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Abstract. We prove the quasimodularity of generating functions for counting torus covers, with
and without Siegel–Veech weight. Our proof is based on analyzing decompositions of flat surfaces
into horizontal cylinders. The quasimodularity arises from representing the generating series as a
contour integral of quasi-elliptic functions. This provides an alternative proof of the quasimodu-
larity results of Bloch–Okounkov, Eskin–Okounkov and Chen–Möller–Zagier, and generalizes the
results of Böhm–Bringmann–Buchholz–Markwig for simple ramification covers.
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1. Introduction

The generating series for counting the number of torus coverings first attracted atten-
tion with Dijkgraaf’s work [Dij95] on mirror symmetry for elliptic curves. It was shown
rigorously by Kaneko–Zagier [KZ95] that these functions are quasimodular forms. This
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F-91405 Orsay Cedex, France; e-mail: elise.goujard@gmail.com
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statement was generalized by Eskin–Okounkov [EO01] from simple branch points to ar-
bitrary branching profiles.

In this paper we show that the quasimodularity of counting functions generalizes in
two ways. We first analyze to which extent the quasimodularity holds when counting the
contributions of each underlying global graph separately. The precise statement requires
a correspondence theorem between covers and decorated graphs. In the case of simple
branching, the global graphs are trivalent and sometimes referred to as Feynman graphs.
In this case our correspondence theorem boils down to the correspondence theorem for
tropical Hurwitz numbers of torus covers proved in [BBBM17], as we explain in Sec-
tion 8.

The second generalization counts coverings with a Siegel–Veech weight, motivated
by Siegel–Veech constants for flat surfaces. Here again, our method provides a different
approach and a refinement of the quasimodularity shown in [CMZ18], by counting the
contribution of each (‘Feynman’) graph separately.

We give some motivation for why we care about quasimodularity statements. Obvi-
ously, knowing the first few coefficients of a quasimodular form determines the whole
series and thus provides a computational approach to the counting problem. Second,
the asymptotic behaviour of the coefficients of a quasimodular form is well-understood
[CMZ18, Section 9]. Those coefficient asymptotics are important e.g. to compute the
Masur–Veech volumes of moduli spaces of flat surfaces. Despite some recent advances
([AEZ16], [Gou16], [CMZ18]) many refined questions, concerning e.g. large genus
asymptotics, spin structure distinction and Masur–Veech volumes of quadratic differen-
tial spaces in general, are still wide open. We plan to apply the techniques presented here
to these cases in a sequel to this paper.

A covering p : X → E of the square torus provides X with a flat metric ω = p∗ωE .
The flat surface (X, ω) is swept out by horizontal cylinders. We obtain the global graph of
the covering by letting the vertices be the branch points of p and the edges be those hor-
izontal cylinders. Our correspondence theorem shows roughly that decorating the graph
with widths and heights at the edges and with local data (triple Hurwitz numbers) at the
vertices defines a bijection with the torus covers; see Proposition 2.4 for a precise state-
ment. In the case of simple branching, our global graphs are the tropical covers of e.g.
[BBBM17].

For counting problems the following special case of Theorem 5.8 is the core of quasi-
modularity statements.

Theorem 1.1. Let P be a product of derivatives ℘(m)(zi − zj ) of the Weierstrass ℘-
function. Then the constant term1 with respect to the variables ζj = e2πizj ,

[ζ 0
n , . . . , ζ

0
1 ]P =

1
(2πi)n

∮ 1+iεn

0+iεn
· · ·

∮ 1+iε1

0+iε1

P(z1, . . . , zn; τ) dz1 . . . dzn,

is a quasimodular form. More precisely, if P consists of ` factors, where the k-th factor
involves the mk-th derivative, then the quasimodular form has mixed weight less than or
equal to

∑`
k=1(2+mk).

1 We refer to Section 5.3 for the conventions on the “heights” εi of integration paths.
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Note that in general these constant terms are not of pure weight2 as we show in the exam-
ple in Section 5.4, even if all mk are zero. The statement of the theorem above involves
only the elliptic Weierstraß ℘-function. Nevertheless our proof requires Theorem 5.8
about the quasimodularity of constant terms for quasi-elliptic functions in full general-
ity, since taking the coefficient [ζ 0

1 ] of an elliptic function may no longer be elliptic.
We let N◦(5) =

∑
N◦d (5)q

d be the generating series for counting torus covers
with branching profile 5. Our first geometric application is an independent proof of the
following result of Kaneko–Zagier and Eskin–Okounkov, based on Theorem 1.1.

Theorem 1.2 (= Corollary 6.2). For any ramification profile 5 the counting function
N◦(5) for connected torus covers of profile 5 is a quasimodular form of mixed weight
less than or equal to |5| + `(5).

The generating series N◦(5) can be decomposed as
∑
0 N
◦(0,5) according to the as-

sociated global graph 0. In general, the individual contributions N◦(0,5) are not quasi-
modular forms: already genus 2 surfaces and 5 consisting of a 3-cycle provides an ex-
ample (see Section 9.1). Our method of proof gives a refinement of the quasimodularity
statement for the case of simple branch points. Along with the interpretation in terms of
tropical covers, in Section 8 we show

Theorem 1.3 (= Corollary 8.4). In the case 5 = ((2), . . . , (2)), for any trivalent
graph 0 the contributionN ′(5, 0) of the graph 0 to the total counting is a quasimodular
form of mixed weight at most |5| + `(5).

Siegel–Veech constants give the asymptotic number of immersed cylinders in a flat sur-
face with bounded length of the waist curve. They are important characteristics of the
dynamics of billiards and flat surfaces; see Section 7.1 for a brief summary and [EM01],
[EMZ03], [CMZ18, Section 1] for more details. The Siegel–Veech constants for a gen-
eral flat surface in a given stratum can be computed by determining the asymptotics of
Siegel–Veech constants for spaces of torus covers. This in turn requires counting torus
covers with a combinatorial constant, the Siegel–Veech weight (depending on an integer
parameter p ≥ −1), which we define in Section 7. In analogy with the simple counting
problem we next define the generating series c◦p(5) of Siegel–Veech weighted coverings.
Showing that this series is a quasimodular form is important because of the good control
of the coefficient asymptotics of quasimodular forms (see [CMZ18, Section 9]). Counting
Siegel–Veech weighted graphs gives a new proof of the following theorem (see [CMZ18,
Theorem 6.4]); its refinement in the trivalent case is stated in Corollary 8.4.

Theorem 1.4 (= Corollary 7.2). For any ramification profile 5 and any odd integer
p ≥ −1 the generating series c◦p(5) for counting connected covers with p-Siegel–Veech
weight is a quasimodular form of mixed weight at most |5| + `(5)+ p + 1.

We conclude with an outline of the proof of Theorems 1.2 and 1.4. By using the corre-
spondence theorem (Proposition 2.4) our problem is converted into counting decorated

2 Purity of the weight of the quasimodular form is claimed in Theorem 3.2 of [BBBM17], but it
relies on Proposition 3.3 there, which has a gap.
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graphs whose vertex labels are triple Hurwitz numbers. These are piecewise polynomials
in the input data, i.e. the edge labels of the graph. If these were globally polynomials (as
they are in the trivalent case), the graph sums can be interpreted as the constant coefficient
of a polynomial in the Weierstraß℘-function and its derivatives (see Proposition 6.7). The
polynomiality can be restored using completed cycles pk instead of the weighted symmet-
ric group characters fk in the Burnside formula for counting coverings. With the use of
the notion of q-bracket and the fact that both fk and pk generate the algebra of shifted
symmetric functions, the arguments of Section 4.1 allow one to come back to the true
counting problem while maintaining quasimodularity.

Notation

For a partition λ = (λ1 ≥ λ2 ≥ · · · ) we let |λ| =
∑
i≥0 λi be the number that λ is a

partition of, i.e., λ ` |λ|. We denote by `(λ) = max{i; λi ≥ 0} the length of the partition.
We also need its weight wt(λ) = |λ| + `(λ). We adopt the corresponding notation for
tuples, i.e. if w = (w1, . . . , wn) then |w| =

∑
wi and n = `(w).

2. Counting covers of elliptic curves by global graphs

In this section we recall basic facts about enumeration of covers, both for torus coverings
and coverings of the projective line with three marked points. The aim of this section is the
correspondence theorem (Proposition 2.4) that gives a bijection between torus coverings
and decorated graphs. This proposition holds at the level of covers without unramified
components only, but (for a general branching profile) neither at the level of connected
coverings nor at the level of all coverings. The statement requires setting up quite a bit of
notation.

2.1. Covers of elliptic curves and their Hurwitz tuples

Here we recall basic facts about enumeration of covers using tuples of elements in the
symmetric group. Our aim here is to explain the passage between the number of connected
and disconnected coverings and to express these numbers in terms of characters of the
symmetric group. We focus on torus coverings in this section.

Let 5 = (µ(1), . . . , µ(n)) consist of partitions µ(i) = (µ(i)1 , µ
(i)
2 , . . .) such that each

entry µ(i)j is a non-negative integer and for later use we define g by
∑
i,j (µ

(i)
j − 1) =

2g − 2. We call such a tuple 5 a ramification profile.
A covering p : X→ E of the torus E has ramification profile5 if the covering has n

numbered branch points and over the i-th branch point the sheets coming together form
the partition µ(i) (completed by singletons if |µ(i)| < deg(p)). Let

ρ : π1(E \ {P1, . . . , Pn})→ Sd

be the monodromy representation in the symmetric group of d elements associated with
the covering p and some base point P , which we suppress in notation. We use the
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Fig. 1. Standard presentation of π1(E \ {P1, . . . , Pn}).

convention that loops (and elements of the symmetric group) are composed from right
to left. The elements (α, β, γ1, . . . , γn) as in Figure 1 generate the fundamental group
π1(E \ {P1, . . . , Pn}) with the relation

β−1α−1βα = γn · · · γ1. (1)

Given such a homomorphism ρ, we let α = ρ(α), β = ρ(β) and γ i = ρ(γi) and call the
tuple

h = (α,β, γ 1, . . . , γ n) ∈ (Sd)
n+2 (2)

the Hurwitz tuple corresponding to ρ and the choice of generators. Our main goal is to
count coverings, or rather the corresponding Hurwitz tuples, and so we let

Hurd(5) = {H = (α,β, γ 1, . . . , γ n) ∈ (Sd)
n+2 of profile 5}, (3)

where we say that H has profile 5 if the partitions [γ i] associated with conjugacy class
of γ i are equal to µ(i) for i = 1, . . . , n. Here we use the general convention to call two
partitions of different sizes d1 ≤ d2 equal if they differ by d2 − d1 parts of length 1.

So far we have made no connectedness assumption, but we will ultimately be inter-
ested in counting connected coverings, hence with transitive monodromy representations.
We indicate this subset by an upper circle. As an important technical intermediate notion
we need covers without unramified components, indicated by a prime, so we let

Hur◦d(5) = {H ∈ Hurd(5) : 〈H 〉 acts transitively on {1, . . . , d}},
Hur′d(5) = {H ∈ Hurd(5) : 〈γ 1, . . . , γ n〉 acts non-trivially on every H -orbit}.

The corresponding counts of covers (as usual with weight 1/Aut(p)) differ from the
cardinalities of these sets of Hurwitz tuples by the simultaneous conjugation of the Hur-
witz tuple, hence by a factor of d!. Consequently, we let

Nd(5) =
|Hur0

d(5)|

d!
, N ′d(5) =

|Hur′d(5)|
d!

, N◦d (5) =
|Hur◦d(5)|

d!
, (4)

and package these data into the generating series

N(5) =

∞∑
d=0

Nd(5)q
d , N ′(5) =

∞∑
d=0

N ′d(5)q
d , N0(5) =

∞∑
d=0

N0
d (5)q

d . (5)
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From |Hurd(5)| =
∑d
j=0

(
d
j

)
|Hur′j (5)| |Hurd−j ()| one deduces that

N ′(5) = N(5)/N(). (6)

In order to state the passage from connected counting to counting without unramified
components we need to define the set of ramification points and its partitions. For i ∈
{1, . . . , n} let µ(i)j for j ∈ J = J (i) be the parts of µ(i) of length greater than 1 and let

R(5) = {(i, j); i ∈ {1, . . . , n} and j ∈ J (i)}

be the index set of ramification points of the profile5. We let P(R) be the set of partitions
of the set R = R(5) that are finer than the partition by different first index. For any
part A of such a partition we let 5A be the profile consisting of the partitions µ(i)A =
{µ
(i)
j : (i, j) ∈ A} grouped together according to A. We omit those i for which there is

no j with (i, j) ∈ A, so that 5A is a profile with n or fewer branch points.

Proposition 2.1. The generating function for counting covers without unramified com-
ponents can be expressed in terms of counting functions for connected covers as

N ′(5) =
∑

α∈P(R)

∏
A∈α

N◦(5A).

Proof. Any covering p without unramified components induces a partition α ∈ P(R) of
the ramification points according to its connected components. We label the sheets of the
covering and obtain the identity of the sets of Hurwitz numbers

|Hur′d(5)| =
∑

α∈P(R)

∑
(dA)A∈α

(
d

(dA)A∈α

)∏
A∈α

|Hur◦dA(5A)|,

from which the claim follows immediately. ut

Since the summand N◦(5) appears on the right side, classical inclusion-exclusion allows
one to invert this formula and to write N◦(5) as a linear combination of products of
N ′(5A) for subsets A of R.

With the aim of connecting counting problems with the representation theory of
the symmetric group, we recall the classical Burnside Lemma (see e.g. [LZ04, Theo-
rem A.1.10]) that the number of Hurwitz tuples with ramification profile 5 is given by

|Hurd(5)| = d!
∑

λ∈P(d)

n∏
i=1

fµ(i)(λ), (7)

where a conjugacy class σ is completed with singletons to form a partition of |λ|, and

fσ (λ) = zσχ
λ(σ )/dimχλ. (8)

Here zσ denotes the size of the conjugacy class of σ and dimχλ is the dimension of the
representation λ. We also write fk in the special case when σ is a k-cycle.

2.2. Covers of the projective line with three marked points

Covers π : S → P1 of the projective line can, of course, also be described by their
monodromy. The main point here is to introduce some notation and to highlight the fact
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that we consider one of the points (z = 1) to have a fixed ramification profile given by a
partition µ, whereas the ramification over the other two branch points (z = 0 and z = ∞)
is prescribed by two (‘input’ and ‘output’) tuples of variables w− = (w−1 , . . . , w

−

n−
) and

w+ = (w+1 , . . . , w
+

n+
).

