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A self-organising fuzzy-neural network (SOFNN) adapts its structure based on variations of the input data
Conventionally in such self-organising networks, the number of inputs providing the data is fixed. In this
paper, we consider the situation where the number of inputs to a network changes dynamically during its
online operation. We extend our existing work on a SOFNN such that the SOFNN can sdf-organise its
structure based not only on its input data, but aso according to the changes in the number of itsinputs. We
apply the approach to a smart home application, where there are certain situations when some of the existing
events may be removed or new events emerge, and illustrate that our approach enhances cognitive reasoning
in a dynamic smart home environment. In this case, the network identifies the removed and/or added events
from the received information over time, and reconfigures its structure dynamically. We present results for
different combinations of training and testing phases of the dynamic reconfigurable SOFNN using a set of

realistic synthesized data. The results show the potentia of the proposed method.

1 INTRODUCTION

Activity recognition within a gsmat home
environment is a chalenging research problem.
Researchers are exploring different solutions for
low-level data collection, information processing
and high-level service ddivery. The main objectives
of presenting inteligence into a smart home
environment are to identify the importance of events
and automatically activate suitable responses
(Bregman, 2010). Ancther important aspect of
situation awareness within a smart home is to detect
anomalous events. Jakkula and Cook (2011) used
One Class Support Vector Machines (OCSVM)
techniques to address this issue. Gaddam,
Mukhopadhyay, and Gupta (2011) presented a home
monitoring system based on a cognitive sensor
network for elderly-care applications. Processing of
the sensory information is essentia to recognise the
context of the ecology. Wang, Chuang, Lai, and
Wang (2005) proposed CASSHA (Context-Aware
Sysem for Smart Home Applications) for
processing, representation, and coordination of smart
home applications. Y oungblood, Cook and Holder
(2005) proposed a home automation mode to

understand the needs of inhabitants within the
MavHome project. Lin and Fu (2007) used Bayesian
Networks (BNs) to learn multiple users' preferences;
these represent relationships among users and
related sensor observations. Zheng, Wang, and
Black (2008) developed a sdf-adaptive neura
network based on Growing Self-Organizing Maps
(GSOM) to analyse human actions within a smart
home environment. Chen et al. (2009) proposed a
hybrid system, which explored the relationship
between an activity model and a preference model to
provide appropriate services. Roy et al. (2010)
discussed an initid  framework of activity
recognition based on possbility theory and
description logic (DL). Mastrogiovanni, Sgorhissa,
and Zaccaria (2010) integrated ontology and logic
based approaches for context representation and
recognition to map numerical data to symbolic
representations. Chen and Nugent (2010) discussed
the concept of semantically enhanced situation
awareness for activity of daily living (ADL)
assistance. This work was extended in Chen,
Nugent, and Wang (2012) with an ontology-based
knowledge-driven approach for activity recognition.
Son, Park, Moon, and Lee (2011) reported a



resource-aware smart home management system.
Alam, Reaz, and Ali (2012) proposed an agorithm,
called sequence prediction via enhanced episode
discovery (SPEED), to predict user activity in smart
homes. Zhang, McClean, and Scotney (2012)
proposed a learning agorithm to understand muilti-
inhabitant activity profiles from a limited number of
data from unreliable low-level sensors. Ray, et d.
(2012) described a cognitive reasoning model based
on a SOFNN that analyses events of a smart home
ecology and reasons across those events to
determine sSituationa awareness. The SOFNN is
suitable for dynamic model compactness as it
identifies its structure and parameters of fuzzy
neural networks from the available data. This makes
the approach suitable for a dynamic smart home
environment. The above mentioned approaches have
a common deficiency in that the processes are built
on a fixed number of contexts. However in a smart
home application, situations change over time as
new sensors and/or actuators are introduced or
behaviours of users change. In thiswork, we address
this problem. We first develop a dynamic online
SOFNN which reorganises its structure based on a
variable number of inputs which changes
dynamically over time. Then we demonstrate the use
of this proposed method for cognitive reasoning for
a smart home environment.

