
UVOS Client Manual

UVOS CLIENT MANUAL

UNICORE Team

Document Version: 1.6.0
Component Version: 1.7.0
Date: 14 01 2013

This work is co-funded by the EC EMI project under the FP7 Collaborative Projects Grant
Agreement Nr. INFSO-RI-261611.

This work was co-funded by the EC Chemomentum project under the FP6 Grant Agreement Nr.
IST-033437.

UVOS Client Manual

Contents

1 Introduction 1

2 Installation 1

2.1 Installation from RPM package (RedHat distributions) 1

2.2 Installation from the DEB package (Debian distributions) 2

2.3 Installation from the archive . 2

3 Using the command line UVOS client 2

4 Using other available clients 3

5 Developing with uvos-client 3

6 Client configuration 3

6.1 Configuring PKI trust settings . 4

6.2 Configuring the credential . 9

7 Commands reference 12

UVOS Client Manual 1

UNICORE VO Service (UVOS) is a client-server system, developed to be used as an additional
tool for large distributed systems, providing a solution for grid users management. Grid sys-
tems, especially UNICORE grid middleware, are the mainspring of the UVOS system. UVOS
can be used with different systems, however is designed primarily to support UNICORE grid
middleware.

For more information about UVOS visit http://uvos.chemomentum.org.

1 Introduction

This package called uvos-client contains client side libraries and a command line application
(CLC) for accessing UVOS Server.

For a general introduction of UVOS please refer to its website: http://uvos.chemomentum.org

A complete overview of the UVOS is available in the initial chapters of the "UVOS Server
manual" available there.

2 Installation

UVOS Client is distributed in the following formats:

1. As a platform independent archive.

2. As a binary, platform-specific package, available currently for Scientific Linux 5, Scien-
tific Linux 6 and Debian 6 platforms. The packages are tested on the enumerated plat-
forms, but should work without any problems with other versions of similar distributions
(e.g. version for SL6 works well on Centos 6 or recent Fedora distributions. Differences
between SL5 and SL6 version are only in the RPM tools used to create packages (so SL5
version should be more universal, while SL6 version can require a newer rpm software).

Depending on the installation source used, installation method and paths after installation are
different. In case of platform-specific packages, the default configuration of the client is placed
in /etc/unicore/uvos-clc/uvosClient.conf Upon a first start of the client it will be
copied to .uvos-clc/ folder in your home directory. You should edit it there (see Configura-
tion Section 6 for details). The executable program is called uvos-clc.

2.1 Installation from RPM package (RedHat distributions)

The preferred way is to use Yum to install (and subsequently update) UVOS Client.

To perform the Yum installation, EMI Yum repository must be installed first. Refer to the
EMI release documentation (available at the EMI website http://www.eu-emi.eu/releases) for

http://uvos.chemomentum.org
http://uvos.chemomentum.org
http://www.eu-emi.eu/releases

UVOS Client Manual 2

detailed instructions. Typically installation of the EMI repository requires to download a single
RPM file and install it.

After the EMI repository is configured, the following command installs UVOS Client:

$> yum install unicore-uvos-clc

2.2 Installation from the DEB package (Debian distributions)

The preferred installation way is to use apt to install and subsequently update UVOS Client.

To perform the apt installation, EMI apt repository must be installed first. Refer to the EMI re-
lease documentation (available at the EMI website http://www.eu-emi.eu/releases) for detailed
instructions. Typically installation of the EMI repository requires to download a single DEB
file and install it.

After the EMI repository is configured, the following command installs UVOS Client:

$> apt-get install unicore-uvos-clc

2.3 Installation from the archive

If installing using a portable archive:

1. Download the uvos-client archive from the UNICORE download site and unpack it.

2. The default configuration of the client is placed in conf/uvosClient.conf You should
edit it there (see Configuration Section 6 for details). The program can be found in the
bin/ subdirectory and is called uvoscmd.sh

3 Using the command line UVOS client

UVOS Command Line Client can operate in batch or interactive mode. Invoking it without
arguments provides you with usage instructions. When invoking UVOS CLC user must select
one of the available commands and provide arguments for it.

UVOS CLC offers a built in help system: it allows you to list all commands and get help on
each of them. The following command outputs help for the operation addIdentity (assuming
you are invoked UVOS CLC in interactive mode, similarly you can invoke it in batch mode):

help addIdentity

Note that in interactive mode in order to pass arguments which contain spaces you should sur-
round them with double quotes "like this".

The command line client uses a configuration file to get information about:

http://www.eu-emi.eu/releases

UVOS Client Manual 3

• UVOS server address.

• How to authenticate to the server.

• Trusted certificates for TLS connection.

See Configuration Section 6 for details.

