
Orchestration and Lifecycle Management
over Virtualized Network Functions

PEDRO MIGUEL MENDONCA BARBOSA
novembro de 2019

Orchestration and Lifecycle
Management over Virtualized

Network Functions

Pedro Miguel Mendonça Barbosa

Mestrado em Engenharia Eletrotécnica e de Computadores

Área de Especialização de Telecomunicações

Departamento de Engenharia Eletrotécnica

Instituto Superior de Engenharia do Porto

2019

Este relatório satisfaz, parcialmente, os requisitos que constam da Ficha de Unidade

Curricular de Tese/Dissertação, do 2.o ano, do Mestrado em Engenharia

Eletrotécnica e de Computadores

Candidato:Pedro Miguel Mendonça Barbosa, No 1131203, 1131203@isep.ipp.pt

Orientação cient́ıfica: Professor Doutor Jorge Mamede, jbm@isep.ipp.pt

Empresa: Altran Portugal

Co-orientador: Professor Doutor Sérgio Figueiredo, sergio.figueiredo@altran.com

Mestrado em Engenharia Eletrotécnica e de Computadores

Área de Especialização de Telecomunicações

Departamento de Engenharia Eletrotécnica

Instituto Superior de Engenharia do Porto

2019

“It always seems impossible until it’s done”

Nelson Mandela

iii

Agradecimentos

A elaboração deste relatório não seria posśıvel sem a orientação, acompan-

hamento e força de várias pessoas. Gostaria de agradecer a todas as pessoas que

direta ou indiretamente contribúıram para que a realização deste projeto fosse

posśıvel. Quero manifestar gratidão a todas essas pessoas.

Primeiramente quero agradecer ao Professor Doutor Jorge Mamede, orien-

tador do ISEP para este projeto, pela disponibilidade e tempo despendido na

orientação e acompanhamento.

De seguida ao Professor Doutor Sérgio Figueiredo e ao Engenheiro Bruno

Parreira, co-orientadores e ĺıderes do projeto M5G na Altran Portugal, pelo pro-

jeto que desenvolvi, pelo acompanhamento, orientação e transmissão de conhec-

imentos, bem como a amabilidade e a fácil integração que me proporcionou na

empresa.

Aos colegas de trabalho que desde o ińıcio sempre mostraram amizade, com-

panheirismo, paciência, apoio e entreajuda.

A todos os meus amigos, com consideração especial à ”Matilha”, quer sejam

da faculdade ou não, que, de alguma forma, me ajudaram neste percurso pela

amizade, camaradagem e entreajuda.

Aos meus pais, irmã e todos os meus familiares que me apoiaram desde esta

etapa, pelo carinho, compreensão e amabilidade.

Por fim, à minha namorada, Cristina Moreira, pelo apoio incondicional, pela

ajuda que prestou, pelo carinho, pela amabilidade, pela paciência e pelo tempo

disponibilizado.

A todos estes um muito obrigado.

v

Resumo

A crescente evolução da nova geração de redes móveis aproxima a comercial-

ização de redes de quinta geração da realidade. Os operadores móveis já dizem

possuir dispositivos preparados para o 5G e já demonstram protótipos de serviços

criados e sustentados para estas redes. Na realidade, as Redes de Acesso Radio

(Radio Access Network - RAN) planeadas para o 5G já estão desenvolvidas e tes-

tadas, existindo já algumas redes de acesso radio com novas antenas preparadas

para 5G em várias partes do mundo.

Porém, as redes 5G vão mais além que a evolução das RAN, sendo a prin-

cipal novidade desta geração de redes móvel a virtualização das redes centrais,

incluindo nestas serviços e funções de rede. A Virtualização de Funções de Rede

(Network Function Virtualization - NFV) está a ser normalizada pela European

Telecommunications Standards Institute (ETSI). Esta tecnologia está a ser usada

pela 3rd Generation Partnership Project (3GPP) para normalizar as redes 5G,

nomeadamente a virtualização das suas redes centrais.

A virtualização não só irá permitir o surgimento de novos serviços e funções

de rede como também permitirá virtualizar serviços e funções de rede antigas.

A virtualização não só irá melhorar significativamente as redes móveis, como

também será mais fácil a gestão e a orquestração destas.

Em Portugal, o consórcio 5GO, que envolve várias empresas com uma vasta

experiência de Pesquisa e Desenvolvimento (Research & Development - R&D) na

área de Telecomunicações, desenvolve o projeto Mobilizador 5G. Esta iniciativa

portuguesa visa desenvolver soluções inovadoras para a rede 5G.

Esta dissertação aborda inicialmente uma análise às tecnologias que permitem

as redes 5G. De seguida foca-se nas plataformas de gestão e orquestração de

redes existentes e por fim, nas operações de gestão de ciclo de vida (Lifecycle

Management - LCM) que estas plataformas poderão realizar nas funções de redes.

O objetivo final será testar e analisar essas operações em funções de rede através

de uma das plataformas existentes.

Palavras-Chave: Orquestração, NFV, MANO, ONAP, 5G, LCM, Virtual-

ização.

vii

Abstract

The growing evolution of the new mobile generation networks brings the com-

mercialization of 5th generation networks closer to reality. Mobile operators al-

ready claim to have 5G-ready devices and already demonstrate prototypes of

services created and sustained for these networks. In fact, the Radio Access Net-

work (RAN) planned for 5G are already developed and tested, and there are

already some radio access networks with new 5G-ready antennas in diverse parts

of the world.

However, 5G networks go beyond the evolution of RANs, with the main nov-

elty of this mobile network generation being the virtualisation of central net-

works, including in these services and network functions. Network Function Vir-

tualization (NFV) is being standardized by the European Telecommunications

Standards Institute (ETSI). This technology is being used by the 3rd Genera-

tion Partnership Project (3GPP) to standardise 5G networks, particularly the

virtualisation of core networks.

Virtualization will not only allow the development of new network services

and functions, it will also allow the virtualization of legacy network services and

functions. Virtualization will not only significantly improve mobile networks, but

also make it easier to manage and orchestrate them.

In Portugal, the 5GO consortium, which involves several companies with a

vast experience in Research & Development (R&D) in the area of Telecommuni-

cations, develops the project Mobilizador 5G. This Portuguese initiative aims to

develop innovative solutions for the 5G network.

This dissertation initially addresses an analysis of the technologies that enable

5G networks. It then focuses on the existing network management and orches-

tration platforms and, finally, on the Lifecycle Management (LCM) operations

that these platforms can perform in network functions. The final objective will

be to test and analyse these operations in network functions through one of the

existing platforms.

Keywords: Orchestration, NFV, MANO, ONAP, 5G, LCM, Virtualization.

ix

Content

Agradecimentos v

Content xi

List of Figures xv

List of Tables xvii

Acronyms xix

1 Introduction 1

1.1 Thesis Context . 1

1.2 Thesis Motivation . 1

1.3 Thesis Objectives . 2

1.4 Contributions . 2

1.5 Document Structure . 3

1.6 Acknowledgments . 3

2 5G and key enablers 5

2.1 5th Generation Networks . 5

2.1.1 5G and standardization . 5

2.1.2 Performance Targets . 5

2.1.3 Highlighted Features . 7

2.1.3.1 Network Slicing 7

2.1.3.2 Service-based Architecture 8

2.1.4 Use Cases . 9

2.1.5 Virtualisation . 10

2.1.5.1 Software Defined Networking (SDN) 10

2.1.5.2 Network Function Virtualisation (NFV) 11

2.2 Network Function Virtualisation Standardization 12

2.2.1 Definition and main objectives 12

2.2.2 Base principles . 13

2.2.3 Architecture . 13

xi

xii CONTENT

2.2.3.1 Virtualised Network Function (VNF) 13

2.2.3.2 Network Function Virtualised Infrastructure (NFVI) 14

2.2.3.3 NFV Management and Orchestration (NFV-MANO) 14

2.2.3.4 Operations Support System/Business Support Sys-

tem (OSS/BSS) 15

2.2.3.5 Element Management (EM) 16

2.2.3.6 Templates . 16

2.3 NFV and SDN relationship . 17

2.4 NFV Modelling Languages . 18

2.5 Reference Use Cases . 18

2.5.1 Virtualisation of the Home Environment 18

2.5.2 Virtualisation of Mobile Core Network and IMS 18

2.6 Chapter Summary . 19

3 Reference platforms for Service Lifecycle Management & Or-

chestration 21

3.1 Open Source MANO (OSM) . 21

3.1.1 DevOps . 22

3.1.2 User Interface . 22

3.1.3 Service Orchestrator . 23

3.1.4 Network Service to VNF Communication 23

3.1.5 VNF Configuration and Abstraction 23

3.1.6 Resource Orchestrator . 23

3.1.7 Monitoring . 23

3.1.8 OSM Information Model . 23

3.2 Open Network Automation Platform (ONAP) 23

3.2.1 ONAP Components . 24

3.2.1.1 Active and Available Inventory 25

3.2.1.2 Application Controller 25

3.2.1.3 Application Authorization Framework 25

3.2.1.4 Data Collection, Analytics and Events 26

3.2.1.5 Data Management as a Platform 26

3.2.1.6 Microservices Bus 26

3.2.1.7 Multi-VIM/Multi-Cloud 26

3.2.1.8 ONAP Operations Manager 26

3.2.1.9 Policy . 27

3.2.1.10 ONAP Portal . 28

3.2.1.11 Service Design and Creation 28

3.2.1.12 Service Orchestrator 28

3.2.1.13 Software Defined Network Controller 28

3.2.1.14 Virtual Function Controller 28

3.2.1.15 Virtual Infrastructure Deployment 29

CONTENT xiii

3.3 Chapter Summary . 29

4 Implemented Platform 31

4.1 Platform overview . 31

4.2 Orchestration platform . 31

4.2.1 ONAP Setup description 32

4.3 Lifecycle Management tools . 34

4.3.1 Netconf . 37

4.3.2 Ansible . 38

4.3.3 Chef . 38

4.3.4 Restconf . 39

4.3.5 OpenStack . 39

4.4 Chapter Summary . 39

5 Infrastructure Testing and Validation 41

5.1 Validation and Evaluation Targets 41

5.2 VNF description, Onboarding and Instantiation 42

5.3 OpenStack LCM Operations . 43

5.3.1 Running Tests on Start, Restart and Stop Operations . . . 43

5.3.1.1 Start Operation Results 43

5.3.1.2 Restart Operation Results 46

5.3.1.3 Stop Operation Results 49

5.3.2 Restart Operation versus Stop and Start Operations 52

5.3.3 Running Tests on Rebuild Operation 52

5.3.3.1 Rebuild Operation Results 52

5.4 Ansible LCM Operations . 56

5.4.1 Testing Ansible with Virtual Machines 56

5.4.2 Testing Ansible LCM operations 56

5.5 Identified challenges . 57

5.5.1 Testbed Resource Requirements 57

5.5.2 ONAP Component Dependencies 57

5.5.3 APP-C Database Component Instantiation 57

5.5.4 APP-C Database: OpenStack Operation Onboarding 58

5.6 Testing and Evaluation Conclusions 58

5.7 Chapter Summary . 58

6 Conclusions 61

References 63

A vFW Heat Templates 69

List of Figures

2.1 Evolution between IMT-Advanced (4th Generation Network (4G))

and IMT-2020 (5G) [54] . 6

2.2 Stack of network slices in network infrastructure [40] 8

2.3 5G major use cases [22] . 9

2.4 SDN architecture overview [47] . 11

2.5 NFV architecture [33] . 14

3.1 OSM architecture in modules [53] . 22

3.2 ONAP architecture [38] . 25

3.3 Multi-VIM/MultiCloud high-level architecture and workflow [44] . . . 27

4.1 APP-C Architecture [43] . 34

4.2 Chef Architecture [25] . 39

5.1 Service Onboard process in ONAP [21] 42

5.2 Start Operation Diagram . 44

5.3 Box and Whiskers plot for Statistical analysis on Start Operation Phases 45

5.4 Time cumulative graphic of Stop operation 46

5.5 Restart Operation Diagram . 47

5.6 Box and Whiskers plot for Statistical analysis on Restart Operation

Phases . 48

5.7 Time cumulative graphic of Restart operation 49

5.8 Stop Operation Diagram . 50

5.9 Box and Whiskers plot for Statistical analysis on Stop Operation Phases 51

5.10 Time cumulative graphic of Stop operation 51

5.11 Rebuild Operation Diagram . 53

5.12 Box and Whiskers plot for Statistical analysis on Rebuild Operation

Phases . 55

5.13 Time cumulative graphic of Rebuild operation 56

xv

List of Tables

4.1 List of LCM operations and Protocols 33

4.2 List of LCM operations and Protocols supported by APP-C [46] . . . 37

5.1 Test results from Start operation (ms) 44

5.2 Test result from Restart operation . 47

5.3 Test result from Stop operation (ms) 50

5.4 Comparison between Restart operation and Stop + Start operation

(ms) . 52

5.5 Test result from Rebuild operation (ms) 54

xvii

Acronyms

3GPP 3rd Generation Partnership Project

4G 4th Generation Network

5G 5th Generation Network

5GPPP 5G Infrastructure Public Private Partnership

A-CPI Application-controller Plane Interface

AAF Application Authorization Framework

AAI Active and Available Inventory

API Application Programming Interface

APP-C Application Controller

ATIS Alliance for Telecommunication Union Radiocommunications

BSS Business Support System

CDT Controller Design Tool

CPD Connection Point Descriptor

CPE Customer Premises Equipment

CPU Central Processing Unit

CRUD Create, Read, Update, Delete

COTS Commercial off-the-shelf

D-CPI Data-controller Plane Interface

DCAE Data Collection, Analytics and Events

DG Directed Graph

xix

xx ACRONYMS

DMaaP Data Management as a Platform Data Bus Controller

EM Element Management

eMBB Enhanced Mobile Broadband

ESR External System Register

ETSI European Telecommunications Standards Institute

FCAPS Fault-management, Configuration, Accounting, Performance and

Security

GVNFM Generic Virtualised Network Function Manager

HTTP Hypertext Transference Protocol

IaaS Infrasctructure as a Service

IETF Internet Engineering Task Force

IM-NBI Information Model and Northbound API

IMS IP Multimedia Subsystem

IMT International Mobile Telecommunications

IoT Internet of Things

ISG Industry Specification Group

IT Information Technology

ITU-R International Telecommunications Union Radiocommunication

JSON JavaScript Object Notation

LCM Lifecycle Management

M5G Mobilizador 5G

MANO Management and Orchestration

mMTC Massive Machine Type Communications

MON OSM Monitoring Module

MSB Microservices Bus

N2VC Network To Virtualised Network Function Configuration

NaaS Network as a Service

xxi

NETCONF Network Configuration Protocol

NF Network Function

NFFG Network Function Forwarding Graph

NFV Network Function Virtualisation

NFVI Network Function Virtualisation Infrastructure

NFVIaaS Network Function Virtualisation Infrastructure as a Service

NFVO Network Function Virtualisation Orchestrator

NGMN Next Generation Mobile Networks Alliance

NS Network Service

NSD Network Service Descriptor

NV Network Virtualisation

ONAP Open Network Automation Platform

OOM ONAP Operations Manager

OS Operating System

OSI Open System Interconnection

OSM Open Source MANO

OSS Operations Support System

PNF Physical Network Function

PNFD Physical Network Function Descriptor

PPS Products, Processes and Services

QoS Quality of Service

R&D Research & Development

RAM Random Access Memory

RAN Radio Access Network

RFC Request for Comments

RO Resource Orchestrator

xxii ACRONYMS

RPC Remote Procedure Call

SDC Service Design & Creation

SDN Software Defined Network

SDN-C Software Defined Network Controller

SO Service Orchestrator

SSH Secure Shell

SVNFM Specified Virtualised Network Function Manager

TOSCA Topology and Orchestration Specification for Cloud Applications

UFW Uncomplicated Firewall

UI User Interface

UI-Apps User Interface Applications

URLLC Ultra-Reliable and Low Latency Communications

VCA VNF Configuration and Abstraction

vCPU Virtual Computing Processor Unit

VDU Virtualisation Deployment Unit

VF Virtual Function

VF-C Virtual Function Controller

vFW Virtual Firewall

VID Virtual Infrastructure Deployment

VIM Virtualised Infrastructure Manager

VLD Virtual Link Descriptor

VSP Vendor Software Products

VM Virtual Machine

VNF Virtualised Network Function

VNFC Virtualised Network Function Component

VNFD Virtualised Network Function Descriptor

xxiii

VNFFG Virtualised Network Function Forwarding Graph

VNFFGD Virtualised Network Function Forwarding Graph Descriptor

VNFM Virtualised Network Function Manager

WinRM Windows Remote Manager

XML Extensible Markup Language

Chapter 1

Introduction

1.1 Thesis Context

Mobile networks are evolving at a huge pace and new mobile network genera-

tion is close to being a reality. However, 5th Generation Network (5G) networks

are more than Radio Access Network (RAN) and a significant amount of changes

reside in the Network Core, and in the way network services are deployed and

defined.

