection generic rule actions

A cluster interconnection rule starts with the GOD notifying the local gateway of the

selected interconnection rule and pair of gateways. The local gateway then performs the

necessary preliminary actions, like turning into a GO or disconnecting its WiFi interface,

and subsequently connecting to the remote node or asking the latter to connect to it.

Communication between gateways is done by broadcast (BAS). Finally, the local gateway

sends the confirmation or rejection to its GOD. The GOD receives the final message

and updates its visibility table with the success/rejection information. In case of success,

the remote gateway also sends a message to its GOD, so that the routing information is

updated.

Cluster interconnection delegation rule (R5) actions

Here, R5, the delegation rule, due to its complexity, is further detailed. We refer to

the node that delegates its slaves as the delegator, a delegated node as a delegatee and a

node that receive delegatees as a receptor. On rule selection, R5, besides the pair of selected

gateways, also returns a set of delegations (delegatee/receptor) and the receptor of the WiFi

interface of the GOD if it is connected to the delegator.

The first step of the rule is to change the WiFi interface of the GOD, if it is connected

to the delegator. Subsequently, if there are receptors that are LC nodes, GOD notifies them

to be GOs. After that, GOD sends the rule information (R5, gateways and delegations) to

the delegator. The latter notifies all delegatees about their receptors, causing the delegatees to

disconnect their WiFi interface from the delegator and to connect it to their receptor. With

all delegatees disconnected, the delegator stops being a GO, connects its WFD interface to

the remote node and then sends a message to its GOD with the success of the operation,

deprecating all routing information concerning its old slaves. When receptors receive

all connections from delegatees, they send a message to the GOD. Those messages also

update routing information. Upon the reception of all messages from the receptors and

the delegator, GOD updates its visibility table and finishes the application of the rule.

3.2.3.2 End of Interconnections Procedure (EIP)

This procedure executes the MCI and FCI stages final actions. First, GODs try to get an

intermediate path to each cluster in notConnClts from all existing connections. If a path is

3 Information from CNG stage and only considered in MCI stage.
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found, the cluster is placed in intermedClts and the path in intermedPaths. Otherwise, the

cluster remains in notConnClts set. Then, GODs send an end of stage message to all their

lower/higher neighbour clusters, in MCI/FCI stages respectively, and conclude the stage.

They use intermedPaths and the visibility table to get a path to those neighbour clusters

that are in intermedClts and notConnClts, respectively. Messages carry connections done,

intermediated and not done.

3.2.3.3 WiFi management

Two GOs may communicate directly by unicast, if both have the WiFi interface connected

and one have it connected to the other. All GOs, that are not GODs, have their WiFi

interface connected to another GO even before they are GOs. GODs are the only GOs

that start with the WiFi interface disconnected. However, they connect it to their first

GO slave. GODs may also have the WiFi interface disconnected when executing R3, R4

and R5 interconnection rules. In these cases, they notify their GO slaves to suspend

unicast traffic and, when they reconnect their WiFi interface, they notify their slaves

again to resume traffic. That traffic comes from intermediate cluster connections and

routing purpose messages. A GO, non-GOD, may have the WiFi interface momentarily

disconnected in the execution of R5 interconnection rule if it is a delegatee node. In these

cases, traffic is also suspended between the disconnection, of the WiFi interface, from the

delegator and the connection to the receptor.

3.2.3.4 Routing management

Routing is set inside clusters mainly in CLB and CNG stages and between clusters in MCI

and FCI stages.

In CLB stage, nodes set route information from master-slave relations. In CNG stage,

routing is obtained from messages that are sent to GODs. Nodes that receive those mes-

sages set the message source and other mentioned nodes as targets in WFD interface and

the node that sent the message as their next hop. Besides that, GODs also register their

WiFi connection, when connected. The routing information is registered in triplets: 〈
destination, next node/hop, interface 〉.

The MCI and FCI stages update routing when clusters are interconnected and inter-

mediate paths to clusters are found. Cluster interconnections may have preparatory (e.g.

changing WiFi interface or delegations) and final changes that require updates in rout-

ing information. On cluster interconnection completion, gateways in local and remote

clusters set the other gateway as the next hop to reach the GOD of the other cluster, and

update local routing by sending a message to their GOD. Consequently, GODs will be

able to send unicasts to GODs of connected clusters, setting them as the final address and

setting the nextNode and interface fields of the routing registry for the desired target.

For intermediate connected clusters, GODs send messages with an intermediation

path, named godsPath, with the necessary GODs to reach destination. When a GOD
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receives a message with godsPath and it is not the final GOD in the path, it removes itself

from the path and relays the message to the next GOD. So, routing information is then

composed of triplets: 〈 final address, next hop, godsPath 〉.
In general, a non-GOD node routes messages accordingly to the local next hop in-

formation. If the next hop is not available, the message is sent to the local GOD. When

cluster changes occur, like in R3a, R4a and R5, nodes must queue in transit messages.

When the cluster is stabilized, nodes will then route queued messages.

Therefore, messages flow via broadcasts (BAS) between unconnected nodes/clusters

and via unicasts inside and between connected clusters.

3.2.4 Algorithm evaluation

This section evaluates RedMesh in scenarios with up to 250 nodes. It uses L = 5, because

if we achieve good connectivity with such a small L value, we will, for sure, achieve it for

larger L values as well. It contains a description of used simulator and scenarios, and the

results obtained from each algorithm stage and from the comparison with existing WFD

network formation algorithms.

3.2.4.1 Simulator used

Aiming to enable the reproducibility of our algorithm in medium- and large-scale scena-

rios, up to 250 nodes, and in a controlled environment, we opted for using the high-level

network simulator WiDiSi [4]4. This simulator is based on PeerSim simulator [37] and

was also used in Baresi et al [5]. We modified the simulator to make it suitable to our

needs. The most significant changes were to enable GO-GO and CR-GO connection

and communication. We also configured WiDiSi to avoid message loss and changed the

event management to keep message order. This way, we simulated TCP like conditions in

node-to-node communication. Therefore, the results should be seen as the absolute best

performance, as they do not take into account neither radio interferences, nor loss or out

of order messages.