The remainder of the paper is organised as
follows: section 2 describes the design and
implementation issues of the dynamic SOFNN,
which self-organises its structure depending on the
number of inputs and their values. A brief overview
is presented for neuron addition and pruning
strategies. Section 3 presents the results of the
proposed work. A set of anticipated events and
reasoning outputs are chosen to validate the
proposed idea. The results on structural growth of
the SOFNN and the cognitive reasoning capabilities
under synthesized scenarios with different training
and testing situations are presented. In section 4, we
present the overall conclusions of thiswork.

2 DYNAMIC ONLINE SOFNN

The SOFNN has a five layer structure as shown in
Figure 1. The current structure, as reported in our
previous work (Ray, 2012) has a fixed number of
inputs. Consider that for the t-th observation (X, d),
we define X=[xu Xz .... %] as the input vector, r as
the number of inputs, d. as the desired output
(target), y; as the output of the current network, then
the output in layer 5 is obtained as (Ray, 2012)

Weighted Layer

Ioput layer EBF layer Normalised layer Oratpur layer

Figure 1: The structure of the SOFNN.
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where u is the number of neurons; ¢; and g; are the
centre and width of the i-th membership function
(MF) in the j-th neuron; wy; is the weighted bias (B)
which is defined for the TS modd (Takagi and
Sugeno, 1985) as

Wy, =@, taX teta X j=12,u (2

During the training process, the first ellipsoidal
basis function (EBF) neuron is created based on the
first input vector. The number of membership
functions in each EBF neuron is the same as the
number of inputs. Further details on the dliding
window based training process are available in
(Leng, McGinnity and Prasad, 2005) and (Ray,
2012). Figure 2 shows the procedure for adding new
EBF neurons to the existing structure (Ray, 2012)
where threshold for output of neuron is set at 0.1354
(equivalent to 2 standard deviations from mean).
During training, there are some neurons which have
insignificant contributions for the desired output.
These neurons are deleted from the network for
model compactness. The procedure for pruning
insignificant neurons is shown in Figure 3 (Ray,
2012).

There are some applications e.g. smart homes
where the number of inputs is not fixed. As new
sensors and actuators are added to the system, the
number of inputs will change dynamically.
Moreover, there exists the possibility that some of
the inputs may not be avalable due to
sensor/actuator failures. One option would be to
consider those inputs as having ‘0" values. But, a‘ 0’
value may have significance in certain cases (e.g.
on/off sensor status). Moreover, if we consider
unavailable inputs within the network, then certain



contributions are reflected within the EBF and
normalised layers. So, a dynamic change of the
number of inputs to the network poses a significant
design congtraint but one which needs to be
accommodated in real life.
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Figure 2: The process of adding a new EBF neuron.
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Figure 3: The process of pruning neurons.

To address this issue, we propose a dynamic
SOFNN structure, which can handle a variable
number of inputs. We aim to provide a facility to
accommodate dynamical changes in the network
structure, where the number of inputs to the network
changes over time.

2.1 Layer 1. Input Layer

We define X, as the set of pre-existing inputs to the
network, X as the set of existing inputs that are
removed from the network at timet, X, as the set of
new inputs that are added to the network at timet, X,
as the new set of inputs in the input layer, and X; as
the common inputsin X and X,. So, we can present
the above understanding as follows:

X, ={id,,%,): p=[L2,-r.]}

X, ={id,.x,):0=[12-,1], (id,.x,) (X}
X, =X, r<r,

X, ={(id,,x,):1 =[12,--,1,], (id,, x,) CX1}

X, ={id,, x,) : i=[1 2 m}
X, ={id,, ) : k=[L2--r]} 3
X, CX]n X,

X, = (XA X)) [X]

where r. is the number of existing inputs, r, is the
number of removed inputs from the existing inputs,
ra is the number of newly added inputs, r is the
number of common inputs, id refers to the input id,
and nmeErery+r,. The network receives the set of
inputs X, a each sample where an input refers to
corresponding id and its value. The rules to obtain
Xa X, Ia, I, areas follows:

1. Check X, and X, for common inputs X
and r
a. Find ly(k), k=[1 2 ...r] i.e.
i ndex of common inputs in X
b. Find ly(k), k=[1 2 ..r] i.e.
i ndex of common inputs in X,
2. Check for inputs that are present in
Xe but excluded in X,
a. Gt X and r,
b. Find l4(0), o=[1 2 ..ry] i.e.
i ndex of renoved inputs in X
3. Check for inputs that are present in
X, but not available in X
a. Get X, and rg,
b. Find I,o(1), I=s[12 ..r] i.e.
i ndex of added inputs in X,

Depending on the values of r, and r, the
membership functions (MFs), bias and weighting
matrix will change accordingly.