Network Function Virtualisation (NFV) and Software Defined Network (SDN)

are important enablers to 5G because they will allow legacy mobile network com-

ponents to be realized by virtualised functions managed efficiently in datacenters.

This will allow an easier deployment of mobile networks than with current phys-

ical networks. Because of physical limitations of legacy Network Functions, Vir-

tualisation will bring more services, however it will require more complex service

orchestration and provisioning. It will enhance network services and creation of

new ones, resulting in significant increase regarding mobile networks’ uses.

All these technologies are being defined by organizations like European Telecom-

munications Standards Institute (ETSI), that standardized NFV technology, or

3rd Generation Partnership Project (3GPP) which defines all the standards per-

taining to 5G networks.

1.2 Thesis Motivation

In Portugal, the 5GO consortium involves some of the companies with larger

Research & Development (R&D) experience in the Telecommunications sector,

like Altran, Altice Labs and Instituto de Telecomunicações. The main scope

of Mobilizador 5G (M5G) project is to be an instrument for development and

innovation of 5G technology addressing the integrated design and validation of

1

2 CHAPTER 1. INTRODUCTION

a set of products capable of being part of and providing services within the

ecosystem of the future 5G networks [17].

This project is organized in six Products, Processes and Services (PPS). This

thesis is included in PPS2, that focuses on products and services for the Net-

work Core, led by Altran. Within PPS5 scope, solutions resulting from PPS1

(products and services for network edge), PPS2, PPS3 (products and services

for Machine-to-Machine communication) and PPS4 (products and services for

human communication) will be deployed and integrated into an End-to-End 5G

testbed. [16]

1.3 Thesis Objectives

This thesis has the following objectives, which are addressed throughout its

various phases:

• Objective 1 - Analysis on ETSI NFV standardization: This the-

sis aims to analize the ETSI NFVs specification, more specifically NFV’s

architecture, function and service descriptor’s models, like Topology and

Orchestration Specification for Cloud Applications (TOSCA), of key con-

cepts like network services, network functions, connection points, etc., and

NFVs relevance for the evolution of 5G network technology. This analysis is

important to understand how NFV affects 5G networks and to understand

how is planned by ETSI NFV to orchestrate 5G core networks;

• Objective 2 – Analysis on open-source orchestration software: To

analyse open-source software currently available for orchestration of virtu-

alised resources in 5G networks context, e.g. Open Source MANO (OSM)

or Open Network Automation Platform (ONAP), as well as acquisition of

hands-on experience in at least one of the analysed platforms by means of

a short study on them;

• Objective 3 – Orchestration platform integration on a cloud man-

agement platform: To integrate the chosen orchestration platform with

a datacenter management software to offer Cloud services;

• Objective 4 – Evaluation of Lifecycle Management operations in

network services: To execute, test and evaluate the Lifecycle Manage-

ment (LCM) operation on a network service.

1.4 Contributions

The development of this dissertation contributed to a publication entitled

”Addressing end-to-end Orchestration of Virtualized Telco Services using ONAP

1.5. DOCUMENT STRUCTURE 3

in a R&D environment” for the InForum 2019 conference held at the University

of Minho. [21]

It also contributed to the Mobilizador 5G project within the 5GO consortium

[17].

1.5 Document Structure

This chapter explained the context, motivation and objectives of this thesis.

The remainder of the document includes:

• Chapter 2: describe the current state of the art of 5G networks and its

key enablers, like NFV and SDN;

• Chapter 3: describes the reference platforms for Service Lifecycle Man-

agement and Orchestration, more precisely OSM and ONAP;

• Chapter 4: describes the implemented solution for the LCM operations,

explaining the platform setup experience and describing the LCM opera-

tions and the protocols used to execute them;

• Chapter 5: Presents the evaluation targets for the infrastructure tests

and validation for LCM operations, the target Virtualised Network Func-

tion (VNF) description. Also, the results and analysis of the ran tests are

presented. In the end, the identified challenges and difficulties encountered

through the development phase are also specified;

• Chapter 6: presents the conclusions that relate to the objectives, final

conclusions and future work of this dissertation.

1.6 Acknowledgments

This work is supported by the European Regional Development Fund (FEDER),

through the Regional Operational Programme of Lisbon (POR LISBOA 2020)

and the Competitiveness and Internationalization Operational Programme (COM-

PETE 2020) of the Portugal 2020 framework [Project 5G with Nr. 024539 (POCI-

01-0247-FEDER-024539)].

Chapter 2

5G and key enablers

2.1 5th Generation Networks

Current section describes mobile networks’ fifth generation (5G), its objec-

tives and motivations, highlighted features and use cases. Subsequently, Network

Virtualisation (NV) and its role in 5G are described, as well as technologies that

support the virtualisation.

2.1.1 5G and standardization

5G network’s principles and architecture are defined by several entities whose

objective is to develop a standard vision of upcoming generation of mobile net-

works. 3GPP is an entity that unites some telecommunications standard devel-

opment organizations like ETSI, representing Europe, and Alliance for Telecom-

munication Union Radiocommunications (ATIS) representing United States. [14]

Besides concrete proposals from companies and individual contributors, 3GPP

receives inputs from entities such as 5G Infrastructure Public Private Partner-

ship (5GPPP) [19] and Next Generation Mobile Networks Alliance (NGMN).

[42]

2.1.2 Performance Targets

Differently from conventional networks, 5G networks adopt a service-based

architecture. The abstraction given by virtualisation gives support to a large

variety of services, different traffic loads requirements and diverse user commu-

nities.[15] The envisaged role of 5G is to provide a universal communication en-

vironment capable of responding to all kinds of needs across a wide spectrum

of industry, service and security domains. To achieve those requirements, 5G

needs to be programmable, secure, ubiquitous, flexible, dependable and needs to

preserve privacy. The technology must also be power-efficient to reduce power

consumption decreasing energy cost per bit. [39]

5

6 CHAPTER 2. 5G AND KEY ENABLERS

“IMT for 2020 and beyond”(International Mobile Telecommunications (IMT))

defines International Telecommunications Union Radiocommunication (ITU-R)

vision and target requirements that radio communications from 2020 and beyond

- corresponding to 5G networks – should fulfil. [54] Figure 2.1 shows the main

objectives for 5G to start deploying in 2020.

Figure 2.1: Evolution between IMT-Advanced (4G) and IMT-2020 (5G) [54]

According to the figure above, the targets for 5G networks are [37]:

• Peak data rate: more than 20 times the IMT-advanced, reaching 20

Gbit/s under ideal conditions;

• User experienced data rate: 10 times more than IMT-advanced, that

is 100 Mbit/s available ubiquitously across the coverage area;

• Area traffic capacity: 100 times more capacity giving 10 Mbit/s/m2;

• Spectrum efficiency: expected to be 3 times greater than IMT-advanced

or more with further developments;

• Network energy efficiency: energy efficiency is expected to be 100 times

higher;

2.1. 5TH GENERATION NETWORKS 7

• Mobility: 5G is expected to cover, with adequate Quality of Service (QoS)

users that travel at speeds around 500 km/h. This is being planned for

supporting, for instance, use cases within high-speed trains;

• Connection density: that parameter is expected to be 100 times higher

than the current technology, that would be able to reach 106 devices per

km2;

• Latency: another one of the biggest innovations and challenges for 5G is

reducing 10 times the latency, trying to go, in some cases, under 1ms, for

example, autonomous driving.

2.1.3 Highlighted Features

With realization of a highly mobile and fully connected society, supported by

5G, a wide range of new services is expected to emerge in various areas, such as

industrial automation and vertical marketing. [20] Besides, it demands machine-

to-machine and machine-to-human type applications for making life safer and

convenient. All combined, such demands infer increasing mobile traffic and ne-

cessity of better performance and QoS. [20] So, 5G network must respond to

those necessities, and to meet them, 5G has some enablers like Network Slicing

and Service-based Architecture. These two enablers will be explained in next

subchapters.

2.1.3.1 Network Slicing

Network Slicing is defined by 5GPPP like“an end-to-end concept covering

all network segments including radio networks, wire access, Network

Core, transport and edge networks”. [20] This means that network slic-

ing combined with virtualisation can provide multiple custom networks isolated

on the same infrastructure to serve a huge variety of users in all End-to-End

extension. [15]

5G network infrastructure will support deployments of one or more slices. Also

according to 5GPPP, “network slice is a composition of adequately con-

figured network functions, network applications, and underlying cloud

infrastructure (physical, virtual or even emulated resources, RAN re-

sources etc.), that are bundled together to meet the requirements of

a specific use case (. . .), coupled with a business purpose.” [20] This

implies that slices are programmable and defined in order to meet one or more

client’s requirements. Figure 2.2 shows an example of network infrastructure with

a stack of slices running in it.

8 CHAPTER 2. 5G AND KEY ENABLERS

Figure 2.2: Stack of network slices in network infrastructure [40]

2.1.3.2 Service-based Architecture

Mobile core network is responsible for functions such as session management,

mobility, authentication and security, critical to providing services. 5G networks,

by its service-based architecture, enables more communicational flexibility be-

tween its network function. In 5G networks, the service-based architecture con-

sists in a control plane network function that allows other authorized network

functions from a communication ”bus”, to access to the services. In this archi-

tecture, all the network function only use service-based interfaces to interact.

Also, service-based architecture decouples the end-user service from the under-

lying network and infrastructure, enabling functional and service agility. Allied

with virtualisation, the operator can easily add, remove or modify VNF from

a network processing path (functional agility) and create new specific services

(service agility). [24]

According to NGMN [41], service-based architecture shall bring the following

benefits to 5G:

• Updating production network: individual services can be upgraded

with minimal impact to other services);

• Extensibility: each service can directly interact with other services. The

Service-based interface can be easily extended;

• Modularity and reusability: network composed by modular services,

supporting 5G features such as network slicing. With proper authorization,

services can invoke other services, enabling the reusability of services;

2.1. 5TH GENERATION NETWORKS 9

• Openness: information, management and control functions of a 5G net-

work can be exposed through specific services.

For more information about service-based architecture, see [24] and [41].

2.1.4 Use Cases

According to ITU-R, 5G networks will be deployed in three major use cases,

expressed in Figure 2.3.

Figure 2.3: 5G major use cases [22]

Enhanced Mobile Broadband (eMBB) is the primary use case to be supported

by 5G networks because it is essentially achievable through an increase in through-

put, enabling high-speed mobile connections in highly crowded areas, and novel

demanding mobile multimedia experiences with the highest quality. [22]

Ultra-Reliable and Low Latency Communications (URLLC) is a general use

case demanding very low latency connections, high throughput and high avail-

ability like autonomous vehicles or industrial automation that need an almost

instant response to commands. [54]

Massive Machine Type Communications (mMTC))is a use case for a demand

for a large number of connected devices in the network transmitting small-sized

data. It will be used for supporting use cases, such as smart cities and energy

monitoring. [54]

10 CHAPTER 2. 5G AND KEY ENABLERS

2.1.5 Virtualisation

Networks are evolving according to the availability of virtualisation technolo-

gies, becoming more dynamic and flexible. [39] In the case of platform virtual-

istion, this concept breaks some network’s limitations imposed by physical re-

sources, virtualising them and allocating them in Virtual Machine (VM). [18]

This technology enables to deploy several network functions on a single machine,

sharing those functions to multiple users. Also, it enables the creation of virtual

networks, giving the opportunity to implement independent virtual infrastruc-

tures for each tenant easing the development of new business models, and al-

lowing to differentiate some specialized communication infrastructures. The first

step towards virtualisation of the network, its functions and services, as well as

their interconnection, has been made possible with advances spanning from SDN

and NFV technologies. [39]

2.1.5.1 Software Defined Networking (SDN)

SDN is a network architecture where, as the name implies, networks are de-

fined by software. In that feature, the architecture decouples network data plane

from the control plane, where the control plane controls numerous network de-

vices. The relocation of control into manageable computing devices allows under-

lying infrastructure to be abstracted from applications and network services. Net-

work Intelligence is centralized in Software Defined Network Controller (SDN-C)

gaining a global view of the entire network. To applications and policies, the

network appears to be a unique and logical switch. [49]

Base Principles

According to [49], SDN is based on three principles:

• Decoupling of traffic forwarding and processing from control: al-

lows independent deployment of control and traffic forwarding and pro-

cessing entities. Also, decoupling can separate optimizations of platform

technology and software life cycles. The decoupling principle is reflected by

SDN-C, which is responsible for management and control of resources;

• Logically centralized control: Network control is centralized in a SDN

controller that have a entire view of the network, controlling the network

from one single point.

• Programmability of network services: permits a client to exchange

service information with an SDN-C. This principle is based on the idea that

service applications and resources benefit from the exchange of information.

2.1. 5TH GENERATION NETWORKS 11

High level SDN architecture

Figure 2.4: SDN architecture overview [47]

According to [47], SDN architecture is arranged in three layers:

• Data Plane: contains network elements and expose their capabilities to

Controller Plane through Data-controller Plane Interface (D-CPI);

• Controller Plane: consist of SDN-C tasks, translating the applications’

requirements, controlling network elements and sending crucial informa-

tion to SDN applications. Services are served to applications through the

Application-controller Plane Interface (A-CPI). SDN-C orchestrate com-

peting application requests for limited network resources;

• Application Plane: it’s where SDN applications reside and transmit their

network requirements to the Controller Plane through A-CPI.

For further information about SDN, see [49] and [47].

2.1.5.2 Network Function Virtualisation (NFV)

NFV is a technology with the objective to transform actual physical networks

into virtualised ones. This allows to consolidate network resources into high vol-

ume servers, switches and storage located in datacentres, network nodes and end

12 CHAPTER 2. 5G AND KEY ENABLERS

user locations. NFV consists in implement network functions through software

that can run in Commercial off-the-shelf (COTS) resources and can be migrated

to various places in the network. [26] Next chapter describes this technology with

more detail.

2.2 Network Function Virtualisation Standardization

In order to define a standard for NFV and how industry should use it, the

ETSI created, in 2012, the Industry Specification Group (Industry Specification

Group (ISG)) for NFV (ETSI ISG NFV). [26] At the beginning of 2019, ETSI

ISG already has over 300 partnerships and over 100 publications on NFV stan-

dardisation studies leading the standardisation for that technology. [36]

In the next subchapters, ETSI ISG NFV and its definition are presented.

Subsequently, is described ETSI’s NFV architecture and his components. Then,

the relationship between NFV and SDN technologies is mentioned, as well as

the impact of NFV in 5G networks. Following, some modelling languages used

in NFV and associated use cases are presented. Finally, some tools for mobile

network orchestration are presented.

2.2.1 Definition and main objectives

The main change of NFV in relation to the legacy Network Function (NF) is to

enable additional dynamic methods in construction and management of network

function graphs or sets combining between them. So, the major focus is to exploit

that dynamic construction and management and the relationship between them

like associated data, control, management and dependencies. [33]

The base principles of NFV will be described earlier in Section 2.2.2.

According to [29], in a high-level view, NFV objectives are:

• Rapid service innovation through software-based deployment;

• Improved operational efficiencies resulting from common automation and

operating procedures;

• Reduced power usage by powering down unused hardware;

• Standardised and open interfaces between NFs so that different network

elements can be distributed by different players;

• Flexibility in assigning VNFs to hardware;

• Improved capital efficiencies compared with dedicated hardware implemen-

tations.

2.2. NETWORK FUNCTION VIRTUALISATION STANDARDIZATION 13

2.2.2 Base principles

NFV follows three base principles that differ from actual standard networks

[33]:

• Decoupling software from hardware: network elements are no longer

a collection of hardware and software. Then, each hardware and software

can evolve separately from each other;

• Flexible network function deployment: with NFV it’s possible to share

resources of infrastructures and make diverse functions at various times.