3.2.4.2 Scenarios used

The used scenarios are fully connected with relation to WiFi/WFD radio visibility. All

nodes are, then, reachable by radio either directly or indirectly by way of other reachable

nodes. Thus, in one scenario, starting from any node we can reach any other node in the

scenario.

The scenario generation algorithm used employs two sets, the end set that will contain

the nodes placed in the scenario and the free set that will contain the nodes that must be

placed in the scenario. The algorithm has the following steps:

1. place node 0 (with id 0), positioned in scenario centre, in end set;

4 Code location: https://github.com/deib-polimi/WiDiSi, accessed on Jul 26, 2019.
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Table 3.2: Scenarios metrics

Scenarios size (# of nodes)

Metric 50 100 150 200 250

With1Neig 2.68 3.16 3.50 3.18 1.86
2N-with2Neig 0.96 1.38 1.54 1.36 1.18
3N-with2Neig 0.14 0.22 0.35 0.18 0.08
4N-with2Neig 0.04 0.02 0.05 0.02 0.00
5N-with2Neig 0.00 0.01 0.00 0.00 0.00
MaxVisNgb 12.30 12.98 13.32 13.26 15.50
AvgVisNgb 6.22 6.39 6.26 6.24 7.36

2. place all other nodes in free set;

3. move all nodes in free to end set, with new random coordinates and without node

overlapping;

4. if node 0 can reach all nodes in end set finish the algorithm;

5. move all nodes, in end set, not reachable by node 0, to free set; and

6. go back to step 3.

We used scenarios with 50, 100, 150, 200 and 250 nodes, positioned in a square with

a side of 10 times the radio coverage range. For each number of nodes we generate 50

distinct scenarios and for each scenario we generate 5 versions with shuffled ids, in a total

of 5× 50× 5 = 1250 configurations. Our running scenario is one of these.

Table 3.2 shows some scenarios metrics. The line With1Neig contains the number of

nodes that only have 1 neighbour, the lines nN-with2Neig contain the number of groups

of n consecutive nodes with only 2 neighbours (for example, 3N-with2Neig means 3

nodes in line with only 2 neighbours) and lines MaxVisNgb and AvgVisNgb contain the

maximum and average # of neighbours per node, respectively.

Metrics do not present a linear behaviour. That happens because in smaller scenarios

some nodes must be regenerated until they are reachable by node 0. This will diverge

from randomness and generate node concentration, resulting in a behaviour similar to

more crowded scenarios. In scenarios of intermediate size, nodes tend to stay more in the

original place and respect a random disposition.

3.2.4.3 DNE, CLB and CNG results

Table 3.3 characterizes the scenarios after Cluster Neighbourhood Gathering (CNG) stage,

which includes Dominant Node Election (DNE) and Cluster Building (CLB) stages. The

metrics presented are the average: number (#) of clients per GO; number of clusters, i.e.

number of GODs; maximum cluster size (cluster members); maximum cluster depth;
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Table 3.3: Results for DNE, CLB and CNG stages

Scenarios size (# of nodes)

Metric 50 100 150 200 250

ClientsPerGO 2.18 2.22 2.23 2.26 2.26
Clusters 8.94 16.75 24.71 32.18 34.86
MaxClusterSize 10.83 12.62 13.41 14.00 15.90
MaxClusterDepth 3.53 3.84 3.96 4.05 4.33
GOsRejected 52.55 113.20 167.62 230.48 340.83
LCsToGOsCNG 0.97 2.33 3.55 4.89 5.01
LCsToGOsMCI 0.10 0.26 0.38 0.42 0.65

number of rejected GOs/enslavements; and number of LCsToGOs in CNG and MCI

stages.

From these values, we highlight the number of rejected GOs, as it evidences the compe-

tition between GOs to capture unconnected neighbour nodes showing that those actions

are non-deterministic. Concerning group formation, we did not obtain a high average of

clients per GO. We point L = 5 as one contribution to that value. Another factor is that,

in CLB stage, when a node is enslaved it turns into a GO and also starts enslaving. GOs

enslaving concurrently, in CNG stage, shorten the stage time but do not maximize the

number of clients per GO.

The number of LCsToGOs in MCI stage is mentioned here to enable direct comparison

with LCsToGOs in CNG stage. From these values we conclude that the LCsToGOs mainly

occur in CNG stage. However, LCsToGOs of the MCI stage are important to prevent

bottlenecks that can occur in that stage, as will be shown in Section 3.2.4.11 (LCsToGOs

results).

3.2.4.4 MCI and FCI connectivity results

Here we measure the overall connectivity after the MCI and FCI stages. Figure 3.9 shows

the percentage of not fully connected scenarios after those two stages for each used sce-

nario size and also the global average for all scenarios sizes.

When using only MCI stage, we obtain a global result of 7.12%. When using MCI

and FCI stages we obtain 2.72%, which is 38.2% of the result when using only MCI stage.

Therefore, the addition of a second interconnection round reduced the average of not

fully connected scenarios by almost 2/3. The algorithm presented similar behaviour in

smaller and larger scenarios, confirming that the generation algorithm should join nodes

in sparse scenarios, creating node dispositions like the more crowded ones.

3.2.4.5 Communication results

Now we want to measure the communication cost of each stage. Figure 3.10 contains the

average number of broadcasts and unicasts for all scenario sizes and for all algorithm
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Figure 3.9: Connectivity after MCI and FCI stages.
Horizontal lines show global average values.

DNE CLB CNG MCI FCI

0

200

400

600

800

300

724.8

92.9
24.3 0.70 0

393.3
332.7

206

Algorithm stage

A
vg

.n
u

m
be

r

Broadcasts
Unicasts

Figure 3.10: Communication results for all stages.

stages.

In DNE stage nodes need 2 broadcasts to get the second neighbourhood. As we have an

average of 150 nodes, between all scenarios, the algorithm needs 2 ∗150 = 300 broadcasts.

In CLB stage nodes send broadcasts when they change state (to GO, new slave, etc.), reject

being enslaved or when they try to enslave nodes and repeat after rejection. In CNG stage

every node sends the information of its neighbourhood to their GODs and these ones

send information to higher GODs. Thus, communication inside clusters, which goes by

unicast, is higher than between clusters, which goes by broadcast. This stage also sets

LCsToGOs and for each one of them it requires several unicasts and one broadcast.