2.2 Layer 2: EBF Layer

The addition and/or removal of inputs requires
modification of the number of the MFs associated
with each neuron, and ther relative organisation
within it. Let’s consider, Cge, Tge t0 be the sets of
centres and widths of MFs of the je-th EBF neuron
in the existing structure respectively and Cy, ¢, to
be the sets of centres and widths of MFs of the j-th
EBF neuron in the new structure whereje=1, 2 ...
U, ] =12 ... Uy, Ueand u, represent the number of
EBF neurons in the existing and new structures and
U,=U.. Hence we obtain:



C. ={C,.:P=[L2,,1.], je=[12,-,u.]}
Uﬁ'e :{Uepje: p=[1,2,---,re], je:[llzl"'lue]}
C, ={c, :i=[L2,--,m], j=[12---u]} (4)

d=[L2,m], j=[12,--,u,]}

epje

o, ={o

nij

Asthe number of inputs changesin thelayer 1, soin
general,
Caie 7 Coy
O 20, (5)
g=1 2, ---, min{r,, m}}, r>0

The update rule for centres and widths of the
MFs are asfollows:

1. If nere and r.=r, then no change in
i nput structure and

Chij=Ceij
Ohi j =0kei
i=[1 2 ..mM; j=[1 2 ..uy]

2. Ohewi se, follow steps 3to 5

3. Get |y and |, of comon inputs in
Xe and X, fromlayer 1

4. Update MFs of each EBF neurons as

fol |l ows:
a = |yn(k)
b = 1ye(k)
cnaj = cebj
Ohaj = Ogbj
k=[1 2 ..r¢], j=[1 2 ...u]

5. If r,>0 then add new r, nunber of
MFs to each existing EBF neuron and
update as foll ows:

c = ly(l)

Cncj = Xnc

Ohej = chosen predefined val ue
=12 ..rd, j=[12 ..uy

So the new i-th membership function in the j-th
neuron is
/unij = exp|:—(x"'_—02””)2:|l i =L2,--~,m; J :]_12’...’un
2a-nij
(6)
Accommodating the changes in the previous

layer, the output of each EBF neuron in layer 2 is
given by

0y = [ i =120, (7)

Any change in input number will change the
interna structure of the EBF neurons. Let the current
structure of the je-th EBF neuron be given as in
Figure 4. It shows four MFs corresponding to four
inputs. If input X, is removed from the network then
the structure of the EBF neuron will change. Figure
5 depicts that the neuron has three MFs and MFs
two and three are related to inputs xz and x,. When
ro=ra, the total number of inputsto the network does
not change. But the internal structure of the neuron
changes and represents a new EBF neuron. Figure 6
depicts that input X; is removed and input Xs is
added. Although the neuron has four MFs, they are
different as compared to the MFs in Figure 4. Here
the new MFs three and four correspond to the inputs
X4 and Xs respectively.

> P

Figure 4: Structure of an existing EBF neuron with four
inputs and four membership functions corresponding to
each input.

Figure 5: Modified MFs as per change in the number of
inputs (input number two isremoved).

Figure 6: Modified MFs as per change in the number of
inputs (input three is removed and input 5 is added).