We conclude again with the passage between the number of connected and discon-
nected coverings and expressions in terms of characters of the symmetric group.

The use of the terminology of double and triple Hurwitz numbers is not completely
consistent in the literature. Most classically, double Hurwitz numbers count coverings
with prescribed behaviour over two points and only simple branching besides. In e.g.
[SSZ12] (which we will use later), this notion is generalized by allowing instead of simple
branching several cycles of fixed length r . We call these generalized double Hurwitz
numbers. We also need triple Hurwitz numbers that count covers with three prescribed
ramification points. In the literature simple branch points might be allowed, but we will
not need this case and do not consider it. We will frequently use the special case of triple
Hurwitz numbers where the ramification profile over one of the points is a cycle. These
are obviously (special cases of) generalized double Hurwitz numbers.

Our general notation convention is that Cov denotes a set of coverings, TR (‘triple
ramification’) is the set of tuples describing the monodromy of a covering and A denotes
the number of coverings, always with weight 1/Aut(π). We use here superscripts ◦ and
primes as in the previous section, to denote connected covers and covers without unrami-
fied components, respectively.

We need to highlight one more detail, the numbering of preimages of branch points.
Suppose that deg(π) = d. For a partition µ and a point x ∈ P1 we write π−1(x) = [µ]

if the cycles in π−1(x) agree with the partition µ, completed by ones to form a partition
of d. We say that x has unnumbered profile µ in this case. If w is a tuple of integers with∑
wi = d , we may consider it as a partition [w] and write π−1(x) = [w] to specify an

unnumbered profile. More frequently we will write that the covering π has the property
π−1(x) = w and we will say that x has numbered profile w over x if the covering comes
with a labelling σx of π−1(x) such that at the i-th point, wi sheets come together.

We will consider most of the time the profile over z = 0 and z = ∞ to be numbered
and over z = 1 to be unnumbered. If all of these points have unnumbered profiles, we add
the subscript ‘un’.

Thus, we have explained the conventions for our notations

Covun(w−,w+, µ) =
{
π : S → P1

; deg(π) =
∑

w+i =
∑

w−i ,

π−1(1) = [µ], π−1(0) = [w−], π−1(0) = [w−]
}

(9)

and

Cov(w−,w+, µ) =
{
(π : S → P1, σ0, σ∞); deg(π) =

∑
w+i =

∑
w−i ,

π−1(1) = [µ], π−1(0) = w−, π−1(0) = w−
}

(10)
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for unnumbered and numbered coverings. The same notation convention is used for

TRun(w−,w+, µ) = {T = (α,β, γ ) ∈ S3
d ; [α] = [w

−
], [β] = [w+], [γ ] = µ},

TR(w−,w+, µ) = {(T = (α,β, γ ), σ0, σ∞); [γ ] = µ, [α] = w−, [β] = w+}
(11)

for Hurwitz tuples. Moreover, we denote by

Aun(w−,w+, µ) =
∑

π∈Covun(w−,w+,µ)

1
Aut(π)

=
1
d!
|TRun(w−,w+, µ)|,

A(w−,w+, µ) =
∑

π∈Cov(w−,w+,µ)

1
Aut(π)

=
1
d!
|TR(w−,w+, µ)|

(12)

the weighted numbers of Hurwitz tuples if d=
∑
w+i =

∑
w−i , and we letA(w−,w+, µ)

= 0 if this condition does not hold.
As a consequence of the Burnside Lemma we can again write those cardinalities in

terms of characters of the symmetric group as

Aun(w−,w+, µ) =
zw−zw+

d!2

∑
|λ|=d

χλw−χ
λ
w+fµ(λ)

=

(∏
i

w−i

∏
i

w+i

∏
j

r−j

∏
j

r+j

)−1 ∑
|λ|=d

χλw−χ
λ
w+fµ(λ) (13)

if d =
∑
i w
+

i =
∑
j w
−

j , and zero otherwise, where r±j are the multiplicities of the parts
of w±. Correspondingly,

A(w−,w+, µ) =
1∏

i w
−

i

∏
i w
+

i

∑
|λ|=d

χλw−χ
λ
w+fµ(λ) (14)

if d =
∑
i w
+

i =
∑
j w
−

j , and zero otherwise. This formula is the point of departure for
the counting problems.

As in the case of covers of elliptic curves, we conclude this section with a discussion
of the passage between connected and disconnected versions.

Lemma 2.2. The double Hurwitz number with no ramification point over z = 1 is

A(w−,w+,∅) =
1∏
i w
+

i

δw−
w+ . (15)

Proof. This is a straightforward application of the second orthogonality relation for char-
acters. ut

Since a general disconnected cover can be decomposed as a disjoint union of a cover
without unramified components and a collection of unramified covers (i.e. of cylinders),
we obtain the following lemma.
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Lemma 2.3. The triple Hurwitz numbers can be written in terms of triple Hurwitz num-
bers without unramified components for subsets of the ramification profile as

A(w−,w+, µ) =
∑

u+⊂w+,u−⊂w−
|µ|≤|u−|=|u+|

A′(u−,u+, µ)A(w− \ u−,w+ \ u+,∅), (16)

where we have set A(∅,∅,∅) = 1.

Consequently, we can apply inclusion-exclusion (or Möbius inversion) to this formula and
write triple Hurwitz numbers without unramified components in terms of (disconnected)
Hurwitz numbers. That is, there exists a Möbius function M(u+,u−,w+,w−) such that

A′(w−,w+, µ) =
∑

u+⊂w+,u−⊂w−
|µ|≤|u−|=|u+|

M(u+,u−,w+,w−)A(u−,u+, µ). (17)

2.3. Global graphs and cylinder decompositions

We now suppose moreover that the base of the covering p is the square torus E =
C/(Z + iZ) and p is a cover without unramified components. We fix the holomorphic
one-form ωE on E with period lattice 3 = Z + iZ and provide X with the flat structure
ω = p∗ωE . To such a situation we will associate a graph with decorations as follows. The
horizontal foliation of ω is completely periodic. From each homotopy class of horizontal
cylinders c we select one representative, the core curve γc. We let X0

= \
⋃
c γc be the

complement of all the core curves. For merely counting covers the precise location of the
branch points is irrelevant. For concreteness, we use the branch point normalization that
the i-th branch point has fixed coordinates zi = xi+

√
−1 εi with 0 ≤ ε1 < · · · < εn < 1

and any xi ∈ [0, 1).
The global graph 0 associated with the flat surface (X, ω = p∗ωE) of ramification

profile 5 is the graph 0 with n = |5| vertices, labelled by 1, . . . , n = |5| (see Fig-
ure 2). The edges E(0) of 0 are in bijection with the core curves. An edge e connects
the vertices i and j if the connected components of X0 adjacent to the core curve γ (e)
contain ramification points lying over the i-th and j -th branch points in E. Note that this
is well-defined by branch point normalization, which rules out that the p-images of two
ramification points have the same height. The case i = j , i.e. self-edges, is of course
possible.

To give an alternative definition, if each µ(i) in the profile 5 is a d-cycle, the global
graph is just the dual graph of the stable curve of the curve obtained by degenerating
the surface X in the horizontal direction, i.e. by applying diag(et , e−t ). In the general
case, the global graph is the quotient graph of this dual graph, obtained by identifying the
vertices whose corresponding branch point have the same number (in 1, . . . , n).

We provide 0 with an orientation as follows and write G ∈ 0 for the oriented graph.
Fix an oriented closed loop on E (e.g. a vertical straight line), intersecting the horizontal
straight line once. Preimages of this loop are paths in X, each crossing precisely one core
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Fig. 2. A torus cover, its global graph, and the local surfaces.

curve γc, and we orient the corresponding edge of 0 in the direction of this loop. Self-
edges are not given any orientation. Note that this orientation is well-defined by p up to
flipping all arrows of G.

We call the union of connected components of X0 that carry the same label the local
surfaces of (X, ω). We label these local surfaces also by an integer in {1, . . . , n} according
to the ramification point they carry. This labelling is well-defined, since p is a cover
without unramified components.

To reconstruct a torus-covering flat surface from a global graph, we need two extra
data that encode the geometry of the cylinders and the geometry of the local surfaces,
respectively.

Each cylinder (corresponding to an edge e) has an integral positive width we and a
real positive height he. The heights he are not arbitrary, but related to the position of the
branch points. For an edge e ∈ E(0) we denote by i+(e) (resp. i−(e)) the label of the
terminal (resp. initial) vertex of the edge e. It is obvious from the construction that the
tuple (he)e∈E(0) of heights belongs to the height space

ÑE(G) = {(he)e∈E(0); he −1(e) ∈ N}, (18)

where 1(e) = εi+(e) − εi−(e) if i+(e) ≥ i−(e) and 1(e) = 1+ εi+(e) − εi−(e) otherwise.
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The last piece of local information for a cylinder is the twist te ∈ Z∩ [0, we− 1]. The
twist depends on the choice of ramification points P−(e) and P+(e) in each of the two
components adjacent to the cylinders and it is defined as the integer part of the real part
b<(

∫
s
ω)c of the integral along the unique straight line joining P−(e) to P+(e) such that

te ∈ [0, we − 1]. The exact values of the twist will hardly matter below. It is important to
remember simply that there are we possibilities for the twist in a given cylinder.

We now encode the local geometry on the complement of the core curves. The re-
striction of the cover p to any local surface is metrically a cover of an infinite cylinder,
branched over one point only. In other words, for any vertex v ∈ V (0) the (possibly dis-
connected) local surface S = Sv can be described as a covering π : S → P1, ramified
over z = 0, z = 1 and z = ∞ only. The restriction of ω to S is the pullback of the infinite
metric cylinder dz/z. The ramification profile of π consists

• over z = 0 of the widths we of the incoming edges at v,
• over z = ∞ of the widths we of the outgoing edges at v, and
• over z = 1 of the subset of the branching profile µ(i), where i is the label of v.

Proposition 2.4. Up to the action of the group Aut(0) of automorphisms of the labelled
graph 0 there is a bijective correspondence between

(i) the flat surfaces (X, ω) with covering p : X → E of degree d of the square torus E
without unramified components and with ω = π∗ωE , and

(ii) the isomorphism classes of tuples (G, (we, he, te)e∈E(G), (πv)v∈V (G)) consisting of

• a global graph 0 with marked vertices and without isolated vertices together with
an orientation G ∈ 0,
• a collection (we, he, te)e∈E(G) of real numbers representing the width, height and

twist of the cylinder corresponding to e; the widths we are integers, the tuple
(he)e∈E(G) ∈ ÑE(G) of heights is in the height space, te ∈ Z ∩ [0, we − 1] and
these numbers satisfy ∑

e∈E(G)

wehe = d, (19)

• a collection (πv)v∈V (G) of P1-coverings without unramified components, with
πv ∈ Cov′(w−v ,w+v , µv) where w−v is the tuple of widths at the incoming edges
at v, w+v is the tuple of widths at the outgoing edges at v, and µv is the ramifica-
tion profile given by the labels at v.

Note that an automorphism of the labelled graph 0 preserves the vertices, i.e. it simply
permutes the sets of edges sharing the same endpoints.

Proof of Proposition 2.4. To each covering p we can canonically associate the global
graph 0 with vertex labels according to the branch point numbering and with widths we
as above. The rest of the correspondence is not canonical but depends on three auxiliary
choices. First, we provide 0 with the orientation G given by the upward pointing vertical
direction. Second, we move the branch points so that they satisfy the branch point normal-
ization. Third, we choose for each edge of 0 a pair of singularities in the local surfaces
adjacent to the corresponding cylinder, one on each side.
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We observe that these additional data can also obviously be recorded together with
the tuples listed in (ii) so that it suffices to establish a bijection with the additional data
on both sides and to see that the numbers of forgetful maps of the additional data are the
same on both sides of the correspondence.

For the second task we remark that from any point in the height space we recover,
by reducing mod 1, the heights up to a common translation (mod 1) by a real number.
But the heights are only well-defined up to this ambiguity of translation anyway. The
number of choices of the singularities adjacent to each cylinder agrees on both sides of
the correspondence, in fact this number is

∏
v∈V (G) `(w

−
v )`(w

+

b ).
Note that the labelling of the vertices gives a natural partial numbering of the edges, by

proceeding lexicographically, i.e. first numbering all edges between vertex 1 and vertex 2
etc. The number of choices to complete this to a full numbering of the edges is precisely
|Aut(0)|.

The correspondence with the additional datum of an edge numbering has basically
been given prior to the statement of the proposition: We use the pair of zeros adjacent to
each cylinder to single out a saddle connection up to Dehn twist along the core curve of
the cylinder. There is a unique representative in such a class that has holonomy te + ihe
with te ∈ Z∩[0, we−1]. Moreover, we use the numbering of the edges to order the tuple
of incoming and outgoing cylinders in each local surface, i.e. to make w± an ordered
tuple rather than a set of integers. This numbering also defines, for every local surface,
an identification σ0 (resp. σ∞) of the branch points over zero (resp.∞) with an element
in the tuple w− (resp. w+), so that the local covering maps πv are in Cov′(w−v ,w+v , µv)
rather than in the unordered version of this set of coverings. Note also that the prime is
justified here, since the local covering is without unramified components, by definition of
components of the local surfaces as components of X0.

For the converse correspondence, it suffices to wield together the local surfaces along
a cylinder for each edge of G, where the identifications σ∞ of v−(e) and σ0 of v+(e)
determine which branches of the local surfaces are glued together. The widths we and
heights he determine the shape of the cylinder, and the twist together with the choice of
a reference point on each side determines the way the cylinder is glued in. The action of
an element in Aut(0) simply changes σ∞ and σ0 by post-composition. Consequently, any
two tuples in the same Aut(0)-orbit give the same covering. ut

Similar statements hold neither at the level of connected covers of graphs nor at the level
of general graphs without major changes. The problem in the connected case is that some
local surfaces might be disconnected while assembling to a connected flat surface in gen-
eral. The problem in the disconnected case is that a covering of a local surface with an
unramified component can give rise to a flat surface that is also obtained by assembling
only connected local surfaces. To construct the corresponding graph without unramified
components, the unramified local piece has to be piled on top of the appropriate cylinder
and so it can be disposed of.

The above correspondence still gives a bijection if both sides are weighted with their
automorphism group.
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Proposition 2.5. In the correspondence of Proposition 2.4, an automorphism ϕ of the
cover π defines a collection (ϕv)v∈V (G) of automorphisms of the local surfaces.