The MCI and FCI stages do cluster interconnection that require many unicasts and

very few broadcasts. They also send the final end of stage messages to neighbour clusters

that also require more unicasts to travel inside and between connected clusters than the

broadcasts needed to communicate among unconnected clusters. The MCI stage makes

the most of cluster interconnections, so it requires more unicasts and broadcasts than

the FCI stage. The global average number of broadcasts and unicasts, for RedMesh , is,
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Figure 3.11: Time results for all stages.

respectively, 1142.7 and 932.0. This shows that 45% of the communication can take

advantage of unicasts, which are faster and require less energy than broadcasts.

3.2.4.6 Time results

Now we want to measure the time cost of each stage. Figure 3.11 contains the average

required time to finish each algorithm stage, for all scenario sizes.

From the figure we can see that MCI stage is the most demanding of all. That oc-

curs because it makes almost every cluster interconnection and that requires: sending

information to gateways, communicating between gateways, handling nodes changes (for

example, turning into GO), handling rejections and communicating back to GODs. Be-

sides that, GODs have to send final messages to higher clusters. All these actions are done

sequentially and several of them require broadcasts, which are slower than unicasts.

The time for CNG and FCI stages is similar as both essentially execute the communi-

cation round. From them, FCI stage may have to execute some interconnection rules that

increases its time comparatively to CNG stage time.

The average for all scenarios sizes and for the complete algorithm is 127.18 seconds.

3.2.4.7 Cluster interconnection results by type of interconnection

Here we want to know the number of cluster interconnections that occurred in MCI and

FCI stages. More precisely, we want to know the number of cluster interconnections done,

achieved by intermediation and not done at all.

Figure 3.12 contains the average number and standard deviation of interconnections,

separated by its type and for MCI and FCI stages, in scenarios with just 250 nodes. From

the figure, we can see that 99.7% of the cluster interconnections done occur in MCI stage.

The FCI stage makes very few cluster interconnections, however, it enables the average

global final result to improve from 7.12% to 2.72% of not fully connected scenarios, as

already seen.
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Figure 3.12: Cluster interconnections in MCI and FCI stages.
Average number and standard deviation of cluster interconnections in scenarios with 250 nodes,

by type of interconnection.

We can see that both interconnection stages/rounds establish a significant number of

clusters interconnections by intermediation. The MCI presents a smaller value than the

FCI, as the latter uses all the interconnections by intermediation from the former stage

and could add more due to new connections meanwhile established in the both stages.

The total number of cluster interconnections by intermediation is even bigger than the

total number of cluster interconnections done. That shows that many connections will

not be done and the nodes that those connections would otherwise use, will stay free to

be used by the critical connections.

The number of unconnected clusters is low, but ideally it should be taken to 0, as

pairs of clusters that can not be connected directly or indirectly may create network

segmentation.

3.2.4.8 Cluster interconnection results by rule

Here we analyse the cluster interconnections done by each interconnection rule in MCI

and FCI stages. The global average number of interconnections done, per scenario, is

25.94 for MCI and 0.13 for FCI, confirming that the latter acts as a complementary stage.

However, the FCI stage is very important for the overall connectivity, as already shown

in Figure 3.9.

Figure 3.13 contains the average number and the standard deviation, per scenario,

of applications done for each rule in MCI stage, in scenarios with 250 nodes. From the

figure, it can be seen that the R1 rule is the most significant rule in MCI stage. That is

expected, as having pairs of LC and GO gateways, in range, should be a frequent situation.

The next significant rule that follows is the R3 rule, mainly because it is the first rule to

be checked. The last one to have significant results is the R2 rule that connects pairs of

LC gateways in range and complements the R1 rule. The R5 rule solves the cases of pairs

of GOs in range, but as it is the last rule to be checked, it is not often used. The R4 rule is
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Figure 3.13: MCI interconnection rule applications.
Average number and standard deviation of rule applications in scenarios with 250 nodes.
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Figure 3.14: FCI interconnection rule applications.
Average number and standard deviation of rule applications in scenarios with 250 nodes.

a complement of the R3 rule and as can be seen, is rarely used.

Figure 3.14 contains the average number and standard deviation, per scenario, of

applications done for each rule in FCI stage, in scenarios with 250 nodes. We can see that

the R5 rule is the prevailing rule in FCI stage. This is due to the fact that some LCsToGOs

are turned again into LCs to enable cluster interconnections, as GOs without any slaves

are elected by the R5 rule (without any delegations).

3.2.4.9 Failed cluster interconnection results

Here we analyse the failed cluster interconnections. Figure 3.13 contains the average

number and the standard deviation of failed rule applications in MCI stage, per scenario

and in scenarios with 250 nodes.

From the figure we can see that R1, R3 and R2 have more rejections than R4 or

R5. That occurs because they are the ones with more applications in MCI stage. The

values, for R1, R3 and R2 successful applications are 189X, 119X and 115X more than the
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Figure 3.15: MCI failed interconnection rule applications.
Average number and standard deviation of failed rule applications, per scenario, in scenarios

with 250 nodes.
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Figure 3.16: RedMesh with one rule (Rx) and without one rule (Rx).

respective values for the number of failed rule applications. These show that one failed

rule application happens in about one hundred rules applications for R3 and R2, and in

almost two hundred for R1.

The failed rule applications occur due to conflicts between concurrent clusters, as the

changes in gateway nodes, introduced by one cluster, may be unknown by GODs from

the neighbour clusters.

3.2.4.10 Interconnection rule relevance results

Here we question the relevance of each interconnection rule by using just one of them and

also using all except one. Figure 3.16 shows the global average % of not fully connected

scenarios when using only one rule in Rn columns and when using all rules except one

in Rn columns (here, the name means: without that rule).
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Figure 3.17: LCsToGOs results (LA ≡ RedMesh ).