4 Using other available clients

Other clients which are available in this package are usually not useful for UVOS users. The
sole exception is SAMLSelfClient. This program gets all attributes which are defined for the
identity making the call (i.e. this one which is set in client’s configuration file).

The WebClient program serves as an example for developers only so you can ignore it.

5 Developing with uvos-client

If you intend to use this package as a library please refer to the JavaDocs documentation (it is
available from the download site, and from the documentation site which is preferred, the most
accurate source). Remember that there are two VO APIs implemented by this library:

• SAML API It uses SAML 2.0 and so is standard-complaint, can be used to access any version
of UVOS server and possibly other SAML services. However it offers only a read-only ac-
cess. If you can then use use this API. It is included in the package: pl.edu.icm.unicore.uvos.wsclient.samlapi

• UVOS API It uses an own UVOS web services interface. It is not guaranteed that using this
API will work perfectly with older UVOS server releases (however most of fundamental func-
tions should work). Also this API in not standards complaint. On the other hand it allows you
to use all UVOS features. It is included in the package: pl.edu.icm.unicore.uvos.wsclient.api

Also note that if intend to simply add UVOS support for your XFire or WSRFLite or UAS
service then you should use xfire-voutils or uas-authz packages which provides a ready to use
solution for such cases.

For additional information please contact UVOS or UNICORE developers at: unicore-devel@lists.sourceforge.net

6 Client configuration

The client uses the configuration file to get information about:

• UVOS server address,

mailto:unicore-devel@lists.sourceforge.net

UVOS Client Manual 4

• clients identity which is used to authenticate the client to the UVOS server,

• trusted certificates for TLS connection.

The file location can be chosen via -c file argument or by setting the UVOSCLC_CONFIG shell
variable. The Java Properties format is used. See:

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

for a formal discussion, however it is enough to know that:

• comments are started with #

• on each line (non empty and not commented out) there is one property and its value defined. . .

• . . . with the syntax: propertyName=property value

UVOS can be contacted using insecure HTTP or secure HTTPS. Except closed test environ-
ments it is always strongly suggested to use secure HTTPS.

Clients can authenticate to the UVOS using two mechanisms:

• using X.509 certificate - it is taken from SSL session so to use this authentication you must
use https protocol.

• using email and password - then any protocol can be used.

Below the valid properties are presented along with descriptions.

6.1 Configuring PKI trust settings

Public Key Infrastructure (PKI) trust settings are used to validate certificates. This is performed,
in the first place when a connection with a remote peer is initiated over the network, using the
SSL (or TLS) protocol. Additionally certificate validation can happen in few other situations,
e.g. when checking digital signatures of various sensitive pieces of data.

Certificates validation is primarily configured using a set of initially trusted certificates of so
called Certificate Authorities (CAs). Those trusted certificates are also known as trust anchors
and their collection is called a trust store.

Except of trust anchors validation mechanism can use additional input for checking if a certifi-
cate being checked was not revoked and if its subject is in a permitted namespace.

UNICORE allows for different types of trust stores. All of them are configured using a set of
properties.

• Keystore trust store - the only format supported in older UNICORE versions. Trusted cer-
tificates are stored in a single binary file in JKS or PKCS12 format. The file can be only
manipulated using a special tool like JDK keytool or openssl (in case of PKCS12 format).
This format is great if trust store should be in a single file or when compatibility with other
Java solutions or older UNICORE releases is desired.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream

UVOS Client Manual 5

• OpenSSL trust store - allows to use a directory with CA certificates stored in PEM format,
under precisely defined names: the CA certificates, CRLs, signing policy files and names-
paces files are named <hash>.0, <hash>.r0, <hash>.signing_policy and <hash>.namespaces.
Hash is the old hash of the trusted CA certificate subject name (in Openssl version > 1.0.0
use -suject_hash_old switch to generate it). If multiple certificates have the same hash then
the default zero number must be increased. This format is the same as used by other then
UNICORE popular middlewares as Globus and gLite. It is suggested when a common trust
store with such middlewares is needed.

• Directory trust store - the most flexible and convenient option, suggested for all remaining
cases. It allows to use a list of wildcard expressions, concrete paths of files or even URLs to
remote files as a set of trusted CAs and in the same way for the CRLs. With this trust store
administrator can simply configure all files (or all with a specified extension) in a directory to
be used as a trusted certificates.

In all cases trust stores can be (and by default are) configured to be automatically refreshed.

