
Electronic Ticket and
Check-in System for Indico
Conferences

September 2013

Author:
Bernard Kolobara

Supervisor:
Jose Benito Gonzalez Lopez

CERN openlab Summer Student Report 2013

CERN openlab Summer Student Report 2013

Project Specification
This project should build on the existing participant registration module of Indico and
provide additional functionalities for managing the check-in process. While in small
conferences it is easy to keep track of participants with a simple paper list, such
techniques become inefficient when the need to scale the process up arises. Therefore
Indico’s participant registration module would be extended with the functionality to
generate electronic tickets. This will allow conference organizers to keep track of
attendees after they finish the registration process. As part of this project it is also
necessary to develop a mobile application that will be used to scan the electronic tickets,
identify the user and mark them as checked in when they arrive at the conference.
Additionally Indico’s HTTP API would be extended to be used by the mobile application
to retrieve data about conferences and attendees.

CERN openlab Summer Student Report 2013

Abstract

The main goal of this project is to simplify the check-in process for conferences that use
the Indico conference management system. This is archived by extending Indico’s core to
include electronic ticket generation functionality and developing a mobile application that
is used to scan the electronic tickets during the check-in process. Indico’s HTTP API is
also extended to provide the mobile application with the necessary data.

CERN openlab Summer Student Report 2013

Acknowledgments
I would like to thank everyone involved in the CERN openlab Summer Student
Programme. It was a great experience for me and I learned so much more than I expected.
Especially, I would like to thank my supervisor Jose Benito Gonzalez Lopez who was
always there when I was stuck on a problem to provide me with advice. And also a big
thanks to the Indico team, it was a pleasure working with you all.

CERN openlab Summer Student Report 2013

Table of Contents

1 Introduction .. 6

2 Indico ... 7

2.1 Indico’s architecture ... 7

2.1.1 Flask .. 7

2.1.2 Request handlers ... 7

2.1.3 Views ... 7

2.1.4 HTTP API ... 7

3 Check-in system architecture ... 8

3.1 Indico core extensions ... 8

3.1.1 User interface changes .. 8

3.1.2 Electronic ticket generation ... 10

3.1.3 E-mail attachment .. 10

3.2 Mobile application .. 11

3.2.1 PhoneGap .. 11

3.2.2 User interface .. 11

3.2.3 Architecture .. 12

3.3 HTTP API ... 13

3.3.1 URL /export/user/<userId>.json ... 13

3.3.2 URL /user/logout .. 13

3.3.3 URL /export/checkin/<registrantId>.json ... 14

3.3.4 URL /export/registrant/<registrantId>.json ... 14

3.3.5 URL /export/registrants/<confId>.json ... 14

3.3.6 URL /export/events/<userId>.json ... 15

4 Conclusion and future work ... 16

CERN openlab Summer Student Report 2013

1 Introduction
It is very common nowadays for big international organizations such as CERN to
organize events in the order of hundreds of attendees. In such large scale events, keeping
track of all those people can be a very tedious and unproductive task. Therefor it’s
necessary to provide event organizers with better tools that can make the job of managing
attendees easier. This will allow them to focus their effort on human-oriented tasks and
leave repetitive, simple tasks to the care of computers. Indico tries to provide event
managers with tools to work on actually important things, while leaving the task of
keeping track of the event workflow to a web-based application.

The goal of this project was to extend Indico with tools to manage the check-in process
for conferences. Before, Indico only assisted conference attendees until the registration
was finished. Conference organizers would get a list of all the attendees and were left on
their own to organize the check-in process. This project tries to build on Indico’s existing
participant management module by extending it to include additional tools for the check-
in process.

This report can be split in two parts. In the first part an overview of Indico and its
architecture is given. The second part shows the design and implementation of the
systems responsible for the new check-in functionalities. This second part can be
additionally split in three sub-parts:

1) Indico core extensions – This part describes the new user interface changes in
Indico, the e-ticket generation and the new interface for e-mail attachments.

2) Mobile application – This part gives an overview of the technologies used to
develop the mobile application.

3) HTTP API – In this part an overview of the HTTP API used by the mobile
application is given.

This report ends with a conclusion and information about future work that can be done to
further improve the check-in system.

All code developed for this project is available online on GitHub1 2.