This makes easier to implement new network services faster on a physical

platform;

• Dynamic operation: NFV turns networks more flexible to scale VNF

performance.

2.2.3 Architecture

In a high-level perspective, NFV foresees NF to be defined by software that

runs on an Network Function Virtualisation Infrastructure (NFVI). There are

three main domains in NFV [33]:

• Virtualised Network Functions (VNF) (Middle left on Figure 2.5);

• NFV Infrastructure (NFVI) (Bottom left corner on Figure 2.5);

• NFV Management and Orchestration (NFV Management and Orchestra-

tion (MANO) (Right side on Figure 2.5);

NFV architecture, as is showed in Figure 2.5, identifies functional blocks and

the references between them. [33]

In the following subchapters, each function is briefly described for each block

in the NFV architecture.

2.2.3.1 Virtualised Network Function (VNF)

As the name implies, a VNF is a Virtualised instance of a non-Virtualised

legacy network function. [33] VNF is a network function that can run on NFVIs

and be orchestrated by Network Function Virtualisation Orchestrator (NFVO)s

and Virtualised Network Function Manager (VNFM). A VNF may implement

a single network entity or a group of them. When VNF implements a group

of network entities, the internal interfaces and connections do not need to be

exposed. [31] Function VNF behaviour and state should be the same as NF

14 CHAPTER 2. 5G AND KEY ENABLERS

Figure 2.5: NFV architecture [33]

non-virtualised because the behaviour and the external operational interfaces of

Physical Network Function (PNF) and their homologous VNFs are expected to

seem the same for interfaces that will be dealing with. [33]

2.2.3.2 Network Function Virtualised Infrastructure (NFVI)

In a quick view, NFVI contains all hardware and software that together form

the environment where VNFs are deployed, managed and executed. The infras-

tructure can be deployed in diverse locations connected between all of them. [33]

2.2.3.3 NFV Management and Orchestration (NFV-MANO)

NFV Orchestrator (NFVO)

NFVO plays a central role in this architecture. It is in charge of orchestration

and management of entire NFV Infrastructure and software resource and realizes

network services on the infrastructure. [33]

According to [30], NFVO has two main responsibilities:

• Orchestration of NFVI resources across multiples Virtualised Infrastructure

Manager (VIM);

• Lifecycle management of network services.

2.2. NETWORK FUNCTION VIRTUALISATION STANDARDIZATION 15

Virtualised Infrastructure Manager (VIM)

VIM is responsible for controlling and managing of NFVI compute, storage

and network resources. They may be specialized in handling a type of NFVI

resource, like compute-only and storage-only or multiple types of NFVI resources.

[30] VIM can be instantiated multiple times. [33]

According to [33], VIM functions are:

• Resource management, in charge of:

– Inventory of software, computing, storage and network resources ded-

icated to NFV infrastructure;

– Allocation of virtualisation enablers;

– Management of infrastructure resource and allocation.

• Operations, for:

– Visibility into and management of NFV infrastructure;

– Root cause analysis of performance issues;

– Collection of infrastructure error information;

– Collection of information for capacity planning, monitoring and opti-

mization.

Virtualised Network Function Manager (VNFM)

A VNFM is an entity responsible to manage a VNF lifecycle, since its instan-

tiation to its termination. VNFM can be deployed to serve a single VNF or serve

multiple VNFs. [33]

Generally, VNFM is deployed to assume generic common functions (Generic

Virtualised Network Function Manager (GVNFM)) to manage any type of VNF

. However, in NFV MANO some VNF instances support specific cases (Specified

Virtualised Network Function Manager (SVNFM)) for their lifecycle management

and for those cases, the functionality may be specified in a VNF Package. [30]

All information that VNFM captures of a VNF is written in a template called

Virtualised Network Function Descriptor (VNFD) and stored in VNF catalogue.

[30] Those two resources are briefly explained in Section 2.2.3.6.

2.2.3.4 Operations Support System/Business Support System (OSS/BSS)

Operations Support System (OSS) and Business Support System (BSS) are

the combination of all operations and business support functions of operators

and are not represented in NFV architecture. However, it is expected that they

16 CHAPTER 2. 5G AND KEY ENABLERS

exchange information with other function blocks of the architecture. They provide

management and orchestration in legacy systems and have full visibility of End-

to-End services provided by legacy network functions in operator’s networks. [30]

2.2.3.5 Element Management (EM)

Element Management (EM) element is responsible for the normal manage-

ment of one or more VNFs. [33] According to [30] this includes:

• Configuration for network functions provided by VNF;

• Error management for network functions provided by VNF;

• Accounting for the usage of VNF functions;

• Collecting performance measurement results for functions provided by VNF;

• Security management for VNF functions.

EM may cooperate with VNFM to execute management functions that need

interactions with information about NFVI resources related to VNF. [30]

2.2.3.6 Templates

Services delivered by NFV technology are defined in templates that describe

the attributes and requirements needed to instantiate Network Service (NS) and

VNFs and manage their lifecycle. [35]

There are two main NFV templates [35]:

• Virtualised Network Function Descriptor (VNFD): describes one

or more VNFs;

• Network Service Descriptor (NSD): describes one or more Network

Services.

VNFD is a template included in VNF packages which describe VNFs in re-

lation to deployment and operational behaviour. [34] A VNFD contains three

main pieces of information (for more information, see [35]):

• Virtualisation Deployment Unit (VDU): describes the capabilities of

the Virtualised containers, such as virtual Central Processing Unit (CPU),

Random Access Memory (RAM) and disks;

• Connection Point Descriptor (CPD): describes Connection Points;

2.3. NFV AND SDN RELATIONSHIP 17

• Virtual Link Descriptor (VLD): describes Virtual Links.

This descriptor is used by NFVO and VNFM. [35]

NSD is a template which consists of information used by NFVO for lifecycle

management of NSs. [26] NSD includes or references the following descriptors

[35]:

• Virtualised Network Function Descriptors (VNFD);

• Physical Network Function Descriptor (PNFD): describes PNFs;

• Nested NSDs;

• Virtual Link Descriptors (VLD);

• Virtualised Network Function Forwarding Graph Descriptor (VNFFGD):

describes the interconnection between VNFs.

NSD doesn’t need to include or reference all of the items listed above. NSD

can include more than one descriptor of each item above.

2.3 NFV and SDN relationship

NFV and SDN are two technologies that complement each other. However,

both are not dependent on each other. NFV objectives can be achieved without

using SDN, but with SDN principles, those objectives can be greatly enhanced

and simplified. NFV supports SDN by providing the infrastructure where SDN

can run. [26]

According to [47], the relationship can be resumed in the following:

1. NFV focuses on creation and management of VNFs,

2. Then, SDN helps organize VNFs into NFV network services;

3. with that, VNFs and network services become resources for construction

and optimization of services for the client.

For more detailed information, see [48] and [32].

18 CHAPTER 2. 5G AND KEY ENABLERS

2.4 NFV Modelling Languages

For MANO operations in VNFs and network services, NFV works with VNFDs

and other templates that are defined using modelling languages.

TOSCA is a declarative modelling language for describing components of a

cloud application and their relationship. It uses the concept of service templates

to describe cloud workloads. [35] TOSCA already have a specification made by

OASIS for NFV that are used to commercial solutions. [20]

YANG is another present language in NFV-MANO’s objects, more properly in

NSDs. YANG is a data modelling language used to design configuration and state

data manipulated by Network Configuration Protocol (NETCONF) Protocol.

[50]

Another language that provides models to VNFDs is OpenStack Heat. Used

more in OpenStack environment, Heat is a declarative model for orchestration

OpenStack resources and managing their lifecycle. [38]

2.5 Reference Use Cases

The next subchapters reveal some use cases realized using NFV. For more

use cases and more detailed information on the next described use cases, see [29]

and [33].

2.5.1 Virtualisation of the Home Environment

Current operators provide home services using network-located systems or/and

Customer Premises Equipment (CPE) devices. This CPE devices sometimes de-

mands on-site services to install and support the client services [33].

With the NFV technology, this services and devices can be virtualised and can

be removed from the home environment, reducing the need for hardware-specific

devices, reducing the costs and enabling the urge of new services, enhancement

of QoS And ease of service updates [33].

2.5.2 Virtualisation of Mobile Core Network and IMS

NFV targets to reduce network complexity and related operational issues

aggravated by an exponential growth of devices connected to mobile networks.

The virtualisation of the Network Core enables to increase the network efficiency

and accommodate increased demand for particular services without relying on

services restrictions, for example, a sudden increase of voice communication on a

network. [33]

2.6. CHAPTER SUMMARY 19

According to [33], possible advantages of virtualisation of the mobile core

network and IP Multimedia Subsystem (IMS) include:

• Reduced Total Cost of Ownership;

• Improved network usage efficiency due to the flexible allocation of NFs;

• Higher service availability and resiliency provided to end users by dynamic

network reconfiguration;

• Elasticity, in other words, the capacity to each NF can be dynamically

modified according to actual network’s load;

• Topology reconfiguration to optimise network performance and to support

the introduction of new services.

2.6 Chapter Summary

In this chapter the 5G networks were presented. At the beginning of the

chapter, it was presented some of the organizations that have a main role on the

5G standardization, such as ETSI and ATIS. Then, it was described the major

performance targets that 5G networks must fulfil, like data rates, traffic capacity,

spectrum efficiency, energy efficiency, mobility, connection density and latency.

After that, Network Slicing and Service-Based Architecture were defined as

highlighted features for 5G networks. Network slicing is a feature that allows

several network services to run simultaneously on the same infrastructure. The

SBA, on the other hand, will bring some benefits to 5G, such as minimal impact

of updating network services, direct connection between services, reuse and mod-

ulation of services, and opening of information management and control exposed

by specific services.

After that, the three main use cases of 5G were listed, namely eMBB (high

throughput), URLLC (low latency) and mMTC (large number of connected de-

vices).

Subsequently, the important role of virtualisation in 5G networks was shown,

which will allow the creation of independent virtual infrastructures for each ten-

ant, as well as the creation of new services. virtualisation of 5G networks has

been driven by technologies such as SDN and NFV. These two technologies have

been described, presenting their base principles and high level architecture.

After that, the NFV, which is a technology standardised by ETSI, was ex-

plained in detail. The main objectives of this technology are service innovation

through software-based deployment, greater operational efficiency, reduction of

20 CHAPTER 2. 5G AND KEY ENABLERS

energy consumption, opening and standardisation of network functions, flexibil-

ity to associate VNFs with hardware and greater capital efficiency. The basic

principles of NFV are decoupling software from hardware, flexibility in the im-

plementation of network functions and dynamic operation. The architecture of

the NFV is divided into three major parts: the VNF, the NFVI and the NFV

MANO.

Subsequently, the relationship between NFV and SDN for 5G was described,

which consists in three steps: NFV focuses on creation and management of VNFs,

then SDN helps organize VNFs into NFV network services and, with that, VNFs

and network services become resources for construction and optimization of ser-

vices for the client.

Next, some of the NFV modeling languages were described, such as TOSCA,

YANG and HEAT.

Finally, some of the cases of use of NFV for 5G networks were presented, in

particular Virtualisation of the Home Environment and Virtualisation of Mobile

Core Network and IMS.

Chapter 3

Reference platforms for Service

Lifecycle Management &

Orchestration

This chapter presents relevant reference platforms for Service Lifecycle Man-

agement & Orchestration based on NFV MANO architecture. The first one is

OSM where is described what is OSM and how is his architecture. In the second

chapter, ONAP is described, where his architecture is focused and, with more

detail, the Application Controller (APP-C) and his LCM capacity on VNFs.

3.1 Open Source MANO (OSM)

OSM is an open source platform developed by ETSI community aimed at

developing a solution aligned with NFV MANO requirements [50]. It targets

rapid installation in VNF vendor, system integrator and operator environments

worldwide. OSM was proposed as the vision to make NFV easy to use and give

choices to operators [53].

This platform has a modular and model-driven architecture (Figure 3.1)

and adopted cloud-native design principals based on NFV MANO architecture.

Service Orchestrator (SO) manages network services, working with Resource

Orchestrator (RO) and Network To Virtualised Network Function Configura-

tion (N2VC) module. This last module supports rapid progress on VNF configu-

ration functionality. All those modules are managed by the monitoring module.

Information Model and Northbound API (IM-NBI) support the growing demand

for user differentiation options. This last module interacts with User Interface

Applications (UI-Apps). [53]

21

22
CHAPTER 3. REFERENCE PLATFORMS FOR SERVICE LIFECYCLE

MANAGEMENT & ORCHESTRATION

Figure 3.1: OSM architecture in modules [53]

For more detailed information about OSM see [50], [52], [51] and [53].

The modules of the OSM architecture are briefly described in the next sec-

tions.

3.1.1 DevOps

DevOps module is a Design-time module that enables the development and

installation of OSM platform. Built over Jenkins, this components have the

descriptors to configure all components to be installed in the platform [51].

3.1.2 User Interface

The User Interface is a module that have design and run-time tasks. Belonging

to the design-time, this component has a VNF Package Generator and a VNF/NS

Catalog Composer. These parts enable the service design to the platform user

[51].

In the Run-time part, the User Interface has a Account Manager to manage

the access to VIM environments, a graphic interface to use LCM operations and

to retrieve detailed statistics and monitoring on VNFs and services [51].

3.2. OPEN NETWORK AUTOMATION PLATFORM (ONAP) 23

3.1.3 Service Orchestrator

This Run-time SO component is responsible for all the aspects of service or-

chestration including LCM operations and service execution. It also acts as a

OSM inventory and catalogue, holding all the services and VNF related descrip-

tors defined in YANG modelling language [51].

3.1.4 Network Service to VNF Communication

The N2VC module is a Run-time module responsible for the plugin framework

that connects the SO module to the VNF Configuration and Abstraction (VCA)

layer [51].

3.1.5 VNF Configuration and Abstraction

This OSM layer that belongs to the Run-time module is responsible for en-

abling configuration, actions and notifications to VNFs and EMs. This module

provides resources for GVNFM and SVNFM [51].

3.1.6 Resource Orchestrator

This Run-time module is responsible to interact with SO module for Man-

agement and Orchestration of NSs and VNFs. It is responsible for managing

and orchestrating resource allocations across multiple geolocated VIMs and SDN

controllers [51].

3.1.7 Monitoring

The OSM Monitoring Module (MON) is a Run-time module intended to be

a tool for driving monitoring configuration update to external monitoring tools.

MON will trigger events into SO. However, events will not be triggered directly

by MON, but by external monitoring tools such as OpenStack Aodh, Amazon

CloudWatch and other similar monitoring tools [51].

3.1.8 OSM Information Model

This Run-time module was created to be a point of authority on OSM data

model. It shares VNFDs and NSDs between components in their original formats

[51].

3.2 Open Network Automation Platform (ONAP)

ONAP is an open source Linux Foundation platform for NFV MANO. It

provides a platform for real-time, policy-driven orchestration and automation of

24
CHAPTER 3. REFERENCE PLATFORMS FOR SERVICE LIFECYCLE

MANAGEMENT & ORCHESTRATION

physical and virtual network functions that enable software, network, IT and

cloud providers and developers to automate new services and support complete

LCM. ONAP has been considered a MANO++ platform because it covers the

entire scope of ETSI MANO and beyond it [38].

ONAP architecture, shown in Figure 3.2, has two major systems: design time

and run time, splitting design from operational roles. According to [38] these

systems have the following responsibilities:

• Design time environment:

– VNF onboarding/validation;

– Network service/SDN service design;

– Policy creation;

– Workflow design;

– Analytics application onboarding;

– Data Collection, Analytics and Events (DCAE) workflow design;

– Event monitoring.

• Run time environment:

– Service orchestration

∗ Service orchestration & LCM;

∗ VNF controller (VNF orchestration & LCM);

∗ Infrastructure controller (interface to VIM, SDN-C);

– Monitoring and service assurance

∗ Data collection, analytics and events;

∗ Storage of all active and available inventory.

Additionally, ONAP includes an User Interface (UI), an Application Program-

ming Interface (API) interface and ONAP Operations Manager (OOM). OOM

is a project that is responsible for the deployment, instantiation and LCM op-

erations of ONAP platform himself [45]. On northbound interface, ONAP talks

to OSS, BSS, big data analytics and E-services applications. On southbound

interface, ONAP interacts with VIM, NFVI and NFV cloud [38].

