
EUROPEAN

M IDDLEWARE INITIATIVE

SAGA SER VI CE D I SC OV E RY
U S E R S G U I D E F O R C + + P R O G R A M M E R S

Document Version: 1.0.0

EMI Component Version: 1.0.4

Date: 08.11.2012

Abstract: This document provides the C++ programmer with the information necessary to get
started with the SAGA Service Discovery API using the gLite adapter

TITLE:

SAGA Service Discovery

Date: 08.11.2012

This work is co-funded by the EC EMI project under the FP7 Collaborative Projects Grant Agreement Nr. INFSO-
RI-261611.
Copyright notice:

Copyright © Members of the EGEE-III Collaboration, 2008.

See www.eu-egee.org for details on the copyright holders.

EGEE-III (“Enabling Grids for E-sciencE-III”) is a project co-funded by the European Commission as an Integrated Infrastructure Initiative
within the 7th Framework Programme. EGEE-III began in May 2008 and will run for 2 years.

For more information on EGEE-III, its partners and contributors please see www.eu-egee.org

You are permitted to copy and distribute, for non-profit purposes, verbatim copies of this document containing this copyright notice. This
includes the right to copy this document in whole or in part, but without modification, into other documents if you attach the following
reference to the copied elements: “Copyright © Members of the EGEE-III Collaboration 2008. See www.eu-egee.org for details”.

Using this document in a way and/or for purposes not foreseen in the paragraph above, requires the prior written permission of the copyright
holders.

The information contained in this document represents the views of the copyright holders as of the date such views are published.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
MEMBERS OF THE EGEE-III COLLABORATION, INCLUDING THE COPYRIGHT HOLDERS, OR THE EUROPEAN
COMMISSION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Trademarks: EGEE and gLite are registered trademarks held by CERN on behalf of the EGEE collaboration. All rights reserved"

Document Log

Issue Date Comment

2 / 17

http://www.eu-egee.org/

TITLE:

SAGA Service Discovery

Date: 08.11.2012

TABLE OF CONTENTS

1. INTRODUCTION...4

1.1. PURPOSE...4
1.2. DOCUMENT ORGANISATION..4
1.3. APPLICATION AREA..4
1.4. DOXYGEN..4
1.5. REFERENCES..4

2. OVERVIEW...5

2.1. SAGA...5
2.2. THE SAGA SERVICE DISCOVERY API..5
2.3. SERVICE MODEL..5
2.4. CLASSES...5
2.5. DETAILS..6
2.6. GLITE ADAPTER...6

3. GETTING STARTED WITH SAGA SERVICE DISCOVERY...7

3.1. INSTALLATION..7
3.2. GRID CERTIFICATE...7
3.3. ENVIRONMENT VARIABLES...7

3.3.1. Building..7
3.3.2. Executing..7

4. SAGA EXCEPTIONS...8

5. A SIMPLE EXAMPLE..9

5.1. THE CODE...9
5.2. EXPLANATION OF THE CODE..10
5.3. BUILDING THE EXAMPLE...10
5.4. RUNNING THE EXAMPLE..11
5.5. ACCESSING THE DATA FIELDS..11

6. FILTERS..13

6.1. SERVICE FILTER...13
6.2. DATA FILTER...14
6.3. AUTHZ FILTER...14

7. GLUE 1 AND GLUE 2...16

8. LIMITATIONS...17

TABLE OF TABLES

TABLE 1: TABLE OF REFERENCES...4

3 / 17

TITLE:

SAGA Service Discovery

Date: 08.11.2012

1. INTRODUCTION

1.1. PURPOSE

This document is intended to get people started with SAGA Service Discovery. It contains instructions
on how to build and run an application with reference to the gLite adapter for Service Discovery.

