
Overhead Analysis of Embedded Wireless
Testbeds

Nathan Samson, Glenn Daneels, Bart Braem, Chris Blondia
Department of Mathematics and Computer Science

University of Antwerp - IBBT - PATS Research Group
Middelheimlaan 1, B-2020, Antwerp, Belgium
Email: {bart.braem,chris.blondia}@ua.ac.be

Abstract—As community networks are
being deployed more often, interest in using
them as testbeds is growing too. Frame-
works like the cOntrol and Management
Framework (OMF) are helpful software
tools to organize, control and instrument
the testbeds deployed on those networks.
However, community networks have a very
heterogeneous infrastructure in which less
powerful, embedded devices will play an
important role due to their low cost. This
work will analyze the overhead generated
by the OMF framework when deployed on
embedded devices. Possible performance
hits introduced by the overhead on both
desktop and embedded systems will be pre-
sented and compared.

I. Introduction
In the last few years more community

networks are being deployed. Examples
of these networks are Guifi[1] and the
Athens Wireless Metropolitan Network[2].
In community networks, embedded sys-
tems are of increasing importance, pro-
viding a low performance and thus low-
cost method of being part of the com-
munity. Together with the wide variety of
hardware, software and network capacity,
these networks provide large-scale and real
world environments for researchers to test
the quality and stability of new technolo-
gies and protocols.

By deploying a testbed on top of com-
munity networks, researchers can per-

form experiments in a realistic environ-
ment. To manage those often large-scale
and complex testbeds, specific frame-
works to instrument and control the en-
vironment are used. This paper consid-
ers the cOntrol and Management Frame-
work (OMF)[3][4]. It allows to manage
the testbed resources and to deploy and
run experiments. During the execution of
experiments, the measurements are col-
lected by the OMF Measurement Library
(OML)[5] that accompanies the OMF.

In this paper, an initial analysis of the
possible performance hit introduced by
the OMF framework is presented. Per-
formance on both desktop and embedded
systems will be presented and compared.

II. Hardware

Two hardware platforms were used in
the experiments. Two identical devices
of each hardware platform were used to
study the performance impact.

One platform used a Dell Desktop sys-
tem which will be referred to as the Silver
nodes. The other platform is a low per-
formance embedded system of PCEngines
referred to as the Alix nodes.

An overview of the hardware in each
platform is given in table I.

Silver Nodes Alix Nodes

CPU Intel Pentium 4
3.0GHz

AMD Athlon
Geode 1GHz

Memory 1024 MB 256 MB

Disk Seagate 250 GB
7200 RPM SATA

Transcend 133x 4
GB Compact Flash

Wireless Atheros AR5413/AR5414

[AR5006X(S) 802.11abg] (rev 01)

TABLE I
Overview of used hardware

III. Software

A. Operating System
The experiments were performed on two

different software systems. The software
on the Silver nodes was based on the
Ubuntu 12.04 beta distribution, the Alix
nodes were running the OpenWrt Trunk.
The latter was chosen because this work
was performed in the scope of an ongo-
ing project with OpenWrt on embedded
devices.

An overview of the used software and
version numbers can be found in table II.

Silver Nodes Alix Nodes

Distribution Ubuntu 12.04
beta

OpenWrt
Trunk

Linux Kernel 3.2.0-20
generic-pae
#33-Ubuntu
SMP

3.2.12

Optimizations No Yes

Ruby 1.8.7p352 1.9.2p0

Iperf 2.0.5 pthreads 2.0.5 single
threaded

OMF 5.4

OML Iperf 2.0.5 pthreads

OTG 2.5

TABLE II
Overview of used software

An attempt was made to make the
difference between the two systems as
small as possible. The used software —
discussed below — has the exact same
version on each platform. To be able to use
a new Kernel the beta version of Ubuntu
12.04 was installed because it was the
only release that contained a recent Kernel
version.