3.2.1 ONAP Components

ONAP platform is composed by several components, each one with a well-

defined role on the ONAP architecture. Some of those components are related

to Design Time environment, others are related to Run Time environment and

even other components can be part of two environments. These components are

briefly described in the following sections.

3.2. OPEN NETWORK AUTOMATION PLATFORM (ONAP) 25

Figure 3.2: ONAP architecture [38]

3.2.1.1 Active and Available Inventory

Active and Available Inventory (AAI) component is the central inventory

system of ONAP. It is where all data in the platform converge, including network,

VNF, service and model information. This component takes updates in real-time

from all the others components and works as a datacenter for those components

to access to all the data needed to perform decisions. AAI makes part of Run

Time environment and is accessed via REST APIs. [3]

3.2.1.2 Application Controller

APP-C is a Run-Time environment component, where his main function is to

perform LCM operations on VNF as well as the components that execute these

functions. This component makes the cloud infrastructure to be abstracted from

Virtual Functions to make repeatable actions and enabling automation on LCM

and configuration operations on VNFs. [43]

An in-depth description of APP-C component can be found in Section 4.3.

3.2.1.3 Application Authorization Framework

Application Authorization Framework (AAF) component’s function is to sup-

port implementations for authentication and authorization in ONAP platform.

This component consists in a set of Client Libraries and RESTful Services that

support multiple authentication as well as authorization protocols. It provides

26
CHAPTER 3. REFERENCE PLATFORMS FOR SERVICE LIFECYCLE

MANAGEMENT & ORCHESTRATION

authentication, authorization and security to ONAP components, freeing other

components and services from those tasks. [1]

3.2.1.4 Data Collection, Analytics and Events

DCAE is the data monitoring and analysis component of ONAP. It is a

system that collects the data from ONAP platform and network entities, apply

analytics and trigger events based on the analysis. DCAE can be part of the close

control loop for managing network services. [4]

3.2.1.5 Data Management as a Platform

Data Management as a Platform Data Bus Controller (DMaaP) is a platform

to transport and process of data between ONAP components, from any source to

any target. This component optimizes data exchange, filtering, compressing and

reducing data. It also transports and processes the data efficiently. [5]

3.2.1.6 Microservices Bus

Microservices Bus (MSB) is a component that provides reliable, resilient and

scalable communications between the platform components. This includes service

discovery and registration, external and internal API gateway and more features

including component communications. MSB have a pluggable architecture, that

means plugins can be added to MSB to provide more functionalities from external

sources. It is an independent platform, integrated with Kubernetes to provide

transparent service registration for ONAP microservices. [7]

3.2.1.7 Multi-VIM/Multi-Cloud

MultiCloud (or Multi-VIM) is an Run-Time ONAP component whose scope

is to mediate all interactions between ONAP and all underlying VIM or Clouds.

[44] This component enables ONAP to deploy and run actions in VIM or Cloud

infrastructures using a specific plugin according to the cloud infrastructure used

(OpenStack, Azure, etc.). It also enables to decouple the evolution of ONAP plat-

form from the evolution of the underlying environments, minimizing the impact

of cloud infrastructures evolution on ONAP’s platform. [27]

A high-level architecture and workflow of Multicloud are outlined in Figure

3.3.

3.2.1.8 ONAP Operations Manager

OOM is responsible for LCM of the ONAP platform. This manager is not

responsible for managing services or network functions like VNFs, but uses Kuber-

3.2. OPEN NETWORK AUTOMATION PLATFORM (ONAP) 27

Figure 3.3: Multi-VIM/MultiCloud high-level architecture and workflow [44]

netes container management system to manage Docker containers that composes

ONAP. In resume, OOM provides seven major capabilities [45]:

• Deploy - component deployment and dependency management;

• Configure - configuration across all ONAP components;

• Monitor - real-time health monitoring;

• Heal - recreation of failed ONAP containers;

• Scale - enable ONAP services scaling;

• Upgrade - reconfigure or change containers with a minimal impact on the

platform;

• Delete - Clean individual containers or an entire deployment.

3.2.1.9 Policy

Policy component is a subsystem that maintains, distributes and operates a

set of rules defined by the operator for ONAP control, orchestration and man-

agement of functions. Policies can support ONAP’s platform, products, services,

operation automation and security. These sets of rules can be modified, config-

ured or even designed by users from ONAP portal. [9]

28
CHAPTER 3. REFERENCE PLATFORMS FOR SERVICE LIFECYCLE

MANAGEMENT & ORCHESTRATION

3.2.1.10 ONAP Portal

This component is a web based platform that centralize different ONAP appli-

cations for different users. The target of this component is to allow decentralized

applications running in their own components, providing common management

services and connectivity in one single portal. [10]

3.2.1.11 Service Design and Creation

Service Design & Creation (SDC) component is the ONAP visual modeling

and design tool. SDC belong to both design and run time, creating internal meta-

data that describes all assets used by all ONAP components. SDC contains a

database catalogue containing TOSCA blueprints with all information and con-

figuration data of VNFs and Network Services. SDC does VNFs and Network

Services onboarding, distributing to all other components information about the

functions to be onboarded. [11]

3.2.1.12 Service Orchestrator

SO is a component that arranges, sequences and implements tasks based on

rules and policies (sent by SDC and Policy components) to create, modify or

remove logical and physical resources in the managed environment. This com-

ponent orchestrate those resources in a high level, leaving the remaining and

low level orchestration to the underlying controllers such as APP-C and Virtual

Function Controller (VF-C). The SO runs autonomously within ONAP and use

process workflows to execute all the tasks through service models. SO interacts

with other platforms via defined APIs. [6]

3.2.1.13 Software Defined Network Controller

SDN-C is a component that configures and maintains healthy VNFs and net-

work services from the three lower levels of Open System Interconnection (OSI)

model. It manages inter-cloud connectivity and with other external SDN-Cs for

connectivity inside a cloud region. SDN-C component. This component is built

over OpenDayLight, having a proper API built in this technology. SDN-C share

this platform with APP-C component. [38]

3.2.1.14 Virtual Function Controller

VF-C component is an integration of ETSI NFV MANO architecture and

reference model on ONAP. It implements LCM and Fault-management, Con-

figuration, Accounting, Performance and Security (FCAPS) of VNFs and NSs,

following the ETSI NFV specifications. This component works generally with

3.3. CHAPTER SUMMARY 29

generic VNFs, with multiple VNFMs, VNFs and VIMs. VF-C can also support

vendor VNFMs. [8]

3.2.1.15 Virtual Infrastructure Deployment

Virtual Infrastructure Deployment (VID) component has the goal to execute

the infrastructure deployment, instantiation and change-management operation.

VID also can choose the target instantiation environment by checking their avail-

ability, customize VNFs and services to fit a instantiation, and can even operate

and execute basic LCM operations through workflow if a instantiation is failed.

[13]

3.3 Chapter Summary

In this chapter two open source platforms for the management and orchestra-

tion of virtualised networks were presented.

The first platform presented was OSM which is an open source platform de-

veloped by the ETSI community aligned with the NFV MANO requirements.

The objective of this platform is the rapid installation in VNF vendors, system

integrators and worldwide operator environments. This platform has a modular,

model-driven architecture and adopts a cloud-native design based on the NFV

MANO architecture. Its architecture is further divided into design-time and run-

time models, depending on the phase in which the component is used.

The second platform that has been described in this chapter is ONAP, which

is an open-source platform for NFV MANO developed by the Linux Foundation

community. It provides a platform for real-time, policy-driven orchestration and

automation of physical and virtual network functions.

It is considered a MANO++ platform because it includes features that go

beyond the scope of ETSI MANO. Like OSM, its architecture has run-time and

design-time environments, depending on the role each component plays in the

execution of the platform.

Chapter 4

Implemented Platform

From a general perspective, this chapter will focus on the description of the

implemented infrastructure, including the platform setup and available LCM op-

erations characterization. The first subchapter is an overview description of the

implemented infrastructure. In the followed subchapter, the orchestration plat-

form used in the implementation is specified. In the third subchapter, LCM tools

available in APP-C component are identified and explained.

4.1 Platform overview

5G networks are developed on top of NFV and SDN technology, making LCM

operations on network services and functions a significant role in the automation

of infrastructure orchestration.

The prime goal for this solution is to perform different types of LCM opera-

tions on VNFs. To implement this solution, it was adopted a customized ONAP

platform to orchestrate the wanted services with the minimal required compo-

nents installed. The chosen component to execute LCM operations is APP-C

through his protocols because is more complete and stable than VF-C compo-

nent in Casablanca version.

4.2 Orchestration platform

As said before, the platform adopted for the implemented solution was ONAP.

It was adopted because it is a feature-packed platform for network automation,

providing many capabilities besides orchestration. Because of its modularity and

flexible deployability, the first step was to identify only ONAP components that

would be required for enabling service orchestration (instantiation and LCM).

After the analysis, the components identified as required were SO, AAI, SDN-C

and APP-C.

31

32 CHAPTER 4. IMPLEMENTED PLATFORM

SO component maps to and End-to-End Orchestrator. It is responsible to

implement orchestration logic, providing the highest level of service orchestration

in the platform. AAI works as an inventory for the platform. It’s responsible

for storing all information, including network, service and platform information.

SDN-C provides instantiated VNFs and services with configuration automation

and provisioning of network resources. At last, APP-C performs LCM operations

on VNFs, VMs and Virtualised Network Function Component (VNFC)s, as stated

in Chapter 3, performing on Layers 4 (Transport) to 7 (Application) of OSI model.

During platform analysis and deployment, some functional and platform de-

pendencies were identified. Those components are:

• VID: This component enables users to instantiate infrastructure services

and their components designed in SDC. VID can be used to search on SDC

catalogue for services models or services instances and modify them;

• Service Design & Creation (SDC): This component is responsible for

creating internal metadata describing resource and service resources to be

distributed and used by other ONAP components, in design time and run

time. Also, it works as a metadata catalogue;

• MSB: This component works like an information tunnel and distributor

of information between all ONAP microservices;

• AAF: This component manages authorization and authentication to var-

ious ONAP components. It is a direct requirement of AAI component

because all incoming requests to its REST APIs must pass through AAF

before AAI;

• External System Register (ESR): In this component, users can regis-

ter, update and delete external systems using its graphic interface;

• Multi Cloud/Virtual Infrastructure Manager (Multi Cloud/VIM):

This component decouples ONAP platform from the underlying cloud in-

frastructure, providing mediation between them, supporting multiple clouds.

It is used by both SO and LCM components (APP-C and VF-C);

• Data Movement as a Platform (DMaaP): responsible for implement-

ing an effective data movement tool implementing a Publisher-Subscriber

logic.

4.2.1 ONAP Setup description

To setup ONAP deployment, it was used OOM. This component is responsi-

ble for LCM of ONAP platform. OOM relies on Rancher and Kubernetes infras-

4.2. ORCHESTRATION PLATFORM 33

tructure. Rancher is a platform responsible to manage clusters, in this case, Ku-

bernetes clusters, and maintaining ONAP repository through Helm. Kubernetes

is used to ONAPs microservice-based management running in Docker containers.

It was established a testbed to deploy and configure ONAP platform. It was

created four VMs, three of them dedicated to OOM and one for an Openstack Pike

platform. OOM includes one VM for Rancher and two for Kubernetes cluster.

All the services and VNF resources instantiated and orchestrated are held by

OpenStack infrastructure.

Rancher infrastructure requires low resources as it only handles Kubernetes

environment and ONAP repository. In opposite, Kubernetes cluster requires

significant memory and processing resources (Virtual Computing Processor Unit

(vCPU)). Kubernetes performs LCM on ONAP pods that are more than 100 for

this case. Openstack infrastructure does not require high amounts of resources

because it’s used to validate the integration between ONAP and VIM or cloud,

and to perform simple LCM operations on simple VMs, VNFs or VNFCs.

In the Table 4.1, VMs and resources used for ONAP deployment are described.

The setup process begins adding Kubernetes VMs as host machines to Rancher

environment. This process comprises a Rancher agent installation in those VMs

and consequently registration in the Rancher server. After the addition of the Ku-

bernetes VMs to the Rancher environment, ONAP deployment carried out using

OOM. This process consists of configuring Helm charts. Helm is software that

applies a packet management concept naming packages as charts and applying

them to Kubernetes resources. Those charts are organized in a collection of files

inside a directory, containing a specific structure on a specific service description.

OOM is an aggregation of those charts describing ONAP services.

After those charts being cloned into Kubernetes cluster, OOM is used to

choose the desired ONAP components for installation and creation of the corre-

sponding local Helm repository. The setup is concluded running a Helm command

for instantiating all desired components.

Table 4.1: List of LCM operations and Protocols

Virtual Machines

Resources Rancher K8’s - 0 K8’s - 1 Openstack

vCPU 4 8 4 2

RAM 8 GB 64 GB 16 GB 8 GB

Disk Memory 80 GB 300 GB 30 GB 30 GB

OS
Ubuntu Server

16.04
Ubuntu Server

16.04
Ubuntu Server

16.04
Ubuntu Server

16.04

34 CHAPTER 4. IMPLEMENTED PLATFORM

4.3 Lifecycle Management tools

To perform LCM operations on VNFs, VMs and VNFCs, APP-C component

uses some protocols to handle those components, using adapters for each one of

the protocols. The following subchapters describe APP-C component with detail

and the protocols used by this component.

APP-C is a component designed to perform LCM of VNF’s on layers 4 (Trans-

port) to 7 (Application) of OSI model and, in addition, act as a SVNFM [38].

This component is built on top of OpenDayLight platform.

APP-C component provides a comprehensive set of controller actions such as

Configure, Modify Configuration, Start, Stop, Migrate, Restart and Rebuild. It

supports a set of standard VNF interfaces like NETCONF, Chef and Ansible, and

is designed to be self-service using a model-driven architecture that provides a

layer of abstraction making APP-C completely service-, VNF-, and site-agnostic

[27].

Figure 4.1 schematises the APP-C high level architecture.

Figure 4.1: APP-C Architecture [43]

On northbound layer, APP-C interacts with APP-C clients like SO and SDC,

exposing his YANG-based API via REST [43]. APP-C provides a comprehensive

set of controller actions such as Configure, Modify Configuration, Start, Stop, Mi-

grate, Restart, Rebuild, and so on. It supports various standard VNF Interfaces

such as Ansible, Chef and NETCONF.

APP-C can apply LCM operations to the following three components [43]:

4.3. LIFECYCLE MANAGEMENT TOOLS 35

• Virtual Network Function (VNF);

• VNFC;

• Virtual Machine (VM).

APP-C supports two types of LCM requests. The first request type is LCM

over REST, that are sent to APP-C through Hypertext Transference Protocol

(HTTP) POST requests. The second type is LCM over Message Bus (DMaaP).

APP-C receives LCM command requests as messages from DMaaP. Those re-

quests are sent by APP-C’s clients located on other ONAP components like SO

and SDC [43].

To perform a LCM request, a Directed Graph (DG) related to the specific

operation is chosen. A DG is a diagram that works like a workflow to APP-C.

APP-C component has a DG for each LCM operation and has a DG Builder to

configure DG or develop new ones [43].

To perform LCM operations on VMs, VNFs and VNFCs, APP-C have the

following protocols to handle those components [46]:

• NETCONF (Extensible Markup Language (XML) Restconf);

• Ansible;

• Chef;

• REST;

• OpenStack (VM Level).

In the exception of Openstack and REST protocols, LCM protocols need

Reference Data files to perform each one of LCM operations for each VNF. These

a Reference Data need to be defined through APP-C Controller Design Tool

(CDT) by VNF vendors. These Reference Data are composed by three types of

files [46]:

• Template;

• Parameter definition file;

• Parameter name-value pair file.

A Template is required for Ansible, Chef and NETCONF protocols. Param-

eter Definition and Parameter Name-Value Pair artifacts are typically used with

Configure and ConfigModify templates and are optional for templates of other

36 CHAPTER 4. IMPLEMENTED PLATFORM

actions. OpenStack and REST protocols do not use a template or parameter

definitions or name-value pairs [46].

The Table 4.2 shows all LCM operations available and protocols that can run

each one of them for ONAP’s Beijing release [46].