1.2. DOCUMENT ORGANISATION

The document starts with an overview of the SAGA Service Discovery API with reference to the
GLUE model and the API's classes. Guidance on the required environment variables in Section 3. is
followed by descriptions of possible exceptions in Section 4. This is followed by a simple example of
how to use the API. Section 6. gives details about the use of the filters that are used by the API to
select services. Section 7. gives some notes on GLUE and Section 8. lists the limitations of the gLite
adapter.

1.3. APPLICATION AREA

This guide is intended for use by middleware developers who's code needs to locate services as well as
grid users who are inserted in finding services that match given filters.

1.4. DOXYGEN

The doxygen html files for the SAGA C++ API can be found in /usr/share/doc/glitesaga
adapterscpp/html/

1.5. REFERENCES

Table 1: Table of references

R1 Goodale T. et al. (2008). A Simple API for Grid Applications (SAGA). Retrieved July 01,
2009, from Open Grid Forum website: http://www.ogf.org/documents/GFD.90.pdf

R2 Fisher S., Wilson A. and Paventhan A. (2009). SAGA API Extension: Service Discovery API.
Retrieved July 01, 2009, from Open Grid Forum website:
http://www.ogf.org/documents/GFD.144.pdf

R3 Andreozzi S. et al. (2007). GLUE Schema Specification version 1.3. Retrieved July 01, 2009,
from Open Grid Forum website:
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.glue-
wg/docman.root.background.specifications/doc14185

R4 Andreozzi S. et al. (2009). GLUE Schema Specification version 2.0. Retrieved July 01, 2009,
from Open Grid Forum website: http://www.ogf.org/documents/GFD.147.pdf

4 / 17

TITLE:

SAGA Service Discovery

Date: 08.11.2012

2. OVERVIEW

2.1. SAGA

SAGA is the “Simple API for Grid Applications”, a high level, application-oriented API for grid
application development. This is an Open Grid Forum (OGF) standard, [R1].

2.2. THE SAGA SERVICE DISCOVERY API

The Service Discovery (SD) API is an extension to SAGA, [R2]. The SD API provides a mechanism
to locate services. The quality of the information returned will depend upon the quality of the data in
the back-end system. The gLite adapter for Service Discovery obtains information from a BDII.

2.3. SERVICE MODEL

This API is based upon the GLUE (version 1.3) model of a service [R3] as summarized in Figure 1.
This service model is also compatible with GLUE 2.0 [R4]. A Site may host many Services and a
Service has multiple ServiceData entries associated with it. Each ServiceData entry is represented by a
key and a value, thus allowing any set of keyword/value pairs to be associated with an instance of a
Service. In addition, a Service has a many-to-many relationship with itself. This allows the model to
describe groupings of services.

Figure 1 - ER diagram of Service Model

2.4. CLASSES

This API consists of a discoverer class with a single method: list_services. This method
returns a list of objects of the service_description class, filtered according to several specified
filters, Section 6.

The service_description class has three methods. One of these, get_url, is all that most
people will use to obtain the address registered for the service. In the case of a Web Service, this will
be the service endpoint. It also exposes ReadOnly properties of the service, such as its type and uid as
attributes. There is a method get_related_services that returns the set of related
service_description objects, which represent related services. Finally, there is a method
get_data to access the set of further key value pairs. This method returns a service_data
object, which gives ReadOnly access to all the key names and values in the service_data object.

5 / 17

TITLE:

SAGA Service Discovery

Date: 08.11.2012

By referencing a separate service_data object holding the key value pairs, potential key name
clashes between the sets of pre-defined and free-form attributes are avoided.

2.5. DETAILS

This API uses an information system and does not contact the services to check their availability. The
user must expect that a service provided by the Service Discovery API may not be available. Even if
the API were to contact a service to confirm its availability, by the time the user attempts to use that
service, it may have failed. Similarly the API cannot be guaranteed to provide a complete set of
matching services.

The API may try to use a BDII but not be able to access it. If no result can be returned because of
BDII or other internal problems, it will throw the NoSuccess exception.

