
EUROPEAN MIDDLEWARE INITIATIVE

LOGGING AND BOOKKEEPING – DEVELOPER’S
GUIDE

Document version: 1.4.12

EMI Component Version: 4.x

Date: March 29, 2013

1/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

This work is co-funded by the European Commission as part of the EMI project under Grant Agreement
INFSO-RI-261611.

Copyright c© Members of the EGEE Collaboration. 2004. See http://www.eu-egee.org/partners/ for
details on the copyright holders.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, ei-
ther express or implied. See the License for the specific language governing permissions and
limitations under the License.

2/39

http://www.eu-egee.org/partners/
http://www.apache.org/licenses/LICENSE-2.0

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

CONTENTS

L&B DOCUMENTATION AND VERSIONS OVERVIEW 5

1 INTRODUCTION 7

1.1 LANGUAGE BINDINGS . 7

1.2 GETTING AND BUILDING CLIENT LIBRARIES . 7

1.3 GENERAL GUIDELINES . 8

1.4 CONTEXT AND PARAMETER SETTINGS . 9

1.5 CONNECTION POOL . 9

2 L&B COMMON COMPONENTS 9

2.1 C LANGUAGE BINDING . 9

2.1.1 HEADER FILES . 9

2.1.2 BUILDING CLIENT PROGRAMS . 10

2.1.3 CONTEXT . 10

2.1.4 JOBID . 11

2.1.5 EVENT . 12

2.1.6 JOBSTATUS . 13

2.2 C++ LANGUAGE BINDING . 14

2.2.1 HEADER FILES . 15

2.2.2 BUILDING PROGRAMS . 15

2.2.3 JOBID . 15

2.2.4 EXCEPTION . 16

3 L&B LOGGING (PRODUCER) API 17

3.1 C LANGUAGE BINDING . 17

3.1.1 CALL SEMANTICS . 17

3.1.2 HEADER FILES . 17

3.1.3 CONTEXT PARAMETERS . 17

3.1.4 RETURN VALUES . 18

3.1.5 LOGGING EVENT EXAMPLE . 19

3.1.6 CHANGE ACL EXAMPLE . 20

3.2 JAVA BINDING . 20

4 L&B QUERYING (CONSUMER) API 21

4.1 QUERY LANGUAGE . 21

4.2 C LANGUAGE BINDING . 21

4.2.1 CALL SEMANTICS . 21

4.2.2 HEADER FILES . 22

3/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

4.2.3 CONTEXT PARAMETERS . 22

4.2.4 RETURN VALUES . 22

4.2.5 QUERY CONDITION ENCODING . 22

4.2.6 QUERY JOBS EXAMPLES . 23

4.2.7 QUERY EVENTS EXAMPLES . 26

4.3 C++ LANGUAGE BINDING . 26

4.3.1 HEADER FILES . 27

4.3.2 QUERYRECORD . 27

4.3.3 EVENT . 27

4.3.4 JOBSTATUS . 29

4.3.5 SERVERCONNECTION . 31

4.3.6 JOB . 33

4.4 WEB-SERVICES BINDING . 34

5 L&B NOTIFICATION API 35

5.1 HEADER FILES . 35

5.2 CALL SEMANTICS . 35

5.3 NOTIFICATION SUBSCRIPTION AND MANAGEMENT 35

5.4 RECEIVE DATA . 36

5.5 ADVANCED ASPECTS . 36

5.5.1 EXTERNAL VERSUS INTERNAL MANAGEMENT OF NOTIFICATION SOCKET . 36

5.5.2 MULTIPLE REGISTRATIONS . 36

5.5.3 OPERATOR CHANGED . 37

5.5.4 RETURNED ATTRIBUTES . 37

5.5.5 TIMEOUTS . 37

5.6 REGISTERING AND RECEIVING NOTIFICATION EXAMPLE 37

4/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

L&B DOCUMENTATION AND VERSIONS OVERVIEW

The Logging and Bookkeeping service (L&B for short) was initially developed in the EU DataGrid project1

as a part of the Workload Management System (WMS). The development continued in the EGEE, EGEE-
II and EGEE-III projects,2 where L&B became an independent part of the gLite3 middleware [1], and then
in the EMI Project.4

The complete L&B Documentation consists of the following parts:

• L&B User’s Guide [2]. The User’s Guide explains how to use the Logging and Bookkeeping (L&B)
service from the user’s point of view. The service architecture is described thoroughly. Examples
on using L&B’s event logging commands to log user tags and change job ACLs are given, as well
as L&B query and notification use cases.