Property name Type Default
value /
mandatory

Description

uvos.truststore.-

allowProxy

[ALLOW,
DENY]

ALLOW Controls whether proxy
certificates are supported.

uvos.truststore.-

type

[keystore,
openssl,
directory]

mandatory
to be set

The truststore type.

uvos.truststore.-

updateInterval

integer number 600 How often the truststore
should be reloaded, in
seconds. Set to negative
value to disable refreshing
at runtime. (runtime
updateable)

--- Directory type settings ---
uvos.truststore.-

directoryConnect-

ionTimeout

integer number 15 Connection timeout for
fetching the remote CA
certificates in seconds.

uvos.truststore.-

directoryDiskCac-

hePath

filesystem path - Directory where CA
certificates should be
cached, after downloading
them from a remote source.
Can be left undefined if no
disk cache should be used.
Note that directory should
be secured, i.e. normal
users should not be allowed
to write to it.

UVOS Client Manual 6

Property name Type Default
value /
mandatory

Description

uvos.truststore.-

directoryEncoding

[PEM, DER] PEM For directory truststore
controls whether
certificates are encoded in
PEM or DER.

uvos.truststore.-

directoryLocatio-

ns.*

list of
properties with
a common
prefix

- List of CA certificates
locations. Can contain
URLs, local files and
wildcard expressions.
(runtime updateable)

--- Keystore type settings ---
uvos.truststore.-

keystoreFormat

string - The keystore type (jks,
pkcs12) in case of truststore
of keystore type.

uvos.truststore.-

keystorePassword

string - The password of the
keystore type truststore.

uvos.truststore.-

keystorePath

string - The keystore path in case of
truststore of keystore type.

--- Openssl type settings ---
uvos.truststore.-

opensslNsMode

[GLOBUS_EUGRIDPMA,
EU-
GRIDPMA_GLOBUS,
GLOBUS,
EUGRIDPMA,
GLOBUS_EUGRIDPMA_REQUIRE,
EU-
GRIDPMA_GLOBUS_REQUIRE,
GLOBUS_REQUIRE,
EU-
GRIDPMA_REQUIRE,
EU-
GRIDPMA_AND_GLOBUS,
EU-
GRIDPMA_AND_GLOBUS_REQUIRE,
IGNORE]

EUGRIDP-

MA_GLOB-

US

In case of openssl
truststore, controls which
(and in which order)
namespace checking rules
should be applied. The
REQUIRE settings will
cause that all configured
namespace definitions files
must be present for each
trusted CA certificate
(otherwise checking will
fail). The AND settings will
cause to check both existing
namespace files. Otherwise
the first found is checked
(in the order defined by the
property).

uvos.truststore.-

opensslPath

filesystem path /etc/gr-

id-secu-

rity/ce-

rtifica-

tes

Directory to be used for
opeenssl truststore.

--- Revocation settings ---

UVOS Client Manual 7

Property name Type Default
value /
mandatory

Description

uvos.truststore.-

crlConnectionTim-

eout

integer number 15 Connection timeout for
fetching the remote CRLs
in seconds (not used for
Openssl truststores).

uvos.truststore.-

crlDiskCachePath

filesystem path - Directory where CRLs
should be cached, after
downloading them from
remote source. Can be left
undefined if no disk cache
should be used. Note that
directory should be
secured, i.e. normal users
should not be allowed to
write to it. Not used for
Openssl truststores.

uvos.truststore.-

crlLocations.*

list of
properties with
a common
prefix

- List of CRLs locations. Can
contain URLs, local files
and wildcard expressions.
Not used for Openssl
truststores. (runtime
updateable)

uvos.truststore.-

crlMode

[REQUIRE,
IF_VALID,
IGNORE]

IF_VALID General CRL handling
mode. The IF_VALID
setting turns on CRL
checking only in case the
CRL is present.

uvos.truststore.-

crlUpdateInterval

integer number 600 How often CRLs should be
updated, in seconds. Set to
negative value to disable
refreshing at runtime.
(runtime updateable)

uvos.truststore.-

ocspCacheTtl

integer number 3600 For how long the OCSP
responses should be locally
cached in seconds (this is a
maximum value, responses
won’t be cached after
expiration)

uvos.truststore.-

ocspDiskCache

filesystem path - If this property is defined
then OCSP responses will
be cached on disk in the
defined folder.

UVOS Client Manual 8

Property name Type Default
value /
mandatory

Description

uvos.truststore.-

ocspLocalRespond-

ers.<NUMBER>

list of
properties with
a common
prefix

- Optional list of local OCSP
responders

uvos.truststore.-

ocspMode

[REQUIRE,
IF_AVAILABLE,
IGNORE]

IF_AVAI-

LABLE

General OCSP ckecking
mode. REQUIRE should
not be used unless it is
guaranteed that for all
certificates an OCSP
responder is defined.

uvos.truststore.-

ocspTimeout

integer number 10000 Timeout for OCSP
connections in miliseconds.

uvos.truststore.-

revocationOrder

[CRL_OCSP,
OCSP_CRL]

OCSP_CRL Controls overal revocation
sources order

uvos.truststore.-

revocationUseAll

[true, false] false Controls whether all
defined revocation sources
should be always checked,
even if the first one already
confirmed that a checked
certificate is not revoked.