2.6. GLITE ADAPTER

The C++ gLite adapter uses the BDII information system.

6 / 17

TITLE:

SAGA Service Discovery

Date: 08.11.2012

3. GETTING STARTED WITH SAGA SERVICE DISCOVERY

3.1. INSTALLATION

It is recommended that yum is used to install the client:

yum install emi.sagaadapter.sdcpp

3.2. GRID CERTIFICATE

It is not essential to have a grid certificate. A proxy of your certificate is only needed if you try to
select services using the default authorization filter (see Section 6.3.). If you do use a proxy then this
must be a VOMS proxy as the extended attributes are required.

3.3. ENVIRONMENT VARIABLES

You should ensure the required variables are set as listed below.

3.3.1. Building
SAGA_LOCATION=/usr

The SAGA_LOCATION is the location of the C++ installation of SAGA.

Boost headers to match the installed boost libraries are needed (typically boostdevel in the case
of an RPM).

3.3.2. Executing
SAGA_LOCATION=/usr

The SAGA_LOCATION is the location of the C++ installation of SAGA.

LD_LIBRARY_PATH=$SAGA_LOCATION/lib/

The LD_LIBRARY_PATH is required by the C++ adapter. This should also include the path to the
boost libraries.

x509_USER_PROXY=/tmp/x509up_uxxx

The X509_USER_PROXY is the location of the users proxy, where xxx is the users uid.

BDII_URL=ldap://host.domain:2170

The BDII_URL is the URL of the LDAP server to be used by the adapter when a URL is not passed in
via the API. This takes preference over the LCG_GFAL_INFOSYS and the hard coded value of the
CERN bdii.

LCG_GFAL_INFOSYS=host.domain:2170

LCG_GFAL_INFOSYS will be used if BDII_URL is not set. This takes preference over the hard
coded value of the CERN bdii.

7 / 17

TITLE:

SAGA Service Discovery

Date: 08.11.2012

4. SAGA EXCEPTIONS
saga::exception is the base class for all exceptions in SAGA.

AuthenticationFailed is thrown if none of the available session contexts could successfully be used
for authentication.

AuthorizationFailed is thrown if none of the available contexts of the used session could be used for
successful authorization. This error indicates that the resource could not be accessed at all, and not that
an operation was not available due to restricted permissions.

BadParameter is thrown if any filter has an invalid syntax or if any filter uses invalid keys. However
the dataFilter never signals invalid keys as there is no schema with permissible key names.

DoesNotExist is thrown if the URL is syntactically valid, but no service can be contacted at that URL.

IncorrectState is thrown if the object a method was called on is in a state where that method cannot
possibly succeed.

IncorrectURL is thrown if an implementation cannot handle the specified protocol, or that access to
the specified entity via the given protocol is impossible.

NoSuccess is thrown if no result can be returned because of information system or other internal
problems.

NotImplemented is thrown if the method is not implemented by that SAGA implementation at all.

PermissionDenied is thrown when the method failed because the identity used did not have sufficient
permissions to perform the operation successfully.

Timeout is thrown if a remote operation did not complete successfully because the network
communication or the remote service timed out.

8 / 17

TITLE:

SAGA Service Discovery

Date: 08.11.2012

5. A SIMPLE EXAMPLE

5.1. THE CODE

#include <iostream>

#include <vector>

#include <string>

#include "saga/saga.hpp"

#include "saga/saga/sd.hpp"

int main(int argc, char *argv[])

{

 std::string svcFilter = "type='org.glite.lb.server'";

 std::string dataFilter = "gliteinfoservice_version='1.5'";

 std::string authzFilter = "";

 try

 {

 // Create a Discoverer

 saga::sd::discoverer sd;

 // Use the Discoverer to select services

 std::vector<saga::sd::service_description> services;

 services = sd.list_services(svcFilter, dataFilter, authzFilter);

 if (services.size()> 0) // Take the first url

 {

 std::cout << "URL: " << services[0].get_url() << std::endl;

 }

 else

 {

 std::cout << "No matching services found" << std::endl;

 }

 }

 catch (saga::exception& e)

 {

 std::cerr << "ERROR: " << e.get_message() << std::endl;

 exit(1);

 }

 return 0;

}

9 / 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

TITLE:

SAGA Service Discovery

Date: 08.11.2012

5.2. EXPLANATION OF THE CODE

Lines 1-5 are the various include statements.