Conversely, each collection (ϕv)v∈V (G) of automorphisms of the local surfaces defines
an automorphism ϕ of the covering π .

Again, the correspondence is not canonical but depends on the choice of an auxiliary edge
labelling.

Proof of Proposition 2.5. Any automorphism ϕ of π preserves the marked points in E
and hence the vertices of 0. Moreover, it maps cylinders to cylinders and thus induces
an automorphism ϕ0 of the graph, preserving vertices. Let ` : E(G)→ {1, . . . , |E(G)|}
be some auxiliary labelling of the edges of 0. If we provide edges of the global graph of
π ◦ ϕ with the labelling ` ◦ ϕ0 , then the restriction of ϕ to each local surface Sv is an
automorphism ϕv that preserves the labelling σ0 and σ∞ of the preimages of zero and∞.

The converse of this procedure obviously works as well. ut

3. Shifted symmetric polynomials and completed cycles

Let f : P → Q be an arbitrary function on the set P of all partitions. Motivated by
the formula (6) giving the generating function for counting covers without unramified
components, we associate to f the formal power series

〈f 〉q =

∑
λ∈P f (λ)q

|λ|∑
λ∈P q

|λ|
∈ Q[[q]], (20)

which we will call the q-bracket. In the previous section, the argument was a product
of functions fµ(·) introduced in (8) and we recall here an algebra of functions on which
q-brackets behave nicely, as well as two generating sets for this algebra.

The algebra of shifted symmetric polynomials is defined as 3∗ = lim
←−

3∗(n), where
3∗(n) is the algebra of symmetric polynomials in the n variables λ1 − 1, . . . , λn−n. The
projective limit is taken with respect to the homomorphisms setting the last variable equal
to zero. One of several ways to present a partition is to list the part lengths decreasingly,
i.e. a partition is given by λ = (λ1, λ2, . . .) with λ1 ≥ λ2 ≥ · · · and

∑
∞

i=1 λi = |λ|. With
this notation, the functions

P`(λ) =

∞∑
i=1

(
(λi − i + 1/2)` − (−i + 1/2)`

)
and Pµ =

∏
i

Pµi (21)

obviously belong to the algebra of symmetric polynomials. It is also convenient to add
constant terms to these functions, corresponding to the regularization of the infinite sum,
and we let

p`(λ) = P`(λ)+ (1− 2−`)ζ(−`). (22)

The name ‘completed cycles’ refers to the functions P`/` for the cycles (`): they ‘com-
plete’ the functions f` defined in (8).
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The following result summarizes the main properties of shifted symmetric polynomi-
als we need. It is a combination of a theorem of Okounkov and Olshanski [OO97] and a
theorem of Kerov and Olshanski.

Theorem 3.1 ([KO94]). The algebra 3∗ is freely generated by all the p` (or equiva-
lently by the P`) with ` ≥ 1. The functions fµ defined in (8) belong to3∗. More precisely,
as µ ranges over all partitions, the functions fµ form a basis of 3∗.

To pass from the P` to the fµ, note that f1 = P1 and f2 = P2/2, and more generally f`
starts with P`/`, for example

f3 =
1
3P3 −

1
2P

2
1 +

5
12P1, f4 =

1
4P4 − P1P2 +

11
8 P2

f5 =
1
5P5 − P3P1 −

1
2P

2
2 +

5
6P

3
1 −

15
4 P

2
1 +

19
6 P3 +

189
80 P1.

(23)

We refer to [OP06, Section 3.3] or [Las08] for the conversion formulas in general.
At this stage we mention the following important result of Bloch–Okounkov and refer

to Section 5.1 for the definition of quasimodular forms. Using Theorem 3.1 one provides
the algebra 3∗ with a weight grading by assigning p` the weight k = `+ 1.

Theorem 3.2 ([BO00]). If f is a shifted symmetric function of weight k, then 〈f 〉q is a
quasimodular form of weight k.

There is a long list of quite different proofs of this theorem. Already [BO00] contains two
proofs, one in the spirit of [KZ95] and one with an explicit formula using determinants of
theta derivatives. A proof based on vertex operators is given in [Mil03]. Zagier [Zag16]
gave a very short proof, which also provided an efficient recursive method for computing
q-brackets.

In this paper we will not use the Bloch–Okounkov theorem, but rather give yet another
proof, by counting graphs with weights, at the end of Section 6. This proof is not our main
objective and the proof is rather roundabout, but it shows that a lot of quasimodularity
results can be ultimately traced back to Theorem 5.8.

4. Hurwitz numbers and graph sums

The first part of the section is purely expository and we recall some known (piecewise)
polynomiality properties of the cardinalities of the sets of Hurwitz numbers introduced
in (12) and their completed cycle variants. Then we combine the definition of triple Hur-
witz numbers with the composition of torus covers into global graphs and local surfaces
to obtain a formula for counting torus covers in terms of a graph count of triple Hurwitz
numbers.

4.1. Triple Hurwitz numbers with completed cycles

In general, generalized double Hurwitz numbers with completed cycles are only piece-
wise polynomials in variables w−i and w+i on the chambers defined by the walls where a
partial sum of the w−i agrees with a partial sum of the w+i . Recall that the shifted sym-
metric function f` satisfies f` = 1

`
P` + · · · . The formal triple Hurwitz number with
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completed cycles

A(w−,w+, µ) =
1∏

i w
−

i

∏
i w
+

i

∑
|λ|=d

χλw−χ
λ
w+
Pµ(λ)∏
µi

(24)

obtained by replacing fµ by the completed cycles Pµ/
∏
µi has much better properties,

e.g. it is a polynomial outside the walls if µ = (µ1) is a partition consisting of a single
cycle. To remove the jumps on the walls we introduce the triple Hurwitz number with
completed cycles and without unramified components

A
′
(w−,w+, µ) =

∑
u+⊂w+, u−⊂w−
|µ|≤|u−|=|u+|

M(u+,u−,w+,w−)A(u−,u+, µ) (25)

by applying the same inclusion-exclusion inversion toA as we did in (17) forA. The main
reason to introduce completed cycles here is the following polynomiality result when µ
is a cycle and triple Hurwitz numbers are in fact generalized double Hurwitz numbers.
We learned about this from draft notes of Okounkov. It can be deduced from results of
Shadrin, Spitz and Zvonkine [SSZ12].

Theorem 4.1. If µ1 + 1 − `(w−) − `(w+) is even, then the triple Hurwitz number
A
′
(w−,w+, (µ1)) with completed cycles and without unramified components for the last

argument µ = (µ1) being a partition consisting of a single part is an even polynomial in
the variables w−i and w+i .

If µ1 + 1− `(w−)− `(w+) is odd, then A
′
(w−,w+, (µ1)) = 0.

Proof. The completed generalized double Hurwitz numbers are piecewise polynomial
functions for any number of ramification points besides the two prescribed ones, but the
polynomiality is global for one ramification point, as we now explain in detail.

Fixm = `(w−) and n = `(w+). We consider the vector space V = {(w−,w+); |w−|
= |w+|} and for I ⊂ {1, . . . , m} and J ⊂ {1, . . . , n} we define the hyperplane

WI,J = {(w−,w+) ∈ V ; |w−I | − |w
+

J | = 0}.

The sets WI,J are the walls of a hyperplane arrangement. In the interior of the chambers,
the connected and disconnected Hurwitz numbers obviously coincide. For a chamber c of
this arrangement, Theorem 6.4 of [SSZ12] shows that A(w−,w+, (µ1))|c is a homoge-
neous polynomial of degree µ1 + 1− `(w−)− `(w+).

The wall crossing formula [SSZ12, Theorem 6.6] for two adjacent chambers c1 and c2
of the wallWI,J can be written in the case of the last argument µ = (µ1) being a partition
consisting of a single part as

A
′
(w−,w+, (µ1))|c1 − A

′
(w−,w+, (µ1))|c2

= δ2(A′(w−I ,w+J + δ, (µ1))A
′
(w−I c + δ,w+J c ,∅)

+ A
′
(w−I c + δ,w+J c , (µ1)) A

′
(w−I ,w+J + δ,∅)

)
,

where δ = |w−| − |w+|. In fact, [SSZ12] states this formula in terms of A instead of A
′
,

but for δ = 0 the formula holds trivially by (25), and outside the walls the covers have no
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unramified component. In this expression the terms with no ramification vanish since A
′

denotes covers without unramified components. This implies that the polynomials are the
same in any two adjacent chambers and hence the expression is globally polynomial.

Moreover, Theorem 6.4 of [SSZ12] implies that the polynomial A
′
(w−,w+, (µ1))

has the same parity as µ1 + 1 − `(w−) − `(w+). It remains to show that the polyno-
mial vanishes when this expression is odd. The triple Hurwitz number without completed
cycles A′(w−,w+, (µ1)) vanishes for µ1 + 1 − `(w−) − `(w+) odd by the Riemann–
Hurwitz formula and the same statement holds for fµ1 replaced by any fµ with wt(µ)
odd. Since any pµ of odd (resp. even) weight is a linear combination of fµ of odd (resp.
even) weight (see [OP06, (0.22)] for the general statement), the claim follows. ut

Later we will need to allow more general functions on partitions, and hence for any func-
tion F on partitions we define

A(w−,w+, F ) =
1∏

i w
−

i

∏
i w
+

i

∑
|λ|=d

χλw−χ
λ
w+F(λ) (26)

and we define A′(w−,w+, F ) in terms of A(w−,w+, F ) as in (25). In this notation we
retrieve the previous definition of triple Hurwitz numbers as

A′(w−,w+, µ) = A′(w−,w+, fµ) and A
′
(w−,w+, µ) = A′

(
w−,w+, Pµ/

∏
µi

)
.

4.2. Graph sums with triple Hurwitz numbers

The first goal here is to use Propositions 2.4 and 2.5 to write the generating series N ′(5)
for counting torus covers without unramified components in terms of graph sums involv-
ing triple Hurwitz numbers without unramified components. First of all, we can decom-
pose N ′(5) according to the contributions of individual graphs, i.e.

N ′(5) =
∑
0

1
|Aut(0)|

N ′(0,5),

where the sum is over all (not necessarily connected) labelled graphs 0 with n = |5|
vertices and where Aut(0) are the automorphisms of the graph 0 that respect the vertex
labelling. (Note that 0 has neither a labelling nor an orientation on the edges.)

Proposition 4.2. The contributions of individual labelled graphs to N ′(5) can be ex-
pressed in terms of triple Hurwitz numbers as

N ′(0,5) =
∑
G∈0

N ′(G,5), (27)

where
N ′(G,5) =

∑
h∈ÑE(G),
w∈ZE(G)
+

∏
e∈E(G)

weq
hewe

∏
v∈V (G)

A′(w−v ,w+v , µv)δ(v) (28)

and
δ(v) = δ

( ∑
i∈e+(v)

w+i −
∑

i∈e−(v)

w−i

)
. (29)
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The delta-function factor is redundant in this expression by our definition of
A′(w−v ,w+v , µv), but keeping it will be important once we pass from A′ to a polynomial
expression.

Proof of Proposition 4.2. This is a direct consequence of the correspondence in Proposi-
tion 2.4. The degree of the covering is encoded in the (we, he) by (19) and the factor we
accounts for the number of possible twists (values of te) for any given edge e. ut

The strategy to prove quasimodularity is to reduce to ‘expressions as in (27) and (28)’
but with A

′
as argument, which is polynomial by Theorem 4.1. To formalize this, recall

from (6) and (20) that the counting function N ′(5) is a q-bracket of a shifted symmetric
function. By Theorem 3.1 it hence suffices to treat q-brackets of products of the p`.

Theorem 4.3. The q-bracket of any shifted symmetric function can be expressed as

〈p`1 · · ·p`n〉q =
∑
0

∑
G∈0

〈p`1 · · ·p`n〉q,G (30)

where the sum runs over graphs with n labelled vertices and all orientationsG of 0, and

〈p`1 · · ·p`n〉q,G =
∑

h∈ÑE(G)
w∈ZE(G)+

∏
e∈E(G)

weq
hewe

∏
v∈V (G)

A
′
(w−v ,w+v , (`#v))δ(v). (31)

Here #v denotes the label of the vertex v.

Proof. Our strategy is to reduce this to the cases covered by Proposition 4.2. For this
purpose, we define for any function F on partitions the auxiliary brackets

[F1, . . . , Fn] =
∑
0

[F1, . . . , Fn]0, [F1, . . . , Fn]0 =
∑
G∈0

[F1, . . . , Fn]G (32)

where the sum is over all labelled graphs 0 with n vertices and over all the orientations,
respectively, and where

[F1, . . . , Fn]G =
∑

h∈ÑE(G)
w∈ZE(G)+

∏
i∈E(G)

wiq
hiwi

∏
v∈V (G)

A′(w−v , w
+
v , F#v)δ(v). (33)

In this notation, we want to show that

〈p`1 · · ·p`n〉q = [p`1 , . . . , p`n ]. (34)

On the other hand, Proposition 4.2 can be restated in this notation as

〈fµ1 · · · fµn〉q = [fµ1 , . . . , fµn ]. (35)

We can express by Theorem 3.1 each of the generators p` of 3∗ as p` =
∑
µ c`,µfµ

for some coefficients c`,µ. Obviously, a q-bracket of a product of n shifted symmetric
functions is multilinear in the n arguments. On the other hand, the brackets in (32) are
multilinear as well, since the arguments of the brackets appear only linearly as arguments
of A′. Consequently, (34) is a linear combination of equations of the form (35). ut



382 Elise Goujard, Martin Möller

5. Constant coefficients of quasi-elliptic functions

5.1. Quasimodular forms

Kaneko and Zagier [KZ95] introduced quasimodular forms in connection with counting
simply branched covers of the torus.

A quasimodular form for a cofinite Fuchsian group 0 ⊂ SL(2,R) of weight k is a
function f : H→ C that is holomorphic on H and at the cusps of 0 and such that there
exists an integer p and holomorphic functions fi : H→ C such that

(cτ + d)−kf

(
aτ + b

cτ + d

)
=

p∑
i=0

fi(τ )

(
c

cτ + d

)i
for all

(
a b
c d

)
∈ 0.

Note that this definition implies (take the identity matrix) that f0 = f . The smallest
integer p with the above property is called the depth of the quasimodular form. By defi-
nition, quasimodular forms of depth zero are simply modular forms. The basic examples
of quasimodular forms are the Eisenstein series defined by

G2k(τ ) =
(2k − 1)!
2(2πi)2k

∑
(m,n)∈Z2\{(0,0}

1
(m+ nτ)2k

= −
B2k

4k
+

∞∑
n=1

σ2k−1(n)q
n.