Examples

Note
Various UNICORE modules use different property prefixes. Here we don’t put any, but in
practice you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.

Directory trust store, with a minimal set of options:

truststore.type=directory
truststore.directoryLocations.1=/trust/dir/*.pem
truststore.crlLocations=/trust/dir/*.crl

Directory trust store, with a complete set of options:

truststore.type=directory
truststore.allowProxy=DENY
truststore.updateInterval=1234
truststore.directoryLocations.1=/trust/dir/*.pem

UVOS Client Manual 9

truststore.directoryLocations.2=http://caserver/ca.pem
truststore.directoryEncoding=PEM
truststore.directoryConnectionTimeout=100
truststore.directoryDiskCachePath=/tmp
truststore.crlLocations.1=/trust/dir/*.crl
truststore.crlLocations.2=http://caserver/crl.pem
truststore.crlUpdateInterval=400
truststore.crlMode=REQUIRE
truststore.crlConnectionTimeout=200
truststore.crlDiskCachePath=/tmp

Openssl trust store:

truststore.type=openssl
truststore.opensslPath=/truststores/openssl
truststore.opensslNsMode=EUGRIDPMA_GLOBUS_REQUIRE
truststore.allowProxy=ALLOW
truststore.updateInterval=1234
truststore.crlMode=IF_VALID

Java keystore used as a trust store:

truststore.type=keystore
truststore.keystorePath=src/test/resources/certs/truststore.jks
truststore.keystoreFormat=JKS
truststore.keystorePassword=xxxxxx

6.2 Configuring the credential

UNICORE uses private key and a corresponding certificate (called together as a credential) to
identify users and servers. Credentials might be provided in several formats:

• Credential can be obtained from a keystore file, encoded in JKS or PKCS12 format.

• Credential can be loaded as a pair of PEM files (one with private key and another with certifi-
cate),

• or from a pair of DER files,

• or even from a single file, with PEM-encoded certificates and private key (in any order).

The following table list all parameters which allows for configuring the credential. Note that
nearly all options are optional. If not defined, the format is tried to be guessed. However some
credential formats require additional settings. For instance if using der format the keyPath is
mandatory as you need two DER files: one with certificate and one with the key (and the latter
can not be guessed).

UVOS Client Manual 10

Property name Type Default
value /
mandatory

Description

uvos.credential.-

path

filesystem path mandatory
to be set

Credential location. In case
of jks, pkcs12 and pem store
it is the only location
required. In case when
credential is provided in
two files, it is the certificate
file path.

uvos.credential.-

format

[jks, pkcs12,
der, pem]

- Format of the credential. It
is guessed when not given.
Note that pem might be
either a PEM keystore with
certificates and keys (in
PEM format) or a pair of
PEM files (one with
certificate and second with
private key).

uvos.credential.-

password

string - Password required to load
the credential.

uvos.credential.-

keyPath

string - Location of the private key
if stored separately from
the main credential
(applicable for pem and der
types only),

uvos.credential.-

keyPassword

string - Private key password,
which might be needed
only for jks or pkcs12, if
key is encrypted with
different password then the
main credential password.

uvos.credential.-

keyAlias

string - Keystore alias of the key
entry to be used. Can be
ignored if the keystore
contains only one key entry.
Only applicable for jks and
pkcs12.

UVOS Client Manual 11

6.2.1 Examples

Note
Various UNICORE modules use different property prefixes. Here we don’t put any, but in
practice you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.

Credential as a pair of DER files:

credential.format=der
credential.password=the\!njs
credential.path=/etc/credentials/cert-1.der
credential.keyPath=/etc/credentials/pk-1.der

Credential as a JKS file (credential type can be autodetected in almost every case):

credential.path=/etc/credentials/server1.jks
credential.password=xxxxxx

6.2.2 Example configuration file

#######################################
Client general settings
#######################################
uvos.port=51774
uvos.host=localhost

#######################################
SSL settings (for https only)
#######################################
do we authenticate ourself to the server?
client.sslAuthnEnabled=false

credential.format=jks
credential.path=/opt/keystore.jks
credential.keyAlias=mykey
credential.password=the!client

truststore.type=keystore
truststore.keystorePath=/opt/truststore.jks
truststore.keystorePassword=the!client
truststore.keystoreFormat=JKS

#######################################

UVOS Client Manual 12

AUTHN settings (for https only)
#######################################
do we authenticate with HTTP Basic authN (i.e. username & passwd) ←↩

?
client.httpAuthnEnabled=true
client.httpUser=voadmin@localhost
client.httpPassword=

7 Commands reference

This section provides reference documentation about all commands which are available in
UVOS Command Line Client. This reference can be generated by the command helpAll. Note
that information generated by help system of the Command Line Client is always up to date.