• L&B Administrator’s Guide [3]. The Administrator’s Guide explains how to administer the Logging
and Bookkeeping (L&B) service. Several deployment scenarios are described together with the
installation, configuration, running and troubleshooting steps.

• L&B Developer’s Guide – this document. The Developer’s Guide explains how to use the Logging
and Bookkeeping (L&B) service API. Logging (producer), querying (consumer) and notification API
as well as the Web Services Interface is described in details together with programing examples.

• L&B Test Plan [4]. The Test Plan document explains how to test the Logging and Bookkeeping
(L&B) service. Two major categories of tests are described: integration tests (include installation,
configuration and basic service ping tests) and system tests (basic functionality tests, performance
and stress tests, interoperability tests and security tests).

The following versions of L&B service are covered by these documents:

• L&B version 4.0: included in the EMI-3 Monte Bianco release

• L&B version 3.2: included in the EMI-2 Matterhorn release

• L&B version 3.1: an update for the EMI-1 Kebnekaise release

• L&B version 3.0: included in the EMI-1 Kebnekaise release

• L&B version 2.1: replacement for L&B version 2.0 in gLite 3.2

• L&B version 2.0: included in gLite 3.2 release

• L&B version 1.x : included in gLite 3.1 release

L&B packages can be obtained from two distinguished sources:

• gLite releases: gLite node-type repositories, offering a specific repository for each node type such
as glite-LB. Only binary RPM packages are available from that source.

1http://eu-datagrid.web.cern.ch/eu-datagrid/
2http://www.eu-egee.org/
3http://www.glite.org
4http://www.eu-emi.eu/

5/39

http://eu-datagrid.web.cern.ch/eu-datagrid/
http://www.eu-egee.org/
http://www.glite.org
http://www.eu-emi.eu/

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

• emi releases: EMI repository5 or EGI’s UMD repository,6 offering all EMI middleware packages
from a single repository. There are RPM packages, both source and binary, the latter relying on
EPEL for dependencies. There are also DEB packages (starting with EMI-2) and tar.gz archives.

Note: Despite offering the same functionality, binary packages obtained from different repositories differ
and switching from one to the other for upgrades may not be altogether straightforward.

Updated information about L&B service (including the L&B service roadmap) is available at the L&B
homepage: http://egee.cesnet.cz/en/JRA1/LB

5http://emisoft.web.cern.ch/emisoft/
6http://repository.egi.eu/

6/39

http://egee.cesnet.cz/en/JRA1/LB
http://emisoft.web.cern.ch/emisoft/
http://repository.egi.eu/

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

1 INTRODUCTION

This document is intented to guide the reader through basic steps of writing, compiling and running
programs communicating with the L&B service using the L&B library. It is not intended as a complete API
reference; for this, the reader is referred to the C or C++ header files, which are thoroughly documented
using the doxygen–style comments.

The L&B API can be divided by functionality into two independent parts:

• L&B Producer API (section 3) is used to create and send events to the L&B server (proxy),

• L&B Consumer API (section 4) and L&B Notification API (section 5) are used to obtain information
from the L&B server (proxy).

These two parts (and in fact the whole L&B service implementation) share a number of common concepts,
design principles, data types and functions which we will describe first. Most of common data types
and functions are separated in its own SW module called org.glite.lb.common and are described in
section 2

Source code for examples shown in this guide is distributed together with the document. The examplesExample code

contain excerpts from the actual files with reference to the file name and line numbers. All the examples
can be compiled using attached Makefile.

Before you start reading this guide, it is recommended to accomodate yourself with the L&B architectureRecommended
reading described in the first part of the L&B user’s guide ([2]).