From the figure it can be seen that R1 is the only rule that by itself can connect a

relevant percentage of scenarios (30.96%), confirming R1 as a very versatile rule. From

the columns with all except one, we can observe that R1 and R2 are the most relevant

rules, because without these rules the final result of not fully connected scenarios increase

significantly. R3, R4 and R5 rules act as a complement, but contribute to the low final

percentage of not fully connected scenarios of 2.72%. R4, which is RedMesh without R4,

is an example of that with an average of 3.12% of not fully connected scenarios, showing

that R4 makes a very small contribution to the final result (2.72%).

3.2.4.11 LCsToGOs results

Here we want to evaluate the relevance of LCsToGOs.

Figure 3.17 shows the global average percentage of not fully connected scenarios in

different settings, namely: LA, not using any LCsToGOs; LG, not using LCsToGOs in

CNG stage; LI, not using LCsToGOs in MCI stage; LA, using all LCsToGOs (in CNG and

MCI stages, it is the default configuration); and Lb, using all LCsToGOs but they are

blocked to remain LCsToGOs in MCI stage.

From the values in Figure 3.17, we can see that LCsToGOs improve the average per-

centage of not fully connected scenarios, reducing it from 8.08% to 2.72%. From CNG

and MCI LCsToGOs, the CNG ones have more impact on algorithm results, as they occur

about ten times more than the others, as seen in Table 3.3. The LCsToGOs from MCI

stage help with a slight contribution, but solve the situations resulting from connections

done, where one gateway is the only possibility to provide connection for three or more

clusters.

Initially we conceived the LCsToGOs with the intention to preserve them as GOs in

the MCI phase. In that case, only in FCI and only if needed, could they give up from

being a GO to make a connection that otherwise would not be possible. We planned it

that way, because in FCI is the last chance to make connections and connecting to one of
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two or more neighbour clusters is better than not connecting to any of them.

The Lb column of Figure 3.17, shows the results with this behaviour, which is a global

average of 2.96% of not fully connected scenarios. The LA column, which is the default

RedMesh configuration, shows the results when enabling LCsToGOs to give up from

being GOs in MCI and achieved 2.72%. In this case (LA), the LCsToGOs only act to

prevent higher clusters from transforming them in CR (LC/CL) nodes.

Consequently, we by default, in RedMesh , allow LCsToGOs to be selected by the R5

rule (without any delegations) and give up from being GOs in any interconnection stage.

3.2.4.12 Interconnection rule R2 results

Here we want to analyse the behaviour of the cluster interconnection rule R2. Concretely,

we want to know if the used version is the one that maximizes connectivity. RedMesh

only uses one version of R2, but as here we will discuss two versions we call the used

version R2a. The R2a turns the local gateway into GO and the remote gateway connects

its WFD interface to the local one. This version has a global average percentage of not

fully connected scenarios of 2.72%, as presented in several figures, like in Figure 3.17

(column LA).

The R2b version turns the remote gateway into GO and the local gateway connects

its WFD interface to the remote one. The same kind of result for the application of this

version R2b is 2.8%.

We expected that R2b would be more effective, as we thought that having the GO in

the remote cluster would give more freedom of connectivity than having it in the local

cluster. However, the results do not confirm that.

Therefore, we use R2a as the default version for RedMesh .

3.2.4.13 Rule order results

Here we want to evaluate the impact of the order of the application of the rules. We use

a notation where rules are tested following the appearance order of their numeric value

after ’R’, e.g. “R31245” means rules are applied by order R3, R1, R2, R4 and R5.

Figure 3.18 contains the results for the following rule order configurations (short and

figure column name in parentheses): default algorithm order, R31245 (O3); no priority

to R3, R12345 (O1); priority to R2 over R1, R32145 (O2); priority to R4 over R1 and R2,

R34125 (O4); and priority to R5, R53124 (O5).

Results show that R3 should be tested before R1 and R2, R2 should be after R1, R4

should be after R1 and R2, and that R5 should not be tested first.

Thus, we empirically conclude that R31245 (O3), which is the RedMesh order, is the

best.

3.2.4.14 Results from cluster connections with/without intermediation

Here we will evaluate the impact of having or not cluster connections by intermediation.
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Figure 3.18: Rule order results (O3 ≡ RedMesh ).
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Figure 3.19: Connectivity with and without intermediate connections.

For that purpose we set a test that does not use any kind of intermediate cluster

connection. Hence, when there is not a direct connection, the algorithm just says that

there is no connection possible. With this setup, we obtain a global average of 3.52% of

not fully connected scenarios. This value is quite close to the value when intermediate

connections are used, which is 2.72%.

Figure 3.19 contains the results for each group of scenarios and the global averages for

algorithm with and without using the intermediate cluster connections, respectively in

RM values (red squares) and in RM NoITM values (blue circles). From the figure we can

see that it was in scenarios with 150 and 200 nodes where the absence of intermediate

cluster connections had more impact. We point out that, the reason for that behaviour,

should be our scenario formation algorithm. We affirm that because this algorithm tends

to form scenarios with some similar properties between scenarios with few nodes (50)

and with many nodes (250).

The RM NoITM version presented, comparatively with RM and relative to the global

averages, more 2.0% of time, more 1.1% of broadcasts, less 5.4% of unicasts and more
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37.0% and 348.3% (almost 3.5X) of connections in MCI and FCI, respectively. We can

see that more cluster connections take slightly more time and more broadcasts, but with

those connections the networks reduce the number of unicasts, as they do not have the

long intermediate paths composed mainly of unicasts.

Nevertheless, as RM has less 23% of not fully connected scenarios than RM NoITM,

we conclude that using intermediate connections improves the overall connectivity.

3.2.4.15 L (maximum number of slaves) results

Here we will evaluate the impact of changing the maximum number of slaves per GO.

We always used L = 5 as that value is the most restrictive that can be used. Here we test

the other values that can be used: 6, 7 and 8.

The experiments with L ∈ [6,7,8] gave the same results, with a global average (for

scenarios of all sizes) of 2.80% of not fully connected scenarios. The similar value for L = 5

(the default value) is 2.72% (as seen several times). As results are equal for L ∈ [6,7,8],

from now on we will only mention L = 6.

We observed that with L = 5 there are 34 not fully connected scenarios and with L = 6

there are 35. Out of these 35, 33 scenarios have common results between L = 5 and L = 6.

