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Abstract:  

Climate change has already altered the distribution of marine fishes. Future predictions of fish 
distributions and catches based on bioclimate envelope models are available, but to date they have 
not considered interspecific interactions. We address this by combining the species-based Dynamic 
Bioclimate Envelope Model (DBEM) with a size-based trophic model. The new approach provides 
spatially and temporally resolved predictions of changes in species' size, abundance and catch 
potential that account for the effects of ecological interactions. Predicted latitudinal shifts are, on 
average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, 
with pelagic species showing the greatest reductions. Goodness-of-fit of biomass data from fish stock 
assessments in the North Atlantic between 1991 and 2003 is improved slightly by including species 
interactions. The differences between predictions from the two models may be relatively modest 
because, at the North Atlantic basin scale, (i) predators and competitors may respond to climate 
change together; (ii) existing parameterization of the DBEM might implicitly incorporate trophic 
interactions; and/or (iii) trophic interactions might not be the main driver of responses to climate. 
Future analyses using ecologically explicit models and data will improve understanding of the effects 
of inter-specific interactions on responses to climate change, and better inform managers about 
plausible ecological and fishery consequences of a changing environment. 
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Introduction 

Climate change affects ocean conditions, including temperature, salinity, ice coverage, 
currents, oxygen level, acidity, and consequently growth, body size, distribution, productivity 
and abundance of marine species, including those that are exploited by fisheries (Behrenfeld 
et al. 2006; Brander 2007; Perry et al. 2005; Pörtner 2010; Simpson et al. 2011, Cheung et al. 
2013). Over a range of greenhouse gas emission scenarios (IPCC 2007), changes in the 
marine environment are predicted to be more rapid in the 21st century with implications for 
marine ecosystems and dependent industries (Roessig et al. 2004; Lam et al. 2012; Merino et 
al. 2012).  

A range of modelling approaches has been developed to predict the potential effects of future 
climate change on species distributions and abundance (Stock et al. 2011). One class of 
models, species-based bioclimate envelope models, have been used to predict redistribution 
of both terrestrial and aquatic species (Pearson and Dawson 2003; Jones et al. 2012). The 
Dynamic Bioclimate Envelope Model (DBEM) developed by Cheung et al. (2008a, 2008b, 
2009, 2011) projects changes in marine species distribution, abundance and body size with 
explicit consideration of population dynamics, dispersal (larval and adult) and ecophysiology 
(Cheung et al. 2008a, 2008b, 2009, 2011, 2013). Projections suggest that there will be a high 
rate of species invasions in high-latitude regions and a potential high rate of local extinction 
in the tropics and semi-enclosed seas in the 21st century (Cheung et al. 2009).  Moreover, as a 
result of predicted changes in range and primary productivity, Cheung et al. (2010) project 
that maximum catch potential of exploited species is expected to decrease in the tropics and 
to increase in high latitudes. However, these projections do not account for the effects of 
species interactions on redistribution and abundance, thus introducing a source of structural 
uncertainty (Cheung et al. 2010). 

Rates of primary production and transfer efficiency influence production and biomass of 
consumers. ‘Size-spectrum’ models have been developed to describe energy transfer from 
primary producers to consumers of progressively larger body size (e.g. Dickie et al. 1987) 
and variants of these models have been developed and applied to predict potential biomass, 
production and size structure of fish in the world’s oceans from estimates of primary 
production and temperature (Jennings et al. 2008), and to predict the responses of fish 
communities to fishing and climate change (Blanchard et al. 2011, 2012).  These size-based 
models are not taxonomically resolved, and this limits the range of applications, given that 
species identity is usually a key consideration for management, monitoring and regulatory 
purposes. 

Here, we combine the strengths of the DBEM (i.e., focus on identified species) with those of 
the size spectrum model (i.e., focus on trophic interactions) to predict spatial and temporal 
changes in species’ abundance and distribution in response to predicted future changes in 
temperature and primary production. Forty-eight of the most abundant and commercially 
important marine fishes in the North Atlantic, here defined as Food and Agriculture 
Organization (FAO) statistical area 27, are included. The size spectrum is used to determine 
resource limits in a given geographical area and these limits, along with habitat suitability for 
a given species, determine the biomass of that species that can be supported in this area. 

 
 
  



Materials and methods 
 

A modelling approach that integrates the species-based DBEM model with the size spectrum 
approach, hereafter called size-spectrum DBEM (SS-DBEM) was developed. The SS-
DBEM: (1) estimates potential biomass supported by the system, (2) predicts habitat 
suitability and (3) models species interactions. Predictions from the SS-DBEM are then 
compared with those from a DBEM model that does not incorporate species interactions 
(NSI-DBEM, where NSI denotes no species interactions). 