The OpenWrt software on the Alix
nodes was compiled with optimizations
for the specific type of hardware. The
comparison between the two hardware
platforms still holds because embedded
devices are often built with specific opti-
mizations for their platform.

B. OMF
OMF is a framework for controlling

and managing a networking testbed. It
provides a set of software tools to con-
trol the testbed resources and defines a
domain-specific language “OMF Experi-
ment Description Language” (OEDL)[6].
OEDL provides a set of OMF commands
and statements to describe an experiment
executed on the testbed. An experimenter
can describe different resources, applica-
tions and other parameters related to the
experiment.

An OMF testbed consists of sev-
eral entities which work together in or-
der to manage the testbed and run
an experiment[3]. When starting a new
experiment, an Experiment Description
(ED) written in OEDL is passed to the
Experiment Controller (EC). Based on the
ED, the EC will send directives to the
Aggregate Manager (AM) to initialize the
referenced resources and will send com-
mands to the Resource Controllers (RC),
associated with the resources. In this pa-
per, the RC’s are the Silver nodes and the
Alix nodes. By executing the commands
received from the EC, the experiment is

executed. The application used in the ex-
periment may send measurement data to
a measurement library such as OML.
C. OML

In this paper, the OMF Measurement
Library is the used measurement library
as OMF uses it by default. However, the
experimenter is not obliged to use OML
and can use any measurement library in
combination with his own measurement
collection scheme. OML can also be used
independently of OMF.

OML allows experimenters to define
multiple measurement points inside their
application. This measurement points can
be aggregated e.g. to sum the data. That
data is aggregated in a so-called sam-
pling window. The size of this window
is given by the samples parameter which
will return measurements for every X mea-
surements or by the interval parameter
which will return measurements for every
X seconds.

OML uses a client/server architecture.
While the experiment is running, the
client sends its measurement data received
from the application(s) to the OML Col-
lection Server. The client will reside on the
RC and the Collection Server on an other
server. The experimenter can access the
results on the Collection Server.
D. Iperf

Iperf[7] is an open-source application
developed by NLANR/DAST to study the
maximum throughput performance of net-
work systems. Iperf can send both TCP
and UDP packets from client to server.
The data stream can easily be modified by
changing parameters such as bandwidth
or datagram length. Network character-
istics such as bandwidth, delay jitter and
datagram loss are reported.

Iperf for OML[8] is a version of the Iperf
application which was modified by adding

OML measurement points to the source
code. This way, the data reported by Iperf
is sent to the OML server. This applica-
tion is started by an OMF experiment.

E. OTG
OTG/OTR (ORBIT Traffic Generator

/ Receiver)[9] achieves the same goal as
Iperf, i.e. studying the throughput of a
network link. OTG supports OML out-of-
the-box, but has less features than Iperf.
E.g., it supports only UDP traffic while
Iperf also supports TCP traffic. This ap-
plication is started by an OMF experi-
ment.

IV. Measurement Setup
When executing the experiments, the

antennas (type Reverse polarity SMA) of
the wireless cards in the nodes were at
a small distance (~50cm). However, the
nodes were also exposed to interference
from other wireless networks near the
nodes. The Transmit Power of the Silver
and the Alix nodes is 27 dBm.

All programs were configured to use
the UDP protocol. Using different packet
sizes will have an impact of maximum
achievable throughput[10]. All experiment
configurations have a packet size of 1470,
nearly the maximum size before fragmen-
tation occurs. This is the default in some
applications, like e.g. Iperf.

A. Iperf
The command (Bash shell syntax)

used to run the Iperf experiments on the
sending machine is
iperf -c IP of receiver -u -b
$((54 * 1024 * 1024)) -l 1470 -t
300
and on the receiving machine it is
iperf -s -u

At the end of each run the Iperf client
reports how much data was sent during
which time frame, and how much of it was

received by the Iperf server. The results
are based on the rate that was indicated
by the receiving machine.

B. OML Iperf
Iperf for OML was run in two differ-

ent configurations for each machine. Both
configurations use UDP.

