
Improvement of the IT-PES-PS
Section Services Statistics
Page

September 2013

Author:
Alberto Montes López

Supervisor:
Jérôme Belleman

CERN openlab Summer Student Report 2013

CERN openlab Summer Student Report 2013

Project Specification
The IT-PES-PS service managers gather a lot of statistics for the services they run. These
statistics are currently displayed by SLS (Service Level Status) or Lemon pages. They also use
the Web interface provided with OpenTSDB, a DB optimised for time series. And while these
various pages give very useful and technical information, they do not always emphasise the
important figures.

Having different statistics pages makes it difficult to see the relevant numbers at once.

The goal of this project was to build homogeneous dashboards with interactive plots to better
reflect the activity and resources of each service, showing relevant figures at first sight in a single
website.

CERN openlab Summer Student Report 2013

Abstract

There is a need in the IT-PES-PS section to improve the current situation of having to consult the
relevant information from several heterogeneous websites by introducing interactive
homogeneous dashboards, accessible from a single web application where the information needed
can be quickly accessed.

The goal of this openlab Summer Student project was to create a website with homogeneous and
interactive dashboards. Its architecture had to allow the creation of new dashboards easily.

CERN openlab Summer Student Report 2013

Table of Contents
1 Introduction .. 5

2 Technologies .. 5

2.1 Technologies: What did we have in the beginning? .. 5

2.2 Technologies: What did I have to do? ... 7

2.2.1 More about OpenTSDB's HTTP API ... 7

2.2.2 More about Django .. 8

2.2.3 More about Ext JS ... 8

3 Project Structure .. 9

3.1 Django flow .. 9

3.2 Use of Class-based views .. 10

3.2.1 More about Class-based views.. 10

3.2.2 Example of Class-based views .. 10

3.3 The Django template system ... 11

3.3.1 More about the Django template language ... 11

3.3.2 Examples of templates .. 11

3.4 Add a new plot in the dashboard ... 12

4 Look and feel of the website ... 13

4.1 Problems during development ... 14

5 Software requirements ... 15

5.1 Generating an SSO Cookie ... 15

6 Adding New Dashboards .. 15

7 Deployment .. 16

8 Conclusion ... 16

9 References ... 17

CERN openlab Summer Student Report 2013

1 Introduction
The first goal of this project was to assemble the components necessary to display dashboards for
the Batch Service run by IT-PES-PS. But the structure of this website would later on allow
adding new dashboards by following a few steps which will be described later in this report.

2 Technologies

2.1 Technologies: What did we have in the beginning?

The first technology to introduce is OpenTSDB which is a distributed, scalable Time Series
Database (TSDB) written on top of Hbase, where data is currently stored for the Batch Service.

There is a website where you can query directly the DB. It communicates with OpenTSDB using
an HTTP API (Figure 1). Interacting with the user interface isn't optimal and requires the user to
perform quite a few operations before he sees what he wants. For example, the user can only see
one plot at a time.

Figure 1. OpenTSDB is bundled with a web interface, in addition to the storage and the API.

SLS and Lemon are used as sources of information for the other services run by IT-PES-PS.

5 | P a g e

CERN openlab Summer Student Report 2013

Figure 2. Weekly Statistics of Batch Capacity.

Figure 3. Example of Lemon page.

Figure 4. LSF Queues.

6 | P a g e

CERN openlab Summer Student Report 2013

2.2 Technologies: What did I have to do?

OpenTSDB has been used as storage backend for my project. Being free software and fast for the
time series data we have to handle, this was a sensible choice.

For the Application backend it was decided to use Django, a web application framework written
in Python. It takes care of many web application-related security issues, including authentication
and authorisation, which could be useful if we want to share the dashboards with people outside
the section. The application backend communicates with OpenTSDB using the HTTP API. To
query the HTTP API, we chose Request which is an elegant and easy to use HTTP library for
Python.

Regarding the application frontend, we chose to use Ext JS, a JavaScript library which provides a
very interesting set of widgets (plots, grids, layouts...) for building interactive web applications.

Figure 5. Application Architecture.