Lines 8-10 set the values of the filters.

Lines 14 creates a Discoverer. The underlying adapter will attempt to use the value set in the
environment variable BDII_SERVER as the URL to contact the BDII.

Lines 16-17 uses the Discoverer to select services. This is done via the listServices method.
The listServices method returns list of service descriptions, in a random order, matching the
filter criteria. The use of filters in is described in Section 6.

Lines 18-25 uses the getUrl method to get the URL of the first service.

Lines 27-31 reports any SAGA exceptions.

5.3. BUILDING THE EXAMPLE

Ensure that the environment is set up correctly (see 3.3.). The following makefile will build the
example.

NUM = one

SRC = sd_example_$(NUM).cpp

OBJ = $(SRC:%.cpp=%.o)

BIN = sd_example_$(NUM)

CXX = g++

CXXFLAGS = g c

LD = $(CXX)

LDFLAGS = g

include $(SAGA_LOCATION)/share/saga/make/saga.engine.mk

include $(SAGA_LOCATION)/share/saga/make/saga.package.file.mk

SAGA_CPPFLAGS += $(shell $(SAGA_LOCATION)/bin/sagaconfig cppflags)

SAGA_CXXFLAGS += $(shell $(SAGA_LOCATION)/bin/sagaconfig cxxflags)

SAGA_LDFLAGS += $(shell $(SAGA_LOCATION)/bin/sagaconfig ldflags)

all: $(BIN)

$(OBJ): %.o : %.cpp

$(CXX) $(CXXFLAGS) $(SAGA_CXXFLAGS) o $@ $<

$(BIN): $(OBJ)

$(LD) $(LDFLAGS) $(SAGA_LDFLAGS) o $@ $<

clean:

@$(RM) $(OBJ) $(BIN)

Assuming the above is in a file called Makefile, the command 'make' will build the example

5.4. RUNNING THE EXAMPLE

10 / 17

TITLE:

SAGA Service Discovery

Date: 08.11.2012

Ensure that the environment is set up correctly (see 3.3.). Assuming you are in the directory where
sd_example_one is then
./sd_example_one

will run the test application.

5.5. ACCESSING THE DATA FIELDS

In order to examine the contents of some of the data associated with a service replace lines 18– 25
with:

 std::vector<saga::sd::service_description>::iterator servicesIter;

 std::vector<saga::sd::service_description>::const_iterator

 servicesEnd = services.end();

 for (servicesIter = services.begin();

 servicesIter != servicesEnd;

 ++servicesIter)

 {

 std::cout << std::endl << "Service Description of "

 << servicesIter>get_url() << std::endl;

 std::cout << "Name: "<< servicesIter>get_attribute("Name")

 << std::endl;

 saga::sd::service_data data;

 data = servicesIter>get_data();

 std::vector<std::string> attribs =

 data.get_vector_attribute("gliteinfoservice_hostname");

 std::vector<std::string>::const_iterator attribsIter;

 std::vector<std::string>::const_iterator attribsEnd =

 attribs.end();

 for (attribsIter = attribs.begin(); attribsIter != attribsEnd;

 ++attribsIter)

 {

 std::cout << "gliteinfoservice_hostname: "

 << *attribsIter << std::endl;

 }

 }

Lines 1-3

Lines 4-25 loops round all of the service descriptions.

Lines 8-9 gets and displays the URL of the service.