Potential biomass supported at each body size class 

The size-spectrum is described as a log-log relationship between abundance and body size. 
The slope of the spectrum is determined by trophic transfer efficiency and the relationships 
between the body sizes of predators and their prey (Borgmann 1987; Jennings and Mackinson 
2003). The height of the spectrum is determined by primary production and describes the 
total abundance of individuals from all species that can be supported in any defined body size 
class (e.g. Boudreau and Dickie 1992). 

Since predator-prey mass ratios and transfer efficiencies in marine food chains do not depend 
systematically on the mean rate of primary production or mean temperature (Barnes et al. 
2010), less energy is transferred to consumers of a given body size when food webs are 
supported by smaller primary producers (Barnes et al. 2010). Much of the variation in the 
body size distribution of primary producers depends on the absolute rate of primary 
production, with picoplankton, the smallest phytoplankton, dominating when primary 
production is low (Agawin et al. 2000). Thus the median and mean body sizes of 
phytoplankton decrease with decreasing rates of primary production (Barnes et al. 2011). To 
account for this, the position of the median body mass class for phytoplankton (m) was 
calculated as: 

m	 ൌ ሾሺ	െ6.1 ∙ Pୱ	ሻ 	െ 	8.25ሿ/logଵ଴ሺ2ሻ                                                                                  (1) 

where Ps is the predicted contribution of picophytoplankton net production to total net 
Primary Production (PP) as calculated using the empirical equation 

Pୱ 	ൌ 	 ሾሺ12.19	log	PPሻ 	൅ 	37.248ሿ/100                                                                               (2) 

derived by Jennings et al. (2008) using the data from Agawin et al. (2000). 

Once the median body mass class of phytoplankton was defined, we calculated the consumer 
biomass at body size following the approach of Jennings et al. (2008). Assumptions about 
trophic transfer efficiency and the predator-prey mass ratio (ε =0.125 and µ=3, respectively) 
followed Jennings et al. (2008), but the spectrum was discretized using a log2 series of body 
mass from 2-1 to 219 g. Subsequent evidence suggests that the predator-prey mass ratio may 
increase with body mass and that transfer efficiency may decrease, but the changes are not 
expected to affect the time-averaged slope of the size-spectrum (Barnes et al. 2010).  

 

Habitat suitability 

The prediction of habitat suitability in SS-DBEM was based on the algorithm implemented in 
NSI-DBEM (Cheung et al. 2008a, 2008b, 2009, 2011, 2012). The NSI-DBEM defines the 



relative preferences of the modelled species for temperature and other environmental 
variables based on the relationship between current distributions and gridded environmental 
data. The initial distribution of relative abundance (representing 1970 – 2000)  of the 
modelled marine species on a 30’ x 30’ latitude-longitude grid map of the world ocean are 
predicted using the Sea Around Us project algorithm (Close et al. 2006; Jones et al. 2012) 
based on parameters describing range limits, association with major habitat types and known 
occurrence boundaries. Parameter values for each species were derived from data in online 
databases, mainly FishBase (www.fishbase.org) and SeaLifeBase (www.sealifebase.org). 
Environmental variables incorporated into the NSI-DBEM include sea surface temperature, 
sea bottom temperature, coastal upwelling, salinity, sea-ice extent, depth and habitat types 
(Cheung et al. 2011). NSI-DBEM first calculates changes in growth and other life history 
traits in response to changes in temperature and oxygen concentration based on algorithms 
derived from growth and metabolic functions and empirical equations (Cheung et al. 2011, 
2013). Second, NSI-DBEM predicts size-frequency distributions for each species in each 
spatial cell using a size-structured ‘per recruit’ model. Finally, the model simulates spatial 
and temporal changes in relative abundance within a cell based on carrying capacity of a cell, 
density-dependent population growth, larval dispersal and adult migration (Cheung et al. 
2008b, 2011). 

Species interactions  

A new algorithm was developed to describe resource competition between different species 
co-occurring in a cell by comparing the energy (in biomass) that can be supported in the cell 
(estimated with the SS model) with the energy demanded by the species predicted to inhabit 
the given cell (estimated with the NSI model). The algorithm comprises two stages: (1) an 
initialization stage where competition parameters are estimated; and, (2) a recurrent stage 
where the competition parameters are used to resolve conflicts between energy (biomass) 
demands and biomass that can be supported. One advantage of this approach is that it focuses 
on competition for the energy available within a cell, thus negating the need for a diet matrix 
that describes species-specific feeding interactions. Data to develop such matrices are scarce 
at the scale of FAO Area 27 and the persistence and emergence of feeding interactions 
through time, and in response to future climate change, is highly uncertain. 