2.2.1 More about OpenTSDB's HTTP API

OpenTSDB provides an HTTP API to establish a communication with an application and get the
desired data.The available HTTP end-points can return results in 3 different formats:

• The default format (either HTML or plain text).

• JSON, if the URL contains the json query string parameter.

• PNG, if the URL contains the png query string parameter.

Below you can see some queries used in the project and the explanation of their string
parameters:

https://batchmon-tsd.cern.ch/q

... ?start=1w-ago&m=sum:batchhosts.count&nocache&ascii

Aggregation Function

Metrics

All values for Tag “prod”

7 | P a g e

https://batchmon-tsd.cern.ch/q

CERN openlab Summer Student Report 2013

... ?start=1w-ago&m=sum:batchhosts.count{prod=*}&nocache&ascii

... ?start=1w-ago&m=sum:10m-avg:batchhosts.count&nocache&ascii

(*) Downsample the data points using a 10-minute average.

The application allows the following downsampling functions (avg, dev, max, min, and sum).

...?start=2013/07/01-12:00:00&end=2013/08/01-15:30:00&m=sum:10m-
avg:batchjobs.ended{queue=*}&nocache&ascii

Start The query's start date.
End The query's end date.
M The query itself.

Nocache Forces TSD to ignore cache and fetch results from Hbase.
Ascii The plain text output format produced.

2.2.2 More about Django
Django is an open source web application framework, written in Python. It follows the Model–
View–Controller (MVC) architectural pattern. It is maintained by the Django Software
Foundation (DSF). Django has a BSD License. This web framework was designed to simplify the
creation of complex, database-driven websites. Python programming language is used
throughout, even for settings, data models, etc.

2.2.3 More about Ext JS
Ext JS is a pure JavaScript application framework used for building interactive web applications
using techniques such as Ajax, DHTML and DOM scripting. It is maintained by Sencha Inc. Ext
JS has a GPLv3 License or commercial (if the project is not open source).

Value of Downsample (*)

8 | P a g e

CERN openlab Summer Student Report 2013

3 Project Structure
In the following diagram you can see the project structure:

3.1 Django flow

Django operates as follows:

• Users access a URL from a browser.
• Django matches the request against its urls.py file.
• If a match is found, Django moves on to the view that is associated with that URL.

Views are generally found inside each app in the views.py file.
• A view is a Python method or class that generally handles all the database

manipulation. It fetches data, performs (if required) some changes and passes data on to
the templates.

• A template, specified in the view, renders the html page with some dynamic data.

Static content storage: .css and .js
files, lib (Ext JS) and images

Template storage: .html files used by
the Django template engine

Views are found inside each app in
the views.py file. The view generally
handles all the database manipulation.
It grabs data and passes it on

File where you set up the URLs

Structure using class inheritance that
defines the two types of plots in the

created dashboard

9 | P a g e

CERN openlab Summer Student Report 2013

3.2 Use of Class-based views
It was decided to use Class-based views in the views.py file, since you can use inheritance and
the final solution is more elegant. At the same time the number of code lines is greatly reduced.

3.2.1 More about Class-based views
Class-based views provide an alternative solution to implement views as Python objects rather
than functions. They do not replace function-based views; however some differences can be
observed.

• Organization of code related to specific HTTP methods (GET, POST, etc.) can be
addressed by separate methods instead of conditional branching.

• Object oriented techniques, such as multiple inheritances, can be used to factor code into
reusable components.

3.2.2 Example of Class-based views
urls.py

from django.conf.urls import patterns
from psstats.views import Index
from psstats.views import BatchhostCount

...

urlpatterns = patterns('',

 (r'^$', Index.as_view()),

 (r'^api/batchhostscount/$', BatchhostCount.as_view()),

...

)

views.py

from django.shortcuts import render_to_response
from psstats.plot import LinePlot
from django.http.response import HttpResponse
from django.utils import simplejson
from django.views.generic.base import View

class Index(View):

 def get(self, request):

 return render_to_response('main-dashboard.html')

10 | P a g e

CERN openlab Summer Student Report 2013

class BatchhostCount(View):

 def get(self, request):

 ...

 plot_data, grid_data = LinePlot(params, include_grid).get_data()

 return HttpResponse(simplejson.dumps({'plot': plot_data, 'grid':
grid_data}))

3.3 The Django template system
Django provides a template engine that manages .html files, in which there are special tags that
belong to the Django template language.