Command: addEquivalentIdentity

Creates a new identity, which is alias of (is equivalent to) ←↩
another, existing identity. Syntax:

addEquivalentIdentity <dn|x509|email> <newIdentity> <dn|x509| ←↩
email> <equivalent>

The first argument is an identity type. Next is value, which is a ←↩
simple string in case of ’dn’ or

’email’ types and a file name with X509 certificate in case of ’ ←↩
x509’ type.

It is the value of added identity. Next come parameters of ←↩
eqivalent identity.

Note that label of the new identity will be the same as of it’s ←↩
eqivalent.

Example:
addEquivalentIdentity email john@example.com email john@example. ←↩

org

~~~~~~~~~~~~~~
Command: addGroup

Adds a new group. Syntax:
addGroup <parentGroupPath> <newGroupName>

Separate the parent group path elements with ’/’. Example:
addGroup /parentGroup newGroup

~~~~~~~~~~~~~~
Command: addIdentity

Creates a new identity. Syntax:
addIdentity <dn|x509|email> <value> [label]

UVOS Client Manual 13

or: addIdentity email <value> passwd <password> [label]
The first argument is an identity type. Next is value, which is a ←↩

simple string in case of ’dn’ or ’email’
types and a file name with certificate in case of ’x509’ type. 3rd ←↩

(optional) argument is a friendly
(unique) name for the identity. It is common for all equivalent ←↩

identities. When adding email type identity
it is also possible to set it’s password.

Example:
addIdentity email test@example.com Johnny

~~~~~~~~~~~~~~
Command: addNotification

Adds a new notification definition for the given action. Optionally ←↩
you can register it only in the context of a group

Syntax:
addNotification <action> <recipents> [groupFilter]

Example:
addNotification addGroup receiver@example.com /Math-VO

~~~~~~~~~~~~~~
Command: addToGroup

Adds an identity to a group. Syntax:
addToGroup <dn|x509|email> <identity> <groupPath>

The first argument is an identity type. Next is value, which is a ←↩
simple string in case of ’dn’ or ’email’

types and a file name with X509 certificate in case of ’x509’ type. ←↩
It is the value of added identity.

The last argument is the group path.

Example:
addToGroup email john@example.com /group/subgroup

~~~~~~~~~~~~~~
Command: areEquivalent

Checks if two given identities are equivalent.
Syntax:

areEquivalent <dn|x509|email> <identity1> <dn|x509|email> < ←↩
identity2>

Example:
areEquivalent email ann@example.com email ann@example.org

~~~~~~~~~~~~~~


UVOS Client Manual 14

Command: changeLabel

Changes unique name of identity, which is common for all equivalent ←↩
identities. Syntax:

changeLabel <dn|x509|email> <identity> <newLabel>
Example:
changeLabel email ann@example.com Ann

~~~~~~~~~~~~~~
Command: changePasswd

Changes the given identity password (or deletes it).
Syntax:

changePasswd email <identity> [newPasswd]
If new password is not given then the password is removed.Note that ←↩

it is technically possible to set also
password for other types of identity but it makes no sense.Example:

changePasswd email ann@example.com SecreT

~~~~~~~~~~~~~~
Command: copyGroup

Copies or moves a group to a different parent group. Syntax:
copyGroup <grouptoBeCopiedPath> <newParentGroupPath> <doMove> [←↩

newName]
Example:
copyGroup /group/subgroup /parent true movedG

will create group /parent/movedG with the same contents as /group/ ←↩
subgoup has, then /group/subgroup will be

deleted.

~~~~~~~~~~~~~~
Command: disableAttribute

Disables an attribute. Syntax:
disableAttribute <global> <dn|x509|email> <identity> < ←↩

AttributeName> [value]
disableAttribute <group> <groupPath> <AttributeName> [value]
disableAttribute <ig> <dn|x509|email> <identity> <groupPath>< ←↩

AttributeName> [value]
The first argument specifies what kind of attribute will be changed ←↩

: group attribute, identity global
attribute, or identity attribute valid only in particular group. If ←↩

the optional ’value’ argument is set
then only this value of attribute will be disabled.
Example:
disableAttribute ig email ann@example.com /group urn:unicore: ←↩

attrType:user:proffession scientist



UVOS Client Manual 15

~~~~~~~~~~~~~~
Command: enableAttribute

Enables an attribute. Syntax:
enableAttribute <global> <dn|x509|email> <identity> < ←↩

AttributeName> [value]
enableAttribute <group> <groupPath> <AttributeName> [value]
enableAttribute <ig> <dn|x509|email> <identity> <groupPath>< ←↩

AttributeName> [value]
The first argument specifies what kind of attribute will be changed ←↩