First stage 

The model uses the NSI-DBEM approach to establish an initial distribution for each species. 
The approach assumes that predicted habitat suitability is a proxy for the distribution of 
relative abundance of a given species. Thus, multiplying the initial relative biomass by the 
estimated absolute biomass from empirical data, initial species distribution is expressed in 
terms of absolute biomass in each cell. Since biomass estimates from assessment data are not 
available for some of the species considered (Table 1), the initial biomass estimates were 
approximated by the predicted unexploited biomass (B∞) from maximum reported fisheries 
catch (MC) since 1950 and an estimate of the intrinsic growth rate (r) of the population 
(Schaefer 1954): 

ஶܤ 	ൌ ܻܵܯ	 ∙  (3)                                                                                                                ݎ/4

Maximum sustainable yield (MSY) was calculated using the algorithm documented in 
Cheung et al. (2008) that used the average maximum value of the catch time-series of a 
species as an approximated MSY. Values for r, estimated based on an empirical equation that 
was dependent on asymptotic length of the species, were obtained from FishBase 
(www.fishbase.org). Although this is an approximation and not as reliable as estimates of 



biomass using survey-based methods (Pauly et al. 2013), we show that, consistent with 
similar findings by Froese et al. (2012), that biomass estimates from maximum catch data 
were significantly correlated with those from aggregated stock assessments (Table 1, Fig. 1). 
These biomass estimates were used for model initialization only. 

The initial absolute biomass estimates, based on habitat suitability in the cells where they are 
distributed (Fig. 2), are used to generate a matrix of species’ energy demand (expressed as 
biomass). Matrix elements define the proportion of total energy obtained by a species at each 
habitat suitability bin and size class. The amount of energy is determined by the average 
proportion of energy that a species gets in cells with the same habitat suitability. 

Energy demanded (E_D) by a species in a cell is compared with the total biomass or energy 
(E_S) that can be supported in the cell (see Table 2 for a summary of abbreviations). E_D is 
determined based on the predicted habitat suitability from the DBEM algorithm, whereas E_S 
is determined by the SS model. Thus, the average proportion of energy that a species 
demands in cells with the same habitat suitability can be calculated: 

resoucesୗ୮୮,ୗ୳୧୲,ୗ୧୸ୣ ൌ
୉_ୈ౏౦౦,౓,౟

౏౫౟౪

୉_ୗ౓,౟
                                                                                           (4) 

To convert from biomass (B) distribution to numbers (N) and vice versa, the mean body mass 
(W) at each size class (i) is used:  

	ܤ ൌ 	∑ ௜ܰ 	ൈ ௜ܹ
௡
௜ୀଵ                                                                                                                (5) 

where n is the number of size classes considered in the model. The initial habitat suitability 
value is converted using a square root data transformation, to ensure a balanced distribution 
of the cells across the habitat suitability classes, and then normalized to a range from 0 to 1 
relative to minimum and maximum value of habitat suitability for each species. The model 
then groups habitat suitability into six classes (bins) of values: 0 - 0.3, >0.3 - 0.4, >0.4 - 0.5, 
>0.5 - 0.6, >0.6 - 0.7 and >0.7 - 1. The use of discretized bins of habitat suitability, a non-
parametric methodology, does not require the specification of explicit distribution functions 
and is more computationally efficient (Fayyad and Irani 1993; Dougherty et al. 1995). The 
effects of such discretization are minimized here by square root transformation of the 
predicted habitat suitability, the low number of bins and the choice of bin boundaries 
(Uusitalo 2007; Fernandes et al. 2010). 

Available energy in a size class which is not demanded by the modelled species was assigned 
to a group called ‘Other groups’, because species that were not modelled explicitly would 
also have an energy demand. This group has its own resource allocation matrix based on the 
average habitat suitability of the modelled species, allowing the inclusion of resource demand 
from species that are not explicitly modelled.  Since the species assemblage in the boundary 
of the geographic domain of the model is likely to be under-represented by the modelled 
species, the matrix for ‘Others group’ is only computed for cells where the number of species 
present is more than the square root of the total number of species modelled.  

Second stage 

Abundance of each species in each cell was predicted using the algorithm in the NSI-DBEM. 
The model runs uses an annual time-step for bottom-dwelling (demersal) species and two 
seasonal time-steps (summer and winter) for species in the water-column (pelagic). The 
energy demand of each species is compared with energy demands of other species co-



occurring in the same cell (Fig. 2). If the energy demanded by all organisms in the cell 
exceeds the energy available, then the available energy is allocated to each species in 
proportion to its energy demands. If the energy demanded by all the species is lower than the 
energy available, the surplus energy is allocated according to the proportional energy demand 
of the species present, including the ‘Others group’. To represent population growth that is 
limited by factors other than available energy, the rate at which energy can be assimilated by 
a species is limited: 

res_opୗ୮୮,ୗ୳୧୲,୛ ൌ ଶ	∙	ୱ୲ୢ.ୢୣ୴ሺ୉_ୈ౏౫౟౪ሻ

୫ୣୟ୬ሺ୉_ୈ౏౫౟౪ሻ
                                                  (6) 

where, E_DSuit denotes the energy demanded in all the cells in each bin of habitat suitability. 
Therefore, the amount of additional energy that can be taken by the species is limited by two 
times the standard deviation (std.dev) of energy that each species gets in the initial 
distribution to each habitat suitability bin. Any energy that is left after these allocations is 
assumed to be used by the ‘Others group’.  