1.1 LANGUAGE BINDINGS

The L&B library itself is developed in C language, the C API covers all the L&B services. There are
bindings for other languages (C++, Java) as well as web-service (WS) based interface, but these cover
only subsets of L&B functionality and internally they use the C API themselves (in the C++ case the C API
is also exported).

We describe the C API first and then the differences between C and the other languages, as the C
constructs often reflect directly.

As for the L&B WS interface, it reflects only the functionality of L&B Querying API (see Sect. 4.4).

There exist also HTML and plain text interfaces to L&B. We do not expect anybody using them in a
programming language (though it is possible), they might be useful rather in scripts. Their usage is rather
straightforward as it is described in the User’s Guide [2].

1.2 GETTING AND BUILDING CLIENT LIBRARIES

All C and C++ L&B API’s are implemented in L&B client library (glite-lb-client package of standard
gLite distribution), and L&B common library (glite-lb-common). These bring in other gLite dependen-
cies:

• glite-lb-client-interface (L&B version 1.x only)

• glite-security-gsoap-plugin (L&B version 1.x only)

• glite-security-gss (only L&B version 2.0 and higher)

7/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

and external dependencies:

• globus – only GSS library is needed, we use vdt_globus_essentials package from VDT if avail-
able.

• expat – XML parser, available in most operating systems

• c-ares – asynchronous resolver library

• cppunit – unit tests library, required for build only

• classads – ClassAd parser and matchmaking library from Condor

For platforms supported by gLite officially all the required packages can be downloaded from http://www.
glite.org. However, L&B is fairly portable and it can be built on other platforms fairly smoothly.

Detailed instructions on getting the sources, including the required dependencies, are available at https:
//erebor.ics.muni.cz/wiki/lb_build.html 7.

1.3 GENERAL GUIDELINES

All names exported by the L&B library (function names, symbolic constants) are prefixed to avoid nameNaming
conventions clashes. The prefix is edg_wll_ for function names and EDG_WLL_ for symbolic constants8. In C++ the

namespace glite::lb is used instead.

Symbolic constants (that is enumerated types) are used at various places in the L&B API. There is a user–Symbolic
constants friendly string representation of each constant and for each enumerated type there are two functions that

convert strings to enum values and vice versa. Example is given in section 2.1.5

All input arguments in L&B API are designated const (for simple types) or have const in type name (forInput and output
arguments structures).

If pointers are passed in output of function call (either as a return value, output argument or part of struc-
ture), the corresponding objects are always allocated dynamically and have to be freed when not used
anymore. Structures defined in L&B API can be deallocated by calling convenience edg_wll_FreeType()
functions. This deallocates members of the structure, but not the structure itself. It has to be free()’d
explicitly.

Types used in L&B API are either opaque or transparent. Opaque types are considered internal to theOpaque and
transparent

types
library, their structure is not exposed to users and is subject to change without notice. The only way to
modify opaque objects is to use API calls. Example of opaque type is edg_wll_Context.

Structure of transparent types is completely visible to user, is well documented and no incompatible
changes will be done without notice. Example of transparent type is edg_wll_Event.

The return type of most of the API functions is int. Unless specified otherwise, zero return value meansReturn values

success, non-zero failure. Standard error codes from errno.h are used as much as possible. In a few
cases the error can not be intuitively mapped into standard code and L&B specific error value greater than
EDG_WLL_ERROR_BASE is returned.

Few API function return char *. In such a case NULL indicates an error, non-null value means success.

7The location may change but we will keep it linked from official L&B pages http://egee.cesnet.cz/en/JRA1/LB/.
8The EDG_WLL_ stands for European DataGrid, the original EU project, and Workload Logging, the subsystem identification.

8/39

http://www.glite.org
http://www.glite.org
https://erebor.ics.muni.cz/wiki/lb_build.html
https://erebor.ics.muni.cz/wiki/lb_build.html
http://egee.cesnet.cz/en/JRA1/LB/

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

1.4 CONTEXT AND PARAMETER SETTINGS

The L&B library does not maintain internal state (apart of network connections, see 1.5), all the API func-
tions refer to a context argument instead. Context object preserves state information among the various
API calls, the state including L&B library parameters (for example security context, server addresses,
timeouts), reference to open connections (connection pool), error state etc.