Only in one scenario, L = 5 did not achieve connection and L = 6 did. That scenario has

200 nodes and is shown in Figure 3.20 (only the relevant part of it). The figure presents

the results when using L = 5 on the left and when using L = 6 on the right. We can see

that when using L = 5, the GO 177 has 5 slaves (GOD 183 by WiFi and 4 LCs: 137, 176,

144 and 168) and its WiFi interface is connected to GOD 183. Therefore, this node cannot

connect to, or be connected by, any other node.

With L = 6, the extra slave possibility enabled to solve this situation. Therefore, GO

177 received node 16 as a slave connected by its WFD interface.

To enable connection with L = 5, we will need a new interconnection rule with the
pre-conditions of having: a local LC/GO node with L slaves and that can delegate one slave;
and a remote LC node. The rule actions are firstly to execute the delegation and secondly

to ask the remote LC to connect its WFD interface to the local GO. Due to concurrent

actions in remote clusters, we do not use delegation in remote clusters. That is why

R5 interconnection rule does not have a mirrored version (R5b). Therefore, this newly

proposed delegation rule will not have a mirrored version either (with a remote GO,

which would delegate one node, and local a LC). This new rule would then delegate one

slave from GO 177 to a local node, such us delegate LC 176 to LC 137 (turning this node

into a GO first), and the remote node, the LC 16, would connect its WFD interface to the

local GO (177).

In Figure 3.21 we show the first scenario where L = 5 achieves full connection and

L = 6 does not. This scenario has 100 nodes and presents a connection problem around

node 0, which is a node local to cluster 81 (cluster with GOD 81). Node 0 is a candidate

gateway also in clusters 98 and 96. Clusters 98 and 96 are not neighbour clusters, as they
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a: Scenario with L = 5 (not conn.).
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Figure 3.20: Scenario not connected with L = 5 and connected with L = 6.
Solid brown and dashed pink arrows are, respectively, WiFi and WFD (master→ slave)

connections (connected from slave to master). Yellow squares, larger pink circles and smaller
blue circles depict, respectively, dominant nodes (GODs), LC/GO nodes and LC nodes. Grey

lines are the radio visibility.
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a: 1st scenario with L = 5 (conn.).
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b: 1st scenario with L = 6 (not conn.).

Figure 3.21: 1st scenario connected with L = 5 and not connected with L = 6.
Solid brown and dashed pink arrows are, respectively, WiFi and WFD (master→ slave)

connections (connected from slave to master). Yellow squares, larger pink circles and smaller
blue circles depict, respectively, dominant nodes (GODs), LC/GO nodes and LC nodes. Grey

lines are the radio visibility.

do not have a common candidate gateway. Thus, they execute MCI stage independently.

However, from simulations we observe that GOD 98 runs MCI stage before GOD 96.

GOD 81 did not set node 0 as a LCToGO in CLB stage. This happens because for GOD 81,

the cluster 98 can be connected to node 18 and node 0 only needs to connect to cluster

96. Consequently, for GOD 81, node 0 should not be a LCToGO node.

Figure 3.21a shows the results for L = 5. We can see that GOD 98 cannot enslave node

0, as it already has L (5) slaves (89, 74, 46, 30, 21), so it used the R2 rule to connect to
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a: 2nd scenario with L = 5 (conn.).
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b: 2nd scenario with L = 6 (not conn.).

Figure 3.22: 2nd scenario connected with L = 5 and not connected with L = 6.
Solid brown and dashed pink arrows are, respectively, WiFi and WFD (master→ slave)

connections (connected from slave to master). Yellow squares, larger pink circles and smaller
blue circles depict, respectively, dominant nodes (GODs), LC/GO nodes and LC nodes. Grey

lines are the radio visibility.

cluster 81. That rule turned node 89 into a LC/GO and then node 18 connected its WFD

interface to node 89. Then GOD 96, which is the next GOD to run MCI stage, connected

to cluster 81, using the R2 rule between nodes 6 and 0. Therefore, all three clusters, 98,

96 and 81 were connected and the scenario achieved full connection.

Figure 3.21b shows the results for L = 6. Now, GOD 98 has the possibility to enslave

one more node. Then, the R1b rule selected GOD 98 and node 0. This blocked any

possibility to connect to cluster 96, creating a network with two separate segments.

In general terms, the problem is that R1b rule only considered the pair of nodes 98

and 0, while R2, which is another possible rule, would select the pair of nodes 89 and

18, where the remote node is a candidate gateway to connect less networks than the first

pair. However, as the Cluster Interconnection Procedure (CIP) only compares pairs on the

same rule version and not pairs of distinct rules, the second pair was not selected. Thus,

one solution for these cases is to change CIP, to first check all the rules and their versions
and second to select only the most favourable pair among all the possible ones. This way, the

procedure will return a global decision, among rules and their versions, and not the first

one to be found.

In Figure 3.22 we show the second scenario where L = 5 achieves full connection and

L = 6 does not. This scenario has 150 nodes and presents a connection problem around

node 5 and among clusters 147, 146 and 119 (not visible in the figure, but it is the GOD

of nodes 41, 23, 19 and 10).

When using L = 5, in Figure 3.22a, node 5 is local to cluster 147. As GO 147 is the first

one to run the MCI stage, it connects firstly to cluster 146, connecting nodes 143 and 48

and secondly to cluster 119 connecting nodes 5 and 19. So, these clusters were connected

and the algorithm achieved full connectivity in the scenario.
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When using L = 6, in Figure 3.22b, node 5 is local to cluster 146. That happened due

to concurrency in CLB stage and shows that if we change one parameter, the algorithm

can present distinct situations. Now the GOD 147 has node 143 as an LC node that is

a gateway to cluster 146, 88 (not visible) and 81 and node 5 that is a gateway to cluster

119 (not visible). Therefore, GOD 147 started by trying to connect to cluster 146, which

is the highest from its lower neighbour clusters. Then the pair of nodes 147 and 5 is

selected, because node 5 can connect to one cluster (119) while node 143 can connect to

two clusters (88 and 81). GOD 147 did the following actions: connected to cluster 146

using R1b and nodes 5 and 147; tried to connect to cluster 119, but failed; connected to

cluster 118 using R1a and nodes 51 and 118; turned node 143 into a LCToGO; connected

to cluster 88 using R1b and nodes 147 and 21; and finally connected to cluster 81 using

again R1b and nodes 147 and 63.