 

Model testing 

The results from the model that includes competition were compared with results from the 
NSI-DBEM and “empirical” time series of abundance data from fish stock assessments for 
the Northeast Atlantic (FAO area 27), as extracted from the RAM Legacy Stock Assessment 
Database (Ricard et al. 2011; http://ramlegacy.marinebiodiversity.ca/) and ICES Stock 
Summary Database (http://www.ices.dk). To compare projected changes with observations, 
abundance data for each species were normalized by dividing them by their mean value. 
While the models were applied to a set of 48 fish species, comparison with empirical data 
was conducted for 24 species for which data were available from the RAM Legacy and ICES 
databases (Table 1). The output of the DBEM models were compared with the “empirical” 
time series values for each species and distribution of absolute error (AE) was calculated: 

AE ൌ หp୨‐x୨ห                                                                                                              (7) 

where p is the total biomass predicted in a DBEM model in a particular year for a species j, 
and x is the total biomass from the assessments. The comparison was done for the years with 
available assessment data for all the 24 species considered (1991-2003). To compare the 
performance of the SS-DBEM and NSI-DBEM, the Percent Reduction in Error (PRE) was 
calculated (Hagle and Glen 1992; Fernandes et al. 2009), but weighted by the maximum 
catch of each species (WPRE): 

WPRE ൌ ଵ

∑ ୑ୟ୶େୟ୲ୡ୦	ౡ
ౢ
ౡసభ

∑ ቂ
ଵ଴଴൫୅୉୒ୗ୍ౡ‐୅୉ୗୗౡ൯

୅୉୒ୗ୍ౡ
ቃ ∙ MaxCatch	୩

୪
୩ୀଵ                                            (8) 

where AENSI is the absolute error in the NSI-DBEM model, AESS is the absolute error in 
the SS-DBEM model, k the number of species and MaxCatch the maximum catch of the 
species. 
 

These models were also compared with empirical data describing latitudinal and depth 
centroid shifts of species in response to climate change (Dulvy et al. 2008; Cheung et al. 
2011). Distribution centroid (DCt) for each year (t) was calculated as: 



௧ܥܦ ൌ
∑ ஻೟,೔∙஺೔∙௅௔௧೔
೙
೔

∑ ஻೟,೔∙஺೔
೙
೔

;                                                                                                                (9) 

where, Bi is the predicted relative abundance in cell i, A is the area of the cell, Lat is the 
latitude at the centre of the cell and n is the total number of cells where the species was 
predicted to occur. We calculated the rate of range shift as the slope of a fitted linear 
regression between the distribution centroid of the species and time. We expressed latitudinal 
range shift (LS) as poleward shift in distance from: 

ܵܮ ൌ ܵܦ ∙ 180/ߨ ∙ 6378.2;                                                                                                   (10) 

where DS is the distribution shift in degree latitude per year. 

 
The models were run for 35 years, from 1970 to 2004, with environmental forcing predicted 
from two modelling systems: (1) the National Oceanographic and Atmospheric 
Administration (NOAA) Geophysical Fluid Dynamic Laboratory Earth System Model (ESM) 
2.1 (GFDL) and (2) the European Regional Seas Ecosystem Model (ERSEM). GFDL 
ESM2.1 is a global atmosphere-ocean general circulation model (Delworth et al. 2006) 
coupled to a marine biogeochemistry model (TOPAZ; Dunne et al. 2010) which includes 
major nutrients and three phytoplankton functional groups with variable stoichiometry. For 
the GFDL hindcast simulations (Henson et al. 2010 ), air temperature and incoming fluxes of 
wind stress, freshwater, shortwave and longwave radiation are prescribed as boundary 
conditions from the CORE- version 2 reanalysis effort (Large and Yeager 2009). ERSEM is a 
biogeochemical model that uses a functional-groups approach incorporating four 
phytoplankton and three zooplankton functional groups and decouples carbon and nutrient 
dynamics (Blackford et al. 2004). Data from two different configurations of ERSEM were 
applied here: on the global scale a hindcast of the NEMO-ERSEM model forced with DFS 
4.1 reanalysis for the atmosphere (Dunne et al. 2010) and on the regional scale a hindcast of 
the POLCOMS-ERSEM model for the NW-European shelf forced with ERA 40 reanalysis 
(extended with operational ECMWF reanalysis until 2004) for the atmosphere and global 
ocean reanalysis for the open ocean boundaries (more details on the configuration can be 
found in Holt et al. 2012; Artioli et al. 2012). The domain of this global model overlapped 
the domain of a regional model of the North Sea area. 
 