Django’s template language is designed to strike a balance between power and ease. It’s designed
to feel comfortable to those used to working with HTML.

3.3.1 More about the Django template language
A template is a text document, or a normal Python string, that is marked-up using the Django
template language. A template can contain block tags or variables.

A block tag is a symbol within a template that does something.

This definition is deliberately vague. For example, a block tag can output content, serve as a
control structure (an “if” statement or “for” loop), grab content from a database or enable access
to other template tags.

Block tags are surrounded by "{%" and "%}".

A variable is a symbol within a template that outputs a value. Variable tags are surrounded by
"{{" and "}}".

A context is a “variable name” -> “variable value” mapping that is passed to a template.

A template renders a context by replacing the variable holes with values from the context and
executing all block tags.

3.3.2 Examples of templates
In this project there are two templates: base.html which contains basic information of any
template that inherits from it, and main-dashboard.html which is the template for the created
dashboard. This template inherits from the previous one.

11 | P a g e

CERN openlab Summer Student Report 2013

3.4 Add a new plot in the dashboard
In order to add a new plot in the created single dashboard, follow the steps described below:

1. In urls.py file add the following:

from django.conf.urls import patterns
from psstats.views import Index
from psstats.views import NewPlot

...

urlpatterns = patterns('',

 (r'^$', Index.as_view()),

 (r'^api/newplot/$', NewPlot.as_view()),

 ...

)

2. In the views.py file add a Class-based view inheriting at least View (you can reuse the
code using inheritance if the plot is one of the types created in this dashboard).

from django.http.response import HttpResponse
from django.views.generic.base import View

...

class NewPlot(View,...):

 def get(self, request):

 ...

 return HttpResponse(...)

3. Query DB from plot.py file.

4. Structure the results as required by Ext JS.

5. Place a JS function call in template main-dashboard.html.

6. Add the corresponding html code in the template main-dashboard.html.

7. Update main_dashboard .css file.

12 | P a g e

CERN openlab Summer Student Report 2013

4 Look and feel of the website
The website has been designed with graphic elements provided by Ext JS. Besides it is navigable
vertically and is located in the centre of the browser. It uses a width of 960 px as it is the average
size used in websites.

The image below displays the first dashboard created with the new application. It contains
generated plots for nine different metrics. As observed all the information is available at once
without the need of querying different systems.

Figure 6. Line plots.

13 | P a g e

CERN openlab Summer Student Report 2013

Figure 7. Area plot.

All plots and associated grids are loaded using AJAX. Initially the entire dashboard is loaded with
default values.

When selecting options for a plot and pressing the reload button, only this plot is reloaded. The
rest of the page remains the same. This is achieved using AJAX.

4.1 Problems during development
During the development of the application the following issues were found:

• Ext JS shows no errors while debugging the application code making it hard to find
where the error comes from. In this particular case no solution was found. The only
possible way to find the error was searching manually for it.

• The documentation provided by the Ext JS site is not very detailed and the number of
code examples available is not very large.

14 | P a g e

CERN openlab Summer Student Report 2013

• When the number of legends of a plot was high they were not properly displayed, not
all the legends were visible in the screen. The solution was implemented using a
column distribution of the legends.

• Another issue was the time needed to plot some charts. The browser sometimes

freezes because Ext JS has to render too much data.

5 Software requirements

• Python (version 2.6.6 - used during development).
• Django (version 1.5.1 - used during development).
• Ext JS (version 4.2.1 - used during development).
• Request (version 1.2.3. - used during development).
• Single Sign On (SSO). You need to generate a cookie.

5.1 Generating an SSO Cookie
In order to generate a cookie follow the steps described below:

• Installation: Open a terminal and as root on your SLC5 or SLC6 system run:

#yum install cern-get-sso-cookie

A set of packages will be installed on your system.

• Usage: cern-get-sso-cookie acquires CERN Single Sign-On cookie using Kerberos
credentials or user certificate and stores it in a file for later usage with tools like curl,
wget or others - cookie file is stored in Netscape format understood by most web clients.