We conclude that the problem here was almost the same as in the previous scenario,

as there is one node that is the only node to connect to one cluster and there is another

cluster that can be connected by that node and by another one. The common gateway is

not set as a LCToGO because it is not the only node to connect to two or more clusters.

Hence, it may be used in other interconnections and as a CR node and definitively block

the connection to the cluster, as it is the only node that can provide connection. Here

we can see that GOD 147 has to connect to clusters 146, 119, 118, 88 and 81 and the

best solution is the one that maximizes current and future connections between all these

clusters and neighbour clusters of all nodes in all these clusters. Not choosing to go for a

global solution, we identify a local one, which consists of enlarging the scope of LCToGO
nodes to be any LC node that is the unique local node to connect to one cluster and is a

candidate gateway to connect to another cluster as well. This definition covers the current

LCsToGOs scope, because it includes the cases of nodes that are the unique local nodes

to connect to two or more clusters.

We conclude that when using L ∈ [6,7,8] the results are not much different than when

using L = 5. We affirm that, because the difference between values is short and because

when we change one parameter in the algorithm, different situations appear and node

connectivity depends mainly on the rules used. Nevertheless, we expect to get better

results when using larger values of L.

With the analysed situations, we identified some weaknesses in our algorithm and

pinpointed possible solutions to improve results.

3.2.4.16 Comparison with existing algorithms

Here we evaluate our algorithm against the existing ones: MAGNET [5] and Smart-Group-

Formation (SGF) [9].

The MAGNET algorithm [5] only uses CR-GO connections and does neither mention

any kind of delegations (like our R5 rule), nor any kind of node reservations (like our

LCsToGOs), or the execution of a second interconnection round (like our FCI stage).
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Figure 3.23: RedMesh (RM) versus MAGNET (Mag).

Therefore, we emulate this algorithm using only R1 and R2 rules and do not use the FCI

stage or LCsToGOs. We call this setup: Mag.

Figure 3.23 contains the global average percentage of not fully connected scenarios,

for Mag (on the left bar), some improved versions of Mag and our algorithm RedMesh in

RM (on the right bar).

Results show that Mag has 9X more not fully connected scenarios than RM. If we add

FCI to Mag (we call it MagF), the value reduces to 8.85X. If we add LCsToGOs to MagF (we

call it MagFC), we obtain worse results. That happens because LCsToGOs will not give

up from being GOs and will block gateway nodes that are GOs. If we add R5 to MagFC,

(we call it MagFC5), we unblock LCsToGOs nodes and obtain a value of 5.56X worse than

RM. Thus, after improving the basic version (Mag) with all our strategies we conclude

that MAGNET should present worse connection values than RedMesh . Nevertheless,

MAGNET uses groups (clusters of depth 1, which are clusters formed only by a GO and

its slaves), while RedMesh uses clusters of variable depth. This aspect should not change

the presented results, as having clusters of depth 1 means that GODs are usually closer

to neighbour clusters, than when using clusters with any depth, but that proximity will

only favour the use of rules R3 and R4, and neither MAGNET nor MagFC5 use them.

The SGF [9] algorithm uses direct GO-GO connections, thus, it can only use R3 and

R4 rules. With only those rules we did not obtain a single fully connected scenario. SGF

uses clusters of depth 1, but that factor should not be enough for a significant change. We,

then, estimate that SGF should present much worse connectivity than RedMesh .

3.2.5 Algorithm limitations

Here we want to analyse the algorithm limitation to achieve 100% of fully connected

scenarios.

In Section 3.2.4.15 we already identified the following three new features that can

improve the algorithm:
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Figure 3.24: Scenarios not connected by RedMesh : 1 and 2.
Solid brown and dashed pink arrows are, respectively, WiFi and WFD (master→ slave)

connections (connected from slave to master). Yellow squares, larger pink circles and smaller
blue circles depict, respectively, dominant nodes (GODs), LC/GO nodes and LC nodes. Grey

lines are the radio visibility.

1. a LCsToGOs requirement that selects the nodes which are unique possibilities to

connect to one cluster and may be used to connect to one or more other clusters;

2. a change in CIP to consider all rules and choose the best pair from all possible ones;

and

3. a new interconnection rule that requires a local LC/GO, which can delegate one

slave, and a remote LC.

From the not fully connected scenarios, with the default RedMesh parametrization,

we found that some of them can be solved using the three identified improvements.

The Figures 3.24a and 3.24b are two of them, as they can be connected with the new

LCsToGOs requirement. In Figure 3.24a scenario, node 43 is the only node, from cluster

48, which can connect to cluster 47 and is also a candidate gateway to connect to cluster

49. So, it will be a new LCToGO node from cluster 48. If so, cluster 49 will connect to

cluster 48 preserving 43 as a GO. Then nodes 43 and 7 will be interconnected by rule

R5 from cluster 48 to cluster 47 in MCI or vice versa in FCI. In Figure 3.24b scenario,

node 63 is the only node, from cluster 90, which can connect to cluster 133 and is also

a candidate gateway to connect to cluster 146. So it will be a new LCToGO node from

cluster 90. If so, cluster 146 will not be able to connect to cluster 133. Then it will connect

to clusters 138 and 90 but preserving 63 as a GO. Then cluster 133 will connect to cluster

90, interconnecting node 39 and 63, using R1b.

Yet, in other scenarios, the solution to achieve connectivity could be more complex.

Figures 3.25a, 3.25b and 3.25c, contain three of these scenarios, which came from the

same base scenario but have shuffled identifiers. They all present GO-GO cases that the

algorithm cannot connect. In those cases, we proposed a new interconnection rule/action,
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Figure 3.25: Scenarios not connected by RedMesh : 3, 4 and 5.
Solid brown and dashed pink arrows are, respectively, WiFi and WFD (master→ slave)

connections (connected from slave to master). Yellow squares, larger pink circles and smaller
blue circles depict, respectively, dominant nodes (GODs), LC/GO nodes and LC nodes. Grey

lines are the radio visibility.

which we call node capture. This rule requires a local and a remote LC/GO gateway nodes

and the local one cannot delegate its slaves but has availability for one more slave. The

rule then proposes to the remote gateway to leave its cluster and join the local cluster

by being a slave, by WiFi, of the local gateway. The remote gateway, by receiving such

request, should send it to its GOD. Then, the remote GOD will then decide if that node

can be captured by the other cluster or not. It will answer positively if the cluster (the

remote one) can be connected to the so called local cluster.