: group attribute, identity global
attribute, or identity attribute valid only in particular group. If ←↩

the optional ’value’ argument is set
then only this value of attribute will be disabled.
Example:
enableAttribute ig email ann@example.com /group urn:unicore: ←↩

attrType:user:proffession scientist

~~~~~~~~~~~~~~
Command: exit

Exits application

~~~~~~~~~~~~~~
Command: exit

Exits application

~~~~~~~~~~~~~~
Command: getATypes

Lists all known attribute types. Syntax:
getATypes

~~~~~~~~~~~~~~
Command: getATypes

Lists all known attribute types. Syntax:
getATypes

~~~~~~~~~~~~~~
Command: getAllEquivalents

Retrieves a list of all identities that are equivalent to the given ←↩
one.

Syntax:
getAllEquivalents <dn|x509|email> <identity1>



UVOS Client Manual 16

Example:
getAllEquivalents email ann@example.com

~~~~~~~~~~~~~~
Command: getAllGroups

Retrieves a list of all groups the given identity is a member of.
Syntax:

getAllGroups <dn|x509|email> <identity> [implied]
If the last arg is given then also groups implied are returned, i.e ←↩

. if user is a member of group
/A/B then /Awill be returned then too.Example:

getAllGroups email ann@example.com

~~~~~~~~~~~~~~
Command: getAllIdentities

Retrieves a list of all identities
Syntax:

getAllIdentities

~~~~~~~~~~~~~~
Command: getApplication

Get an ID of an application submited by a given identity. Prints -1 ←↩
when no application is found.

Warning - note that more than one application may be submited by a ←↩
single identity.

Syntax:
getApplication <dn|x509|email> <identity>

~~~~~~~~~~~~~~
Command: getApplicationForms

Lists available application forms.
Syntax:

getApplicationForms

~~~~~~~~~~~~~~
Command: getApplications

Lists application actions. Arguments filter the resopnse. Negative ←↩
formId means any formId.

Syntax:
getApplications [formId] [status]

~~~~~~~~~~~~~~



UVOS Client Manual 17

Command: getApplications

Lists application actions. Arguments filter the resopnse. Negative ←↩
formId means any formId.

Syntax:
getApplications [formId] [status]

~~~~~~~~~~~~~~
Command: getAttribute

Returns value(s) of the attribute of the given element.
Syntax:

getAttribute <global> <dn|x509|email> <identity> <attribute> [←↩
allScopes] [includeImpliedGroups]

getAttribute <group> <groupPath> <attribute>
getAttribute <ig> <dn|x509|email> <identity> <groupPath> < ←↩

attribute>
The first argument specifies what kind of attribute will be listed: ←↩

group attribute, identity global
attribute, or identity attribute valid only in particular group.
Example:
getAttribute ig email ann@example.com /group urn:unicore:attrType ←↩

:user:proffession

~~~~~~~~~~~~~~
Command: getAttributes

Returns all attributes of the given element.
Syntax:

getAttributes <global> <dn|x509|email> <identity> [allScopes] [ ←↩
includeImpliedGroups]

getAttributes <group> <groupPath>
getAttributes <ig> <dn|x509|email> <identity> <groupPath>

The first argument specifies what kind of attribute will be listed: ←↩
group attribute, identity global

attribute, or identity attribute valid only in particular group.
Example:
getAttributes ig email ann@example.com /group

~~~~~~~~~~~~~~
Command: getAuthz

Lists authorization policy for VO service access
Syntax:

getAuthz global
getAuthz group <group>

Example:
getAuthz group /some/group m

UVOS Client Manual 18

~~~~~~~~~~~~~~
Command: getContent

Returns the content (subgroups and identities) of the given group.
Syntax:

getContent <groupPath>
Example:
getContent /group

~~~~~~~~~~~~~~
Command: getDisabledAttributes

Lists all disabled attributes. Only disabled values are presented. ←↩
Syntax:
getDisabledAttributes <global> <dn|x509|email> <identity>
getDisabledAttributes <group> <groupPath>
getDisabledAttributes <ig> <dn|x509|email> <identity> <groupPath ←↩

>
The first argument specifies what kind of attribute will be listed: ←↩

group attribute, identity global
attribute, or identity attribute valid only in particular group.
Example:
getDisabledAttributes ig email ann@example.com /group

~~~~~~~~~~~~~~
Command: getDisabledAttributes

Lists all disabled attributes. Only disabled values are presented. ←↩
Syntax:
getDisabledAttributes <global> <dn|x509|email> <identity>
getDisabledAttributes <group> <groupPath>
getDisabledAttributes <ig> <dn|x509|email> <identity> <groupPath ←↩

>
The first argument specifies what kind of attribute will be listed: ←↩

group attribute, identity global
attribute, or identity attribute valid only in particular group.
Example:
getDisabledAttributes ig email ann@example.com /group