1 https://github.com/bkolobara/indico/tree/1345-e-ticket-module
2 https://github.com/bkolobara/indico-check-in-mobile

6 | P a g e

https://github.com/bkolobara/indico/tree/1345-e-ticket-module
https://github.com/bkolobara/indico-check-in-mobile

CERN openlab Summer Student Report 2013

2 Indico
Indico (Integrated Digital Conferences) is a web-based, world-wide, multi-platform
content management system and event agenda. It is also the long term archiving tool for
documents and metadata related to conferences, meetings and lectures at CERN. Apart
from CERN Indico is also used in over 100 other institutions world-wide. The Indico
software was originally developed in the framework of the EU InDiCo project.
Nowadays, Indico is free software licensed under terms of the GNU General Public
License.

2.1 Indico’s architecture
Understanding the basics of Indico’s architecture will allow us to easier understand the
modifications made to Indico during this project. Indico is a really big application and
structured in many layers. To provide an overview of all layers would be a too big
undertaking for this document, so we will only focus on those parts that are touched in
this project.

2.1.1 Flask

Flask is used by Indico for routing, session and request handling. It provides the
foundation on which all other components build on. Blueprints are used to define routes.
All blueprints are located in the folder indico/web/flask/blueprint. Depending on their
function rules are put in different files. And this is the place where all URL rules for this
project are defined.

2.1.2 Request handlers

Most of the request handlers are located in the folder indico/MaKaC/webinterface/rh. But
indico is trying to move to another folder structure where the request handlers are defined
in indico/web/handlers. This is why all the new request handlers for this project are
created in this location.

2.1.3 Views

Similar to request handlers, Indico is trying with newer development to change the
location where all views are located from indico/MaKaC/webinterface/pages to
indico/web/views. The new location is used by this project.

2.1.4 HTTP API

The purpose of the HTTP API is to expose Indico’s data to external applications. In this
project it is used to provide conference data to the mobile application. All files used for
the HTTP API are located in indico/web/http_api folder. The HTTP API doesn’t use flask
to provide URL routing, it uses a method based on regular expressions.

7 | P a g e

CERN openlab Summer Student Report 2013

3 Check-in system architecture
The check-in system consists of many components but they can be split in three main
parts. The first part extends the Indico core with additional tools for managing registrants,
generating e-tickets and sending e-tickets by e-mail. The second part is more independent
and represents the mobile application. The third part is an extension of the existing HTTP
API in Indico to provide a way for the mobile application to communicate with indico.

3.1 Indico core extensions
Indico’s core was extended with new views to provide conference managers with
additional tools for managing registrants, and allowing registrants to download their e-
ticket in PDF format. The already existing PDF engine was extended to generate the e-
tickets. And also the e-mail sending in Indico was partly rewritten to allow Indico to
attach documents to the e-mails.

3.1.1 User interface changes

We will first look at the additions from the perspective of a conference manager. The first
change we will look at is the new e-ticket tab in the Registration section.

For now this tab contains only the option to enable or disable the e-ticket system for the
conference. The idea is to additionally extend this tab to have the possibility to change
the layout and design of the e-ticket for more personalisation. This was not implemented
because of time constraints.

After enabling the e-ticket system the manager has the possibility to enable fields in the
Registrants tab that show if the registered users have already checked in into the
conference and the check-in date.

8 | P a g e

CERN openlab Summer Student Report 2013

This allows the conference manager to keep track of users directly from the web interface. A
Check in button was also added to this tab, where one or more selected user can be marked as
checked in.

When the manager selects a registrant by clicking on him/her more information about this
registrant is displayed. To this registrant information screen an additional tab E-Ticket was added
where the conference manager can download the ticket for the selected registrant and mark or
unmark them as checked in.

From the regular user perspective not many things have changed. The only addition is a
download link for the e-ticket after registration.

If the user is registered in Indico he will additionally have the option to download the e-
ticket from the side menu when he comes back to the conference site.

9 | P a g e

CERN openlab Summer Student Report 2013

3.1.2 Electronic ticket generation
The electronic ticket is a PDF document containing information about the attendee,
conference and a QR code that can be later used to uniquely identify the attendee.

Indico already used the reportlab library for generating PDF documents in other parts of
the application. The existing PDF module was extended to include e-ticket generation. A
new class (TicketToPDF) was added to the existing file indico/MaKaC/PDFinterface/
conference.py.

The TicketToPDF class constructor receives two arguments: the conference object and
the registrant object. This class also inherits the method getPDFBin that can be used to
get the PDF binary blob for the ticket.

The QR code is a JSON structure and contains the following data:

• application – The application name. Currently hardcoded to indico. The
application name is necessary for a better user experience. If the ticket is scanned
by a regular QR code scanner, the user gets information about the application
and not just a cryptic id.