4.3. LIFECYCLE MANAGEMENT TOOLS 37

Table 4.2: List of LCM operations and Protocols supported by APP-C [46]

Actions
Protocols

Netconf Ansible Chef REST OpenStack

ActionStatus NO NO NO NO NO

AttachVolume NO NO NO NO YES

Audit YES YES YES YES NO

CheckLock NO NO NO NO NO

Configure YES YES YES NO NO

ConfigModify YES YES YES NO NO

ConfigBackup NO YES YES NO NO

ConfigRestore NO YES YES NO NO

ConfigScaleOut YES YES YES NO NO

DetachVolume NO NO NO NO YES

DistributeTraffic NO YES YES NO NO

Evacuate NO NO NO NO YES

HealthCheck NO YES YES YES NO

Lock NO NO NO NO NO

Migrate NO NO NO NO YES

QuiesceTraffic NO YES YES NO NO

Rebuild NO NO NO NO YES

Restart NO NO NO NO YES

ResumeTraffic NO YES YES NO NO

Snapshot NO NO NO NO YES

Start NO NO NO NO YES

Start Application NO YES YES NO NO

Stop NO NO NO NO YES

Stop Application NO YES YES NO NO

Sync YES YES YES YES NO

Unlock NO NO NO NO NO

UpgradeBackout NO YES YES NO NO

UpgradeBackup NO YES YES NO NO

UpgradePostCheck NO YES YES NO NO

UpgradePreCheck NO YES YES NO NO

UpgradeSoftware NO YES YES NO NO

For more detailed information about APP-C and APP-C CDT see [43] and

[46].

4.3.1 Netconf

APP-C component have an adapter for NETCONF protocol, responsible for

configuration tasks using XML format for VNFs supporting NETCONF API.

Secure Shell (SSH) adapter can additionally use NETCONF protocol through

XML, used to load configurations and retrieve the running configuration. [43]

According to [28], NETCONF protocol defines a simple mechanism through

38 CHAPTER 4. IMPLEMENTED PLATFORM

which a network device can be managed. Configuration data information can

be retrieved and new configuration data can be uploaded and manipulated. The

protocol allows the device to expose a full API, that can be used to applications

sends and receives full and partial configuration data sets. The protocol uses a

Remote Procedure Call (RPC) paradigm encoded in XML.

For more information about this protocol, read [28] and all related Request

for Comments (RFC) from Internet Engineering Task Force (IETF).

4.3.2 Ansible

Ansible adapter includes a client for an external Ansible server, which con-

nects to VNF Northbound APIs. This adaptor enables APP-C to operate play-

books to perform LCM operations over VNFs connected to Ansible server. [43]

According to [55], Ansible is an open source Information Technology (IT)

management, deployment and orchestration tool. This tool comprises a large

variety of automation challenges, trying to conceal this variety to a user friendly

tool, easy and simple to use.

One of the most considerable differences between this tool and similar ones

is the architecture. Ansible is a agentless tool that runs in a ’push’ model. In

other words, no software is installed or required on remote machines to manage

them. By default, Ansible uses SSH (Linux and UNIX) or Windows Remote

Manager (WinRM) (Windows) to manage remote machines. [55]

For more information about this tool, see [55] and online Ansible documen-

tation.

4.3.3 Chef

Similar to Ansible adapter, Chef Adapter incorporates a client for an external

Chef server that connects to VNF Northbound APIs. With this adapter, APP-C

can operate cookbooks (Chef scripts) to perform LCM operations over VNFs.

[43]

According to [25], Chef is an automation platform that transforms infrastruc-

ture into code. Chef automates how infrastructure is configured, deployed and

managed across the managed network.

The most significant difference between Chef and Ansible is the architecture

complexity. The architecture is defined as showed in Figure 4.2.

The chef architecture is divided in three components [25]:

• Chef Workstation: Location where users interact with Chef. With the

workstation, users can create and test cookbooks using available Chef tools.

The user can also interact with Chef Server;

4.4. CHAPTER SUMMARY 39

Figure 4.2: Chef Architecture [25]

• Chef Client Nodes: Machines that are managed by Chef. To connect

these nodes, a Chef agent is installed on each node;

• Chef Server: This component is a hub for configuration data. In other

words, is where cookbooks, policies and metadata are stored. The managed

machines, through Chef Client, asks the Server for configuration details.

For more information about Chef protocol, visit the online documentation of

Chef.

4.3.4 Restconf

APP-C component have a Restconf adapter, responsible for configuring tasks,

using JavaScript Object Notation (JSON) format messages, for VNFs supporting

Restconf API. [43]

According to [23], Restconf is a protocol based on HTTP for configuring

data defined YANG version 1 and 1.1 templates, using datastore concepts of

NETCONF. Restconf uses HTTP methods to provide Create, Read, Update,

Delete (CRUD) operations on a conceptual datastore containing YANG-defined

data.

For more information about this protocol, read [23] and all related RFC from

IETF.

4.3.5 OpenStack

APP-C uses a Infrasctructure as a Service (IaaS) adapter to connect with

OpenStack controllers to perform basic LCM operations on VMs such Restart,

Migrate, Start and Stop. This adapter acts as a Directed Graph plugin, while

those Directed Graphs call services exposed by the adapter. [25]

4.4 Chapter Summary

In this chapter, the platform implemented for testing and evaluation of LCM

operations in network services was characterised.

40 CHAPTER 4. IMPLEMENTED PLATFORM

First, it was defined that a customized installation of the ONAP platform

should be used so that it would be possible to perform LCM operations with a

smaller amount of resources.

This was followed by the identification of the components that would allow

the LCM operations to be carried out, namely the Operating System (OS), the

AAI, the SDN-C and the APP-C. After the analysis and implementation of the

platform, dependencies were identified, such as VID, SDC, MSB, AAF, ESR,

Multi-cloud and DMaaP.

After identifying all the necessary components, the customised platform was

deployed using four virtual machines. This deployment included the use of plat-

forms such as Kubernetes, Rancher and Helm, to support the installation and

maintenance of the platform, and OpenStack to host the VNFs that would be

instantiated.

Finally, the architecture of the APP-C component for LCM operations was

explained. This component, developed over the OpenDayLight platform, allows

to perform LCM operations over VNFs, NF and VMs, using some of the interfaces

that this component provides, such as OpenStack, Ansible, Chef, Netconf and

Restconf.

Chapter 5

Infrastructure Testing and

Validation

In the first part of this chapter, the objectives to test and validate LCM

operations on the installed platform are described. In the second subchapter, the

VNF used to perform LCM operations is briefly detailed. In the next subchapters,

the realized tests and results obtained to validate some of the LCM operations

available on the platform are shown.

5.1 Validation and Evaluation Targets

To validate the platform and the LCM operations wanted, it was defined three

major objectives to fulfil:

• Onboarding of a VNF in ONAP platform: The first objetive to com-

plete is the onboarding and instantiation of a VNF inONAP platform. This

objective must be accomplished in order to execute LCM operations. VNF’s

description and characteristics are described in the next subchapter;

• Execute LCM operations with OpenStack: LCM operations executed

through OpenStack are the most simple and stable operations on ONAP

platform. The goal is to execute some of the operations available through

this protocol;

• Execute LCM operations with Ansible: Ansible is a protocol that

enables easy management and configuration on VNFs through APP-C

The methodology used to meet the defined test goals will consist in instantiate

a network service, and then run the lifecycle operations from OpenStack and

Ansible. The metrics will be taken from the APP-C logs during the test execution.

41

42 CHAPTER 5. INFRASTRUCTURE TESTING AND VALIDATION

These tests will consist of a repetition of the operations, and the metrics collected

will be used to obtain a average values. Finally, according to the results obtained,

an evaluation of the performance of the operations will be made.

5.2 VNF description, Onboarding and Instantiation

To test and validate the platform and the LCM operations, it is needed to

instantiate a VNF and perform the LCM operations. Due to a scarce of resources,

the VNF in use is a simple Virtual Firewall (vFW) based on [12]. For testing,

it was used tiny flavors, in other words, virtual machines with low resources. To

do that change, the OS was replaced by CirrOS, a very simple OS for testing

purposes only. The HEAT templates used to instantiate and describe all the

details of the vFW VNF are in Appendix A.

To onboard and instantiate the VNF, it was followed the process indicated in

Figure 5.1.

Figure 5.1: Service Onboard process in ONAP [21]

The Resource Onboarding, executed by a Designer user, onboard VNFs and

Virtual Function (VF), the corresponding models and artifacts. This includes

License Model creation and onboarding and Vendor Software Products (VSP),

which correspond to a VNF or VF. [21]

VF Creation uses VSPs as building blocks, and then the VF is tested and

validated and adds it to the VF catalogue. [21]

At the Service Design phase, the service model and artifacts are configured

and onboarded using TOSCA packages. The Service Testing performed by a

Tester is responsible to test and certify the service. [21]

5.3. OPENSTACK LCM OPERATIONS 43

In the end, the Service Distribution phase consists of two steps, the approval

of the distribution of the service and the trigger of the distribution. [21]

5.3 OpenStack LCM Operations

The first part of testing is to execute the OpenStack LCM on the onboarded

vFW. This test phase is divided into two parts. The first part is the execution of

a series of three LCM operations. These operations are Start, Restart and Stop.

The second part is a series of a Rebuild operation. The tests and the results of

those tests are described in the next subchapters.

5.3.1 Running Tests on Start, Restart and Stop Operations

To execute this test, it was needed to have an onboarded VNF stopped on

the OpenStack environment connected to ONAP. After the platform is ready to

execute LCM operations, it’s constructed three API calls corresponding for the

three operations to execute: Start, Restart and Stop.

This calls are APP-C API calls and run in software named Postman. This

software enables us to do API calls remotely in several programming languages.

It also enables to run a collection with some calls and running repeatedly in

iterations. This feature is used to this test, running a collection with Start,

Restart and Stop operations, in that exact order, with ten iterations with a delay

of one minute between each one.

To get results from this test, it was used the log system of APP-C to take the

important parts of the operation, such as queries to inventory, calls to OpenStack

API and duration of the LCM operation.

In the next subchapters, the results and analyses made for each operation are

presented.

5.3.1.1 Start Operation Results

To better understand the Start operation phases and results, it was described

in a diagram the messages and phases of the operation, as seen in Figure 5.2.

This operation was repeated ten times during the tests.

Analyzing the diagram, the operation starts with the reception of a message

from Postman and then starts a query to ONAP inventory. Then, the informa-

tion requested to AAI component is returned to APP-C, sending back a success

message to Postman. After this phase, APP-C component send a request to

OpenStack through OpenStack adapter to execute the operation. While execut-

ing the operation on vFW, APP-C periodically sends a status request to validate

44 CHAPTER 5. INFRASTRUCTURE TESTING AND VALIDATION

Figure 5.2: Start Operation Diagram

when the operation is concluded or not. Finally, when the operation is concluded,

the APP-C component throws an operation complete message.

The results from the test to Start operation were stored and then calculated

the average time, median and standard variation for each identified phase, as

shown in Table 5.1.

Table 5.1: Test results from Start operation (ms)

Average Standard Deviation Median

Input received → AAI (query finish) 1101 90 1100

Input received → Operation Start 1425 127 1405

AAI (query finish) → Complete 33131 659 33114

Operation Start → Complete 32807 613 32833

Input Received → Complete 34232 669 34142

AAI Query Time by log system 927.2 939.5 90.936

From this table, it is possible to make a statistical and graphical analysis

building a Box and Whiskers plot. This plot is presented with two parts: the box

and the whiskers.

The first part corresponds to a box, where is represented the area between the

first and third quartile of the measured values. The first quartile represents the

mean value between the smallest value measured and the median of the data set.

In other words, represent that twenty-five percent of the retrieved data are under

5.3. OPENSTACK LCM OPERATIONS 45

the quartile value. The third quartile represents the opposite, which means that

twenty-five percent of the retrieved data is above the quartile value. The second

quartile corresponds to the median value, represented in the box as a dividing

line.

The second part of the plot is the whiskers. Those whiskers are the line

that defines the range between the first and third quartiles to the correspondent

minimum and maximum measured values.

The Box and Whiskers graphic obtained is illustrated in Figure 5.3.

Figure 5.3: Box and Whiskers plot for Statistical analysis on Start Operation
Phases

From the statistical analysis on Start operation phases, it is concluded that the

series of tests made for the Start operation was sufficiently accurate to get a low

of variation between values measured. Also, it can be concluded that operation

is stable because of the low variation of times in each phase.

The chart on Figure 5.4 is a cumulative graphic from the time spent on each

phase. This graphic doesn’t include phases composed of other phases. It can ex-

press the influence of each phase through the time bars, however, it can analyze

the slope between phases through the cumulative line. In this graphic, the slope

on the first two phases isn’t high. The ideal case is a zero slope from APP-C

phases, but a zero slope situation isn’t a realistic case. The slope between the

operation start and the operation complete is higher, however, this phase is exe-

cuted by OpenStack platform that is external to ONAP platform. It is strongly

46 CHAPTER 5. INFRASTRUCTURE TESTING AND VALIDATION

possible that this phase included a failed call to AAI, which is described in the

following sections, although was not detected in the metrics service of APP-C for

that operation.

Figure 5.4: Time cumulative graphic of Stop operation

5.3.1.2 Restart Operation Results

To better understand the Restart operation phases and results, the messages

and phases of the operation were presented in a diagram, see Figure 5.5. The

restart operation was repeated ten times during the tests.

The execution of this operation is similar to the previous operation. How-

ever, in the final phase of Restart operation, APP-C throws a ”Server Status

RUNNING” message and then have a five seconds delay before throwing the

operation complete status. This occurs because APP-C try to update the VNF

information on AAI, but the update failed because DMaaP can’t send the update

to AAI.

The results from the test to Restart operation were stored and then calculated

the average time, median and standard variation for each identified phase, as

shown in Table 5.2.

Similar to the previous operation, analyzing the Box and Whiskers plot ob-

tained through the series of tests on Restart operation (Figure 5.6), the platform

was defined as stable because of the measured times were accurate on each phase.

Because of this stable platform, the number of time measurements was sufficient

to guarantee a low margin of variation between the values.

5.3. OPENSTACK LCM OPERATIONS 47

Figure 5.5: Restart Operation Diagram

Table 5.2: Test result from Restart operation

Average Standard Deviation Median

Input received → AAI (query finish) 1116 100 1109

Input received → Operation Start 1431 113 1415

AAI (query finish) → Complete 51139 780 51233

Operation Start → Complete 50825 796 50842

Operation Start → Server Status Running 45494 770 45537

Server Status Running → Complete 5331 64 5322

Input Received → Complete 52256 822 52322

AAI Query Time by log system 928.9 932.5 76.855

48 CHAPTER 5. INFRASTRUCTURE TESTING AND VALIDATION

Figure 5.6: Box and Whiskers plot for Statistical analysis on Restart Operation
Phases

5.3. OPENSTACK LCM OPERATIONS 49

The time cumulative graphic of Restart operation (Figure 5.7) is almost simi-

lar to the previous operation, However, it was detected the delay referred before.

The slope in the last phase is the responsibility of the APP-C infrastructure that

tries to update the AAI inventory through DMaaP unsuccessfully. Ideally, this

delay shouldn’t exist, throwing the complete status right after the running status.

In other words, the last phase influence, represented by the last line, should have

a slope of near-zero, which in this case doesn’t occur.

Figure 5.7: Time cumulative graphic of Restart operation

5.3.1.3 Stop Operation Results

To understand the Stop operation phases and results, it was described in a

diagram, as the previous operations, the messages and phases of the operation,

as seen in Figure 5.8. This operation was repeated ten times during the tests.

50 CHAPTER 5. INFRASTRUCTURE TESTING AND VALIDATION

Figure 5.8: Stop Operation Diagram

This operation is similar to the Start operation with the same phases with

the same functionality. The only phase that differs from Start operation e the

Stop request phase.

The results from the test to Stop operation was stored and then calculated the

average time, median and standard variation for each identified phase, as shown

in Table 5.3.