~~~~~~~~~~~~~~
Command: getEvents

Displays all events (i.e. contents modification) which occured in ←↩
the specified period of time. Syntax:

getEvents [from <yyyy-mm-dd> <hh:mm:ss>] [to <yyyy-mm-dd> <hh:mm: ←↩
ss>]

UVOS Client Manual 19

If any of range bounds is not specified then it is unlimited.
Example:
getEvents from 2007-03-28 21:49:00

It will display all events from the specified date till now.

~~~~~~~~~~~~~~
Command: getITypes

Lists all known identity types. Syntax:
getITypes

~~~~~~~~~~~~~~
Command: getITypes

Lists all known identity types. Syntax:
getITypes

~~~~~~~~~~~~~~
Command: getMyIds

Lists all identities of the current user
Syntax:

getMyIds

~~~~~~~~~~~~~~
Command: getNotifications

Lists notifications. Optionally you can query for notifications of ←↩
a particular action.

Syntax:
getNotifications [action] [groupFilter]

Example:
getNotifications addGroup /Math-VO

~~~~~~~~~~~~~~
Command: getNotifications

Lists notifications. Optionally you can query for notifications of ←↩
a particular action.

Syntax:
getNotifications [action] [groupFilter]

Example:
getNotifications addGroup /Math-VO

~~~~~~~~~~~~~~
Command: getPerms

Lists all permissions of specified user
Syntax:

UVOS Client Manual 20

getPerms global <dn|x509|email> <identity>
getPerms group <group> <dn|x509|email> <identity>

Example:
getPerms group /some/group email ann@example.com

~~~~~~~~~~~~~~
Command: getServerInfo

Retrieves GLUE information exposed by the server.
Syntax:

getServerInfo [full]
If the optional arg is given then raw Glue 2 XML is printed. ←↩

Otherwise only a parsed
information (including server’s version) is presented.
Example:

getServerInfo full

~~~~~~~~~~~~~~
Command: help

Provides help. Use without arguments to get generic help or with ←↩
command name as parameter to get help

on the specified command usage.

~~~~~~~~~~~~~~
Command: helpAll

Provides full help for all commands.

~~~~~~~~~~~~~~
Command: isMember

Checks if the given identity is a member of the given group.
Syntax:

isMember <dn|x509|email> <identity> <groupPath>
Example:
isMember email ann@example.com /group

~~~~~~~~~~~~~~
Command: processApplication

Process an application. This method doesn’t fulfill any of extra ←↩
requests attached to the application.

Syntax:
processApplication <appId> <action> <sendEmail:true|false> [ ←↩

additionalNotes]
Valid actions are REJECT, ACCEPT or REMOVE

~~~~~~~~~~~~~~


UVOS Client Manual 21

Command: purgeHistory

Deletes all historical content of database which is older then ←↩
requested. Syntax:

purgeHistory <yyyy-mm-dd> <hh:mm:ss>

Example:
purgeHistory 2007-03-28 21:49:00

~~~~~~~~~~~~~~
Command: removeAType

Deletes an existing attribute type, if it is unused (must be also ←↩
unused in history!)

Syntax:
removeAType <name>

Example:
removeAType urn:someTypeTo:Remove

~~~~~~~~~~~~~~
Command: removeApplicationForm

Remove an application form.
Syntax:

removeApplicationForm <id>

~~~~~~~~~~~~~~
Command: removeAttribute

Removes an attribute. Syntax:
removeAttribute <global> <dn|x509|email> <identity> < ←↩

AttributeName>
removeAttribute <group> <groupPath> <AttributeName>
removeAttribute <ig> <dn|x509|email> <identity> <groupPath>< ←↩

AttributeName>
The first argument specifies what kind of attribute will be removed ←↩

: group attribute, identity global
attribute, or identity attribute valid only in particular group.
Example:
removeAttribute ig email ann@example.com /group urn:unicore: ←↩

attrType:user:proffession

~~~~~~~~~~~~~~
Command: removeAuthz

Removes authorization policy for VO service access
Syntax:

removeAuthz <group> a <AttributeName>

UVOS Client Manual 22

removeAuthz <group> <o|m>
Use group ’/’ to modify global policy. Permissions can removed ←↩

either from the bearer of an attribute or
from the accessed resource owner (’o’ case) or from the group ←↩

members (’m’ case’)
Example:
removeAuthz /some/group m

~~~~~~~~~~~~~~
Command: removeFromGroup

Removes an identity from a group. Syntax:
removeFromGroup <dn|x509|email> <identity> <groupPath>

The first argument is an identity type. Next is value, which is a ←↩
simple string in case of ’dn’ or ’email’

types and a file name with X509 certificate in case of ’x509’ type. ←↩
It is the value of added identity.

The last argument is the group path.
Example:
removeFromGroup email john@example.com /group/subgroup