In the Iperf OML All configuration
all packets statistics were assembled and
sent to the OML server. The transmission
and reception timestamps of each packet
are recorded. The Application Description
part of this experiment can be found in
appendix A.

In the Iperf OML Aggregated configura-
tion all packet data was observed on the
resource controllers, but the results were
aggregated in aggregated samples over 30
seconds. For each sample the sum and
average of all packet sizes is calculated and
passed to the OML server. The Applica-
tion Description part of this experiment
can be found in appendix B.

When the first result (Iperf OML All) is
compared with the results of the “plain”
Iperf results the impact of the OML re-
porting can be observed. The second ex-
periment (Iperf OML Aggregated) has a
lower reporting rate, to study the impact
of OML measurement aggregation.

C. OTG
OTG was configured, like Iperf for

OML, with two different configurations
similar to the ones of Iperf for OML.

The first configuration also sends all
packet information like packet size and
transmission/reception time to the OML
server. The Application Description part
of this experiment can be found in ap-
pendix C.

The second configuration aggregated
packet information over an interval of 30
seconds and sent the transmission/recep-
tion time of the first and last packet and

the sum of all packet sizes. The Applica-
tion Description part of this experiment
can be found in appendix D.

Note that a bug was found in the receiv-
ing program of OTG, namely OTR. The
original OTR version reported more in-
coming packets than outgoing but with a
smaller size (1024 bytes). This was caused
by a hard coded maximum read buffer size
of 1024 bytes. This constant was changed
to 1470 bytes, so packets could be read
with one recvfrom call.

In the following section, the results are
compared and analyzed.

V. Results
Every type of experiment was repeated

100 times and the duration of each ex-
periment was 300 seconds. After all ex-
periments were executed the results of
the different runs of each experiment were
averaged. In figure 1 the average through-
put of the different systems is shown,
the error bars in the graph indicate the
standard deviation. No result is shown for
the OML Iperf Alix All experiment, as
the reported performance was very low
(see section V-B). In what follows, the
experiments will be discussed separately.
In the tables, the average, minimum, max-
imum and standard deviation σ of the
throughput will be considered.

A. Iperf

Silver Nodes Alix Nodes

Avg. 27.02 26.52

Min 23.40 23.10

Max 28.30 27.80

σ 1.02 1.09

TABLE III
Throughput for the OTG Experiments (in

Mbit/s)

24
24.5
25

25.5
26

26.5
27

27.5
28

Iperf Silver

Iperf Alix

OML Iperf Silver Agg.

OML Iperf Alix Agg.

OTG Silver Agg.

OTG Alix Agg.

OML Iperf Silver All

OML Iperf Alix All

OTG Silver All

OTG Alix All

M
ea
su
re
d
th
ro
ug

hp
ut

M
bi
t/
s

Fig. 1. Detailed overview of observed throughput

The maximum throughput achieved by
Iperf at the Silver nodes is 28.30 Mbit/s
which is an appropriate speed according
to Bredel and Fidler[10].

The average throughput is nearly 2%
higher for the Silver nodes, but since the
standard deviation is also quite high for
both systems this result can be expected.

B. OML Iperf

Silver
All

Alix
All

Silver
Agg.

Alix
Agg.

Avg. 25.17 3.97 25.15 24.88

Min 22.98 2.68 22.32 22.46

Max 26.34 8.31 26.50 26.27

σ 0.89 0.53 0.96 0.83

TABLE IV
Throughput for the OML Iperf Experiments

(Mbit/s)

In table IV the results of the OML Iperf
experiment configurations are displayed.
Silver All and Alix All refers to the OML

Iperf All experiment on respectively the
Silver and Alix nodes. Silver Agg. and Alix
Agg. refer to the OML Iperf Aggregated
experiment on respectively the Silver and
Alix nodes.