Table 5.3: Test result from Stop operation (ms)

Average Standard Deviation Median

Input received → AAI (query finish) 1126 155 1080

Input received → Operation Start 1472 179 1433

AAI (query finish) → Complete 33583 1164 33228

Operation Start → Complete 33237 1100 32917

Input Received → Complete 34709 1170 34383

AAI Query Time by log system 958.1 922 155.836

As the previous operations, the statistical analysis of the data measured in

Stop operation on 5.9 evidences a low variation of the results and the stability of

the Stop operation through the test.

5.3. OPENSTACK LCM OPERATIONS 51

Figure 5.9: Box and Whiskers plot for Statistical analysis on Stop Operation
Phases

The conclusions taken with the analysis of the time cumulative graphic for

Stop operation (Figure 5.10) are the same as the conclusions taken to the Start

operation graphic. This occurs because the operation phases are similar to the

Start operation. Even the last phase, corresponding to the Stop operation itself,

has a similar slope than the last Start operation phase.

Figure 5.10: Time cumulative graphic of Stop operation

52 CHAPTER 5. INFRASTRUCTURE TESTING AND VALIDATION

Table 5.4: Comparison between Restart operation and Stop + Start operation
(ms)

Time

Start Operation 34232

AAI (query finish) ->Complete (Stop Operation) 33237

Start + Stop Operation 67469

Restart Operation 52256

Difference 15213

5.3.2 Restart Operation versus Stop and Start Operations

The LCM restart operation has the same purpose as the Stop and Start

operations together. The objective of this test is to compare if, in the time

domain, the Restart operation is equal to Stop and Start.

To compare those operations, it was added the total time of Start operation

to the phase after the AAI query to the complete state of the Stop operation.

The results are in Table 5.4.

Analyzing the results of the previous table, it can be noticed that the added

time of the Stop and Start operation exceeds 15 seconds compared to the Restart

operation. This difference can have to do with several situations, mainly be-

cause of the queries to the AAI component or the error posted by the DMaaP

component when trying to update the ONAP inventory.

5.3.3 Running Tests on Rebuild Operation

The initial plan for this part of the test was to run iterations of Snapshot

and Rebuild operations in this exact order on the vFW VNF. However, the

Snapshot operation, in Casablanca release, has a bug in the validation creation

of a snapshot, due to an error on a call that finds the created image. Because of

that error, APP-C throws an error of a failed operation.

To execute this part of the test, similar to the previous test, it was created a

call on Postman software to Rebuild operation, to run in a series of ten iterations.

It was used as a Snapshot created by the failed Snapshot operation, becoming

this test realistic as possible.

5.3.3.1 Rebuild Operation Results

Similar to the previous test, it was built a diagram to explain how this oper-

ation executes the operation phases 5.11. This operation was repeted ten times

during the tests.

5.3. OPENSTACK LCM OPERATIONS 53

Figure 5.11: Rebuild Operation Diagram

54 CHAPTER 5. INFRASTRUCTURE TESTING AND VALIDATION

Analyzing the diagram, there are some similar phases to the previous oper-

ations tested. After Postman sends a call to APP-C, this component consults

the AAI inventory and, after being succeeded, it sends a successful message to

Postman. However, this time the APP-C sends a request to OpenStack with a

Snapshot identification to locate the snapshot. If successful, APP-C asks Open-

Stack to check if the snapshot is available to be used for Rebuild operation. When

APP-C receives the confirmation, it sends a request to execute the Stop oper-

ation on the VNF and periodically send a status request. After receiving the

confirmation of the stopped VNF, it sends a rebuild request to execute on the

VNF and then it starts to send status requests. When it receives the confirmation

for that operation, APP-C sends the Start request to OpenStack and once more

start to send status requests. Finally, after the confirmation of ”Server Status

RUNNING”, APP-C tries, unsuccessfully, to update AAI and at the end of the

delay, throws an operation complete status.

The process to obtain the time results is similar to the previous test and are

stored in the following tables:

Table 5.5: Test result from Rebuild operation (ms)

Average Standard Deviation Median

Input received → AAI (query finish) 3009 237 2983

AAI (query finish) → Operation Start 1101 362 994

Operation Start → Start Request 12226 368 12226

Start Requests → Located Target Image 1406 512 1299

Located Image → Accessible image confirmation 608 365 415

Accessible Confirmation → Stopping Image 901 80 879

Stopping image → Rebuilding image 21785 479 21575

Rebuilding image → Starting image 12261 586 12284

Starting image → Running image 21927 297 21895

Running image → Operation Complete (with DMaaP error) 8009 174 8049

Input Received → Operation Start 4110 454 4047

Operation Start → Operation Complete (with DMaaP error) 79123 1011 78791

Input Received → Operation Complete (with DMaaP error) 83233 912 83038

AAI Query Time by log system 2516.4 2474 207.121

Analyzing the results of this test, it is possible to conclude that the phases

that compose this operation are different from those of the previous tests. This

operation consumes more time because this operation search for the VNF in the

infrastructure, validate if the VNF have a valid image to execute the operation

and then stops the VNF, rebuild the VNF with the Snapshot sent by the APP-C

call and, at the end of the rebuild phase, starts the rebuilt VNF.

Concluding a statistical analysis of the measured results (Figure 5.12), once

again can be recognized as the low variation on the measured values in the series

of tests for each phase. It also evidences the stability of this operation execution

by the APP-C component.

5.3. OPENSTACK LCM OPERATIONS 55

Figure 5.12: Box and Whiskers plot for Statistical analysis on Rebuild Operation
Phases

Interpreting the time cumulative graphic of this operation, in Figure 5.13, is

notorious that the slope between phases is higher than the previous operations.

This is because the Rebuild operation is more complex and may require more

resources to operate. Nevertheless, the ideal platform functionality should have

a slope between phases of near zero. As seen in the graphic, some phases have a

greater weight in operation time than they should have.

The most critical phase is between the operation start status and the begin-

ning of the requests to OpenStack. As seen in the values measured, this phase

takes more than twelve seconds to start requesting. The cause for this higher

slope was unidentified but it should be optimized to decrease the weight of this

phase in the operation. Another critical phase is the final phase, similar to the

identified phase in Restart operation. The cause of this weight on the operation is

the same as Restart operation. In other words, in that phase, APP-C component

unsuccessfully tries to update the inventory and creates a delay in the operation,

increasing the weight of the phase in the overall operation.

The weight caused by OpenStack phases is independent of the APP-C com-

ponent and the ONAP platform, whereby they aren’t critical for this analysis

despite their weight on the operation.

56 CHAPTER 5. INFRASTRUCTURE TESTING AND VALIDATION

Figure 5.13: Time cumulative graphic of Rebuild operation

5.4 Ansible LCM Operations

To evaluate LCM operations through Ansible, it was planned to execute a

simple configuration operation to vFW VNF. This operation consists in using

the APP-C API to execute the operation through the Ansible Adapter and An-

sible Server. The configuration operation planned to execute was install or unin-

stall the Uncomplicated Firewall (UFW) daemon, the native firewall daemon of

Ubuntu OS. It was planned to build a playbook to execute that operation, to

be added in APP-C Ansible Server component and to onboard the operation in

APP-C CDT to execute successfully.

5.4.1 Testing Ansible with Virtual Machines

Before testing Ansible LCM operations on ONAP platform, it was tested some

functionalities of this framework in a virtual environment. With Ansible it was

possible to perform some simple operations such as pinging to several clients, per-

forming ifconfig commands and other Linux terminal commands. More complex

operations such as uploading and configuring files were then tested to configure

daemons and OS programs. All those operations were successfully tested with

multiple clients.

5.4.2 Testing Ansible LCM operations

After testing Ansible standalone in a VM environment, it was tried to test

the Ansible LCM operation on ONAP platform. However, the execution of this

5.5. IDENTIFIED CHALLENGES 57

test wasn’t occurred in time because of some difficulties on ONAP platform.

The first difficulty found was the instability of ONAP platform and Kuber-

netes containers and pods, or even disconnection of an entire VM from the rest of

the deployment. The problem that causes that error wasn’t found and the only

solution found was restarting the VM disconnected. However, when the solution

was executed successfully, some containers started to fail and the infrastructure

was deleted and a new deployment was entirely deployed.

After the ONAP platform redeployment, APP-C CDT doesn’t connected to

other APP-C components. However, the origin of the error wasn’t found in time

even instantiating all APP-C pods. This error was critical so that it could not

test the LCM transactions with Ansible in time.

5.5 Identified challenges

As said in the previous section, some challenges and difficulties disabled the

execution of LCM operations in time due to some problems and instability on

ONAP platform. In the following sections, some of those challenges and difficul-

ties with ONAP are described.

5.5.1 Testbed Resource Requirements

The ONAP deployment relies on the usage of a very significant amount of

resources. However, in the testbed, those amount of resources isn’t available. To

solve this problem, it was followed a minimal installation, identifying dependen-

cies in the platform required to onboard and apply LCM operations. [21]

5.5.2 ONAP Component Dependencies

One of the major difficulties was the ONAP dependencies, more precisely

between pods on Kubernetes throwing failed and pending status. Most of these

problems were caused by existing multiple dependencies between pods of different

containers, that should wait for each other to be instantiated. However, some-

times those components don’t wait for each other to be instantiated and throw

pending or failed status (i.e [2]). This occurs when the infrastructure is slower

and the waiting timer coded by ONAP development team isn’t enough to instan-

tiate correctly all the components. One solution is to delete individually each

failed pods to instantiate correctly the failed pods.

5.5.3 APP-C Database Component Instantiation

Sometimes, the APP-C Database fails to instantiate, disabling the APP-C

Core to instantiate as well. After the analysis of logs, the problem was solved

58 CHAPTER 5. INFRASTRUCTURE TESTING AND VALIDATION

by editing the parameter safe to bootstrap to 1 in file grastate.dat in the APP-C

docker files.

5.5.4 APP-C Database: OpenStack Operation Onboarding

In Casablanca release, sometimes onboarding OpenStack operations through

APP-C CDT, the component don’t populate the Database. In these situations,

it’s needed to add those operations directly on APP-C Database using the fol-

lowing line:

1 i n s e r t i n to PROTOCOLREFERENCE (ACTION, VNF TYPE, PROTOCOL, TEMPLATE,

ACTION LEVEL) va lue s (<OPERATION NAME>, <VNF NAME>, ”OS” , ”N” , ”

VM”) ;

5.6 Testing and Evaluation Conclusions

Completing the tests and validations of the APP-C component and some of

the LCM operations, we can see that although the resources used are reduced, the

time of the operations has interesting values compared to some support operations

that are used in current mobile networks. For example, the Rebuild operation,

which takes just over a minute and twenty seconds, compared to replacing physical

equipment, which can take hours, days or even weeks, is very small. The result

of this test proves the advantages of using NFV concerning the use of legacy

physical equipment.

Although the VMs used in testing contains a CirrOS image, which is a very

light test operating system, a VNF that can be used in a network service, if

optimized well, should be equally light and will not have a major impact on the

latency of operations.

Nevertheless, the OpenStack platform was running on old material (Table 4.1)

so the operation time may be higher than if a better-prepared server was used.

5.7 Chapter Summary

In this last chapter, the objectives of infrastructure validation and assessment

were stated, being the onboarding of a VNF on the ONAP platform and the exe-

cution of LCM operations on network services using OpenStack and Ansible. The

methodology used to achieve these objectives involves the instantiation of a net-

work service through ONAP and, with this instance, performing LCM operations

with OpenStack and Ansible. The metrics were removed during the execution of

the tests through the APP-C logs. With a repetition of operations, it was defined

to remove the metrics and use average values, and with these results, evaluate

the performance of the platform, specifically the operations used.

5.7. CHAPTER SUMMARY 59

After defining the methodology to be used for the tests, the important steps

in the description, onboarding and instantiation of a VNF were described. In

this way, service onboarding processes were identified, from resource onboarding

to service distribution.

In the execution of the tests, LCM operations were first performed from Open-

Stack, more specifically the Start, Restart, Stop and Rebuild operations. With

the tests performed, it was possible to identify some phases of each of the oper-

ations, some of which are coincident with each other, and analyse the temporal

weight that each one of these phases has on the operation itself. Those result

were expressed in form of graphics.

For LCM operations via Ansible, it has been planned to perform simple con-

figuration operations on a vFW by installing or uninstalling UFW or configuring

its configuration files.

To understand how Ansible works, it was necessary to first create a test en-

vironment with virtual machines where simple operations such as pinging several

clients through Ansible, performing ifconfig operations and finally, more complex

operations such as uploading and configuring files were performed.

However, it was not possible to perform LCM operations through Ansible in

ONAP due to several difficulties found in the platform, such as the instability of

the platform and the virtual machines associated with it.

During the implementation of the platform, network services and LCM opera-

tions, some challenges and difficulties were encountered, such as resource require-

ments, dependencies between ONAP components, instantiation of the APP-C

database and the onboarding of OpenStack operations in the APP-C database.

Finally, it was concluded that although there are no comparison values for

the results obtained, these are interesting because they validate the fact that it is

possible to carry out the operation of management and maintenance of virtualized

network resources in seconds or minutes, compared to the time required to carry

out the same type of operations in legacy network services, which may take hours,

days or even weeks to execute.

Chapter 6

Conclusions

5G networks will be the near future generation network technology that will

bring new use cases and new services to operators and clients, giving space to

new features such as Network Slicing and Service-Based Architecture networks.

More than the enhancement of Radio Access Networks, the core virtualization

will be an important enabler to this network generation and will revolutionize

the way we see mobile networks.

ONAP platform will be an important platform to operators to distribute and

scale old and new services easily in the entire range of the network, in and End-to-

End perspective, enabling Orchestration of all services and turn them virtualized

to centralize and distribute more easily those services.

With the first objective referred to in the Introduction, an analysis of the stan-

dardisation of ETSI NFV was carried out, highlighting its architecture, functions

and other components that make network virtualisation possible. The importance

that this technology will have in 5G networks was also highlighted.

The second objective, which refers to the analysis of open-source orchestration

software, consisted in a study on two open-source platforms, namely OSM and

ONAP. This analysis helped to understand the state of the current software for

this purpose and to understand in a general way, its functioning. Finally, the

ONAP platform was selected because it is a more comprehensive platform that

goes beyond the MANO functions.

The third objective was completed by integrating the ONAP platform with

the OpenStack platform. For this, a custom installation of the ONAP platform

was made to make LCM operations to VNF, these instantiated in the OpenStack

cloud platform.

In order to achieve the last objective, which is to execute LCM operations

in network services, we used the ONAP APP-C component, more precisely the

tools available for operations via OpenStack as well as Ansible. In order to

evaluate the execution of these operations, a series of tests to several operations

61

62 CHAPTER 6. CONCLUSIONS

was performed, taking out temporal metrics and analyzing the latency of each

of the operations with them. However, the operations with Ansible were not

possible to be performed due to some errors in the platform. From these results

it was proven the importance that this type of platforms, as well as the network

virtualization, can bring to 5G networks.

Although the ONAP platform is stable and production-ready, in the R&D

context the platform has some instabilities and still presents some difficulties for

developers to test the platform in new environments and new use cases. The

existing documentation of the platform, despite much, is still confusing and not

very organized, being spread over several locations. This complicates the role of

the developer when exploring, studying and developing the ONAP platform.

In the end of this dissertation, some tasks that can be important to the future

work of this project can identify :

• Test new LCM operations, don’t tested in this dissertation context;

• Onboard new types and/or more complex VNFs and Network Services and

validate the usage of those VNFs;

• Research and test new use cases focused on 5G networks.