The API caller can create many context objects which are guaranteed to be independent on one another.
In this way thread–safety of the library is achieved as long as the context is not used by more threads at
the same time. One thread may use more than one context, though. w Upon context initialization, all the
parameters are assigned default values. If not set explicitly, many of the parameters take their value from
environment variables. If the corresponding environment variable is set, the parameter is initialized to its
value instead of the default. Note that a few parameters cannot be assigned default value; consequently
setting them either in environment or with an explicit API call is mandatory before using the appropriate
part of the API.

The context also stores details on errors of the recent API call.

For use with the producer calls (see section 3) the context has to be assigned a single JobId (with the
edg_wll_SetLoggingJob() call), and keeps track of an event sequence code for the job (see also L&B
Architecture described in [2]).

The context object and its API functions are described more thoroughly in section 2.1.3

1.5 CONNECTION POOL

The L&B library maintains pool of client–server connections to improve performance (creating SSL con-
nection is heavy–weight operation). The connections are transparently shared and reused by all con-
texts/threads to eliminate the overhead of secure channel establishment. This behaviour is completely
hidden by the library.

2 L&B COMMON COMPONENTS

2.1 C LANGUAGE BINDING

2.1.1 HEADER FILES

Header files for the common structures and functions are summarized in table 1. If you use the producer
and/or consumer API described further in this document, you do not have to include them explicitly.

glite/jobid/cjobid.h Definition of job identifier.
glite/lb/context.h Definition of context structure and parameters.
glite/lb/events.h L&B event data structure.
glite/lb/jobstat.h Job status structure returned by consumer API.

Table 1: Header files for common structures

9/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

2.1.2 BUILDING CLIENT PROGRAMS

The easiest way to build programs using the L&B library in C is to use GNU’s libtool to take care of all the
dependencies:

flavour=gcc32dbg
libtool --mode=compile gcc -c example1.c util.c \

-I\$GLITE_LOCATION/include -D_GNU_SOURCE
libtool --mode=link gcc -o example1 example1.o util.o \

-L$GLITE_LOCATION/lib -lglite_lb_client_$flavour

The library comes in different flavours (with/without debugging symbols, with/without thread support)
which are in turn linked with (and depend on) the correct Globus library flavours. When linking threaded
programs you have to use the library flavour with thread support.

The RPM package needed is glite-lb-client and its dependencies which contain all necessary li-
braries.

2.1.3 CONTEXT

Opaque data structure representing L&B API context (see section 1.4) is named edg_wll_Context. TheContext
initialization context must be initialized before the first L&B API call:

#include < g l i t e / l b / con tex t . h>

edg_wl l_Context c t x ;
edg_w l l _ In i tCon tex t (& c tx) ;

The context parameters can be set explicitly by callingParameter
setting

i n t edg_wll_SetParam (edg_wl l_Context ∗ , edg_wll_ContextParam , . . .) ;

function. The second argument is symbolic name of the context parameter; parameters specific for pro-
ducer and consumer API are described in respective API sections, the common parameters are:

C name Description
EDG_WLL_PARAM_X509_KEY Key file to use for authentication.

Type: char ∗
Environment: X509_USER_KEY

EDG_WLL_PARAM_X509_CERT Certificate file to use for authentication.
Type: char ∗
Environment: X509_USER_CERT

EDG_WLL_PARAM_CONNPOOL_SIZE Maximum number of open connections maintained by the library.
Type: int

Environment:

Table 2: Common context parameters

The third argument is parameter value, which can be of type int, char * or struct timeval *. If the
parameter value is set to NULL (or 0), the parameter is reset to the default value.

If you want to obtain current value of some context parameter, call

i n t edg_wll_GetParam (edg_wll_Context , edg_wll_ContextParam , . . .) ;

10/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

function:

char ∗ c e r t _ f i l e ;

edg_wll_GetParam (ctx , EDG_WLL_PARAM_X509_CERT, & c e r t _ f i l e) ;
p r i n t f (" C e r t i f i c a t e used : %s \ n " , c e r t _ f i l e) ;
f r ee (c e r t _ f i l e) ;

The third argument points at variable with type corresponding to the requested parameter. Do not forget
to free the result.