Lines 10-11 gets and displays the name of the service. “Name” is a scalar attribute so the getAttribute
method is used.

Lines 12-13 gets the ServiceData object associated with the service.

11 / 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

TITLE:

SAGA Service Discovery

Date: 08.11.2012

Lines 14-24 displays the values for the ServiceData attribute with the key “glite-info-
service_hostname”. N.B. All ServiceData attributes are vectors so the getVectorAttribute method is
used.

12 / 17

TITLE:

SAGA Service Discovery

Date: 08.11.2012

6. FILTERS
There are three filter strings: serviceFilter, dataFilter and authzFilter which act
together to restrict the set of services returned. Each of the filter strings uses SQL92 syntax as if it
were part of a WHERE clause acting to select from a single table that includes columns as described
below for that filter type. SQL92 has been chosen because it is widely known and has the desired
expressive power. Multi-valued attributes are treated as a set of values.

Three strings are used, rather than one, as this clarifies the description of the functionality, avoids
problems with key values being themselves existing GLUE attributes, and facilitates implementation
as it makes it impossible to specify constraints that correlate, for example, service and authz
information. Only the following operators are permitted in expressions not involving multi-valued
attributes: IN, LIKE, AND, OR, NOT, =, >=, >, <=, <, <> in addition to column names, parentheses,
column values as single quoted strings, numeric values and the comma. For a multi-valued attribute,
the name of the attribute MUST have the keyword ALL or ANY immediately before it (see
Limitations), unless comparison with a set literal is intended. For each part of the expression, the
attribute name MUST precede the literal value.

The LIKE operator matches string patterns:

'%xyz' matches all entries with trailing xyz

'xyz%' matches all entries with leading xyz

'%xyz%' matches all entries with xyz being a substring

The ESCAPE keyword can be used with LIKE in the normal way.

Column names are not case sensitive but values are.

The operators >=, >, <= and < are not supported when applied to strings.

6.1. SERVICE FILTER

Column names in the serviceFilter are:

Capabilities

identifiable aspects of functionality

ImplementationVersion

version of service's implementation

Implementor

name of the organisation providing the implementation of the service

InterfaceVersion

version of service's interface

Name

name of service (not necessarily unique)

RelatedServices

the uids of services related to the one being looked for

Site

name of site the service is running at

Type

13 / 17

TITLE:

SAGA Service Discovery

Date: 08.11.2012

type of service. This API does not restrict values of the service type -- it might be a DNS name,
a URN or any other string.

Uid

unique identifier of service

Url

the endpoint to contact the service - will normally be used with the LIKE operator

Some examples are:

Site IN ('INFNCNAF', 'RALLCG2')

Type = 'org.glite.ResourceBroker' AND Site LIKE '%.uk' AND
Implementor = 'EGEE'

6.2. DATA FILTER

Column names in the the dataFilter string are matched against the service data key/value pairs.
No keys are predefined.

If values are specified as numeric values and not in single quotes, the service data will be converted
from string to numeric for comparison.

Data attributes may be multi-valued. If a dataFilter string does not have the correct syntax to
accept multi-valued attributes, and a service has more than one value for an attribute mentioned in the
filter, that service MUST be rejected.

Some examples are:

source = 'RALLCG2' OR destination = 'RALLCG2'

RunningJobs >= 1 AND RunningJobs <= 5

6.3. AUTHZ FILTER

The set of column names in the authzFilter is not defined. Instead the list below shows a possible
set of names and how they might be interpreted. Each of these column names could reasonably be
related to an authorization decision.

Vo

virtual organization - will often be used with the IN operator

Dn

an X.509 ``distinguished name''

Group

a grouping of people within a Virtual Organization

Role

values might include ``Administrator'' or ``ProductionManager''
It is expected that many of the attributes used in the authzFilter will be multi-valued.