The first clear result is the OML Iperf
All experiment, which was reporting very
low throughput on the Alix nodes. This
experiment observed only a throughput
around 4Mbit/s most of the time, much
lower than other experiments. Further in-
vestigation made clear that the CPU time
spent in the OMF program on the RC was
much higher than in the same experiment
on the Silver nodes. In a similar experi-
ment where all packets were reported to
OML, namely the OTG experiment (dis-
cussed later on), the CPU usage of the
OMF program was negligible. This is the
only experiment where we have seen a
dramatic decrease in performance on the
embedded devices. The same configura-
tion on the Silver nodes did not show any
anomalies and reached an averaged rate of
25.17 MBit/s.

The Alix nodes show an average
throughput of 24.88 MBit/s for the OML
Iperf OML Aggregated configuration. The
difference is minimal with the Silver nodes
which show an average of 25.15 MBit/s.

As can be seen from these results, the
impact of aggregating the results does not
have any impact on the Silver nodes. The
Alix nodes experienced a strong perfor-
mance increase by aggregating the data.

All throughput results are smaller than
the baseline performance obtained in the
Iperf experiments, up to 7% for the Silver
nodes.

C. OTG

Silver
All

Alix
All

Silver
Agg.

Alix
Agg.

Avg 25.00 24.88 24.94 24.80

Min 22.16 22.52 22.14 22.55

Max 26.06 26.33 26.05 26.25

σ 1.03 0.83 1.07 0.86

TABLE V
Throughput for the OTG Experiments

(Mbit/s)

In table V the results of all OTG exper-
iment configurations are displayed. Silver
All and Alix All refers to the OTG All
experiment on respectively the Silver and
Alix nodes. Silver Agg. and Alix Agg. refer
to the OTG Aggregated experiment on
respectively the Silver and Alix nodes.

In both configurations the throughput
difference between the Silver and Alix
nodes stays under 1%.

Aggregating the results, and thus min-
imizing reporting rate, does not have a
significant impact on either the Silver and
Alix nodes. The performance throughput
even decreases slightly on both platforms.

D. Analysis
In all studied configurations the re-

ported throughput results were lower than
the one measured in the normal Iperf
experiment. No significant difference can
be seen between the OTG experiments
and the OML Iperf experiments, except
for the All experiment on the Alix nodes.
This can be expected since the two appli-
cations in these configurations should be
performing the same task.

VI. Conclusion & Future Work
Different traffic generators were used

to perform overhead analysis on different
systems. It is clear that OML introduced
some overhead on the throughput of the
systems on both powerful machines and
on embedded devices. In only one exper-
iment significant differences were found
between the Silver nodes and the Alix
nodes.

Using the OML framework on the other
hand will have an impact of about 6%,
whether run on embedded system or on
powerful machines. In one particular case
the impact was so dramatic that the
throughput was less than 25% of the
throughput in the other experiments.

Future work will involve a more com-
plete analysis, where metrics such as delay
will be studied. Also, the performance
hit introduced by OML and OMF will
be studied to reduce it for the specific
characteristics of embedded platforms. In
this scope, the authors hope to resolve
the low throughput in the particular OML
Iperf experiment on the embedded system.

Appendix
A. OML Iperf All Experiment Description

1 defGroup(’ Sender ’ , property . theSender)
2 do | node |
3 node . addAppl icat ion (" i p e r f −5.4 ") { |

app |
4 app . se tProper ty (’ port ’ , 3000)

5 app . se tProper ty (’ c l i e n t ’ , property
. r e c e i v e r i p)

6 app . se tProper ty (’ r e p o r t s t y l e ’ , ’O ’
)

7 app . se tProper ty (’ i n t e r v a l ’ , ’ 30 ’)
8 app . se tProper ty (’ bandwidth ’ ,

property . b i t r a t e)
9 app . se tProper ty (’ udp ’ , true)

10 app . measure (’ packets ’ , : samples
=>1)

11 app . se tProper ty (’ time ’ , property .
runtime)