~~~~~~~~~~~~~~
Command: removeGroup

Removes a group. Syntax:
removeGroup <groupPath> [true|false]

Separate the parent group path elements with ’/’. Optional 2nd ←↩
argument specifies if the behaviour should

be recursive (defualt is false).
Example:
removeGroup /g1/subg/groupToRemove true

~~~~~~~~~~~~~~
Command: removeIdentity

Removes a identity. Syntax:
removeIdentity <dn|x509|email> <value>

The first argument is an identity type. Next is value, which is a ←↩
simple string in case of ’dn’ or ’email’

types and a file name with certificate in case of ’x509’ type.
Example:
removeIdentity email test@example.com

~~~~~~~~~~~~~~
Command: removeNotification

Removes an existing notification.
Syntax:

UVOS Client Manual 23

removeNotification <id>
Example:

removeNotification 3

~~~~~~~~~~~~~~
Command: setApplicationForm

Adds or updates application form. Definition is read form XML file
Syntax:

setApplicationForm <update:true|false> <fileWithDefinition ←↩
>

Example:
setApplicationForm true appForm3.xml

~~~~~~~~~~~~~~
Command: setAttribute

Adds or changes an attribute. Syntax:
setAttribute <global> <dn|x509|email> <identity> <true|false> < ←↩

attributeTypeAndNameAttributeName> [value1 value2 ...]
setAttribute <group> <groupPath> <true|false> <AttributeName> [←↩

value1 value2 ...]
setAttribute <ig> <dn|x509|email> <identity> <groupPath> <true| ←↩

false> <AttributeName> [value1 value2 ...]
The first argument specifies what kind of attribute will be changed ←↩

: group attribute, identity global
attribute, or identity attribute valid only in particular group. ←↩

The boolean argument specifies if existing
attribute with the same name should be updated.
Example:
setAttribute ig email ann@example.com /group true urn:unicore: ←↩

attrType:user:proffession scientist

~~~~~~~~~~~~~~
Command: setAuthz

Modifies authorization policy for VO service access
Syntax:

setAuthz <group> a <perm> <AttributeName> [value]]
setAuthz <group> <o|m> <perm>

Use group ’/’ to modify global policy. Permissions can assigned ←↩
either to the bearer of attribute or to

the accessed resource owner (’o’ case) or to the group members (’m’ ←↩
case’)

In any case permissions are specified as string with syntax:
<r|-><f|-><i|-><w|->

where ’r’ is read permission, ’f’ is full read permission, ’i’ is ←↩
identityCtl permission and ’w’ is write

permission.



UVOS Client Manual 24

Example:
setAuthz /some/group m -f---

It will assign members of /some/group (and it’s subgroups) the ←↩
fullRead permission and remove all other

permissions (if were set).

~~~~~~~~~~~~~~
Command: setIdentityStatus

Changes the given identity status to disable or enable it.
Syntax:

setIdentityStatus <dn|x509|email> <identity> <true|false>
The last argument equal to ’true’ will make the identity enabled (←↩

active) and ’false’ will disable it.
Example:

setIdentityStatus email ann@example.com false

~~~~~~~~~~~~~~
Command: setTime

Set time in the past for the subsequent queries. After setting the ←↩
time all *query* operations will query

the past, historical contents of the service.
Useful only in interactive mode
Syntax:
setTime [yyyy-mm-dd hh:mm:ss]

Without the arguments it will return to normal operation on current ←↩
contents. Example:

setTime 2007-01-01 23:56:00

~~~~~~~~~~~~~~
Command: submitApplication

Submits a new application. It is read form XML file.
Syntax:

submitApplication <fileWithDefinition>
Example:

setApplicationForm app1.xml

~~~~~~~~~~~~~~
Command: updateAType

Adds or updates existing attribute type
Syntax:

updateAType <name> [shortDescription] [longDescription]
Example:

updateAType urn:newType ’Dummy type’ ’Dummy type used to express ←↩
foo with bar values’



UVOS Client Manual 25

~~~~~~~~~~~~~~
Command: updateCSRApplication

Updates an application containing CSR only, when CSR is processed (←↩
i.e. accpted or rejected) by a CA.

Syntax:
updateCSRApplication <fileWithCSR> <accepted:true|false> < ←↩

sendEmail:true|false> [<fileWithSignedCert>]
File with signed certificate is needed if accepted is true.

	Introduction
	Installation
	Installation from RPM package (RedHat distributions)
	Installation from the DEB package (Debian distributions)
	Installation from the archive

	Using the command line UVOS client
	Using other available clients
	Developing with uvos-client
	Client configuration
	Configuring PKI trust settings
	Configuring the credential

	Commands reference