Figure 3.26a contains a complete different scenario, but with also a GO-GO uncon-

nected case, which can be solved by this new action. In this scenario, cluster 84 will

propose to cluster 80 to capture node 28. GOD 80 will answer affirmatively, because it

can connect to node 28, by connecting its WiFi interface to that node. Therefore, node

28 will start by disconnecting from 80, and then connecting its WiFi interface to node 60

(becoming its slave). Then node 80 will connect its WiFi interface to node 28.

Figure 3.26b contains a LC-CR unconnected case. In this scenario, node 18 was

elected to be a LCToGO node, but in FCI stage cluster 95 connected to cluster 74, using

R5 rule with nodes 18 and 56. In this case, cluster 95 should maintain node 18 as a GO to

enable connection to neighbour clusters 74 and 49. To keep node 18 as a GO, we should

insist on keeping the LCsToGOs without giving up from being GO in MCI stage. In this

scenario, node 18 as a GO can receive the WFD interface from node 40 and then cluster

95 may capture node 56 from cluster 74, as node 74 can keep its WiFi interface connected

to node 56. However, tests with LCsToGOs without giving up from being GO in MCI

stage presented a worse value than when allowing LCsToGOs to give up from being GO.

Thus, we do not have a clear solution for these types of cases, but maybe with the new

improvements keeping the LCsToGOs as GOs in MCI stage, the algorithm could give

better results than allowing those nodes to give up from being GO.
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Figure 3.26: Scenarios not connected by RedMesh : 6 and 7.
Solid brown and dashed pink arrows are, respectively, WiFi and WFD (master→ slave)

connections (connected from slave to master). Yellow squares, larger pink circles and smaller
blue circles depict, respectively, dominant nodes (GODs), LC/GO nodes and LC nodes. Grey

lines are the radio visibility.

Consequently, from this section we identify a new behaviour, which we call node
capturing. We also suggest repeating all the tests with the new identified behaviours.

3.2.6 Reflections about network redundancy and node churn

Here we want to discuss two possible improvements to RedMesh : network redundancy
and tolerance to node churn. This discussion aims to contribute to the first considerations

for future algorithm improvements in relation to these topics.

Network redundancy

RedMesh was conceived to maximize global connectivity where all nodes in a scenario

should be connected in a single network. To achieve that goal, we reduced the cluster

interconnection to the identified minimum, so as to maximize the possibility of necessary

connections. Therefore, the built networks may have little or no redundancy. In our

running scenario, the built network did not present a single redundant cluster intercon-

nection, as shown in Figures 3.7 and 3.8.

If the built networks do not have any redundancy, they are just like a tree of clusters.

Therefore, as RedMesh goal is to form mesh networks, it needs to add as many cluster in-

terconnections as possible, besides the ones that are currently generated. Thus, strategies

are needed to add cluster interconnections without reducing the overall connectivity.

One possible cluster interconnection strategy is to use a third interconnection round.

It would be a descending round, where each GOD would connect to all its lower un-

connected neighbour clusters, even if they could be connected through intermediation.

That strategy is a conservative one, as it ensures that every actual cluster interconnection

would exist and only then new ones would be added. This third round would increase the

algorithm communication and time. Nevertheless, the network would be ready to work
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at the end of FCI stage. Hence, this third round would just improve the network and thus

its higher price would just be the energy for its communications.

It would be very interesting to explore strategies to increase connectivity executed

inside MCI and FCI stages, but we will leave it for future work.

With such strategies, RedMesh would build networks with cluster interconnection

redundancy, which will have the benefits already presented in Section 2.2.2 (Topologies

analysis), like enabling shorter paths between nodes, enabling traffic splitting and en-

abling to choose paths with nodes with more battery or with less traffic.

Tolerance to node churn

In relation to node churn, we consider three axes: network state (in formation and

formed), node action (node ingress and egress) and type of node (GOD, GO, gateway

and LC). We exclude the axes: node positioning, static versus dynamic (movement); and

node identifiers, immutable versus mutable (with changes over time). We are leaving

those axes out of our reflection in this thesis and only considering immediate actions of a

node (that can belong to the network).

In relation to node ingress, the algorithm must do two steps: node detection and

node integration. A new node will start by broadcasting its existence using the BAS

and listening for peers. A new node detection may occur before and after clusters are

formed. When a new node gets close to a node that does not have a GOD, it will start

the algorithm and the neighbour node should collaborate sending the neighbourhood

information to it. From then, nodes continue with the algorithm and any node can be a

GOD. When the new node detects one node that is already part of a cluster (with a GOD

in its BAS information), it will send a broadcast BAS informing the node that it wants

to join that cluster. If the new node simultaneously detects more than one cluster, in its

neighbourhood, it will choose to join the cluster with higher id. When a node from a

cluster detects a new node, it sends that information to its GOD. The GOD will decide

how the cluster should integrate the new node, choosing the local node that will capture

the new node and communicating the necessary actions to the cluster members involved.

We will choose to integrate the new node in the existing cluster, independently of the new

node id (it can be higher than the id of the GOD). The GOD will then choose the timing

to execute those actions in a way to avoid any occurring cluster changes and afterwards

it will register the new node and its neighbourhood information. After the integration

of that information, the node will be a normal cluster member available for any cluster

operation. These steps are also valid when the algorithm finishes and the network is

formed. Therefore they belong to an extended version of the algorithm, which will do the

network formation and maintenance.