Some examples, where VO is assumed to be multi-valued are:

ANY Vo IN ('cms', 'atlas')

Vo = ('dteam')
Note the use of the set constructor in both examples. Being a set, ('aaa','bbbb') is of course the same as
('bbb', 'aaa').

14 / 17

TITLE:

SAGA Service Discovery

Date: 08.11.2012

The listServices method is overloaded: the last parameter the authzFilter may be omitted.
If it is omitted the authorization filtering is performed on the contexts in the session, see below. This is
quite different from including the authzFilter parameter with an empty string which means that
there is no authz filtering.

The gLite adapter uses the users proxy to construct the context. If set it will use the environment
variable X509_USER_PROXY, it will then try looking for /tmp/x509up_uxxx, where xxx is the user's
uid. An exception will be thrown when the authzFilter is omitted and a proxy certificate is not
available via one of the above mechanisms.

15 / 17

TITLE:

SAGA Service Discovery

Date: 08.11.2012

7. GLUE 1 AND GLUE 2
The adapter is capable of using GLUE 1 and the prototype GLUE 2 information from gLite bdiis. The
type of data, GLUE 1 and/or GLUE 2, that gets queried is controlled from an ini file,
$SAGA_LOCATION/etc/saga-adapter/config-cpp/glite_sd_adaptor.ini. It is possible for the user to
provide their own ini files, which should be placed in an ini directory. In order for SAGA to find this
directory create the file ~/.saga.ini which should contain the lines:

[saga]

ini_path = $[saga.location]/share/saga/:”your ini directory”
Make a copy of $SAGA_LOCATION/etc/saga-adapter/config-cpp/glite_sd_adaptor.ini in your ini
directory. The values in your file will then override the values in $SAGA_LOCATION/etc/saga-
adapter/config-cpp/glite_sd_adaptor.ini.

If both GLUE 1 and GLUE 2 are selected then the results will be combined. This may lead to
duplicate UIDs appearing in the returned service descriptions.

16 / 17

TITLE:

SAGA Service Discovery

Date: 08.11.2012

8. LIMITATIONS
This section lists the limitations of the adapter.

• Cannot use ALL or ANY with the service filter - this affects multi-valued attributes (related
services and capabilities)

• The createDiscoverer method does not throw a DoesNotExistException if the information
service cannot be contacted via the provided URL. This is because the adapter does not
contact the information system until the listServices method is called. As a result a
NoSecsessException gets thrown by the listServices method if the information service cannot
be contacted via the provided URL.

• When querying GLUE1, the attribute 'implementor' is ignored if it is used in the service filter

• For GLUE1, a service filter query of the form "a = (x, y ,z)" will match services where "x = v,
w, x, y, z" and not just "x = x, y, z"

• It is possible that a service will be published in both GLUE 1 and GLUE 2 formats. If the
adapter is configured to use GLUE 1 and 2 there maybe multiple service descriptions for the
same UID. The GLUE 2 version of the description is likely to have additional fields populated
i.e. capabilities and implementor.

17 / 17

	1. Introduction
	1.1. Purpose
	1.2. Document Organisation
	1.3. Application Area
	1.4. Doxygen
	1.5. References

	2. Overview
	2.1. SAGA
	2.2. The SAGA Service Discovery API
	2.3. Service Model
	2.4. Classes
	2.5. Details
	2.6. gLite Adapter

	3. Getting Started with saga Service Discovery
	3.1. Installation
	3.2. Grid Certificate
	3.3. Environment Variables
	3.3.1. Building
	3.3.2. Executing

	4. SAGA Exceptions
	5. A Simple Example
	5.1. The Code
	5.2. Explanation of the Code
	5.3. Building the Example
	5.4. Running the Example
	5.5. Accessing the Data Fields

	6. Filters
	6.1. Service Filter
	6.2. Data Filter
	6.3. Authz Filter

	7. GLUE 1 and GLUE 2
	8. Limitations