References

[1] AAF Architecture — casablanca documentation. URL: https:

//onap.readthedocs.io/en/casablanca/submodules/aaf/authz.git/

docs/sections/architecture/aaf{_}architecture.html. [cited on p. 26]

[2] [AAI-1759] AAI model loader failed model distribution - ONAP. URL:

https://jira.onap.org/browse/AAI-1759. [cited on p. 57]

[3] Architecture — casablanca documentation. URL: https://onap.

readthedocs.io/en/casablanca/submodules/aai/aai-common.git/

docs/platform/architecture.html. [cited on p. 25]

[4] DCAE Architecture — casablanca documentation. URL: https:

//onap.readthedocs.io/en/casablanca/submodules/dcaegen2.git/

docs/sections/architecture.html. [cited on p. 26]

[5] DMaaP – Data Movement as a Platform (5/16/17) - Developer Wiki - Con-

fluence. URL: https://wiki.onap.org/pages/viewpage.action?pageId=

3247130. [cited on p. 26]

[6] Master Service Orchestrator (MSO) - Developer Wiki - Conflu-

ence. URL: https://wiki.onap.org/pages/viewpage.action?pageId=

1015834. [cited on p. 28]

[7] MSB Architecture — casablanca documentation. URL: https:

//onap.readthedocs.io/en/casablanca/submodules/msb/apigateway.

git/docs/platform/architecture.html. [cited on p. 26]

[8] ONAP VF-C — casablanca documentation. URL: https://onap.

readthedocs.io/en/casablanca/submodules/vfc/nfvo/lcm.git/docs/

platform/index.html. [cited on p. 29]

[9] Policy Architecture — casablanca documentation. URL: https:

//onap.readthedocs.io/en/casablanca/submodules/policy/engine.

git/docs/platform/architecture.html. [cited on p. 27]

63

64 REFERENCES

[10] Portal Architecture — casablanca documentation. URL: https:

//onap.readthedocs.io/en/casablanca/submodules/portal.git/

docs/platform/architecture.html. [cited on p. 28]

[11] Service Design and Creation (SDC) Portal - Developer Wiki - Conflu-

ence. URL: https://wiki.onap.org/display/DW/Service+Design+and+

Creation+{%}28SDC{%}29+Portal. [cited on p. 28]

[12] vFW CDS Casablanca - Developer Wiki - Confluence. URL: https://wiki.

onap.org/display/DW/vFW+CDS+Casablanca. [cited on p. 42]

[13] VID project (5/17/17) - Developer Wiki - Confluence. URL: https://wiki.

onap.org/pages/viewpage.action?pageId=5735532. [cited on p. 29]

[14] 3GPP. About 3GPP Home. URL: https://www.3gpp.org/about-3gpp/

about-3gpp. [cited on p. 5]

[15] 3GPP. 3GPP TS 22.261 3rd Generation Partnership Project; Technical

Specification Group Services and System Aspects; Service requirements for

the 5G system;. 2018. [cited on p. 5, 7]

[16] 5GO.pt. 5go | Activities. URL: https://5go.pt/en/activities/.

[cited on p. 2]

[17] 5GO.pt. 5go | Project. URL: https://5go.pt/en/project/. [cited on p. 2, 3]

[18] 5GO.pt. Deliverable D2.1 Use cases and requirements for solutions targetting

5G network core. 2018. [cited on p. 10]

[19] 5GPPP. Vision and mission 5G-PPP. URL: https://5g-ppp.eu/

about-us/. [cited on p. 5]

[20] 5GPPP. View on 5G Architecture (Version 2 . 0). pages 1–140, 2017.

[cited on p. 7, 18]

[21] João Aires, Pedro Barbosa, Sérgio Figueiredo, Bruno Parreira, Jorge

Mamede, and Manuel Ricardo. Addressing end-to-end Orchestration of

Virtualized Telco Services using ONAP in a R&D environment. In InFo-

rum 2019: Comunicações e Redes de Computadores (CRC), page 12, 2019.

[cited on p. xv, 3, 42, 43, 57]

[22] Iqbal Bedi. Setting the scene for 5G: Opportunities & Challenges. 2018.

doi:http://handle.itu.int/11.1002/pub/811d7a5f-en. [cited on p. xv, 9]

[23] Andy Bierman, Martin Björklund, and Kent Watsen. RESTCONF Protocol.

RFC 8040, January 2017. URL: https://rfc-editor.org/rfc/rfc8040.

txt, doi:10.17487/RFC8040. [cited on p. 39]

REFERENCES 65

[24] Gabriel Brown. Service-Based Architecture for 5G Core Networks. 2017.

[cited on p. 8, 9]

[25] Chef. Chef Docs - Platform Overview, 2019. URL: https://docs.chef.

io/platform{_}overview.html. [cited on p. xv, 38, 39]

[26] Margaret Chiosi and et al. Network Functions Virtualisation (NFV). ETSI

white paper, (1):1–20, 2014. doi:DGS/NFV-0011. [cited on p. 12, 17]

[27] Chris Donley. ONAP Casablanca Architecture (v3.0.3). [cited on p. 26, 34]

[28] Rob Enns, Martin Björklund, Andy Bierman, and Jürgen Schön-

wälder. Network Configuration Protocol (NETCONF). RFC 6241, June

2011. URL: https://rfc-editor.org/rfc/rfc6241.txt, doi:10.17487/

RFC6241. [cited on p. 37, 38]

[29] ETSI. ETSI GS NFV 001 V1.1.1 Network Functions Virtualisation (NFV);

Use Cases. pages 1–50, 2013. [cited on p. 12, 18]

[30] ETSI. ETSI GS NFV-MAN 001 V1.1.1 Network Functions Virtualisation

(NFV); Management and Orchestration. Gs Nfv-Man 001 V1.1.1, 1:1–184,

2014. URL: http://www.etsi.org/deliver/etsi{_}gs/NFV-MAN/

001{_}099/001/01.01.01{_}60/gs{_}nfv-man001v010101p.pdf.

[cited on p. 14, 15, 16]

[31] ETSI. ETSI GS NFV-SWA 001 Network Functions Virtualisation (NFV);

Virtual Network Functions Architecture. pages 1–93, 2014. [cited on p. 13]

[32] ETSI. ETSI GS NFV-EVE 005 V1.1.1 Network Functions Virtualisation

(NFV); Ecosystem; Report on SDN Usage in NFV Architectural Framework.

2015. [cited on p. 17]

[33] ETSI. ETSI GR NFV 001 V1.2.1 Network Functions Virtualisation (NFV);

Use Cases. ETSI, pages 1–81, 2017. doi:RGR/NFV-001ed121. [cited on p. xv,

12, 13, 14, 15, 16, 18, 19]

[34] ETSI. ETSI GS NFV-IFA 011 V3.1.1 Network Functions Virtualisation

(NFV) Release 3; Management and Orchestration; VNF Descriptor and

Packaging Specification. 2018. [cited on p. 16]

[35] ETSI. ETSI GS NFV-SOL 001 V2.5.1 Network Functions Virtualisation

(NFV) Release 2; Protocols and Data Models; NFV descriptors based on

TOSCA specification. 2018. [cited on p. 16, 17, 18]

[36] ETSI. ETSI - NFV, 2019. URL: https://www.etsi.org/technologies/

nfvhttps://www.etsi.org/technologies-clusters/technologies/nfv.

[cited on p. 12]

66 REFERENCES

[37] ITU-R. Recommendation ITU-R M.2083-0 IMT Vision – Framework and

overall objectives of the future development of IMT for 2020 and beyond.

pages 1–21, 2015. [cited on p. 6]

[38] Amar Kapadia. ONAP Demystified. [cited on p. xv, 18, 24, 25, 28, 34]

[39] NetWorld2020 ETP Expert Working Group. 5G: Challenges,

Research Priorities, and Recommendations. pages 1–45, 2014.

URL: http://networld2020.eu/wp-content/uploads/2014/02/

NetWorld2020{_}Joint-Whitepaper-V8{_}public-consultation.pdf.

[cited on p. 5, 10]

[40] NGMN Alliance. 5G White Paper. By NGMN Alliance 1.0, pages 1–125,

2015. [cited on p. xv, 8]

[41] NGMN Alliance. Service-Based Architecture in 5G. pages 1–17, 2018.

[cited on p. 8, 9]

[42] NGMN Alliance. The NGMN Alliance At a Glance NGMN at a Glance :

Vision , Mission , Organisation and Ways of Working. pages 1–13, 2018.

[cited on p. 5]

[43] ONAP. APPC User Guide — casablanca documentation. URL:

https://onap.readthedocs.io/en/casablanca/submodules/appc.

git/docs/APPCUserGuide/APPCUserGuide.html. [cited on p. xv, 25, 34, 35, 37,

38, 39]

[44] ONAP. ONAP MultiCloud Architecture — casablanca documentation.

URL: https://docs.onap.org/en/casablanca/submodules/multicloud/

framework.git/docs/MultiCloud-Architecture.html. [cited on p. xv, 26, 27]

[45] ONAP. ONAP Operations Manager Project — master branch documen-

tation. URL: https://docs.onap.org/en/latest/submodules/oom.git/

docs/oom{_}project{_}description.html. [cited on p. 24, 27]

[46] ONAP. APPC CDT User Guide — casablanca documentation, 2018.

URL: https://onap.readthedocs.io/en/casablanca/submodules/appc.

git/docs/APPCCDTGuide/APPCCDTGuide.html. [cited on p. xvii, 35, 36, 37]

[47] ONF. SDN Architecture 1.0 Overview. 2014. [cited on p. xv, 11, 17]

[48] ONF. ONF TR-518 Relationship of SDN and NFV. (1):1–

20, 2015. URL: https://www.opennetworking.org/images/

stories/downloads/sdn-resources/technical-reports/onf2015.

310{_}Architectural{_}comparison.08-2.pdf. [cited on p. 17]

REFERENCES 67

[49] ONF. ONF TR-521 SDN Architecture Issue 1.1. In ONF White Paper,

number 1.1, pages 1–59, 2016. [cited on p. 10, 11]

[50] OSM. OSM Information Model Release 1. 2016. [cited on p. 18, 21, 22]

[51] OSM. OSM Release THREE a technical review. 2017. [cited on p. 22, 23]

[52] OSM. OSM Release TWO a technical overview. 2017. [cited on p. 22]

[53] OSM. OSM Release FOUR Technical Overview. 2018. [cited on p. xv, 21, 22]

[54] François Rancy. IMT for 2020 and beyond. In Ramjee Prasad, editor,

5G Outlook- Innovations and Applications, chapter 6, pages 69–84. River

Publishers, 2016. [cited on p. xv, 6, 9]

[55] Red Hat Ansible. ANSIBLE IN DEPTH (White Paper). Tech-

nical report, 2017. URL: https://www.ansible.com/hubfs/

pdfs/Ansible-InDepth-WhitePaper.pdfhttps://www.ansible.com/

resources/whitepapers/ansible-in-depth. [cited on p. 38]

Appendix A

vFW Heat Templates

1 #base vfw . env

2 parameters :

3 image name : c i r r o s

4 f lavor name : c i r r o s

5 pub l i c n e t i d : 4d8925d9−e42b−4456−b637−a5d9b3d9cbf3
6 unp ro t e c t ed p r i v a t e n e t i d : zd fw1fwl01 unprotected

7 unpro t e c t ed p r i va t e subne t i d : zd fw1fwl01 unprotected sub

8 unp r o t e c t ed p r i v a t e n e t c i d r : 192 . 168 . 10 . 0/24

9 p r o t e c t e d p r i v a t e n e t i d : zd fw1 fwl01 protec ted

10 p ro t e c t ed p r i v a t e s ubne t i d : zd fw1 fwl01 protec ted sub

11 p r o t e c t e d p r i v a t e n e t c i d r : 192 . 168 . 20 . 0/24

12 onap pr i va t e ne t i d : oam onap k0H4

13 onap pr iva t e subne t id : oam onap k0H4

14 onap p r i v a t e n e t c i d r : 1 0 . 0 . 0 . 0 / 16

15 v fw pr i v a t e i p 0 : 192 . 168 . 10 . 100

16 v fw pr i v a t e i p 1 : 192 . 168 . 20 . 100

17 v fw pr i v a t e i p 2 : 1 0 . 0 . 1 0 0 . 1

18 vpg p r i v a t e i p 0 : 192 . 168 . 10 . 200

19 v sn p r i v a t e i p 0 : 192 . 168 . 20 . 250

20 v sn p r i v a t e i p 1 : 1 0 . 0 . 1 0 0 . 3

21 vfw name 0 : zdfw1fwl01fwl01

22 vsn name 0 : zdfw1fwl01snk01

23 vn f i d : vFirewal l demo app

24 vf module id : vFirewallCL

25 d c a e c o l l e c t o r i p : 1 2 7 . 0 . 0 . 1

26 d c a e c o l l e c t o r p o r t : 8080

27 r epo u r l b l ob : https : // nexus . onap . org / content / s i t e s /raw

28 r e p o u r l a r t i f a c t s : https : // nexus . onap . org / content / groups / s tag ing

29 demo a r t i f a c t s v e r s i o n : 1 . 1 . 0

30 i n s t a l l s c r i p t v e r s i o n : 1.1.0−SNAPSHOT
31 key name : onap key k0H4

32 pub key : ssh−r sa <ssh key>

33 c loud env : openstack

34 # phy s i c a l r e s o u r c e i d v s n : i n t e r f a c e v s n

35 # phy s i c a l r e s ou r c e i d v fw : i n t e r f a c e v fw

69

70 APPENDIX A. VFW HEAT TEMPLATES

1 #base vfw . yaml

2 ##

3 #

4 #==================LICENSE START

==

5 #

6 #

7 # Copyright (c) 2017 AT&T I n t e l l e c t u a l Property . Al l r i g h t s r e s e rved .

8 #

9 # Licensed under the Apache License , Vers ion 2 .0 (the ”L icense ”) ;

10 # you may not use t h i s f i l e except in compliance with the L icense .

11 # You may obta in a copy o f the L icense at

12 # http ://www. apache . org / l i c e n s e s /LICENSE−2.0
13 #

14 # Unless r equ i r ed by app l i c ab l e law or agreed to in wr i t ing , so f tware

15 # d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an ”AS IS ” BASIS ,

16 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or

impl i ed .

17 # See the L icense f o r the s p e c i f i c language governing pe rmi s s i ons and

18 # l im i t a t i o n s under the L icense .

19 #

20 #==================LICENSE END

==

21 #

22 # ECOMP i s a trademark and s e r v i c e mark o f AT&T I n t e l l e c t u a l Property

.

23 #

24 ##

25

26 hea t t emp la t e ve r s i on : 2013−05−23
27

28 d e s c r i p t i o n : Heat template that deploys vFirewal l−based demo f o r ONAP

29

30 ##############

31 # #

32 # PARAMETERS #

33 # #

34 ##############

35

36 parameters :

37 image name :

38 type : s t r i n g

39 l a b e l : Image name or ID

40 d e s c r i p t i o n : Image to be used f o r compute in s t ance

41 f lavor name :

42 type : s t r i n g

43 l a b e l : Flavor

44 d e s c r i p t i o n : Type o f i n s t ance (f l a v o r) to be used

71

45 pub l i c n e t i d :

46 type : s t r i n g

47 l a b e l : Publ ic network name or ID

48 d e s c r i p t i o n : Publ ic network that enab l e s remote connect ion to VNF

49 unp ro t e c t ed p r i v a t e n e t i d :

50 type : s t r i n g

51 l a b e l : Unprotected p r i va t e network name or ID

52 d e s c r i p t i o n : Pr ivate network that connects vPacketGenerator with

vF i r ewa l l

53 unpro t e c t ed p r i va t e subne t i d :

54 type : s t r i n g

55 l a b e l : Unprotected p r i va t e subnetwork name or ID

56 d e s c r i p t i o n : Pr ivate subnetwork o f the protec ted network

57 unp r o t e c t ed p r i v a t e n e t c i d r :

58 type : s t r i n g

59 l a b e l : Unprotected p r i va t e network CIDR

60 d e s c r i p t i o n : The CIDR of the unprotected p r i va t e network

61 p r o t e c t e d p r i v a t e n e t i d :

62 type : s t r i n g

63 l a b e l : Protected p r i va t e network name or ID

64 d e s c r i p t i o n : Pr ivate network that connects vF i r ewa l l with vSink

65 p ro t e c t ed p r i v a t e s ubne t i d :

66 type : s t r i n g

67 l a b e l : Protected p r i va t e subnetwork name or ID

68 d e s c r i p t i o n : Pr ivate subnetwork o f the unprotected network

69 p r o t e c t e d p r i v a t e n e t c i d r :

70 type : s t r i n g

71 l a b e l : Protected p r i va t e network CIDR

72 d e s c r i p t i o n : The CIDR of the protec ted p r i va t e network

73 onap pr i va t e ne t i d :

74 type : s t r i n g

75 l a b e l : ONAP management network name or ID

76 d e s c r i p t i o n : Pr ivate network that connects ONAP components and

the VNF

77 onap pr iva t e subne t id :

78 type : s t r i n g

79 l a b e l : ONAP management sub−network name or ID

80 d e s c r i p t i o n : Pr ivate sub−network that connects ONAP components

and the VNF

81 onap p r i v a t e n e t c i d r :