• target – Conference id.
• id – Registrant id.
• secret – A uniquely generated hash to offer protection against faking tickets by

knowing the conference id and guessing the registrant id.

3.1.3 E-mail attachment

Indico also already provided the functionality to send a confirmation e-mail to newly
registered users, but this interface didn’t have the flexibility to attach documents to the e-

10 | P a g e

CERN openlab Summer Student Report 2013

mails that are sent. Therefore the interface was partly rewritten to offer backwards
compatibility and to add the option to attach files to e-mails.

The following example demonstrates the usage of the new e-mail interface.

attachment = {}
attachment[’name’] = ‘Ticket.pdf’
attachment[‘binary’] = pdf.getPDFBin()

email = self._regForm.getNotification()\

 .createEmailNewRegistrant(self._regForm, rp)
email[‘attachments’] = [attachment]
GenericMailer.send(email)

This example was taken from the code responsible for attaching tickets to registration e-
mails. As we can see the attachment is a dictionary containing the filename and the
content of the file to be sent.

3.2 Mobile application
The mobile application was developed using web technologies (HTML and JavaSript)
and PhoneGap is used to compile it to a native application and provide access to native
APIs like the camera one.

3.2.1 PhoneGap

PhoneGap is a mobile development framework produced by Nitobi, purchased by Adobe
Systems. It enables software programmers to build applications for mobile devices using
JavaScript, HTML5, and CSS3, instead of device-specific languages such as Objective-C
or Java. The resulting applications are hybrid, meaning that they are neither truly native
(because all layout rendering is done via web views instead of the platform's native UI
framework) nor purely web-based (because they are not just web apps, but are packaged
as apps for distribution and have access to native device APIs).

Using PhoneGap for this project has the benefit that the created application is not limited
to one platform. And using web technologies allows for a faster development cycle.

3.2.2 User interface

Bootstrap 3 was chosen as the CSS framework to simplify the development and provide a
nice looking user interface optimized for mobile screen sizes. The following screenshots
are showing the user interface for the mobile application:

11 | P a g e

CERN openlab Summer Student Report 2013

3.2.3 Architecture

Angular.js is used as the JavaScript framework for the mobile application. Because of
that most of the design choices are influenced by best practices in the Angularj.js
community.

Only the www folder is included in the version control system, other folders are platform
dependent and are generated by PhoneGap. The www folder contains the following files:

• config.js – Main configuration file for the application where the base URL,
consumer and secret keys are defined.

• config.xml – Configuration file for PhoneGap containing many fields. Most of
them have the default values. One of the more important fields is access origin =
”*”, that gives the application privileges to access all domains.

• icon.png – The icon for the application.
• index.html – The starting point of the application.
• spec.html – File for testing (currently not used).

Though the main entrance into our application is the index.html file, it contains only
enough code to call the initialize function of PhoneGap that is located in the
www/js/app.js file. This function will bootstrap Angular.js when PhoneGap has started
the application and is ready.

All Angular.js routes are defined in the www/js/router.js file. When a route is matching
the URL an appropriate partial view is loaded from the www/partials folder and the
matching controller is triggered in the www/js/controllers.js file.

12 | P a g e

CERN openlab Summer Student Report 2013

Most of the application’s logic is encapsulated as an Angular.js service in the www/
js/services.js file. The service is exposed under the name OAuth and provides many
functions like authenticate, logout, ifAuthenticated, getRegistrantsForEvent, etc.

The following code shows an example of using the OAuth service:

OAuth.getRegistrantsForEvent($scope.event_id, function (result) {
 $scope.registrants = result.registrants;
 $scope.$apply();
});

This example is taken from the www/js/controller.js file and shows how the service
encapsulates all the complexity in a simple function that takes an event id and callback
function.

Other files and folders worth mentioning are:

• www/css – Contains all the CSS files. The only CSS file that is not generated is
the index.css file.

• www/fonts – Contains the glyph icon fonts for twitter bootstrap.
• www/img – Contains all the images. For now there is only one image spinner.gif.
• www/res/screen – Contains splash screens for different platforms.
• www/spec – Contains all the tests (currently not used).
• www/js/lib – Contains JavaScript library files like angular.js, bootstrap.js, etc.

3.3 HTTP API
The HTTP API acts as a communication channel between the mobile application and the
Indico core part. All communication is done using the JSON protocol.