Here Bl is the Bernoulli number, σl is the divisor sum function and q = e2πiτ . For k ≥ 2
these are modular forms, while for k = 2 the Eisenstein series

G2(τ ) = −
1
24
+

∞∑
n=1

σ1(n)q
n

is a quasimodular form of weight 2 and depth 1 for SL(2,Z). Note that the q-expansion
makes sense as a definition for G2k+1 but does not give a quasimodular form. We will
encounter this power series in Section 9.

In terms of Eisenstein series, we recall a characterization of quasimodular forms that
might serve as an alternative definition of that ring for the special case of the modular
group.

Proposition 5.1 ([KZ95]). The ring of quasimodular forms for 0 = SL(2,Z) is equal
to C[E2, E4, E6], the polynomial ring over C generated by the first three Eisenstein se-
ries. This ring is stable under the q-derivative Dq = q ∂

∂q
=

1
2πi

∂
∂τ

. More precisely, the
q-derivative of a quasimodular form of weight k is a quasimodular form of weight k + 2.

5.2. Coefficients of a two-variable Jacobi form

The main player of this section is a function Fτ (u, v) in two ‘Jacobi’ variables u, v that
was used by Zagier [Zag91] in connection with periods of modular forms. For its defini-
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tion we use the genus 1 Jacobi theta function

θ(u) = θ(u; τ) =
∑
n∈Z
(−1)nq

1
2 (n+1/2)2e(n+1/2)u.

We then let

Fτ (u, v) =
θ(u+ v)θ ′(0)
θ(u)θ(v)

where we denote by prime the u-derivative f ′(u) = ∂f
∂u

. The main feature of Fτ is that we
know both its Fourier expansion, which we will connect to the counting functions we are
interested in, and the Laurent expansion, which is the main tool to prove quasimodularity
statements.

Theorem 5.2 ([Zag91, Theorem 3.1]). The Fourier development of Fτ (u, v) is

Fτ (u, v) =
1
2

(
coth

u

2
+ coth

v

2

)
− 2

∞∑
n=1

(∑
d|n

sinh
(
du+

n

d
v

))
qn. (36)

Its Laurent series expansion is

Fτ (u, v) =
1
u
+

1
v
− 2

∞∑
r,s=0

Dmin(r,s)
q G|r−s|+1(τ )

ur

r!

vs

s!
. (37)

The function Fτ (u, v) has the elliptic transformation property

Fτ
(
u+ 2πi(nτ + s), v + 2πi(mτ + r)

)
= q−mnζ−mη−nFτ (u, v) (38)

for allm, n, r, s ∈ Z, where ζ = eu and η = ev , and the modular transformation property

F aτ+b
cτ+d

(
u

cτ + d
,

v

cτ + d

)
= (cτ + d)e

cuv/2πi
cτ+d Fτ (u, v) (39)

for all
(
a b
c d

)
∈ SL(2,Z).

We will use three functions derived from coefficients of Fτ (u, v), namely

Z(z) = −[v0
]Fτ (u, v), P (z) = Z′(z), L(z) = −[v1

]Fτ (u, v)+
1

12
(40)

where u = 2πiz. The first one, Z(z) = − θ ′(2πiz)
2πiθ(2πiz) = −

ζ(z)
2πi + 2G22πiz, is the classical

Weierstraß ζ -function up to normalization and an additive term, and the second is P(z) =
1

(2πi)2℘(z) + 2G2, the Weierstraß ℘-function up to normalization and an additive term.
The last one has no classical name but it is the function that makes the extension to
Siegel–Veech weighted counting work. As a direct consequence of Theorem 5.2 we have
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the Fourier developments in the domain |q| < |ζ | < 1

Z(z) =
1
2
+

∑
k≥1

(
ζ k +

∑
n≥1

qnk(ζ k − ζ−k)
)
,

P (z) =
∑
k≥1

(
kζ k +

∑
n≥1

kqnk(ζ k + ζ−k)
)
,

L(z) =
∑

k≥1,n≥1

nqnk(ζ k + ζ−k),

(41)

and the Laurent series developments

Z(z) = −
1
u
+ 2

∞∑
k=0

G2k+2

(2k + 1)!
u2k+1,

P (z) =
1
u2 + 2

∞∑
k=0

G2k+2

(2k)!
u2k,

L(z) = 2G2 +
1

12
+ 2

∞∑
k=1

DqG2k

(2k)!
u2k,

(42)

of our special functions.
We refer to the shift P of the Weierstraß ℘-function as the propagator. (This termi-

nology is used in e.g. [Dij95], [BBBM17]. It goes back to [BCOV94] and the function P
is hence also called the BCOV-propagator in e.g. [Li12].)

5.3. Quasimodular forms as constant coefficients of quasi-elliptic functions

We proceed with our main criterion for quasimodularity, involving the constant coeffi-
cients of products of the functions Z, P and L introduced above, and their derivatives.
We start with a general remark on the domains where the expansions are valid. Suppose
that the meromorphic function f (z1, . . . , zn; τ) is periodic under zj 7→ zj + 1 for each j
and under τ 7→ τ + 1. We can then write f (z1, . . . , zn; τ) = f (ζ1, . . . , ζn, q) where
ζj = e

2πizj as above. For any permutation π ∈ Sn we fix the domain

�π = {|qζπ(i+1)| < |ζπ(i)| < |ζπ(i+1)| < 1 for all i = 1, . . . , n− 1}. (43)

On such a domain the constant term with respect to all the ζi is well-defined. It can be
expressed as the integral

[ζ 0
n . . . ζ

0
1 ]πf =

1
(2πi)n

∮
γn

· · ·

∮
γ1

f (z1, . . . , zn; τ) dz1 . . . dzn

along the integration paths

γj : [0, 1] → C, t 7→ iyj + t,

where 0 ≤ yπ(1) < · · · < yπ(n) < 1. We call these our standard integration paths for the
permutation π . If the domain�π is clear from the context we also write [ζ 0

] or [ζ 0
n . . . ζ

0
1 ]

as shorthand for the coefficient extraction [ζ 0
n . . . ζ

0
1 ]π .
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Our aim here is to show Theorem 5.8 stating that for a large class of functions that
are quasimodular and quasi-elliptic in (z1, . . . , zn) (in a sense made precise below) the
constant term with respect to the ζi is a quasimodular form.

We start with a preliminary definition of a ring of multivariable Jacobi forms. For
n ≥ 0 we let J (k)

n be the vector space of meromorphic functions f on Cn × H in the
variables (z1, . . . , zn; τ) that

(i) have poles on Cn at most at the Z+ τZ-translates of the diagonals zi − zj ,
(ii) are elliptic with respect to the lattice Z+ τZ in the variables zi for i = 1, . . . , n, and

(iii) are quasimodular of weight k for SL(2,Z), i.e. f is holomorphic in τ on H ∪ ∞
and there exists some p ≥ 0 (called depth) and functions fi(z1, . . . , zn; τ) that are
holomorphic in τ and meromorphic in each zi such that

(cτ + d)−kf

(
z1

cτ + d
, . . . ,

zn

cτ + d
;
aτ + b

cτ + d

)
=

p∑
i=0

fi(z1, . . . , zn; τ)

(
c

cτ + d

)i
for all

(
a b
c d

)
∈ SL(2,Z).

Again, taking the identity matrix in this definition implies that f0 = f .

Proposition 5.3. The direct sum

Jn =
⊕
k≥0

J (k)
n

is a graded ring. The derivatives ∂/∂zi map J (k)
n to J (k+1)

n for all i = 1, . . . , n and the
derivative Dq = q ∂

∂q
maps J (k)

n to J (k+2)
n .

Them-th derivative P (m)(zi−zj ) of the propagator lies in J (m+2)
n . Moreover, Zijn =

Z(zn − zi)+ Z(zj − zn)+ Z(zi − zj ) lies in J (1)
n .

Proof. The first two statements obviously follow from the definition and differentiation
of the quasimodular transformation property. For the third statement all but the quasimod-
ularity are well-known (and follow also from Theorem 5.2). The quasimodular transfor-
mation property (iii) follows from (39) by using P1(z1, . . . , zn; τ) = 1 and P0 = P . For
the last statement, the ellipticity of Zijn follows from the properties

Z(z+ 1) = Z(z) and Z(z+ τ) = Z(z)+ 1

of the individual summands. Equation (39) again implies that Z(zi − zj ) is quasimodular
(in the sense of (iii)) of weight 1 and depth 1 with Zi(zi − zj ) = zi − zj . This in turn
implies that Zijn is even quasimodular of weight 1 and depth 0, i.e. modular. ut

Proposition 5.4. For n = 0 and n = 1 the ring Jn consists only of quasimodular forms
in τ .

For n ≥ 2 the ring Jn is generated as a Jn−1-module by the derivatives of the P -
function, P (m)j = P (m)(zn− zj ) for allm ≥ 0 and all j = 1, . . . , n− 1, and by the linear
combinations Zijn = Z(zn − zi)+ Z(zj − zn)+ Z(zi − zj ) for all 1 ≤ i < j ≤ n− 1.
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More precisely, if f ∈ J (k)
n then we can write

f =
∑

am,jP
(m)
j +

∑
bi,jZijn + c

with am,j ∈ J (k−m−2)
n−1 , bi,j ∈ J (k−1)

n−1 and c ∈ J (k)
n−1.

Proof. For the first statement we simply note that an elliptic function without poles is
constant. For the second statement we argue by induction on the pole orders and we may
assume that f is homogeneous of weight k. Suppose that f has a pole of order m exactly
at zn − zj . Then the limit

f [j ](z1, . . . , zn−1) = lim
ε→0

εmf (z1, . . . , zj , . . . , zn−1, zj + ε)

exists and is non-zero. We claim that f [j ] ∈ J (k−m)
n−1 . Conditions (i) and (ii) are obvious

from the definition. If fi denotes a component of f in the modular transformation (iii),
we define f [j ]i (z1, . . . , zn−1) as above for f = f0. This transformation implies

(cτ + d)−k+m
(

ε

cτ + d

)m
f

(
z1

cτ + d
, . . . ,

zn−1

cτ + d
,
zj + ε

cτ + d
;
aτ + b

cτ + d

)
= εm

d∑
i=0

fi(z1, . . . , zn−1, zj + ε; τ)

(
c

cτ + d

)i
, (44)

and taking the limit ε→ 0 gives the quasimodularity of f [j ].
If m ≥ 2 then replacing f by f − f [j ]P (m−2)

j (−2πi)m/(m − 1)! decreases the pole
order along zn = zj and does not increase the pole order along any of the divisors zn = zi
for i ≥ 2.

Inductively we may thus suppose that f has at most simple poles along all the di-
visors zn − zj . The residue theorem (for f considered as a function of zn) implies that∑n−1
j=1 f

[j ]
= 0. Consequently,

g = f −

n−1∑
j=2

(j−1∑
i=1

f [i]
)
Zj−1,j,n

is still elliptic and has no poles (considered as a function of zn). This implies g ∈ J (k)
n−1

and completes the inductive argument. ut

One is tempted to deduce from this that if f ∈ J k
n then for any permutation π the constant

term on �π is a quasimodular form of pure weight k. This, however, is not true! In
general, those constant terms are of mixed weight ≤ k, as we will see in the example in
Section 5.4. Even if one is only interested in computing the constant terms of elements in
the ring J (k)

n , the fact that

[ζ 0
n ]P

(m)(zn − zj ) = 0 (m ≥ 0) (45)

but [ζ 0
n ]Zijn = Z(zi − zj ) is no longer elliptic forces the consideration of the following

more general case of quasi-elliptic functions.
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Let 1 = 1τ be the operator on meromorphic functions defined by

1(f )(z) = f (z+ τ)− f (z).

A meromorphic function f is called quasi-elliptic if f (z + 1) = f (z) and there exists
some positive integer e such that1e(f ) is elliptic. The minimal such e is called the order
(of quasi-ellipticity) of f .

We say that a meromorphic function f : Cn × H→ C is quasi-elliptic if it is quasi-
elliptic in each of the first n variables. For such a function we write e = (e1, . . . , en) for
the tuple of orders of quasi-ellipticity in the n variables. Consequently, a quasi-elliptic
function of order (0, . . . , 0) is simply an elliptic function.

We write 1i for the operator 1 acting on the i-th variable. Note that these opera-
tors 1i commute. We now state the appropriate generalization of the definition of J (k)

n

above.

Definition 5.5. For n, k ≥ 0 and e ≥ 0 we define the vector space Q(k)
n,e of quasi-elliptic

quasimodular forms to be the space of meromorphic functions f on Cn × H in the vari-
ables (z1, . . . , zn; τ) that

(i) have poles on Cn at most at the Z+ τZ- translates of the diagonals zi − zj ,
(ii) are quasi-elliptic of order e, and

(iii) are quasimodular of weight k for SL(2,Z), i.e. f is holomorphic in τ on H ∪ ∞
and there exists some p ≥ 0 (called depth) and functions fi(z1, . . . , zn; τ) that are
holomorphic in τ and meromorphic in each zi such that

(cτ + d)−kf

(
z1

cτ + d
, . . . ,

zn

cτ + d
;
aτ + b

cτ + d

)
=

p∑
i=0

fi(z1, . . . , zn; τ)

(
c

cτ + d

)i
for all

(
a b
c d

)
∈ SL(2,Z).

We remark that, in contrast to the case of (usual) quasimodular forms, the functions fi do
not need to belong to any of the spaces Q(k)

n,e. 3

Proposition 5.6. The direct sum

Qn =

⊕
k≥0

Q(k)
n , where Q(k)

n =

⊕
e≥0

Q(k)
n,e,

is a graded ring. The derivatives ∂/∂zi map Q(k)
n to Q(k+1)

n for all i = 1, . . . , n, and the
derivative Dq = q ∂

∂q
maps Q(k)

n to Q(k+2)
n .

3 For example, already for Z(zi − zj ) we have seen Z1 = zi − zj , which is not 1-periodic.
Our definition that imposes 1-periodicity (and thus breaks the symmetry in the role of the Z+ τZ-
lattice) is the reason for this. A more conceptual definition would be to consider functions that are
annihilated by some power of both shift operators 1τ and 11 with respect to every variable. E.g.
the function zi − zj has this property. Since we do not aim e.g. for an operation of sl(2) on our ring
of quasi-elliptic quasimodular forms, we will not discuss this generalization here.
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For all i, j ∈ {1, . . . , n} the functions

L(zi − zj ) = −
1
2Z

2(zi − zj )+
1
2P(zi − zj )−G2 +

1
12 (46)

belong to Q(0)
n ⊕Q(2)

n .