82 type : s t r i n g

83 l a b e l : ONAP pr i va t e network CIDR

84 d e s c r i p t i o n : The CIDR of the protec ted p r i va t e network

85 v fw pr i v a t e i p 0 :

86 type : s t r i n g

87 l a b e l : vF i r ewa l l p r i va t e IP address towards the unprotected

network

88 d e s c r i p t i o n : Pr ivate IP address that i s a s s i gned to the vF i r ewa l l

to communicate with the vPacketGenerator

89 v fw pr i v a t e i p 1 :

90 type : s t r i n g

72 APPENDIX A. VFW HEAT TEMPLATES

91 l a b e l : vF i r ewa l l p r i va t e IP address towards the protec ted network

92 d e s c r i p t i o n : Pr ivate IP address that i s a s s i gned to the vF i r ewa l l

to communicate with the vSink

93 v fw p r i v a t e i p 2 :

94 type : s t r i n g

95 l a b e l : vF i r ewa l l p r i va t e IP address towards the ONAP management

network

96 d e s c r i p t i o n : Pr ivate IP address that i s a s s i gned to the vF i r ewa l l

to communicate with ONAP components

97 vpg p r i v a t e i p 0 :

98 type : s t r i n g

99 l a b e l : vPacketGenerator p r i va t e IP address towards the

unprotected network

100 d e s c r i p t i o n : Pr ivate IP address that i s a s s i gned to the

vPacketGenerator to communicate with the vF i r ewa l l

101 v sn p r i v a t e i p 0 :

102 type : s t r i n g

103 l a b e l : vSink p r i va t e IP address towards the protec ted network

104 d e s c r i p t i o n : Pr ivate IP address that i s a s s i gned to the vSink to

communicate with the vF i r ewa l l

105 v sn p r i v a t e i p 1 :

106 type : s t r i n g

107 l a b e l : vSink p r i va t e IP address towards the ONAP management

network

108 d e s c r i p t i o n : Pr ivate IP address that i s a s s i gned to the vSink to

communicate with ONAP components

109 vfw name 0 :

110 type : s t r i n g

111 l a b e l : vF i r ewa l l name

112 d e s c r i p t i o n : Name o f the vF i r ewa l l

113 vsn name 0 :

114 type : s t r i n g

115 l a b e l : vSink name

116 d e s c r i p t i o n : Name o f the vSink

117 vn f i d :

118 type : s t r i n g

119 l a b e l : VNF ID

120 d e s c r i p t i o n : The VNF ID i s provided by ONAP

121 vf module id :

122 type : s t r i n g

123 l a b e l : vF i r ewa l l module ID

124 d e s c r i p t i o n : The vF i r ewa l l Module ID i s provided by ONAP

125 d c a e c o l l e c t o r i p :

126 type : s t r i n g

127 l a b e l : DCAE c o l l e c t o r IP address

128 d e s c r i p t i o n : IP address o f the DCAE c o l l e c t o r

129 d c a e c o l l e c t o r p o r t :

130 type : s t r i n g

131 l a b e l : DCAE c o l l e c t o r port

132 d e s c r i p t i o n : Port o f the DCAE c o l l e c t o r

133 key name :

73

134 type : s t r i n g

135 l a b e l : Key pa i r name

136 d e s c r i p t i o n : Publ ic / Pr ivate key pa i r name

137 pub key :

138 type : s t r i n g

139 l a b e l : Publ ic key

140 d e s c r i p t i o n : Publ ic key to be i n s t a l l e d on the compute in s t ance

141 r epo u r l b l ob :

142 type : s t r i n g

143 l a b e l : Repos i tory URL

144 d e s c r i p t i o n : URL of the r epo s i t o r y that hos t s the demo packages

145 r e p o u r l a r t i f a c t s :

146 type : s t r i n g

147 l a b e l : Repos i tory URL

148 d e s c r i p t i o n : URL of the r epo s i t o r y that hos t s the demo packages

149 i n s t a l l s c r i p t v e r s i o n :

150 type : s t r i n g

151 l a b e l : I n s t a l l a t i o n s c r i p t v e r s i on number

152 d e s c r i p t i o n : Vers ion number o f the s c r i p t s that i n s t a l l the vFW

demo app

153 demo a r t i f a c t s v e r s i o n :

154 type : s t r i n g

155 l a b e l : A r t i f a c t s v e r s i on used in demo vnfs

156 d e s c r i p t i o n : A r t i f a c t s (jar , ta r . gz) v e r s i on used in demo vnfs

157 c loud env :

158 type : s t r i n g

159 l a b e l : Cloud environment

160 d e s c r i p t i o n : Cloud environment (e . g . , openstack , rackspace)

161 # phy s i c a l r e s ou r c e i d v fw :

162 # type : s t r i n g

163 # lab e l : vFW i n t e r f a c e name

164 # de s c r i p t i o n : Name o f the vFW i n t e r f a c e (e . g . , i n t e r f a c e vFW)

165 # phy s i c a l r e s o u r c e i d v s n :

166 # type : s t r i n g

167 # lab e l : vsn i n t e r f a c e name

168 # de s c r i p t i o n : Name o f the vsn i n t e r f a c e (e . g . , i n t e r f a c e vsn)

169

170 #############

171 # #

172 # RESOURCES #

173 # #

174 #############

175

176 r e s ou r c e s :

177 random−s t r :
178 type : OS : : Heat : : RandomString

179 p r op e r t i e s :

180 l ength : 4

181

182 my keypair :

183 type : OS : : Nova : : KeyPair

74 APPENDIX A. VFW HEAT TEMPLATES

184 p r op e r t i e s :

185 name :

186 s t r r e p l a c e :

187 template : base rand

188 params :

189 base : { get param : key name }
190 rand : { g e t r e s ou r c e : random−s t r }
191 pub l i c key : { get param : pub key }
192 s ave p r i va t e key : f a l s e

193

194 unprotec ted pr ivate network :

195 type : OS : : Neutron : : Net

196 p r op e r t i e s :

197 name : { get param : unp ro t e c t ed p r i v a t e n e t i d }
198

199 unpro t e c t ed pr iva t e subne t :

200 type : OS : : Neutron : : Subnet

201 p r op e r t i e s :

202 name : { get param : unpro t e c t ed p r i va t e subne t i d }
203 network id : { g e t r e s ou r c e : unprotec ted pr ivate network }
204 c i d r : { get param : unp r o t e c t ed p r i v a t e n e t c i d r }
205

206 pro t e c t ed pr iva t e ne twork :

207 type : OS : : Neutron : : Net

208 p r op e r t i e s :

209 name : { get param : p r o t e c t e d p r i v a t e n e t i d }
210

211 pro t e c t ed p r i va t e subne t :

212 type : OS : : Neutron : : Subnet

213 p r op e r t i e s :

214 name : { get param : p r o t e c t ed p r i v a t e s ubne t i d }
215 network id : { g e t r e s ou r c e : p ro t e c t ed pr iva t e ne twork }
216 c i d r : { get param : p r o t e c t e d p r i v a t e n e t c i d r }
217

218 # Vir tua l F i r ewa l l i n s t a n t i a t i o n

219 v fw pr i va t e 0 po r t :

220 type : OS : : Neutron : : Port

221 p r op e r t i e s :

222 network : { g e t r e s ou r c e : unprotec ted pr ivate network }
223 f i x e d i p s : [{ ” subnet ”: { g e t r e s ou r c e :

unpro t e c t ed pr iva t e subne t } , ” i p add r e s s ”: { get param :

v fw p r i v a t e i p 0 }}]
224

225 v fw pr i va t e 1 po r t :

226 type : OS : : Neutron : : Port

227 p r op e r t i e s :

228 a l l owed add r e s s pa i r s : [{ ” ip addr e s s ”: { get param :

vpg p r i v a t e i p 0 }}]
229 network : { g e t r e s ou r c e : p ro t e c t ed pr iva t e ne twork }
230 f i x e d i p s : [{ ” subnet ”: { g e t r e s ou r c e : p r o t e c t ed p r i va t e subne t

} , ” i p add r e s s ”: { get param : v fw p r i v a t e i p 1 }}]

75

231

232 v fw pr i va t e 2 po r t :

233 type : OS : : Neutron : : Port

234 p r op e r t i e s :

235 network : { get param : onap pr i va t e ne t i d }
236 f i x e d i p s : [{ ” subnet ”: { get param : onap pr iva t e subne t id } , ”

i p add r e s s ”: { get param : v fw p r i v a t e i p 2 }}]
237

238 vfw 0 :

239 type : OS : : Nova : : Server

240 p r op e r t i e s :

241 image : { get param : image name }
242 f l a v o r : { get param : f lavor name }
243 name : { get param : vfw name 0 }
244 key name : { g e t r e s ou r c e : my keypair }
245 networks :

246 − network : { get param : pub l i c n e t i d }
247 − port : { g e t r e s ou r c e : v fw pr i va t e 0 po r t }
248 − port : { g e t r e s ou r c e : v fw pr i va t e 1 po r t }
249 − port : { g e t r e s ou r c e : v fw pr i va t e 2 po r t }
250 metadata : { vn f i d : { get param : vn f i d } , v f module id : {

get param : v f module id }}
251 user data fo rmat : RAW

252 user data :

253 s t r r e p l a c e :

254 params :

255 d c a e c o l l e c t o r i p : { get param : d c a e c o l l e c t o r i p }
256 d c a e c o l l e c t o r p o r t : { get param :

d c a e c o l l e c t o r p o r t }
257 d emo a r t i f a c t s v e r s i o n : { get param :

d emo a r t i f a c t s v e r s i o n }
258 i n s t a l l s c r i p t v e r s i o n : { get param :

i n s t a l l s c r i p t v e r s i o n }
259 v fw p r i v a t e i p 0 : { get param : v fw p r i v a t e i p 0 }
260 v fw p r i v a t e i p 1 : { get param : v fw p r i v a t e i p 1 }
261 v fw p r i v a t e i p 2 : { get param : v fw p r i v a t e i p 2 }
262 unp r o t e c t e d p r i v a t e n e t c i d r : { get param :

unp r o t e c t ed p r i v a t e n e t c i d r }
263 p r o t e c t e d p r i v a t e n e t c i d r : { get param :

p r o t e c t e d p r i v a t e n e t c i d r }
264 onap p r i v a t e n e t c i d r : { get param :

onap p r i v a t e n e t c i d r }
265 c l oud env : { get param : c loud env }
266 template : |
267 #!/bin /bash

268

269 # Create c on f i gu r a t i on f i l e s

270 mkdir /opt/ con f i g

271 echo ” d c a e c o l l e c t o r i p ” > /opt/ c on f i g /

d c a e c o l l e c t o r i p . txt

272 echo ” d c a e c o l l e c t o r p o r t ” > /opt/ c on f i g /

76 APPENDIX A. VFW HEAT TEMPLATES

d c a e c o l l e c t o r p o r t . txt

273 echo ” r e p o u r l b l o b ” > /opt/ c on f i g / r epo u r l b l ob . txt

274 echo ” r e p o u r l a r t i f a c t s ” > /opt/ c on f i g /

r e p o u r l a r t i f a c t s . txt

275 echo ” d emo a r t i f a c t s v e r s i o n ” > /opt/ c on f i g /

d emo a r t i f a c t s v e r s i o n . txt

276 echo ” i n s t a l l s c r i p t v e r s i o n ” > /opt/ c on f i g /

i n s t a l l s c r i p t v e r s i o n . txt

277 echo ” v fw p r i v a t e i p 0 ” > /opt/ c on f i g /

v fw p r i v a t e i p 0 . txt

278 echo ” v fw p r i v a t e i p 1 ” > /opt/ c on f i g /

v fw p r i v a t e i p 1 . txt

279 echo ” v fw p r i v a t e i p 2 ” > /opt/ c on f i g /

v fw p r i v a t e i p 2 . txt

280 echo ” unp r o t e c t e d p r i v a t e n e t c i d r ” > /opt/ c on f i g /

unp r o t e c t ed p r i v a t e n e t c i d r . txt

281 echo ” p r o t e c t e d p r i v a t e n e t c i d r ” > /opt/ c on f i g /

p r o t e c t e d p r i v a t e n e t c i d r . txt

282 echo ” onap p r i v a t e n e t c i d r ” > /opt/ c on f i g /

onap p r i v a t e n e t c i d r . txt

283 echo ” c l oud env ” > /opt/ c on f i g / c loud env . txt

284

285 # Download and run i n s t a l l s c r i p t

286

287

288 # Vir tua l Sink i n s t a n t i a t i o n

289 v sn p r i v a t e 0 po r t :

290 type : OS : : Neutron : : Port

291 p r op e r t i e s :

292 network : { g e t r e s ou r c e : p ro t e c t ed pr iva t e ne twork }
293 f i x e d i p s : [{ ” subnet ”: { g e t r e s ou r c e : p r o t e c t ed p r i va t e subne t

} , ” i p add r e s s ”: { get param : v sn p r i v a t e i p 0 }}]
294

295 v sn p r i v a t e 1 po r t :

296 type : OS : : Neutron : : Port

297 p r op e r t i e s :

298 network : { get param : onap pr i va t e ne t i d }
299 f i x e d i p s : [{ ” subnet ”: { get param : onap pr iva t e subne t id } , ”

i p add r e s s ”: { get param : v sn p r i v a t e i p 1 }}]
300

301 vsn 0 :

302 type : OS : : Nova : : Server

303 p r op e r t i e s :

304 image : { get param : image name }
305 f l a v o r : { get param : f lavor name }
306 name : { get param : vsn name 0 }
307 key name : { g e t r e s ou r c e : my keypair }
308 networks :

309 − network : { get param : pub l i c n e t i d }
310 − port : { g e t r e s ou r c e : v sn p r i v a t e 0 po r t }
311 − port : { g e t r e s ou r c e : v sn p r i v a t e 1 po r t }

77

312 metadata : { vn f i d : { get param : vn f i d } , v f module id : {
get param : v f module id }}

313 user data fo rmat : RAW

314 user data :

315 s t r r e p l a c e :

316 params :

317 pro t e c t ed ne t gw : { get param : v fw p r i v a t e i p 1 }
318 unpro t e c t ed ne t : { get param :

unp r o t e c t ed p r i v a t e n e t c i d r }
319 r e p o u r l b l o b : { get param : r epo u r l b l ob }
320 r e p o u r l a r t i f a c t s : { get param : r e p o u r l a r t i f a c t s

}
321 i n s t a l l s c r i p t v e r s i o n : { get param :

i n s t a l l s c r i p t v e r s i o n }
322 v s n p r i v a t e i p 0 : { get param : v sn p r i v a t e i p 0 }
323 v s n p r i v a t e i p 1 : { get param : v sn p r i v a t e i p 1 }
324 p r o t e c t e d p r i v a t e n e t c i d r : { get param :

p r o t e c t e d p r i v a t e n e t c i d r }
325 onap p r i v a t e n e t c i d r : { get param :

onap p r i v a t e n e t c i d r }
326 c l oud env : { get param : c loud env }
327 template : |
328 #!/bin /bash

329

330 # Create c on f i gu r a t i on f i l e s

331 mkdir /opt/ con f i g

332 echo ” p ro t e c t ed ne t gw ” > /opt/ c on f i g /

protected net gw . txt

333 echo ” unp ro t e c t ed ne t ” > /opt/ c on f i g / unprotected net .

txt

334 echo ” r e p o u r l b l o b ” > /opt/ c on f i g / r epo u r l b l ob . txt

335 echo ” i n s t a l l s c r i p t v e r s i o n ” > /opt/ c on f i g /

i n s t a l l s c r i p t v e r s i o n . txt

336 echo ” v s n p r i v a t e i p 0 ” > /opt/ c on f i g /

v sn p r i v a t e i p 0 . txt

337 echo ” v s n p r i v a t e i p 1 ” > /opt/ c on f i g /

v sn p r i v a t e i p 1 . txt

338 echo ” p r o t e c t e d p r i v a t e n e t c i d r ” > /opt/ c on f i g /

p r o t e c t e d p r i v a t e n e t c i d r . txt

339 echo ” onap p r i v a t e n e t c i d r ” > /opt/ c on f i g /

onap p r i v a t e n e t c i d r . txt

340 echo ” c l oud env ” > /opt/ con f i g / c loud env . txt

341

342 # Download and run i n s t a l l s c r i p t