The HTTP API is defined in the indico/web/http_api/eticket.py file. This file contains 5
classes and every class is mapped to a URL except the RegistrantBaseHook class, which
is used to abstract some security checks that are inherited by the other classes. Now
follows a more detailed overview of the URLs used by the mobile application.

3.3.1 URL /export/user/<userId>.json

This URL is not defined in the indico/web/http_api/eticket.py file, it already existed
before. By providing the user id this URL will return information about the user like
username, full name, etc. It is used by the mobile application to get the username of the
logged in conference manager and it is also used to make a dummy call to the server to
check if the user is still logged in after awaking the mobile application from sleep. If this
URL returns 401 Unauthorized we know that the user is logged out.

3.3.2 URL /user/logout

This URL is special; it is not a HTTP API URL like the other starting with the prefix
export. This URL is provided by Indico to logout the currently logged in user. It’s
included here because it’s used as a trick to delete the cookies from the mobile
application browser used by Phonegap. If we don’t make a call to this URL after the user

13 | P a g e

CERN openlab Summer Student Report 2013

logs out he will be logged in again when PhoneGap starts his browser and sends an
OAuth request. We don’t have direct access to PhoneGap’s browser so we need Indico to
delete those cookies for us.

3.3.3 URL /export/checkin/<registrantId>.json

By providing the registrant id and the following GET request arguments:

• target – Conference id.
• secret – Unique secret generated for the ticket.
• checked_in – New value for the check in status.

this API call will change the checked in status for that registrant. This URL will return
success: true and checkin_date if successful.

3.3.4 URL /export/registrant/<registrantId>.json

This URL takes the same arguments as the /export/checkin except the checked_in value
and returns the following data about the registrant:

• registrantId – Id of the registrant (the same one that was submitted).
• fullName – Full name of the registrant.
• checkedIn – Check in status (true of false).
• checkInDate – Check in date.
• registrationDate – Registration date.
• position – Position in the institution.
• institution
• address
• city
• country
• phone
• email
• payed – If the registrant has paid for the conference (true or false).

Not all fields need to be returned. If a field is omitted the mobile application will not
display it.

3.3.5 URL /export/registrants/<confId>.json

Returns a list of registrants for the requested conference as registrants. Every registrant in
the list contains the following data:

• id – Registrant id.
• full_name
• checked_in
• secret – The same secret generated on the registrant’s ticket.

14 | P a g e

CERN openlab Summer Student Report 2013

3.3.6 URL /export/events/<userId>.json

This URL will return all the conferences that this user is managing. The returned list has
the name events and every event contains the following data:

• id – Conference id.
• title – Conference title.
• date – Conference start date.
• registrants – Number of registrants for this conference.

15 | P a g e

CERN openlab Summer Student Report 2013

4 Conclusion and future work
The main parts of the check-in system are done. Those additional tools should
significantly simplify check-in management of attendees for conference organizers. There
is still room for further improvements. The e-ticket generation can be extended to allow
conference organizers to include simple design elements on tickets like the conference
logo. Giving the possibility to personalise the ticket per conference would make the e-
ticket system more appealing for a wider audience. During the work on this project other
departments at CERN showed interest in using the mobile application for their needs.
Therefore the mobile application could be made more generic to support other systems.
Some steps have been already taken in this direction, like making the QR code more
general by including the application name in it, so that the mobile application is capable
of differentiating between systems.

16 | P a g e

	Electronic Ticket and Check-in System for Indico Conferences
	September 2013
	Author:
	Bernard Kolobara
	Supervisor:
	Jose Benito Gonzalez Lopez
	CERN openlab Summer Student Report 2013

	Project Specification
	Acknowledgments
	Table of Contents
	1 Introduction
	2 Indico
	2.1 Indico’s architecture
	2.1.1 Flask
	2.1.2 Request handlers
	2.1.3 Views
	2.1.4 HTTP API

	3 Check-in system architecture
	3.1 Indico core extensions
	3.1.1 User interface changes
	3.1.2 Electronic ticket generation
	3.1.3 E-mail attachment

	3.2 Mobile application
	3.2.1 PhoneGap
	3.2.2 User interface
	3.2.3 Architecture

	3.3 HTTP API
	3.3.1 URL /export/user/<userId>.json
	3.3.2 URL /user/logout
	3.3.3 URL /export/checkin/<registrantId>.json
	3.3.4 URL /export/registrant/<registrantId>.json
	3.3.5 URL /export/registrants/<confId>.json
	3.3.6 URL /export/events/<userId>.json

	4 Conclusion and future work