Proof. For the proof that Qn is closed under multiplication we remark that 1mi (fg) is
a sum of products of 1m1

i (f ) and 1m2
i (g) with m1 + m2 = m, evaluated at arguments

translated by multiples of τ . Consequently, if f ∈ Q(k1)
n,e1 and g ∈ Q(k2)

n,e2 , then fg ∈
Q(k1+k2)
n,e1+e2

. The property of the derivatives can be checked as in the case of Jn.
For the last identity we use the elliptic transformation law (38) to deduce thatL+Z2/2

is elliptic. The first terms of the Laurent series of this function are

L(z)+
Z2(z)

2
=

1
2u2 +

1
12
+O(z2).

Consequently, L + Z2

2 −
( 1

2P − G2 +
1

12

)
is an elliptic function with no poles, i.e. it is

constant with respect to z. Moreover this constant is the value at z = 0, which is 0. ut

Proposition 5.7. The vector space Qn is (additively) generated as a Qn−1-module by the
functions Ze(zn − zj )P (m)(zn − zj ) for j = 1, . . . , n− 1 and for all e,m ≥ 0.

More precisely, if f ∈ Q(k)
n then we can write

f (z1, . . . , zn) =
∑
e,m,j

ae,m,jZ
e(zn − zj )P

(m)(zn − zj )+
∑
e,j

be,jZ
e(zn − zj )+ c

with ae,m,j ∈ Q(k−e−m−2)
n−1 , be,j ∈ Q(k−e)

n−1 and c ∈ Q(k)
n−1.

Proof. For every n we argue inductively on the order e = minj≥0{1
j
n(f ) elliptic} of

quasi-ellipticity with respect to the last variable. Suppose, without loss of generality, that
f ∈ Q(k)

n is homogeneous of weight k. If e = 0 then we proceed as in the proof of
Proposition 5.4 and subtract Qn−1-multiples of P (m)(zn − zj ) for appropriate m and j ∈
{1, . . . , n−1} and finally Qn−1-multiples of Z(zn−zj )−Z(zn−zk) so that the resulting
function is elliptic and without poles in the variable zn, hence constant in zn.

Now consider the case e > 0. Using the induction hypothesis we can write

1n(f )(z1, . . . , zn) =

e−1∑
s=0

∑
j,m

(
as,j,mZ

s(zn − zj )P
(m)(zn − zj )+ bs,jZ

s(zn − zj )
)
.

Now set

f̃ (z1, . . . , zn) =

e−1∑
s=0

1
s + 1

∑
j,m

(
as,j,mZ

s+1(zn− zj )P
(m)(zn− zj )+ bs,jZ

s+1(zn− zj )
)
.

Then, since

1n(Z
s+1(zn)P

(m)(zn)) = P
(m)(zn)

s∑
t=0

(
s + 1
t

)
Zt (zn)
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we conclude that

1n(f − f̃ )(z1, . . . , zn) =

e−1∑
s=0

1
s + 1

(∑
j,m

(
as,j,mP

(m)(zn − zj ) + bs,j
)

·

(s−1∑
t=0

(
s + 1
t

)
Zt (zn − zj )

))

has order ≤ e− 2 with respect to zn. Consequently, f − f̃ has order ≤ e− 1 and another
application of the induction hypothesis implies the claim. ut

Using this additive basis we can now prove the main result, which contains Theorem 1.1
as a special case.

Theorem 5.8. For any permutation π the constant term with respect to the domain �π
of a function in Q(k)

n is a quasimodular form of mixed weight ≤ k.

Proof. By relabelling the variables of f ∈ Q(k)
n we may assume that π is the trivial per-

mutation. We may thus write f as in Proposition 5.7 and integrate with respect to zn
first. We are thus reduced to showing that the zn-integrals of the additive generators
Ze(zn − zj )P

(m)(zn − zj ) and Ze(zn − zj ) are quasimodular forms of mixed weight
≤ e + 2+m. For the generators including a P -derivative we use the integration by parts
[Ze(z)]′ = eZe−1(z)P (z) and

[Ze(z)P (m−1)(z)]′ = eZe−1(z)P (z)P (m−1)(z)+ Ze(z)P (m)(z)

to reduce the order e until we can apply (45). This involves rewriting P(z)P (m−1)(z) as a
linear combination of P (j)(z). To do this, we use again Proposition 5.4 and note that the
terms Zijn will not occur in this case, since the expression P(z)P (m−1)(z) has a unique
pole at z = 0 modulo Z+τZ, and hence zero residue there. The integrals of the remaining
generators are dealt with in the next proposition. ut

In all the steps so far the weight of the quasimodular form has been preserved. We isolate
the next step since this is the reason for mixed weight.

Proposition 5.9. The constant coefficient [ζ 0
]Ze(z) is a quasimodular form of mixed

weight at most e.

Proof. Since Z(z) is an odd function of z, we obtain, for ` odd,∫ 1

0
Z`(z+ iε) dz =

∫ 1/2

−1/2
Z`(z+ iε) dz = −

∫ 1/2

−1/2
Z`(z− iε) dz

= −
1
2

Res0 Z
` (47)

and these residues can be read off from the Laurent series development (42) raised to the
`-th power.
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On the other hand, we claim that [ζ 0
](Z−1/2)` = 0 for ` odd. To see this, we expand

the product of the Fourier expansions (41) to obtain

(Z − 1/2)` =
∑

k1,...,k`≥1
ε1,...,εn∈{±1}

∏̀
i=1

εi
Qi(ki, εi)

1− qki
ζ kiεi , (48)

where Qi(ki, εi) = 1 for ε = 1 and Qi(ki, εi) = qki for ε = −1. The constant term
[ζ 0
](Z − 1/2)` is equal to the sum over all ki and εi with

∑
kiεi = 0 of the right hand

side of (48). This set admits an involution by swapping the signs of all the εi . This invo-
lution changes the sign of the factor

∏`
i=1 εi since ` is odd. We claim that the rest of the

product is unchanged by the involution. The denominator obviously does not change. The
numerator is q raised to the power

∑
i: εi=+1 ki in one case and to the power

∑
i:εi=−1 ki

in the other case. The two sums are equal by the defining condition of the constant term.
Knowing the constant terms of (Z−1/2)` andZ` for ` odd, we can solve the (triangu-

lar) system of linear equations to determine the constant coefficients of Z` for ` even. ut

The first few values of these constant coefficients of Z` are

[ζ 0
]Z = 1

2 , [ζ 0
]Z2
= −2G2+

1
6 ,

[ζ 0
]Z3
= −3G2, [ζ 0

]Z4
= 8G2

2−
1
3G4−2G2−

1
30 ,

[ζ 0
]Z5
= 20G2

2−
5
6G4, [ζ 0

]Z6
=
−1
60 G6+4G4G2−40G3

2+20G2
2−

5
6G4+G2+

1
42 .

5.4. An example of mixed weight

Here we illustrate that the proof of Theorem 5.8 provides an effective algorithm by com-
puting (with respect to the standard order (43)) the expression

[ζ 0
]P(z1 − z2)

2P(z1 − z4)P (z2 − z3)P (z3 − z4)
2

= 4q2
+ 224q3

+ 3088q4
+ 21888q5

+ 105136q6
+ 388288q7

+ 1197280q8
+O(q9)

= −256G6
2 +

640
3 G4G

4
2 +

112
9 G6G

3
2 −

400
9 G

2
4G

2
2 −

140
9 G6G4G2 +

2000
81 G

3
4 +

49
108G

2
6

+
(
−

256
3 G4G

3
2 −

16
5 G6G

2
2 +

320
21 G

2
4G2 +

28
9 G6G4

)
, (49)

which is a quasimodular form of mixed weight 10 and 12.
To prove this formula we first treat the terms depending on z4 and write

P(z4 − z1)
2P(z4 − z3) =

1
6P(z1 − z3)P

′′(z4 − z1)+
1
2P
′(z3 − z1)P

′(z4 − z1)

+
( 1

2P
′′(z1 − z3)+ 4G2P(z1 − z3)

)
P(z4 − z1)

+ P(z1 − z3)
2P(z4 − z3)

+
(
4G2P

′(z3 − z1)−
1
6P
′′′(z1 − z3)

)
Z134

+
1
3G2P

′′(z1 − z3)− 2G2P(z1 − z3)
2
− 8G2

2P(z1 − z3)

+ 8G3
2 −

10
3 G4G2
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in the additive basis given in Proposition 5.7. This allows us to integrate with respect to z4
and we obtain

[ζ 0
4 ]P(z4 − z1)

2P(z4 − z3) =
(
4G2P

′(z3 − z1)−
1
6P
′′′(z3 − z1)

)
Z(z1 − z3)

+
4
3G2P

′′(z3 − z1)+ 8G3
2 −

10
3 G4G2.

The integral [ζ 0
2 ]P(z1− z2)P (z2− z3)

2 is the same as the previous one, with z4 replaced
by z2. The product of these two integrals contains the term

T = P ′′′(z1 − z3)P
′(z1 − z3)Z(z1 − z3)

2

and several terms that can be treated similarly to T , or that can be computed by integration
by parts as in the proof of Theorem 5.8 and that finally yield a contribution that is pure of
weight 12. To integrate T with respect to z1 we decompose T/Z(z1− z3)

2 in the additive
basis:

P ′′′(z)P ′(z) = −12G6P(z)+ 24G6G2 −
800

7 G
2
4 − 8P ′′(z)G4 +

1
105P

(6)(z)

given by Proposition 5.4. The Z2-multiples of the terms containing P or its derivatives
can be computed using integration by parts and contribute purely to weight 12. Finally,
the constant (in z) multiples of Z2 are integrated using Proposition 5.9 and yield the
contribution of mixed weight.

6. Quasimodularity of graph sums

Motivated by Theorems 4.3 and 4.1 we consider the graph sums

S(0,m) =
∑
G∈0

S(G,m) (50)

over all orientations G of 0, where

S(G,m) =
∑

h∈ÑE(G), w∈ZE(G)+

∏
i∈E(G)

w
mi+1
i qhiwi

∏
v∈V (G)

δ(v). (51)

Here ÑE(G) is the height space introduced in (18) and the Dirac symbol δ(v) was in-
troduced in (29). The goal of this section is to show the quasimodularity of these graph
sums.

Theorem 6.1. If m = (m1, . . . , m|E(0)|) is a tuple of even integers, then the graph sums
S(0,m) are quasimodular forms of mixed weight at most k(m) :=

∑
i(mi + 2).

The proof consists in splitting the sum into the contributions from the loops and the rest,
and then applying the coefficient extraction results from Section 5.1.

The combination of this result with the graph sum theorem and the polynomiality of
generalized double Hurwitz numbers with completed cycles immediately gives the first
quasimodularity result we are aiming for.
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Corollary 6.2. For any ramification profile5 the counting functionN◦(5) of connected
torus covers of profile5 is a quasimodular form of mixed weight≤ wt(5) = |5|+`(5).

Proof. As remarked before Theorem 4.3, thanks to Theorem 3.1 we only need to show
the quasimodularity of q-brackets of product of p`i , i = 1, . . . , n, i.e. of the expressions
appearing in (31) that are sums over graphs with n labelled vertices. By Theorem 4.1 the
expressions A

′

v = A
′
(w−v ,w+v , (`#v)) appearing on the right hand side of (31) are either

zero or polynomials of even degree equal to `#v + 1− `(w−v )− `(w+v ). Consequently, the
product over all vertices of these polynomials A

′

v has degree wt(5) − 2|E(0)|. We can
now apply Theorem 6.1. ut

The rest of this section is devoted to the proof of Theorem 6.1. As a first technical step
we show that S(0,m), which a priori depends on the heights yi involved in the definition
of the height space, is in fact independent of this choice and can be computed using the
limit value yi = 0 for all i.

Lemma 6.3. Replacing the height space ÑE(G) by

NE(G) = {(n1, . . . , n|E(G)|); ni ∈ {0} ∪ Z+ if v+(i) > v−(i), ni ∈ Z+ otherwise}

does not change the total sum S(G,m).

Proof. We apply the linear change of variables h′e = he − δe with δe = εi+(e) − εi−(e),
which maps ÑE(G) onto NE(G). Each summand for fixed (w1, . . . , w|E(G)|) is then mul-
tiplied by

q−
∑
i δiwi

∏
v∈V (G)

δ(v) = q
−

1
2
∑
v εv(

∑
i∈e−(v)

wi−
∑
i∈e+(v)

wi )
∏

v∈V (G)

δ(v) = 1.

This implies the claim. ut

6.1. The reduced graph

We call an edge of a graph 0 (or an oriented graph G) neutral if it is a loop (starting and
ending at the same vertex). The other edges are called essential. We denote by E(G) =
E0(G) ∪ E1(G) the splitting of the set of edges of G into the neutral and the essential
edges. Furthermore, let G1 denote the oriented graph obtained from G by removing the
neutral edges. Similarly, 01 is the graph obtained from 0 by removing the neutral edges.
A graph with no neutral edges will be called reduced.

Lemma 6.4. The graph sum S(0,m) can be factored as

S(0,m) = S0(0,m0)S(01,m1)

where
S0(0,m0) =

∑
h∈NE0(G), w∈Z

E0(G)
+

∏
i∈E0(G)

w
mi+1
i qhiwi

for any orientation G of 0, and where m0 = (mi)i∈E0(G), m1 = (mi)i∈E1(G).



Counting Feynman-like graphs 393

Proof. This follows from decomposing for every G ∈ 0 the summation in the definition
of S(G,m) into the sum over h ∈ NE0(G) and w ∈ ZE0(G)

+ and the remaining variables.
Since the wi for i ∈ E0(G) drop out of the functions δ, each S(G,m) splits off a factor

S0(G,m0) =
∑

h∈NE0(G), w∈Z
E0(G)
+

∏
i∈E0(G)

w
mi+1
i qhiwi

which does not depend on the orientation G of 0. ut

Lemma 6.5. If m = (m1, . . . , m|E(G)|) is a tuple of even integers, the neutral contribu-
tion S0(0,m0) is a quasimodular form of mixed weight k(m0).