 
  



Results and discussion 
 

Performance of SS-DBEM and NSI-DBEM 

Predicted biomasses from SS-DBEM were generally lower than those projected from NSI-
DBEM (Fig. 3). The reason is that the energy available from primary producers limits 
species’ biomass in SS-DBEM but not in NSI-DBEM, where species’ carrying capacity 
depends mainly on the habitat suitability of the cell. The algorithm in SS-DBEM explicitly 
modelled interspecific competition for energy, based on size considerations, without 
specifying these interactions (e.g. no diet matrix). Our approach allows for the development 
of scenarios of large-scale shift in species distribution and catches, complementing other 
models that have been designed to achieve this (Cheung et al. 2010; Metcalfe et al. 2012).  

 

Outputs from SS-DBEM explain slightly more of the variation in biomass estimated from 
stock assessments (FAO area 27) than those from the NSI-DBEM. The error weighted by 
maximum catch predicted across species from SS-DBEM against empirical data is 3.7% 
lower than those predicted from NSI-DBEM using GFDL environmental forcing data and 
0.6%  lower using ERSEM data. GFDL might be more accurate (Fig. 4) for the time period 
considered since the model run was forced by re-analysis data such as surface temperature 
and wind fields, which is not the case for ERSEM. However, the differences in mean absolute 
error are not significant and might not hold when the models are used for forecasting. Future 
work will explore the causes of this difference, which may not depend on the modelling itself 
but on input data such as environmental forcing, or even on the adequacy of the assessment 
data used for the comparison. Finally, a lower variance in the absolute error in SS-DBEM 
with respect to NSI-DBEM model (Fig. 4) is indicative of a higher precision of simulated 
biomass from SS-DBEM (Taylor 1999). This also supports the view that the proposed 
modelling approach is a potential advance over models that do not account for species 
interactions.  

 

Distribution shifts 

Both NSI-DBEM and SS-DBEM projected poleward latitudinal shift of species distributions 
(Fig. 5), and the projected shifts are generally consistent between simulations forced by the 
two sets of Earth System Model outputs (Table 3).  In addition, the projected shift of pelagic 
species by the model with interactions is consistently lower than if no interactions are 
considered (Table 3). With ERSEM forcing, the median projected rates of poleward shift are 
63.5 km and 54.9 km over 35 years, or 18.1 and 15.7 km decade-1, from NSI-DBEM and SS-
DBEM respectively. Similar to previous analysis using NSI-DBEM, all sets of simulations 
show a higher rate of range shift for pelagic species than bottom dwelling species (Cheung et 
al. 2009, Jones et al. 2013). A reduction in the expected geographical shift of particular 
populations as a result of ecological interactions is consistent with the perception of 
compensatory ecological processes (Frank et al. 2011). Shifts in depth are also observed and 
are strongly driven by the forcing model considered. The shift in depth is also dependent on 
the spatial domain considered. For example, for demersal species in FAO Area 27, outputs 
from SS-DBEM driven by ERSEM data project a shift to deeper waters of 1.3 m decade-1. 
However, when we consider North Sea only, the projected shift to deeper waters is higher at 
5.7 m decade-1.  



 
The slower rates of projected shifts from the SS-DBEM relative to NSI-DBEM are consistent 
with previous literature based on recent observations. Specifically, Perry et al. (2005) 
projected a mean rate of latitudinal shift of 22 km decade-1 from 1980 to 2004 in the North 
Sea for six fish species. Comparable rates of shift (between 18.5 and 18.8 km decade-1) are 
projected here for our modelled subset of species which includes four of these species (bib, 
blue whiting, Norway pout and witch). Also, Dulvy et al. (2008) estimated that bottom 
dwelling species were moving into deeper waters at an average rate of 3.1 m decade-1 from 
1980 to 2004 (19 species out of 28 species are common between this study and Dulvy et al. 
2008), which is slower than our prediction of 5.7 m decade-1. These direct comparisons 
between predicted and observed shifts need to be interpreted with caution because of 
differences in the species included, the spatial domains, and the time period considered. In 
addition, our simulations represent average species-level changes without consideration for 
stock structure, owing to incomplete biological data to address the latter. The trend in 
abundance or range shift of a given species may not necessarily be equivalent to that of every 
stock of that species (Petitgas et al. 2012). 
 