2.3 Layer 3: Normalised Layer

The number of neurons in this layer is the same as
layer 2. The new output of the j-th neuron in this
layer will reflect the changes in inputs to the
network and is given by

_;j:_‘]_’z’...’un (8)

2.4 Layer 4. Weighted Layer

The output of this layer depends on the outputs of
layer 3 and the weighted bias. Let, the existing bias
vector and parameter vector be given respectively by

Be :[1Xelx<=2---xe'e]T
Age= [ageo Agjet Agiez --- Bgere]; EE 12... U (9)

So, the existing weighted biasis

Wee = AgeBe = Ageo + AgetXer T AgeXe2 + ... + AgereXere
(10)

As the inputs change in number as well as
positions within the input set, the bias and parameter
vectors are aso changed. Let, the new bias and
parameter vectors be given by

Bn = [1 Xng X2« Xor]
Ay = [@njo 8nj1 Anj2 - nm]; O=12... U, (11)

The update for B, is straightforward according to
the received inputs. The update rule for A, is as
follows:

1. If nFre and r¢=r. then
Aj=Ae, J=[1 2 ...uy]

2. Ohew se, follow steps 3to 5

3. Get |y and |, of comon inputs in
Xe and X, fromlayer 1

4. Update A, as foll ows:

g = lu(k)+1
h = Ie(k)+1
anjo = Qgjo

Anjg = Qgjh
k=[1 2 ...r¢], j=[1 2 ...uj]
5. If r,>0 then add new r, nunber of
el ements in A, as follows:

C = lx(l)+1
anjC: 0
=122 ...rg], j=1[1 2 ...uy]

The above steps are refered to as the
initidlisation of new parameters. The weighted bias
of the new structure is given by

Wy = Au' Bn = anjO + anjlxnl Tt anjmxnm (12)
The output of each neuron in this layer is given by

fnj = anwnj (13)

2.5 Layer 5: Output Layer

The output of this layer is a summation of the
overall outputs from layer 4 and is given by

yX) =31, (149

This will restructure the existing network to
adapt to the changes in the number of inputs. This
will produce an initial network structure which can
accommodate a dynamic changein inputs.

3 RESULTS

To validate our proposed system, we consider a
smart home situation with different sensors and
actuators. Different events that are obtained from
sensory data within the environment reflect the
activities of a user. The developed SOFNN is used
to extract high level understanding from these events
related to the user activities. We consider a set of 19
initial event inputs and 10 reasoning outputs for this
situation. The chosen inputs and reasoning outputs
are shown in Table 1 and Table 2 respectively.
Values of inputs and outputs represent confidence
levels between 0 and 1. We synthesize 4500 data
samples. The dataset ensures arichness of variability
with sufficient complexity to exercise the reasoning
capabilities of the system. First, we consider training
results for 3 different cases with diding window of
300 data samples. In the first case the network is
trained with 19 inputs. Then we consider the
network with deletion of an input event (from 19 to
18 inputs) after 900 samples (the visitor detection
event is removed). In case 3, the number of inputs
changes from 19 to 20 after 900 samples. The
objective is to observe the online adaptation as a
result of the change in the number of inputs. Figure
7 shows the neuronal structure for the 3 cases when



the network reasons across the ‘user relaxing’
situation. It is observed that the network produces
different structures according to addition and
pruning of neurons. The overall neuronal structures
of the network for these cases are shown in Figure 8
and Table 3. The network has 17, 22, and 23 neurons
for these cases respectively. From these results, it is
clear that the proposed network is capable of
handling changes in its input numbers. Table 4 shows
the root mean square errors (RMSE) during training
to obtain the expected reasoning outputs.
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Figure 7: Change of the number of EBF neurons for the
‘user relaxing’ stuation for different training cases: (a)
network with 19 inputs; (b) network with deletion of an
input (from 19 to 18 inputs) after 900 samples; (c) network
with addition of an input (from 19 to 20 inputs) after 900
samples.

Table 1: The event inputs for the smart home appli cation.

Synthesized input ids Events
1 Userinroom 1
2 User in room 2
3 User inroom 3
4 Visitor detection
5 Phone event
6 Doorbell event
7 Dripping event
8 Music event
9 Fireaarm
10 Microwave usage
11 Dishwasher usage
12 TV usage
13 Cleaning operation
14 Cooking
15 Use of oven
16 Smoke detection
17 Room temperature
18 Burglary alarm
19 Front door usage

Table 2: Thetarget outputs for SOFNN reasoning.
Output ids

Reasoning outputs
User exercise
User relaxing

User in kitchen
Bring phone
Open door
Cooking activity
Fire aert situation
Burglary aert situation
Dripping alert situation
Cleaning situation
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Figure 8: Change of the number of EBF neurons for the
overall network for different training cases: (a) network
with 19 inputs; (b) network with deletion of an input event
(from 19 to 18 inputs) after 900 samples; (c) network with
addition of an input event (from 19 to 20 inputs) after 900
samples.