Proof. The neutral contribution S0(0,m0) is the product of Smi over all neutral edges,
where Sm =

∑
∞

w,h=1w
m+1qhw is the q-expansion of the Eisenstein seriesGm+2 without

its constant term for m even. ut

The problem is now reduced to computing S(0,m) for all reduced graphs 0.

6.2. Contour integrals

The idea of the proof is to write the delta functions appearing in graph sums as contour
integrals of some suitably chosen powers of ζ = e2πiz since by the residue theorem∫

γ

ζw dz =

∫
γ ′
ζw−1 dζ

2πi
= δ0,w (52)

where γ (t) = t+iy with 0 ≤ t ≤ 1 is our standard integration path of height=y ∈ (0,=τ)
and γ ′ = exp(2πiγ ). Recall that we denote derivatives with respect to u = 2πiz by
primes. By (41) the Fourier developments of the derivatives of P are

P (m)(z) =
1

(2πi)m
∂m

∂zm
P(z) =

∞∑
w=1

∞∑
h=1

wm+1qhw(ζw + (−1)mζ−w)+
∞∑
w=1

wm+1ζw.

Next, we expand the path integrals of products of derivatives of P . In the following lem-
mas γj will be the standard path at height yj and yj < yj+1.

Lemma 6.6. Let I ⊂ {2, . . . , n} and assume that all themi are even. Then on the domain
defined by |ζi | > |ζ1| > |qζi | for all i ∈ I we have the expansion∮

γ1

ζ
k1
1

∏
i∈I

P (mi )(z1 − zi) dz1 =

∞∑
wi=1

∏
i∈I

w
mi+1
i ·

∑
I=J∪K

δ
(
k1 +

∑
j∈J

wj −
∑
k∈K

wk

)
·

∏
j∈J

( ∞∑
hj=0

qhjwj
)
·

∏
k∈K

( ∞∑
hk=1

qhkwk
)∏

K ζ
wk
k∏

J ζ
wj
j

for every k1 ∈ Z.
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Proof. Since P is even by definition, so are its derivatives of even order. The lemma
follows by expanding the integrand according to the preceding formula for P (m), and
by (52) only the term with k1 +

∑
j∈J wj −

∑
k∈K wk = 0 survives. ut

We can use this observation to write the graph sum in terms of derivatives of P . For
this purpose, we introduce the following shorthand notations. Let z = (z1, . . . , zn). For
a reduced graph 01 with n vertices and N1 edges, for (y1, . . . , yn) fixed as before, and
m1 = (m1, . . . , mN1) an N1-tuple of even integers, we define

P01,m1(z) =
∏

i∈E(01)

P (mi )(zv1(i) − zv2(i)), (53)

where v1(i) and v2(i) are the two ends of the edge i. Note that by our parity assumption
the function P (mi ) is even and so the expression is independent of the labelling of the
ends of edges.

Proposition 6.7. For a tuple m1 of even integers we can express the graph sum as

S(01,m1) = [ζ
0
n , . . . , ζ

0
1 ]P01,m1(z), (54)

where the coefficient extraction is for the expansion on the domain |qζi+1| < |ζi | <

|ζi+1| < 1 for all i.

Proof. By the general observation in Section 5.3, coefficient extraction is the same op-
eration as the computation of path integrals along standard paths. We compute the right
hand side inductively and show that the final expression coincides with the graph sum.
We denote by E1 the set of (the labels of the) edges adjacent to the vertex v1. For two
subsets of edge labels we define the shorthand notation

δ(J,K) = δ
(∑
j∈J

wj −
∑
k∈K

wk

)
.

Using the fact that 01 has no loops, and the parity of P , we rewrite the integrand as

P01,m1(z) =
∏
j∈E1

P (mj )(z1 − zvother(j)) ·
∏

i∈E\E1

P (mi )(zv1(i) − zv2(i))

where vother(j) = vo(j) is the second extremity of the edge j for each edge adjacent
to v1. We now apply Lemma 6.6 with k1 = 0 and obtain∮
γ1

P01,m1(z) =
∏

i∈E\E1

P (mi )(zv1(i) − zv2(i)) ·

∞∑
wi=1
i∈E1

(∏
i∈E1

w
mi+1
i

)

·

∑
E1=J1tK1

δ(J1,K1)
∏
j∈J1

( ∞∑
hj=1

qhjwj
) ∏
k∈K1

( ∞∑
hk=0

qhkwk
)∏

K1
ζ
wk
vo(k)∏

J1
ζ
wj
vo(j)

.

Consider the new graph 0(1) obtained by removing the edges in E1 from 01. We
denote by E2 the set of edges adjacent to v2 in this new graph, and for each partition
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J1 tK1 of E1 we iterate the process by integrating

∏
i∈E\E1

P (mi )(zv1(i) − zv−(i)) ·

∏
K1
ζ
wk
vo(k)∏

J1
ζ
wj
vo(j)

along γ2, using Lemma 6.6 again. We then consider the graph 0(2) obtained by removing
the edges in E2 from 0(1) and so forth. At the end of this procedure, we obtain

[ζ 0
n , . . . , ζ

0
1 ]P01,m1(z)

=

∑
hi ,wi

∏
i

w
mi+1
i ·

∑
E1=J1tK1

δ(J1,K1) ·
∏
j∈J1

∞∑
hj=1

qhjwj ·
∏
k∈K1

∞∑
hk=0

qhkwk

·

∑
E2=J2tK2

δ(J2 tK
2
1 ,K2 t J

2
1 ) ·

∏
j∈J2

∞∑
hj=1

qhjwj ·
∏
k∈K2

∞∑
hk=0

qhkwk

· · ·

∑
En=JntKn

δ(Jn tK
n
n−1 t . . . , Kn t J

n
n−1 t · · · ) ·

∏
j∈Jn

∞∑
hj=1

qhjwj ·
∏
k∈Kn

∞∑
hk=0

qhkwk ,

where Kj
i denotes the subset of Ki formed by the edges adjacent to vj . We recognize the

definition of S(01, m), since partitioning E into E1, . . . , En as above gives an orientation
G1 of 01, and non-realizable orientations have coefficient 0. Note that the last integration
with respect to the variable zn has no effect since the powers of ζn cancel out thanks to
the delta functions. ut

Proof of Theorem 6.1. In view of the factorization of the relevant quantity, we are in-
terested in the loop contribution and the reduced contribution in Lemma 6.4. The loop
contribution is quasimodular by Lemma 6.5, so it suffices to show that the right hand side
of (54) is a quasimodular form of mixed weight≤ k(m1). This follows from Theorem 5.8,
since P01,m1 ∈ J (k(m1))

n ⊂ Q(k(m1))
n by Proposition 5.6. ut

Proof of Theorem 3.2. Let f be a shifted symmetric function of weight k. By Theo-
rem 3.1, f is a linear combination of products of Pl , each product being of weight ≤ k.
Let P`1 · · ·P`n be such a product. We claim that 〈P`1 · · ·P`n〉q is quasimodular of weight
smaller than k. By Theorem 4.3, such a term decomposes as a graph sum (31), where the
completed Hurwitz numbers A

′
that appear in the graph sum are some even polynomials

in the wi (Theorem 4.1). The product
∏
v∈GA

′
(w−v ,w+v , (`#v)) is an even polynomial of

degree ≤ k − 2|E(G)|. Considering each monomial of degree m = (m1, . . . , m|E(G)|),
we get the graph sum S(G,m) in (51), which is quasimodular of weight |m| + 2|E(G)|
by Theorem 6.1. By linearity we obtain the quasimodularity of weight ≤ k of each
〈P`1 · · ·P`n〉q,G, hence the quasimodularity of each 〈P`1 · · ·P`n〉q , and finally the quasi-
modularity of the 〈f 〉q . ut
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7. Siegel–Veech constants

The study of area Siegel–Veech constants for flat surfaces, briefly recalled in Section 7.1,
led in [CMZ18] to counting problems for graph sums with a Siegel–Veech weight that
we introduce below. We show that the Siegel–Veech weighted graph sums admit a de-
composition into graph sums of triple Hurwitz numbers similar to the unweighted case
(Proposition 4.2). The main result (Theorem 7.3) in this section is that these graph sums fit
into our quasimodularity machinery of Section 5. We use this to give another proof of the
quasimodularity of the Siegel–Veech weighted generating series observed in [CMZ18].

Let λ = (λ1 ≥ · · · ≥ λk) be a partition. For p ∈ Z we define the p-th Siegel–Veech
weight of λ to be

Sp(λ) =

k∑
j=1

λ
p
j . (55)

Let α(j) denote the first element of the Hurwitz tuple hj , defined in (2). We define

c∗p(d,5) =

|Cov∗d (5)|∑
j=1

Sp(α
(j)) and c∗p(5) =

∑
d≥0

c∗p(d,5)q
d , (56)

where for ∗ ∈ {′, 0,∅} we packaged the Siegel–Veech weighted Hurwitz numbers into a
generating series. These series admit the following graph sum decomposition.

Proposition 7.1. The generating series c′p(5) can be expressed in terms of graph sums
of triple Hurwitz numbers as

c′p(5) =
∑
0

1
|Aut(0)|

c′p(5, 0),

where

c′p(5, 0) =
∑
G∈0

∑
h∈ÑE(G),
w∈ZE(G)
+

( ∑
e∈E(G)

hew
p
e

) ∏
e∈E(G)

weq
hewe

∏
v∈V (G)

A′(w−v ,w+v , µv)δ(v).

As a corollary of this and Theorem 7.3 below, we obtain an independent proof of the
following quasimodularity result (see also [CMZ18, Theorem 6.4]) without relying on the
combinatorial machinery of q-brackets involving T̃p (cf. [CMZ18, Sections 14 and 15]).

Corollary 7.2. For any ramification profile 5 and any odd p ≥ −1 the generating se-
ries c′p(5) for counting covers without unramified components and with p-Siegel–Veech
weight as well as the generating series c◦p(5) for counting connected covers with p-
Siegel–Veech weight are quasimodular forms of mixed weight ≤ wt(5)+ p + 1.

7.1. Relation to area Siegel–Veech constants

The generating functions c′
−1(5) admit a nice geometric interpretation in terms of Siegel–

Veech constants, which are responsible for counting closed geodesics on flat surfaces. For
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a flat surface X we define the function

Narea(T , L) =
∑

Z⊂X cylinder
w(Z)≥L

Area(Z)
Area(X)

counting the cylinders filled by closed geodesics on X, weighted by their area. This func-
tion is well-known to have a quadratic asymptotic (see e.g. [EM01]), and the number

carea(X) = lim
L→∞

Narea(T , L)

πL2

is called the (area) Siegel–Veech constant associated to X. These constants are interesting
both for generic flat surfaces of a given singularity type and for torus covers. It is shown
in [EKZ14, Theorem 4] and [CMZ18, Theorem 3.1] that the Siegel–Veech constant for a
torus cover of degree d and ramification 5 is

carea(d,5) =
3
π2

c0
−1(d,5)

N0
d (5)

.

Thus the series c∗
−1(5) can be interpreted as the generating function for the ‘Siegel–

Veech numerators’ of Hurwitz spaces. Knowing them to be quasimodular forms, and thus
knowing the asymptotic behaviour of both c0

−1(d,5) and N0
d (5) as d →∞, allows one

to compute the area Siegel–Veech constant of a generic surface with a given singularity
type.

7.2. Siegel–Veech weighted graph sums

In view of Proposition 7.1 we now consider some variants of the graphs sums discussed
Section 6, and show that they are quasimodular too. We again define the Siegel–Veech
weighted graph sums

SSV(0,m) =
∑
G∈0

SSV(G,m) (57)

over all orientations G of 0, where now

SSV(G,m) =
∑

h∈ÑE(G), w∈ZE(G)+

( ∑
i∈E(G)

hi

wi

) ∏
i∈E(G)

w
mi+1
i qhiwi

∏
v∈V (G)

δ(v). (58)

Theorem 7.3. If m = (m1, . . . , m|E(0)|) is a tuple of even integers, then the graph sums
SSV(0,m) are quasimodular forms of weight at most k(m) =

∑
i(mi + 2).

As in the case of ordinary counting, we can split off the loops and reduce to a sim-
plified height space. The main new ingredient is that the nearly-elliptic function L and
q-derivatives of P have the right Fourier expansion whose constant coefficients capture
the new graph sums and still fit in the scope of quasimodularity results of Section 5.3.
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We decompose SSV(0,m) according to the edge i0 that contributes hi/wi in the pref-
actor. That is, we decompose

SSV(0,m) =
∑
i0

SSV
i0
(0,m), where SSV

i0
(0,m) =

∑
G∈0

SSV
i0
(G,m)

and where

SSV
i0
(G,m) =

∑
h∈ÑE(G), w∈ZE(G)+

hi0

wi0

∏
i∈E(G)

w
mi+1
i qhiwi

∏
v∈V (G)

δ(v).

Next, we replace the height space ÑE(G) by NE(G) using an analog of Lemma 6.3.

Lemma 7.4. Replacing the height space ÑE(G) by NE(G) in each term SSV(G,m) does
not change the total sum SSV(0,m).

Proof. Let −G ∈ 0 be the graph with the reversed orientation compared to G ∈ 0.
We indicate by an additional subscript the space over which the h summation is taken in
SSV(G,m) We will show that

SSV(G,m)ÑE(G) + S
SV(−G,m)ÑE(−G) = S

SV(G,m)NE(G) + S
SV(−G,m)NE(−G) .

To the first term of the left hand side we apply the change of variables h′e = he − δe with
δe = εi+(e) − εi−(e) for the orientation G, which maps ÑE(G) to NE(G) as in Lemma 6.3.
To the second term we apply the change of variables h′e = he + δe with δe as before, i.e.
associated to the orientationG. It maps ÑE(−G) to NE(−G). As in Lemma 6.3, this change
of variable does not affect the term qh·w (thanks to the delta functions). The statement is
then obvious since the terms in δe/we cancel out. ut

We reduce the problem to the reduced graph using an analog of Lemma 6.4.

Lemma 7.5. The Siegel–Veech weighted graph sums factor as

SSV
i0
(0,m) =

{
SSV

0,i0
(0,m0)S(01,m1) if i0 is neutral,

S0(0,m0) S
SV
i0
(01,m1) otherwise,

where 01 is the reduced graph underlying 0 and where

SSV
0,i0(0,m0) =

∑
h∈NE0(G), w∈Z

E0(G)
+

hi0

wi0

∏
i∈E0(G)

w
mi+1
i qhiwi

for any orientation G of 0.

The contribution of the loops is easily dealt with.