Maximum catch 
The maximum catch predicted by both DBEM models (SS and NSI) broadly follows multi-
decadal variability in empirical estimates of total catches for the 1970 to 2004 time period in 
the ICES areas (Fig. 6). This is demonstrated by maximum and minimum points in similar 
years, with the highest discrepancy in years around 1985. All the time series show higher 
maximum values in the first half of the time period and consistently lower maximum values 
in the second half. However, this negative trend in catches in all the time-series is not 
statistically significant. The empirical catch data are aggregated catches by all species 
reported in ICES areas as collected in the Eurostat/ICES database on catch statistics 
(http://www.ices.dk). The predicted maximum catch is based on the aggregation of the 
potential catch of the 48 modelled species in ICES areas. Despite some discrepancies, the 
models are able to reproduce general trends in observed fisheries productivity in the North 
East Atlantic, providing some confidence in their utility. 
 
Catches predicted from SS and NSI approaches show similar patterns when the most 
abundant and commercially important species are aggregated. Further work will focus on 
examining the effects of different modelling approaches on catch predicted for specific 
species, areas (e.g. ICES areas) or size classes. 
 
Model uncertainty 
Projections from NSI- and SS-DBEM are sensitive to the environmental variables projected 
by the Earth System Models and used to force the ecological models. Earth System Models 
have a number of limitations when applied to fisheries problems (Stock et al. 2011). Their 
resolution is relatively coarse to capture ecological processes (generally ~1 degree in the 
ocean) and they also do not capture well the coastal and continental shelf ocean dynamics. As 
a result, Earth System Models are known to systematically project lower primary production 
in coastal areas (Steinacher et al. 2010). Inter-model spread arises from diverse sources, such 
as the parameters chosen for sub-grid-scale parametrizations. In addition, there is overall 
limited availability of reliable data to calibrate the models. Efforts to improve the 
understanding and projections for primary production are ongoing (e.g. Holt et al. 2012, 
Krause-Jensen et al. 2012), which will likely contribute to improved performance of DBEM 
models. 



An assumption of the size-spectrum component of the model is the linear relationship 
between log-abundance and log-body size classes in the cell. Such an assumption is made 
mainly for computational performance. In reality, it may be violated by species’ migrations 
that lead to energy losses and subsidies from given cells, and by seasonal fluctuations in 
primary production (Blanchard et al., 2010).  

The relative abundance of individuals at size can be modified by the overall constraints on 
energy availability. In general, these have limited effect on the projections because the 
changes account for a small percentage of the total abundance of species in the cell (an 
average of 0.03 % of abundance decrease). However, the absolute effects are larger and occur 
in more cells for whiting, blue whiting, Atlantic cod, Norway pout, European plaice, saithe 
and Atlantic horse mackerel.  

The DBEM modelling approaches have a number of inherent assumptions and uncertainties 
that may affect the performance of the models (Cheung et al. 2009).  First, the models are 
based on the assumption that the predicted current species distributions depict the 
environmental preferences of the species and are in equilibrium. Second, the underlying 
biological hypothesis, represented by the model structure and input parameters, may be 
uncertain. Moreover, the models did not consider the potential for phenotypic and 
evolutionary adaptations of the species. Since these assumptions apply to both NSI- and SS- 
DBEM, they do not affect the comparison of projections between the two models. We used 
theory and empirical data to model trophic interactions. The modelling approach does not 
incorporate the full range or complexity of interactions among species. This simplification 
avoids the difficulties of formalising transient and complex species-specific predatory 
interactions at large-scales. It also requires no assumptions about the extent to which species-
specific trophic interactions that are seen today will persist in the future. Furthermore, at the 
system level, size-based processes account for much of the variation in prey choice and 
trophic structure.  

Survey data can provide an alternative way of validating model outputs (Simpson et al. 
2011). However, there are scale reasons why we did not pursue this type of validation in this 
study. Fisheries surveys tend to focus on particular species assemblages (e.g. pelagic or 
bottom-dwelling species), and are designed to provide a geographical and temporal snapshot 
that fits with the life history of target species. As such they are not very comparable to model 
outputs for a large geographical area (FAO area 27). 

There are small but quantifiable improvements in goodness-of-fit with stock assessment 
abundance estimates, predictions of latitudinal shifts and comparisons with predicted 
maximum catch and observed catches. However, we need to be cautious about our 
interpretations of model performance at this stage owing to structural and parameter 
uncertainties, and uncertainties in the models used to generate the environmental forcing. The 
similarity of predictions might reflect incorrect assumptions. For example, we assume that 
single species models do not account for species interaction because there is no explicit 
mechanism, even though species interactions might already be implicitly incorporated in its 
parameterization (e.g. habitat suitability calculation from observed distribution data). The 
similarity of predictions might also be attributed to the similar effects of changing climate on 
many predators and competitors and the implicit assumption of the NSI-DBEM approach that 
the importance of inter-specific interactions remains the same. In addition, trophic 
interactions might not be the main driver of responses to climate at the basin scale. Therefore, 
our results at the scale of the North Atlantic basin, or aggregated ICES areas, does not mean 
that trophic interactions may not have more influence on regional and local responses. 