In relation to node egress, the algorithm must do two steps: node detection and

adjustment from node absence. To detect that a node left the network, because it was

turned off or its battery ran out, nodes should have a node absence time-out. Node
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absence may occur before and after clusters are formed. If that happens before clusters

are formed, the nodes in the neighbourhood, after the node absence time-out, adjust their

neighbourhood information and the algorithm proceeds with the new conditions. This

is valid whether the absent node was supposed to be a GOD or not. If a node absence

is detected when the cluster is already built, by default that information is sent to the

local GOD and it will coordinate the cluster reconstruction. The GOD may cancel any

occurring cluster activity and must repair the cluster immediately. If the absent node is

the GOD or a part of the cluster gets separated from its GOD, then the remaining cluster

member should elect a new GOD from existing cluster members. These steps are also

valid when the algorithm is finished and the network is formed.

In relation to the ingress or egress of a node that is a gateway or can be a gateway for

cluster interconnection among neighbour clusters: the clusters should run the MCI and

FCI stages between them.

We conclude that the algorithm may present some tolerance to node ingress and egress,

in formation and maintenance phases, but it has to be modified/extended to handle these

situations.

3.2.7 Conclusion

In this section, we proposed an algorithm, called RedMesh , which forms mesh networks

of WFD enabled devices. The algorithm uses two efficient connection and communication

topologies, allowing formed networks to resort only to unicasts. We confirmed that the

selected algorithm aspects, such as rules, rule order, LCsToGOs and two interconnection

rounds, are relevant for the overall performance.

Results show that the second cluster interconnection round (FCI stage) improves

connectivity, by reducing the cases of not fully connected scenarios in 61.8%, but requires

more 28.4% of unicasts and more 26.7% of time. These values ask for improvements like

skipping the FCI stage whenever possible or overlapping the FCI and MCI stages to

reduce total time.

The algorithm performed better than emulated versions of existing algorithms for

scenarios up to 250 nodes. The algorithm characteristics do not show any evidence that

can inhibit its use in larger scenarios.

Finally, we conclude that “it is possible to systematically form WFD mesh networks in
large scale scenarios of WFD enabled devices”.

3.3 Conclusions

In this chapter we first identified the existing WFD network formation algorithms and

their drawbacks to be used in large-scale scenarios. Then we proposed RedMesh , an al-

gorithm that uses five interconnection rules, three communication rounds, the GOCRGO
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and GOGO topologies and among connected nodes it can communicate by unicasts (ei-

ther in algorithm execution and in future network use). This algorithm achieved 97.28%

of fully connected scenarios in a total of 1250 test cases with up to 250 nodes. So, we affir-

matively conclude that “It is possible to systematically form WFD large scale mesh networks”.
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Conclusion

The main research question of this thesis is: MQ – “Is it possible to build large scale mesh
networks of WFD enabled devices?”. That question was split in two base questions: Q1

– “Is it possible to do WFD intergroup connection and communication for large scale mesh
networks?” and Q2 – “Is it possible to systematically form WFD large scale mesh networks?”.

We will now present the final conclusions about the base questions and then about

the main question. Afterwards we will discuss future work and open issues.

4.1 Q1 – WFD intergroup for large scale mesh networks

We start the first base question (Q1 – “Is it possible to do WFD intergroup connection
and communication for large scale mesh networks?”) by validating it as a research ques-

tion and then solving it by presenting three connection and communication topologies.

We only identified one existing topology (GOCR) which requires the use of broadcasts,

many nodes and transmission per WFD group and is tailored only for tree like structures.

We then proposed three topologies (GO2CR, GOCRGO and GOGO) to provide ways to

interconnect WFD groups to create mesh and tree like structures, using unicast com-

munication and requiring the minimum number of nodes and transmissions per WFD

group.

Besides that, we developed a variant (GOCRUC) of the existing topology (GOCR),

which can be used by devices with WFD as priority interface and only requires the use of

unicast communication.

We also analysed and evaluated all the topologies and concluded that our developed

topologies are better than the existing topology, in almost every aspect, being the most

relevant: the capability to build mesh (and tree) like structures, the communication speed

and the number of used nodes. Therefore, the developed topologies enable us to conclude,
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now, that “it is possible to do WFD intergroup connection and communication for large scale
mesh networks”.

4.2 Q2 – WFD large scale mesh network formation

The second base question (Q2 – “Is it possible to systematically form WFD large scale mesh
networks?”) was first validated as a research question. We concluded that existing WFD

network formation algorithms (SGF and MAGNET), meanwhile developed, are not appro-

priate to create mesh networks (SGF) or offer limited support for mesh networks (MAG-

NET). These algorithms also use communication topologies that require UDP broadcasts,

that are slow and energetically demanding, presenting a strong drawback for their use.

Then, we presented our developed algorithm, RedMesh , which is tailored to build

mesh networks in a decentralized way and to allow the use of UDP unicast communication

in its execution and in the networks built. The algorithm is characterized by having three

communication rounds, five interconnection rules and using gateway nodes in a way to

maximize cluster interconnections. The algorithm achieved connectivity in 97.28% of the

1250 scenarios, with up to 250 nodes and performed better than the emulated version of

existing algorithms.

Therefore, with the RedMesh algorithm, we conclude that, now, “it is possible to sys-
tematically form WFD large scale mesh networks”.

4.3 MQ – WFD large scale mesh networks

With the topologies and algorithm developed, we affirmatively conclude that, now, “it is
possible to build large scale mesh networks of WFD enabled devices”.

Consequently, the way for the use of WFD in medium and large scale scenarios and

for autonomous collaborative mobile systems is now paved. Nevertheless, the lack of an

efficient use of both interfaces (WiFi and WFD) simultaneously is a major drawback for

an effective use of WFD in these scenarios.

4.4 Future work and open issues

As future research work, we foresee to extend the network formation algorithm and to

improve the comparison with other algorithms.

We intend to extend the RedMesh network formation algorithm to:

• improve cluster interconnection (with the identified new features),

• make redundant cluster interconnections to improve node shortest average path

and network redundancy, and

• have tolerance to node churn.
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We envision to improve the comparison of RedMesh with other algorithms and the

RedMesh evaluation by:

• comparing it with an algorithm that forms only tree networks and

• evaluating it in a full communication stack simulator.

There are also the following issues that are of much interest and are open research

questions:

• Can the algorithm features introduced in RedMesh improve BSF algorithms?

• How WiFi-Aware and MeshTalk will behave, in relation to this work, in medium

and large scenarios?
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