Table 3: Total number of EBF neurons for the reasoning
outputsin different training cases.

Reasoning outputs | Casel Case?2 Case 3
User Exercise 1 1 1
User Relaxing 4 6 6

User in Kitchen 1 1 1
Bring Phone 1 1 1
Open Door 1 2 1

Cooking Activity 2 2 2

Fire Alert Situation 2 2 2
Burglary Alert 1 2 2

Situation
Dripping Alert 1 1 2
Situation

Cleaning Situation 3 4 5

Total Neurons 17 22 23

Next, we consider different testing situations
using a trained network with 4500 data samples for
19 inputs. We show testing results with 300 data
samples (4201 to 4500) for 3 cases. In case 1, we



Table 4: RMSE of different training cases.

Reasoning outputs | Casel Case2 | Case3
User Exercise 0.0828 0.0810 0.0817
User Relaxing 0.0482 0.0421 0.0423

User in Kitchen 0.0658 0.0649 0.0650
Bring Phone 0.0667 0.0661 0.0656
Open Door 0.0531 0.0668 0.0521

Cooking Activity | 0.0621 0.0611 0.0579

Fire Alert Situation | 0.0319 0.0292 0.0311
Burglary Alert 0.0812 0.0693 0.0698

Situation
Dripping Alert 0.0842 0.0832 0.0799
Situation
Cleaning Situation | 0.0454 0.0590 0.0547
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Figure 9: Set 1 of reasoning outputs during testing with 19
inputs and 18 inputs (TV event removed).
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Figure 11: Set 1 of reasoning outputs during testing with
19 inputs and 18 inputs (Visitor detection event removed).
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Figure 12: Set 2 of reasoning outputs during testing with
19 inputs and 18 inputs (Visitor detection event removed).

Table 5: RMSEs of different testing cases.

05 Jh.—“ AP i l
P s T e, Reasoning outputs Casel | Case2 | Case3
1 e . User Exercise 0.0681 | 0.0697 | 0.0716
i T L o T P User Relaxing 0.0527 | 0.2260 | 0.0513
¥ - B pe s oacion - - User in Kitchen 0.0671 | 0.0730 | 0.0671
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Figure 10: Set 2 of reasoning outputs during testing with
19inputs and 18 inputs (TV event removed).

consider 19 inputs. In case 2, we consider 18 inputs
where input id 12 (TV usage) is dropped. In case 3,
we consider deletion of input id 4 (Vistor
Detection). Figure 9 and Figure 10 show the
reasoning outputs from the network when there are

19 inputs (case 1) and 18 inputs (case 2). It is
observed in Figure 9 that the confidence level of
“user relaxing” is reduced when the TV usage event
is removed. The network identifies al other
reasoning outputs as expected. Figure 11 and Figure
12 show the reasoning outputs from the network
when there are 19 inputs (case 1) and 18 inputs (case
3). It is observed in Figure 12 that the confidence




level of the “open door” situation is reduced as the
“vigitor detection” event is dropped from the input
set. The network identifies dl other reasoning
outputs as expected. The RMSEs for these testing
cases are shown in Table 5. It is observed that the
RMSEs for the “user relaxing” in case 2 and “open
door situation” in case 3 have higher values.

4 CONCLUSIONS

This paper presents a dynamicaly reconfigurable
online SOFNN for application in a robot ecology
environment. In this work we address the situation
when the number of inputs varies over time. We
then implemented and utilized this network to
extract knowledge from realistic events occurring
within a smart home environment. A set of realistic
synthesized training and testing data have been
employed to observe different scenarios. We show
the structural modifications of the network when the
number of inputs changes for the network during the
training phase. We also show the impact of
removing event inputs from the network during
different testing phases. The results show that the
network has the ability to adapt to the dynamics of
the environment and show its cognitive capability.
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