Unfortunately, the earth system and ecological models described in this paper are too 
complicated to allow comprehensive explorations of the effects of changing model structures 
and parameterisation. Such explorations could be achieved in the long-term by comparing 
projections from the DBEMs with alternative parameter settings for larger datasets of time-
series of changes in distribution and abundance from different ocean regions.  
 
The main benefit of our model comes from unifying two modelling approaches providing 
spatially and temporally resolved species and size predictions, with full consideration for the 
effects of ecological interactions. Future development of the DBEM will also attempt to 
incorporate other key biological processes that are likely to be important in determining the 
responses of marine fishes and invertebrates to climate change. Our model has provided new 
insight into the effects of ecological interactions on responses to climate and provides a new 
tool for further exploring the effects of future climate change. Predictions, in conjunction 
with those from other models, will inform managers about the range of possible ecological 
and fishery responses to a changing environment, thus supporting the development of 
management systems that take account of the effects climate change (Perry et al 2011) and 
the on-going implementation of an ecosystem approach to fisheries (Garcia and Cochrane 
2005; Rice 2011). Predictions of the long-term effects of climate currently need to be 
considered alongside those used for operational management, to prepare policy makers and 
fisheries governance systems for changes in target fisheries and dependent communities and 
economies (Perry et al. 2011). 
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Tables 

Table 1. List of modelled fish species. Stocks that have been aggregated to provide species abundance estimates are identified by their stock ID 
codes (STOCKID) in the RAM Legacy database (upper case codes). For some ICES assessed stocks not listed in the RAM Legacy database, 
stock ID codes that were based on ICES Stock Summary Database were used (lower case codes). 

Common name Scientific name Type Stock ID code 
Albacore Thunnus alalunga Pelagic ALBANATL. 
American plaice/long rough dab Hippoglossoides platessoides Demersal  
Angler Lophius piscatorius Demersal  

Atlantic cod Gadus morhua Demersal
CODNEAR, CODBA2224, CODBA2532, CODVIa, CODIS, CODICE, 
CODNS and CODKAT. 

Atlantic herring Clupea harengus Pelagic 

HERRIsum, HERRNS, HERR2224IIIa, HERR2532, HERR30, 
HERRRIGA, HERRNIRS, HERRNWATLC, HERR4VWX, 
HERR4RFA, HERR4RSP, HERR4TFA, HERR4TSP, HERR31, her-
noss, hervian and her-vasu. 

Atlantic horse mackerel Trachurus trachurus Pelagic hom-west. 
Atlantic mackerel Scomber scombrus Pelagic MACKNEICES. 
Baltic sprat Sprattus sprattus Pelagic SPRAT22-32. 
Blue whiting Micromesistius poutassou Pelagic whb-comb. 
Boarfish Capros aper Demersal  
Capelin Mallotus villosus Pelagic CAPEICE and CAPENOR. 

Common sole Solea solea Demersal
 
SOLENS, SOLEVIId, SOLEIS, SOLEIIIa, SOLEVIIe, SOLECS, and 
SOLEVIII. 

Cuckoo ray Leucoraja naevus Demersal  
Dab Limanda limanda Demersal  
European anchovy Engraulis encrasicolus Pelagic ANCHOBAYB. 
European hake Merluccius merluccius Demersal HAKESOTH and HAKENRTN. 
European pilchard Sardina pilchardus Pelagic sar-soth. 

European plaice Pleuronectes platessus Demersal
PLAIC7d, PLAICIIIa, PLAICNS, PLAICIS, PLAICECHW and 
PLAICCELT. 

European sprat Sprattus sprattus Pelagic SPRATNS. 
Flounder Platichthys flesus Demersal  
Fourbeard rockling Enchelyopus cimbrius Demersal  
Fourspotted megrim Lepidorhombus boscii Demersal mgb-8c9a. 



Greenland halibut Reinhardtius hippoglossoides Demersal GHALNEAR, GHALBSAI and GHAL23KLMNO. 

Haddock Melanogrammus aeglefinus Demersal
HAD4X5Y, HAD5Y, HAD5Zejm, HADICE, HADNEAR, HADFAPL, 
HADNS-IIIa, HADVIa, HADVIIb-k, HADROCK and HADGB. 

John dory Zeus faber Demersal  
Lemon sole Microstomus kitt Demersal  
Ling Molva molva Demersal  
Megrim Lepidorhombus whiffiagonis Demersal mgw-8c9a. 
Northern bluefin tuna Thunnus thynnus Pelagic ATBTUNAEATL and ATBTUNAWATL. 
Norway pout Trisopterus esmarkii Demersal nop-34. 
Golden Redfish Sebastes norvegicus Demersal GOLDREDNEAR. 
Pearlsides Maurolicus muelleri Pelagic  
Piked dogfish/ Spurdog Squalus acanthias Demersal  
Pollack Pollachius pollachius Demersal  
Poor cod Trisopterus minutus Demersal  
Pouting / Bib Trisopterus luscus Demersal  
Red bandfish Cepola macrophthalma Demersal  

Saithe / Pollock Pollachius virens Demersal
POLL5YZ, POLLNEAR, POLLFAPL, POLL4X5YZ and POLLNS-VI-
IIIa. 