12 }
13 #. . .
14 end
15

16 defGroup(’ Rece iver ’ , property .
theRece iver)

17 do | node |
18 node . addAppl icat ion (" i p e r f −5.4 ") { |

app |
19 app . se tProper ty (’ port ’ , 3000)
20 app . se tProper ty (’ s e r v e r ’ , true)
21 app . se tProper ty (’ r e p o r t s t y l e ’ , ’O ’

)
22 app . se tProper ty (’ i n t e r v a l ’ , ’ 30 ’)
23 app . se tProper ty (’ udp ’ , true)
24 app . measure (’ packets ’ , : samples

=>1)
25 }
26 # . . .
27 end

B. OML Iperf Aggregated Experiment
Description

1 defGroup(’ Sender ’ , property . theSender)
2 do | node |
3 node . addAppl icat ion (" i p e r f −5.4 ") do

| app |
4 app . se tProper ty (’ port ’ , 3000)
5 app . se tProper ty (’ c l i e n t ’ , property

. r e c e i v e r i p)
6 app . se tProper ty (’ r e p o r t s t y l e ’ , ’O ’

)
7 app . se tProper ty (’ i n t e r v a l ’ , ’ 1 ’)
8 app . se tProper ty (’ bandwidth ’ ,

property . b i t r a t e)
9 app . se tProper ty (’ udp ’ , true)

10 app . measure (’ packets ’ , : i n t e r v a l
=> 30) do |mp|

11 mp. f i l t e r (’ packet_s ize ’ , ’ sum ’)
12 mp. f i l t e r (’ packet_s ize ’ , ’ avg ’)
13 mp. f i l t e r (’ packet_time_s ’ , ’ f i r s t ’

)
14 mp. f i l t e r (’ packet_time_s ’ , ’ l a s t ’)
15 mp. f i l t e r (’ packet_time_us ’ , ’ f i r s t

’)

16 mp. f i l t e r (’ packet_time_us ’ , ’ l a s t ’
)

17 end
18 app . se tProper ty (’ time ’ , property .

runtime)
19 end
20 # . . .
21 end
22

23 defGroup(’ Rece iver ’ , property .
theRece iver)

24 do | node |
25 node . addAppl icat ion (" i p e r f −5.4 ") do

| app |
26 app . se tProper ty (’ port ’ , 3000)
27 app . se tProper ty (’ s e r v e r ’ , true)
28 app . se tProper ty (’ r e p o r t s t y l e ’ , ’O ’

)
29 app . se tProper ty (’ i n t e r v a l ’ , ’ 1 ’)
30 app . se tProper ty (’ udp ’ , true)
31 app . measure (’ packets ’ , : i n t e r v a l

=> 30) do |mp|
32 mp. f i l t e r (’ packet_s ize ’ , ’ sum ’)
33 mp. f i l t e r (’ packet_s ize ’ , ’ avg ’)
34 mp. f i l t e r (’ packet_time_s ’ , ’ f i r s t ’)
35 mp. f i l t e r (’ packet_time_s ’ , ’ l a s t ’)
36 mp. f i l t e r (’ packet_time_us ’ , ’ f i r s t

’)
37 mp. f i l t e r (’ packet_time_us ’ , ’ l a s t ’

)
38 end
39 end
40 # . . .
41 end

C. OTG All Experiment Description

1 defGroup(’ Sender ’ , " omf . pats . a l i x 1 ")
2 do | node |
3 node . addAppl icat ion (" t e s t : app : otg2 ")

do | app |
4 app . se tProper ty (’ udp : l oca l_hos t ’ ,

property . s ende r ip)
5 app . se tProper ty (’ udp : dst_host ’ ,

property . r e c e i v e r i p)
6 app . se tProper ty (’ udp : dst_port ’ ,

3000)
7 app . se tProper ty (’ cbr : s i z e ’ , 1470)
8 app . se tProper ty (’ cbr : r a t e ’ ,

54∗1024∗1024)
9 app . se tProper ty (’ genera to r ’ , ’ cbr ’