Lemma 7.6. For m a tuple of even integers, SSV
0,i0
(0,m0) is a quasimodular form of mixed

weight k(m0).
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Proof. Clearly
SSV

0,i0(0,m0) = S̃mi0

∏
i 6=i0

Smi

where Sm is defined in Lemma 6.5 and where

S̃mi0
=

∞∑
w,h=1

hwmi0qhw =

{
DqSmi0−2 if mi0 ≥ 2,
E2 + 1/24 if mi0 = 0.

ut

Proof of Theorem 7.3. It remains to show that if i0 is not neutral, then the graph sum
SSV
i0
(01,m1) is a quasimodular form. We define

P
SV,i0
01,m1

(z) = DqP (mi0−2)(zv1(i0) − zv2(i0))
∏

i∈E(01)\{i0}

P (mi )(zv1(i) − zv2(i))

if mi0 ≥ 2, and in the remaining case mi0 = 0 we let

P
SV,i0
01,m1

(z) = L(zv1(i0) − zv2(i0))
∏

i∈E(01)\{i0}

P (mi )(zv1(i) − zv2(i)).

These definitions are so designed that with the same proof as in Proposition 6.7 we obtain

SSV
i0
(01,m1) = [ζ

0
n . . . ζ

0
1 ]P

SV,i0
01,m1

(z).

By Proposition 5.6, the function L belongs to Q(0)
n ⊕ Q(2)

n , and the function DqP (mi0 )

belongs to Q
(mi0+2)
n . So in any case P SV,i0

01,m1
belongs to Q(k(m1)−2)

n ⊕ Q(k(m1))
n . Hence its

constant term is quasimodular of mixed weight ≤ k(m1) by Theorem 5.8. ut

7.3. Proof of main results

Proof of Proposition 7.1. As in the proof of Proposition 4.2, we rely on Proposition 2.4.
We only need to justify that counting with Siegel–Veech weight produces an extra factor
hew

p
e for each edge. This is exactly the weight to put on each cylinder that corresponds to

the weight Sp(λ) for a Hurwitz tuple. This correspondence is obtained using the standard
Siegel–Veech transform as in [CMZ18, proof of Theorem 3.1]. ut

Proof of Corollary 7.2. First, we claim that

c′p(5) = 〈Tp fµ1 · · · fµn〉q − 〈Tp〉q〈fµ1 · · · fµn〉q (59)

as difference of q-brackets, where Tp is a function on partitions that we introduce now.
With the definition4

Tp(λ) =
∑

τ∈P(d)
zτSp(τ )χ

λ(τ )2

4 This function arises more naturally as the hook length moment Tp(λ) =
∑
∞
m=1m

p−1Nm(λ),
where Nm(λ) is the number of cells in the Young diagram of λ of hook length m. That Tp is a
shifted symmetric function if and only if p is odd and positive was a main theme in [CMZ18], but
all this is not relevant here. That this definition coincides with the definition of Tp given here is
proven in [CMZ18, Corollary 13.2].



400 Elise Goujard, Martin Möller

[CMZ18, Proposition 6.3] implies that

cp(5) =
∑
λ∈P
(Tp fµ1 · · · fµn)(λ)q

λ.

From [CMZ18, Proposition 6.2] we deduce

c′p(5) = (q)∞cp(5)− (q)∞cp()N
′
p(5).

Since (q)∞ = (
∑
λ∈P q

λ)−1, this is equivalent to the equation claimed in (59), by the
definition of q-brackets.

Second, we use the linearity of the brackets to show

〈Tp p`1 · · ·p`n〉q − 〈Tp〉q〈p`1 · · ·p`n〉q =∑
0

1
|Aut(0)|

∑
G∈0

∑
h∈ÑE(G)
w∈ZE(G)+

( ∑
e∈E(G)

hew
p
e

) ∏
e∈E(G)

weq
hewe

∏
v∈V (G)

A
′
(w−v ,w+v , (`#v))δ(v),

(60)

which invokes the polynomial Hurwitz numbers A
′
(w−v ,w+v , (`#v)). In fact, we can con-

sider both sides of this equation as expressions in n arguments as in Theorem 4.3. Since
we can write p` =

∑
µ c`,µfµ, multilinearity of both sides reduces the claim to the case

of arguments fµi , which is exactly the combination of (59) and the claim in Proposi-
tion 7.1.

By Theorem 4.1 the polynomials A
′
(w−v ,w+v , (`#v)) are even, so if p is odd the parity

hypothesis of Theorem 7.3 is met and this theorem implies that the expression in (60) is
a quasimodular form. Since the fµ can be expressed as polynomials in the p` by Theo-
rem 3.1, this implies the quasimodularity of c′p(5) we claimed. The weight can be deter-
mined as in the proof of Corollary 6.2. ut

8. Tropical covers and quasimodularity graph by graph

The main result of [BBBM17] is the expression of the tropical Hurwitz number generating
function in terms of a sum over Feynman graphs. The goal of this section is to show that
those results are the special case of simple branch points of our results, when stated in
the language of tropical covers. More precisely, we show here that our correspondence
theorem in Proposition 2.4 has the Correspondence Theorem [BBBM17, Theorem 2.13]
(see also Theorems 2.20 and 2.30 in loc. cit.) as an immediate corollary when stated in the
language of tropical covers. In particular, for simple branching (i.e. ramification profile
5 = ((2), . . . , (2)), our counting problem is equivalent to counting tropical covers.

8.1. Tropical covers

We recall here the definition of a tropical curve and a tropical cover, following [BBBM17].
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Definition 8.1. A tropical curve C is a connected finite trivalent metric graph. An elliptic
tropical curve consists of one edge forming a circle labelled with its length. Let E be the
elliptic tropical curve of length 1. A map π : C → E is a tropical cover of E if it is
continuous, non-constant, integer affine on each edge and respects a balancing condition
at every vertex of C.

In this setting, the weight we of an edge e for the graph is defined as the slope of π|e, and
the degree of the cover as

d =
∑

P∈C, π(P )=p

weP ,

where p is a generic point. For each vertex we can group the outgoing half-edges accord-
ing to the half-edges of E they map to. The cover is called balanced if for each vertex the
sums of the weights of the two groups agree.

An appropriate way to count tropical covers is coded in the notion of tropical Hurwitz
numbers.

Definition 8.2. Fix branch points p1, . . . , p2g−2 in the tropical elliptic curveE. The trop-
ical Hurwitz number is the weighted number of isomorphism classes of degree d covers
from a genus g curve C with branch points at the pi . Here, a tropical cover π is weighted
by the multiplicity

mult(π) =
1

|Aut(π)|

∏
e

we.

The combinatorial type of a tropical curve is its homeomorphism class, i.e. the underlying
graph without lengths on the edges. These graphs are called Feynman graphs in physics
literature. They correspond to our notion of (associated) global graph, with the vertex
labelling removed.

Our correspondence theorem implies the following correspondence result for simple
ramification covers branched over n = 2g − 2 points in terms of tropical covers. The
number of covers is independent, both for flat surface covers and for tropical covers, of the
base elliptic curve and the branch point location. In the following corollary we thus fix E
and the branch points on the flat side as in Section 2.3, more precisely for convenience at
εi = i/n, and on the tropical side we locate the branch points at pi = i/n. In particular
the heights he are in 1

n
Z≥1.

Corollary 8.3. There is a bijective correspondence between

(i) the flat surfaces (X, ω) with connected coverings p : X → E of degree d of the
square torus E, with ω = p∗ωE , and with simple ramification profile, weighted by
1/|Aut(π)|, and

(ii) the isomorphism classes of weighted tropical covers π : C → E of degree d, where
the weight of a tropical cover corresponds to its multiplicity mult(π).

Proof. This is a consequence of Proposition 2.4. Each cover corresponds to a trivalent
graph with a collection of numbers (we, he, te) corresponding to the widths, the heights
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and the twists of the cylinders. We define the tropical curve C to be the global graph 0
with edge lengths `e = he/we. If e is an edge from vertex i to vertex j , we define the
tropical cover on e to be the map of slope we ∈ N to the multi-segment from pi to pj
making bhec full turns. Note that this is well-defined, since for such an edge we have
he − (j − i)/n ∈ Z. The tropical balancing condition is a restatement of |w+v | = |w−v |
for every vertex v. Note that on the one hand d =

∑
e wehe, but on the other hand the

flat picture immediately implies d =
∑
e3π−1(P )we, where the sum is over all edges e

such that the corresponding cylinder contains the preimage of a given point P ∈ E. This
implies that the tropical cover we defined indeed has degree d. The map we define forgets
the twist te, but this is accounted for in the multiplicity mult(π). Note that the double
Hurwitz number of a trivalent local surface with a simple branch point is equal to 1 and
hence can be omitted. Besides the twist, our map has an obvious converse, associating to
a tropical cover the slopes we and he = we`e and the latter are indeed in 1

n
Z≥1 by our

convention on the location of the points pi .
Proposition 2.4 is stated at the level of coverings without unramified components. The

correspondence descends under the given hypothesis of simple branching (more gener-
ally: in case of only one ramified point over each branch point) to a correspondence of
connected covers by the usual inclusion-exclusion principle, since the obstruction of dis-
connected local surfaces (mentioned after the proof of Proposition 2.4) is ruled out by this
hypothesis. ut

In this correspondence the lengths of the edges of the tropical curves are the reciprocals
of the moduli me = we/he. This is the natural choice when viewing a tropical curve
as the dual graph of the special fiber in a degenerating family of smooth curves. Indeed
the reciprocal moduli m−1

e of the cylinders correspond (up to a common rescaling) to the
number of Dehn twists performed under the monodromy around the special fiber, and this
in turn corresponds to a local equation xy = tm

−1
e in the stable model of the generating

fiber (see e.g. [Möl08, paragraph preceding Theorem 2.4]). Since such a singularity is
resolved by a chain of m−1

e − 1 rational curves in the semistable model with regular total
space, the tropicalization map [Viv13] provides this edge with length m−1

e .

8.2. Counting graph by graph

For coverings with simple ramification, or equivalently for trivalent graphs, the quasi-
modularity results hold for each individual graph.

Corollary 8.4. Let 5 = ((2), . . . , (2)). Then for any trivalent graph 0 the contribution
N ′(5, 0) (resp. c′p(5, 0)) of the graph 0 to the total count is a quasimodular form of
mixed weight ≤ wt(5) = |5| + `(5).

These graph sums have a geometric interpretation: we count only surfaces with a fixed
type. This result is a refinement of the quasimodularity results of [EO01] and [CMZ18]
in the case of principal strata.

The weight of the quasimodular form N ′(5, 0) is not necessarily pure as shown by
the example of 5 = ((2), (2), (2), (2)) in Section 9. Note that in our convention, the
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vertices of 0 are labelled. Our examples show that for a fixed underlying unlabelled
trivalent graph G the sum over all labellings is a quasimodular form of pure weight
wt(5) = |5| + `(5) for 5 = ((2), (2)) and 5 = ((2), (2), (2), (2)). This purity re-
sult might hold in general.

Proof of Corollary 8.4. Since for simple ramification f2 = P2/2 is a completed cycle,
the corollary is a straightforward consequence of Theorems 6.1 and 7.3. ut

9. Examples

The examples here have four objectives. First we show how to compare the computations
of Zorich [Zor02] diagram by diagram with the counting by global graphs and local sur-
faces used here. Second, we emphasize the main difficulty in the naive computation of
the graph sums: If we work with non-completed cycles, the graph sum is not quasimodu-
lar for each graph separately, not even after summing over all the orientations. This sum
belongs to the ring generated by all the ‘Eisenstein series’ Gk , including odd k (compare
Section 5.1), and their derivatives. Only cancellations that become very delicate as the
complexity of the ramification datum grows ensure that the total result is a quasimodular
form.

Third, we illustrate the mechanism for proving quasimodularity of the Siegel–Veech
weighted counting. This is most transparent in the case of the principal stratum in genus 2,
the simple branching profile 5 = ((2), (2)), where no difficulty stemming from com-
pleted cycles is present.

Finally, we compute the quasimodular forms individually for the trivalent graphs cor-
responding to genus 3 covers and 5 = ((2), (2), (2), (2)).

9.1. Branching profile 5 = (3), the stratum H(2)

If we count geometrically as in Section 2.3, the global graphs of a stratum with just one
singularity have just one node, and the number of loops is at most 2 for genus 2 curves.

f3 f3

Fig. 3. The global graphs for H(2): one loop (01) or two loops (02).

9.1.1. Computation by diagrams. We review the computations of Zorich [Zor02] of torus
covers in this stratum, made with the aim of computing the Masur–Veech volume of H(2).
We compute N◦(G,5) = N ′(G,5) for 01 and 02 and all their orientations for the
ramification profile 5 = (3) consisting of a three-cycle.

In terms of square-tiled surfaces in H(2), a first possible pattern is presented on the
left of Figure 4. The picture on the right represents the ribbon graph made from a tubular
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1

1

2

2

3

3

t

h

w

1 3

2

Fig. 4. Diagram with one cylinder.

neighbourhood of the boundary of the horizontal cylinder. It is drawn on a torus since it
cannot be embedded in the plane. It corresponds to the only one ribbon graph with one
vertex of valency 6 and two faces (boundary components).

As integer parameters for this square-tiled surface, we use the width of the cylinderw,
the height h, the twist t , and the lengths of the saddle connexions `1, `2, `3. They are
related by

w = `1 + `2 + `3 and t ∈ {0, 1, . . . , w − 1}. (61)

The generating function for counting square-tiled surfaces of this type is then

S(C1) :=

∞∑
h,`1,`2,`3=1

hw≥3

w−1∑
t=0

qhwδ(w − `1 − `2 − `3)

=

∞∑
w,h=1
hw≥3

wqhw
( 1

6w
2
−

1
2w +

1
3

)
=

1
6S3 −

1
2S2 +

1
3S1,

(62)

where 1
6w

2
−

1
2w +

1
3 is the number of solutions of (61), and where

Si =

∞∑
w,h=1

wiqhw = Gi+1 +
Bi+1

2(i + 1)
.

From this formula we see that the generating function N ′(01, (3)) is not a quasimodular
form of weight ≤ 6, since the ‘Eisenstein series’ G3 is not.

Figure 5 represents a pattern for a square-tiled surface in H(2) corresponding to the
graph 02, i.e., with two horizontal cylinders, and its associated ribbon graph. The integer
parameters w1, w2, h1, h2, t1, t2, `1, `2, `3 are related by

w2 = `1 = `3, w1 = `1 + `2, t1 ∈ {0, . . . , w1 − 1}, t2 ∈ {0, . . . , w2 − 1}.
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1

1

2

2

3

w2 t2

h2

h1

t1
w1

2

3

1

Fig. 5. Diagram for two cylinders.