Smallspottedcatshark Scyliorhinus canicula Demersal  
Splendid alfonsino Beryx splendens Demersal  
Spotted ray Raja montagui Demersal  
Striped red mullet Mullus surmuletus Demersal  
Thickback sole Microchirus variegatus Demersal  
Thornback ray Raja clavata Demersal  
Tub gurnard Chelidonichthys lucerna Demersal  
Tusk/ Torsk / Cusk Brosme brosme Demersal CUSK4X. 
Whiting Merlangius merlangus Demersal WHITNS-VIId-IIIa, WHITVIa and WHITVIIek. 
Witch Glyptocephalus cynoglossus Demersal  

 



Table 2. Summary of abbreviations. 

Abbreviation Description Details 

DBEM Dynamic Bioclimate Envelope Model  

E_Cୗ୮୮,୛,୧
࢚࢏࢛ࡿ  Biomass by competition resୗ୮୮,୛,୧

ୗ୳୧୲ ∙ E_S	 

E_Dୗ୮୮,୛,୧
࢚࢏࢛ࡿ  Biomass demanded Calculated at each yearly shift 

ERSEM European Regional Seas Ecosystem Model  

E_Ssize,i Total biomass supported in a cell Calculated from Primary production 

GFDL Geophysical Fluid Dynamic Laboratory Earth System model 

I Index of cell From 0 to 250200 

NSI No species interactions  

resୗ୮୮,୛,୧
ୗ୳୧୲  Actual proportion of resources by competition See Fig. 2 

resୗ୮୮,ୗ୳୧୲,୛ Proportion resources at matrix of energy demand See Eq. 4 

Res_opୗ୮୮,ୗ୳୧୲,୛ Proportion of resources by opportunity See Eq. 6 

Spp Index of species From 0 to 48 species 

SS Size-spectrum (based interactions)  

Suit Index of the habitat suitability bin Between 0 and 4 bins 

TotalResW, i Total proportion of resources demanded ∑ resୗ୮୮,୛,୧
ୗ୳୧୲

ୗ୮୮  

W Index of the size spectrum 21 log2 classes from 2-1 to 219 
  

 
 
 
 
 
 
Table 3. Average latitudinal shift in different simulations. NSI corresponds to simulations where the 
model does not incorporate species interactions through the size-spectrum, whereas SS denotes the 
use of the species interactions algorithm. GFDL and ERSEM correspond to two different Earth 
System Models. 

 Latitudinal Shift (km decade-1) 
Projection All species Demersal Pelagic 

NSI-DBEM GFDL 16.7 14.1 26.0 
SS-DBEM GFDL 13.7 12.6 18.4 

NSI-DBEM ERSEM 18.1 15.2 28.2 
SS-DBEM ERSEM 15.7 15.3 16.9 

 
 
 
 
  



Figures: 
Fig. 1: Relationship between the maximum assessed biomass (log) and the estimated carrying 
capacity of fish population (B∞, log) for 22 species in the 27 FAO area (after removing 
extreme values, the lowest and highest B∞). 

 

 

 

  



Fig. 2: Framework to calculate the matrix of energy demand at each size class for each species and to calculate the effects of species interactions. 



Fig. 3: Species biomass by body mass class supported in a single coastal cell (30’ x 30’), used as an example. Open circles represent the biomass 
that can be supported in this cell using only the size-spectrum component of the model. 
 

 
 



 
Fig. 4: Distribution of absolute error of predicted biomass for SS-DBEM and NSI-DBEM and the biomass estimated from stock assessments for 
the 1991 to 2003 period in the Northeast Atlantic (FAO Area 27). The time-series have been normalized between 0 and 1 before calculating the 
absolute error, to ensure that species’ absolute abundances do not affect the results. The comparison is presented for ERSEM (left) and GFDL 
(right) showing in the legend mean and standard deviation of the absolute error. A narrower distribution of error (lower standard deviation) in 
SS-DBEM is indicative of a higher precision. 
 
 

 



Fig. 5: Predicted latitudinal shift of distribution centroids of 49 species of fishes from 1971 to 2004 using ERSEM climatic dataset for the NSI-
DBEM and SS-DBEM. The thick dark bar represents the median shift of all the species in a year, the lower and upper boundaries of the box 
represent the 25% and 75% quartiles, respectively. Positive value indicates poleward shift relative to species distribution in 1971. 

 

 



Fig. 6: Predicted changes in maximum catch compared with empirical catch data. Time-series has been normalized between 0 and 1 in order to 
compare inter-annual variability. 
 

 

 