)
10 app . measure (’ udp_out ’ , : samples =>

1)
11 end
12 # . . .
13 end
14

15 defGroup(’ Rece iver ’ , " omf . pats . a l i x 2 ")
16 do | node |
17 node . addAppl icat ion (" t e s t : app : ot r2 ")

do | app |
18 app . se tProper ty (’ udp : l oca l_hos t ’ ,

property . r e c e i v e r i p)
19 app . se tProper ty (’ udp : l oca l_por t ’ ,

3000)
20 app . measure (’ udp_in ’ , : samples =>

1)
21 end
22 # . . .
23 end

D. OTG Aggregated Experiment
Description

1 defGroup(’ Sender ’ , " omf . pats . a l i x 1 ")
2 do | node |
3 node . addAppl icat ion (" t e s t : app : otg2 ")

do | app |
4 app . se tProper ty (’ udp : l oca l_hos t ’ ,

property . s ende r ip)
5 app . se tProper ty (’ udp : dst_host ’ ,

property . r e c e i v e r i p)
6 app . se tProper ty (’ udp : dst_port ’ ,

3000)
7 app . se tProper ty (’ cbr : s i z e ’ , 1470)
8 app . se tProper ty (’ cbr : r a t e ’ ,

54∗1024∗1024)
9 app . se tProper ty (’ genera tor ’ , ’ cbr ’

)
10 app . measure (’ udp_out ’ , : i n t e r v a l

=> 30) do |mp|
11 mp. f i l t e r (’ pkt_length ’ , ’ sum ’)
12 mp. f i l t e r (’ pkt_length ’ , ’ avg ’)
13 mp. f i l t e r (’ t s ’ , ’ f i r s t ’)
14 mp. f i l t e r (’ t s ’ , ’ l a s t ’)
15 end
16 end
17 # . . .
18 end

1 defGroup(’ Rece iver ’ , " omf . pats . a l i x 2 ")
2 do | node |
3 node . addAppl icat ion (" t e s t : app : ot r2 ")

do | app |
4 app . se tProper ty (’ udp : l oca l_hos t ’ ,

property . r e c e i v e r i p)
5 app . se tProper ty (’ udp : l oca l_por t ’ ,

3000)
6 app . measure (’ udp_in ’ , : i n t e r v a l =>

30) do |mp|
7 mp. f i l t e r (’ pkt_length ’ , ’ sum ’)
8 mp. f i l t e r (’ pkt_length ’ , ’ avg ’)
9 mp. f i l t e r (’ t s ’ , ’ f i r s t ’)

10 mp. f i l t e r (’ t s ’ , ’ l a s t ’)
11 end
12 end
13 # . . .
14 end

References
[1] Guifi.net. http://guifi.net/.
[2] Athens wireless metropolitan network. http://

www.awmn.net/.
[3] T. Rakotoarivelo, G. Jourjon, M. Ott, and

I. Seskar. Omf: a control and management
framework for networking testbeds. Operating
systems review, 43(4):54, 2009.

[4] NICTA. Control and management framework.
http://omf.mytestbed.net/.

[5] NICTA. Omf measurement library. http://oml.
mytestbed.net/projects/oml/wiki.

[6] Oedl - the omf experiment description lan-
guage. http://oml.mytestbed.net/projects/omf/
wiki/OEDL-5-2.

[7] NLANR/DAST. Iperf. http://sourceforge.net/
projects/iperf/.

[8] OMF. Iperf with oml support. http://
mytestbed.net/projects/iperf/wiki.

[9] OMF. Otg2. http://mytestbed.net/projects/
oml/wiki/Otg2.

[10] M. Bredel and M. Fidler. A measurement study
of bandwidth estimation in ieee 802.11 g wireless
lans using the dcf. NETWORKING 2008 Ad Hoc
and Sensor Networks, Wireless Networks, Next
Generation Internet, pages 314–325, 2008.