In order to use this tool with Kerberos credentials a valid CERN Kerberos ticket must be
acquired, for example using kinit. To check the validity of Kerberos credentials please
use klist.

• During the development of the project, the cookie is provisionally stored in the directory
~/private/ssocookie.txt

• Finally run in a terminal:

#cern-get-sso-cookie -–nocertverify --krb -u https://batchmon-tsd.cern.ch
–o ~/private/ssocookie.txt -r

6 Adding New Dashboards
The application was designed to allow adding new dashboards, and new plots to existing
dashboards, in a very easy and quick way. In order to do so only a few steps are needed:

15 | P a g e

CERN openlab Summer Student Report 2013

• In the base.html template you should add a tab system, a way to access the new
dashboard you are about to create. HTML links or tabs are the most common examples of
tab systems that can be used.

• Create a new HTML page that inherits from base.html and contains the new dashboard
that you want to add.

• A new URL needs to be added to the url.py file.
• In the views.py file you should add a class or a view depending on the preferred

implementation method.

urls.py views.py static/templates

url(r'^$', IndexView) class IndexView main-dashboard.html

url(r'^dashboard2/$', Dashboard2View) class Dashboard2View dashboard2.html

7 Deployment
The web server used during the development phase was the one provided with Django. This
server has some limitations as not being meant to serve static files and not having a load-balance
module, etc. Therefore this server is not recommended for a production system, and a fully
fledged is desirable. A good example to take into account would be the Apache server. More
information about the interaction between Apache and Django can be found following reference
number [8].

8 Conclusion
• Being able to participate in this project has brought me motivation because there was a

real need for the development of the project. At the same time, I am pleased that the
provided solution will simplify the daily work of everybody in the team.

• It was very glad to be part of a real project that will be used in a real work environment.

• I enjoyed learning new technologies, like Django and Ext JS and at the same time, I had
the opportunity to get more relevant experience with Python.

base.html

main-dashboard.html dashboard2.html

16 | P a g e

CERN openlab Summer Student Report 2013

9 References
[1] http://opentsdb.net/http-api.html

[2] http://en.wikipedia.org/wiki/Django_%28web_framework%29

[3] http://en.wikipedia.org/wiki/Ext_JS

[4] http://docs.python-requests.org/en/latest/user/quickstart/

[5] https://docs.djangoproject.com/en/dev/topics/class-based-views/

[6] https://docs.djangoproject.com/en/dev/ref/templates/api/

[7] http://linux.web.cern.ch/linux/docs/cernssocookie.shtml

[8] https://docs.djangoproject.com/en/1.1/howto/deployment/modwsgi/

17 | P a g e

http://opentsdb.net/http-api.html
http://en.wikipedia.org/wiki/Django_%28web_framework%29
http://en.wikipedia.org/wiki/Ext_JS
http://docs.python-requests.org/en/latest/user/quickstart/
https://docs.djangoproject.com/en/dev/topics/class-based-views/
https://docs.djangoproject.com/en/dev/ref/templates/api/
http://linux.web.cern.ch/linux/docs/cernssocookie.shtml
https://docs.djangoproject.com/en/1.1/howto/deployment/modwsgi/

	Improvement of the IT-PES-PS Section Services Statistics Page
	September 2013
	Author:
	Alberto Montes López
	Supervisor:
	Jérôme Belleman
	CERN openlab Summer Student Report 2013

	Table of Contents
	1 Introduction
	2 Technologies
	2.1 Technologies: What did we have in the beginning?
	2.2 Technologies: What did I have to do?
	2.2.1 More about OpenTSDB's HTTP API
	2.2.2 More about Django
	2.2.3 More about Ext JS

	3 Project Structure
	3.1 Django flow
	3.2 Use of Class-based views
	3.2.1 More about Class-based views
	3.2.2 Example of Class-based views

	3.3 The Django template system
	3.3.1 More about the Django template language
	3.3.2 Examples of templates

	3.4 Add a new plot in the dashboard

	4 Look and feel of the website
	4.1 Problems during development

	5 Software requirements
	5.1 Generating an SSO Cookie

	6 Adding New Dashboards
	7 Deployment
	8 Conclusion
	9 References