The generating function for this type of square-tiled surfaces is

S(C2) :=

∞∑
w1,h1,w2,h2,`1,`2=1

w·h≥3

w1−1∑
t1=0

w2−1∑
t2=0

qh1w1+h2w2δ(w2 − `1)δ(w1 − `1 − `2)

=

∞∑
w1,w2,h1,h2=1

w·h≥3

w1w2q
h1w1+h2w21{w1>w2}. (63)

We now compute that

∞∑
w1,w2,h1,h2=1

w1w2q
h1w1+h2w21{w1>w2} =

1
2 (A− B),

where

A =

∞∑
w1,w2,h1,h2=1

w1w2q
h1w1+h2w2 = S2

1 ,

B =

∞∑
w1,w2,h1,h2=1

w1w2q
h1w1+h2w21{w1=w2} = DqS1 − S2.

Here again, the non-quasimodularity comes from the factor S2 = G3. Summing over the
two configurations we see that the terms in S2 cancel out,( 1

6S3 −
1
2S2 +

1
3S1

)
+

1
2 (S

2
1 −DS1 + S2) =

3
2G

2
2 −

1
4G4 +

3
8G2 + const,

resulting in a quasimodular form, as claimed.
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9.1.2. Computation by local graphs and global graphs. In the formalism of this paper,
the ribbon graph in the first case (i.e. the global graph 01) corresponds to a cover of
the cylinder P1, ramified with profile (3, 1, . . . , 1) at 1, and with (w) at 0 and ∞. The
corresponding triple Hurwitz number A′(w,w, (3)) is just the number of such ribbon
graphs, so it is the number of solutions (`1, `2, `3) ∈ N3 of (61). Consequently,

S(C1) = N
′(01, (3)) =

∞∑
w,h=1

wqwhA′(w,w, (3)).

For the second graph 02, the ribbon graph corresponds here to a cover of P1, ramified of
profile (3, 1, . . . , 1) over 1, (w1, w2) over 0 and∞. The number of such covers or such
ribbon graphs is

A′(w,w, (3)) =

{
1 if w1 6= w2,

0 if w1 = w2,
w = (w1, w2).

Before passing to the computation using completed cycles, we tabulate the contribu-
tion of each polynomial in shifted symmetric functions appearing in the expression of

f3 =
1
3P3 −

1
2P

2
1 +

5
12P1

to the local polynomials A◦(w−,w+, (3)) and the contribution 〈·〉q . The table below
shows that the contribution of each diagram individually is not quasimodular because
the contribution of P 2

1 for graphs with only one vertex is not polynomial. It is however
piecewise polynomial, showing also that all the hypotheses in Theorem 4.1 are needed in
order to get a globally polynomial contribution.

A◦(w,w, (3)) 〈·〉q,G1 A◦(w,w, (3)) 〈·〉q,G2

w1 6= w2 w1 = w2

f3
1
6w

2
−

1
2w +

1
3

1
6S3 −

1
2S2 +

1
3S1 1 0 S2

1 −DS1 + S2

P3/3
1
6w

2
−

1
12

1
6S3 −

1
12S1 2 2 2S2

1

P 2
1 w S2 2 4 2(S2

1 +DS1 − S2)

P1 1 S1 0 0 0

9.1.3. Computation using q-brackets of completed cycles. Last, we compute 〈f3〉q using

〈f3〉q =
1
3 〈P3〉q −

1
2 〈P

2
1 〉q +

5
12 〈P1〉q .

The main difference from the previous computation will be the term 〈P 2
1 〉q that we could

interpret as a graph sum for a graph with two vertices.
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A◦(w−,w+, µ) 〈·〉q

P3 6 6S2
1

P3
1
2w

2
−

1
4

1
2S3 −

1
4S1

P1

P1

1 and 1 S2
1 +DS1

P1 1 S1

In these cases, all the local contributions are global polynomials and moreover even func-
tions, so the contributions of the completed cycles for each graph are quasimodular forms.

9.2. Branching profile 5 = ((2), (2)), the stratum H(1, 1)

For this stratum, as for all principal strata, all the contributions of the individual graphs to
the counting function N◦((12), (12)) for the ramification profile consisting of two trans-
positions are quasimodular forms, since f2 =

1
2P2 is equal to a completed cycle. For

H(1, 1) there is only one possible global graph up to relabelling the vertices.

A◦((w1), (w2, w3), (2)) 〈P2〉q

P2

P2

2 and 2 2S1,1

Among the eight orientations of 0 the two with all arrows ending at the same vertex
do not contribute to the total sum (27). By symmetry considerations the remaining six
orientations have the same contribution, and contribute with the factor 1/6 to (27) because
of the automorphism group permuting the edges. Consequently,

N◦((12), (12)) = 1
6S(0), where S(0) = [ζ 0

1 ζ
0
2 ]P(z1 − z2)

3
= [ζ 0

]P(z)3,
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and on the other hand (expressed in the height space convention of Lemma 6.3)

S(0) = 6S1,1 where S1,1 =

∞∑
w2,w3,h1=1, h2,h3=0

w2w3(w2 +w3)q
w2(h1+h2)+w3(h1+h3).

We can compute the constant coefficient using the algorithm provided by Theorem 5.8
and the decomposition

P(z)3 = 1
120P

(4)(z)+G2P
′′(z)+ (12G2

2 + 3G4)P (z)− 16G3
2 + 4G4G2 +

7
30G6

to finally obtain
N◦((12), (12)) = − 8

3G
3
2 +

2
3G4G2 +

7
180G6.

As a cross-check, since we know that the graph sum is quasimodular, we can determine
this quasimodular form by computing the first terms of the generating series:

N◦((12), (12)) = 2q2
+ 16q3

+ 60q4
+ 160q5

+ 360q6
+ 672q7

+ 1240q8
+O(q9).

9.2.1. Siegel–Veech generating function. Here we illustrate the method of proof of The-
orem 7.3 by evaluating the first interesting contribution SSV(H(1, 1)). We use the branch
point normalization of heights 0 and 1/2 (to exploit the symmetry). The generating func-
tion is

SSV
1,1 =

∑
(h1,h2,h3)∈(N+1/2)3

(w1,w2,w3)∈(N∗)3

(
h1

w1
+
h2

w2
+
h3

w3

)
w1w2w3δ(w3 − w1 − w2)q

h·w.

We will show that
SSV

1,1 = −
10
3 G

3
2 +

5
6G2G4 +

7
144G6.

With our convention, since the polynomial contribution of P2 is 1, we get

c◦((12), (12)) = 1
6 (S

SV
1 (0, 0)+ SSV

2 (0, 0)+ SSV
3 (0, 0))

where
SSV

1 (0, 0) =
∑
G∈0

∑
w∈N∗
h∈ZE(G)

h1w2w3δ
( ∑
i∈e+(v)

wi −
∑

i∈e−(v)

wi

)
qh·w.

One can check directly on this example that

SSV
1 (0, 0) = [ζ 0

]L(z)P (z)2 = SSV
2 (0, 0) = SSV

3 (0, 0)

(the integration with respect to the second variable z2 is not necessary), and that

SSV
1,1 =

1
2S

SV
1 (0, 0) = c◦((12), (12)).

The proof of Theorem 7.3 also provides an algorithm for computation. The decompo-
sition of L in the standard generators has been given in (46). Using

P(z)2 = 1
6P
′′(z)+ 4G2P(z)− 4G2

2 +
5
3G4
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and the decomposition of P(z)3 given previously, we obtain

[ζ 0
]Z(z)2P(z)2 = 16

3 G
3
2 −

2
3G

2
2 −

8
3G4G2 +

5
18G4 +

7
180G6

and

[ζ 0
]
( 1

2P(z)−G2 +
1

12

)
P(z)2 = −4G3

2 −
1
3G

2
2 +

1
3G4G2 +

5
36G4 +

7
60G6.

Altogether, we conclude that

c◦((12), (12)) = 1
2 [ζ

0
]LP 2

= −
10
3 G

3
2 +

5
6G2G4 +

7
144G6 =

5
4S(H(1, 1)).

The Siegel–Veech constant for the stratum H(1, 1) is 5/4 and this proportionality of gen-
erating series is expected by the ‘non-varying property’ of H(1, 1) (see the discussion in
[CMZ18, Section 17]).

9.3. Branching profile 5 = ((2), (2), (2), (2)), the stratum H(14)

We end this range of examples with the stratum H(14), first to show the effect of the
labelling of the zeros and to compute the quasimodular forms for individual graphs. There
are only two trivalent connected (multi)graphs with four vertices, depicted in Figure 6.
The graphs 0 are obtained by labelling the vertices of these graphs.

Fig. 6. Global graphs for H(14): type 1 (left) and type 2 (right).

For the first graph, we can use the horizontal and vertical flip and assume that the
bottom left vertex is labelled by 1. Among the six ways to label the remaining vertices,
our normalization of the integration paths (or equivalently height spaces, see 5.3) results
in two essentially different quasimodular forms.

The numbering on the left gives the quasimodular form

A = [ζ 0
]P(z1− z2)

2P(z1− z4)P (z2− z3)P (z3− z4)
2

= 4q2
+224q3

+3088q4
+21888q5

+105136q6
+388288q7

+1197280q8
+O(q9)

=
(
−256G6

2+
640

3 G4G
4
2+

112
9 G6G

3
2−

400
9 G

2
4G

2
2−

140
9 G6G4G2+

2000
81 G

3
4+

49
108G

2
6
)

+
(
−

256
3 G4G

3
2−

16
5 G6G

2
2+

320
21 G

2
4G2+

28
9 G6G4

)
, (64)

which we computed in Section 5.4, and there is a second labelling that results in the same
quasimodular form, in fact

A = [ζ 0
]P(z1 − z4)

2P(z1 − z2)P (z2 − z3)
2P(z3 − z4).
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v2 v3

v4

e1 e2 e3 e4

e5

e6

v1

v3 v4

v2

e1 e2 e3 e4

e5

e6

Fig. 7. Labelled graph of type 1 for H(14).

The numbering on the right of Figure 7 and three other numberings produce the quasi-
modular form

B = [ζ 0
]P(z1− z3)

2P(z1− z2)P (z2− z4)
2P(z3− z4)

= 40q4
+448q5

+2848q6
+11776q7

+41744q8
+O(q9)

=
(
−256G6

2+
640

3 G4G
4
2+

112
9 G6G

3
2−

400
9 G

2
4G

2
2−

140
9 G6G4G2+

2000
81 G

3
4+

49
108G

2
6
)

+
( 128

3 G4G
3
2+

8
5G6G

2
2−

160
21 G

2
4G2−

14
9 G6G4

)
. (65)

This difference illustrates a wall-crossing phenomenon: fixing the heights of the zeros
(the domain of integration) and changing the labelling of the zeros is the same as fixing
the labelling of the zeros and changing the integration domain. Equations (64) and (65)
are the contour integrals of the same function on two different domains. Note also that
these contributions are of weight 12 and 10, and their weight 12 parts coincide, whereas
their weight 10 parts coincide up to a factor of −2.

The total contribution of this graph is then

2A+ 4B = 6
(
−256G6

2 +
640
3 G4G

4
2 +

112
9 G6G

3
2 −

400
9 G

2
4G

2
2 −

140
9 G6G4G2

+
2000

81 G
3
4 +

49
108G

2
6
)
.

The second graph in Figure 6 is totally symmetric: there is only one way to label the
vertices. Its contribution is

C = [ζ 0
]P(z1 − z2)P (z1 − z3)P (z1 − z4)P (z2 − z3)P (z2 − z4)P (z3 − z4)

= −384G6
2 + 480G4G

4
2 − 200G2

4G
2
2 +

250
9 G

3
4.

The total connected generating function for the graph of type 1 is then

1
4 (2A+ 4B)+ C

= −768G6
2 + 800G4G

4
2 +

56
3 G6G

3
2 −

800
3 G

2
4G

2
2 −

70
3 G6G4G2 +

1750
27 G

3
4 +

49
72G

2
6

= 2q2
+ 160q3

+ 2448q4
+ 18304q5

+ 90552q6
+ 341568q7

+ 1068928q8
+O(q9).

The factor 4 is due to the automorphism group of each labelled graph of type 1.
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[BBBM17] Böhm, J., Bringmann, K., Buchholz, A., Markwig, H.: Tropical mirror symmetry
for elliptic curves. J. Reine Angew. Math. 732, 211–246 (2017) Zbl 1390.14191
MR 3717092

[CMZ18] Chen, D., Möller, M., Zagier, D.: Quasimodularity and large genus limits of Siegel–
Veech constants. J. Amer. Math. Soc. 31, 1059–1163 (2018) Zbl 1404.32025
MR 3836563

[Dij95] Dijkgraaf, R.: Mirror symmetry and elliptic curves. In: The Moduli Space of Curves
(Texel Island, 1994), Progr. Math. 129, Birkhäuser Boston, Boston, MA, 149–163
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Boston, Boston, MA, 165–172 (1995) Zbl 0892.11015 MR 1363056

[KO94] Kerov, S., Olshanski, G.: Polynomial functions on the set of Young diagrams. C. R.
Acad. Sci. Paris Sér. I Math. 319, 121–126 (1994) Zbl 0830.20028 MR 1288389

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1372.32020&format=complete
http://www.ams.org/mathscinet-getitem?mr=3592359
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0815.53082&format=complete
http://www.ams.org/mathscinet-getitem?mr=1301851
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0978.17016&format=complete
http://www.ams.org/mathscinet-getitem?mr=1742353
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1390.14191&format=complete
http://www.ams.org/mathscinet-getitem?mr=3717092
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1404.32025&format=complete
http://www.ams.org/mathscinet-getitem?mr=3836563
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0913.14007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1363055
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1305.32007&format=complete
http://www.ams.org/mathscinet-getitem?mr=3270590
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1096.37501&format=complete
http://www.ams.org/mathscinet-getitem?mr=1827113
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1037.32013&format=complete
http://www.ams.org/mathscinet-getitem?mr=2010740
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1019.32014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1839286
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1368.30020&format=complete
http://www.ams.org/mathscinet-getitem?mr=3580171
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0892.11015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1363056
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0830.20028&format=complete
http://www.ams.org/mathscinet-getitem?mr=1288389


412 Elise Goujard, Martin Möller
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