TODO: sitera: Mame odkaz kde jsou popsany defaulty a vazby na promenne environmentu (ty jsou v
LBUG Appendix C)

When L&B API call returns error, additional details can be obtained from the context:Obtaining error
details char ∗e r r _ t e x t ,∗ err_desc ;

edg_wl l_Er ror (ctx , &e r r _ t e x t , &err_desc) ;
f p r i n t f (s tde r r , "LB l i b r a r y e r r o r : %s (%s) \ n " , e r r _ t e x t , err_desc) ;
f r ee (e r r _ t e x t) ;
f r ee (err_desc) ;

If the context is needed no more, deallocate it:Context
deallocation edg_wl l_FreeContext (c t x) ;

For more information see file glite/lb/context.h

2.1.4 JOBID

The primary entity of L&B is a job, identified by JobId – a unique identifier of the job (see also [2]). The
type representing the JobId is opaque glite_jobid_t. The JobId is in fact just URL with https protocol,
path component being unique string with no further structure and host and port designating the L&B server
holding the job information. The JobId can be:

• created new for given L&B server (the unique part will be generated by the L&B library):

g l i t e _ j o b i d _ t j o b i d ;
i n t r e t ;
i f (r e t = g l i t e _ j o b i d _ c r e a t e ("some . host " , 0 , & j o b i d)) {

f p r i n t f (s tde r r , " e r r o r c rea t i ng j o b i d : %s \ n " , s t r e r r o r (r e t)) ;
}

• parsed from string (for example when given as an program argument or read from file):

i f (r e t = g l i t e _ j o b i d _ p a r s e (" h t t ps : / / some . host :9000/ OirOgeWh_F9sfMZjnIPYhQ " , & j o b i d)) {
f p r i n t f (s tde r r , " e r r o r pars ing j o b i d : %s \ n " , s t r e r r o r (r e t)) ;

}

• or obtained as part of L&B server query result.

In either case the jobid must be freed when no longer in use:

g l i t e _ j o b i d _ f r e e (j o b i d) ;

For more information see file glite/jobid/cjobid.h

In the older L&B versions (1.x) the structure was named edg_wlc_JobId and the functions had prefixL&B 1.x

edg_wlc_JobId, for example edg_wlc_JobIdFree(). Exact description can be found in the header file
glite/wmsutils/cjobid.h

11/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

2.1.5 EVENT

The transparent data structure edg_wll_Event represents L&B event, atomic data unit received and
processed by L&B. It is a union of common structure and structures for all event types:

union _edg_wll_Event {
edg_wll_EventCode type ;
edg_wll_AnyEvent any ;
edg_wl l_TransferEvent t r a n s f e r ;
edg_wll_AcceptedEvent accepted ;
. . . more follows . . .

}
typedef union _edg_wll_Event edg_wll_Event ;

The most important common event attributes are listed in table 3, the following example shows access:

edg_wll_Event event ;

event . type = 0;
event . any . user = "me" ;

Attribute name Attribute type Description
type edg_wll_EventCode Event type. Values are symbolic constants for example

EDG_WLL_EVENT_DONE
jobId glite_jobid_t Jobid of the job the event belongs to.
user char* Identity (certificate subject) of the event sender.
host char* Hostname of the machine the event was sent from.
source edg_wll_Source Designation of the WMS component the event was sent

from, for example EDG_WLL_SOURCE_USER_INTERFACE
timestamp struct timeval Time when the event was generated.
seqcode char* Sequence code assigned to the event.

Table 3: Common event attributes

The edg_wll_Event is returned by consumer L&B API job event related calls. The only important oper-
ation defined on edg_wll_Event itself is

edg_wll_FreeEvent (edg_wll_Event ∗event)

to free the event structure.

The event structure makes use of enumerated types extensively, starting with the type atribute. TheList of event
types following example demonstrates how to convert enumerated values into more user–friendly strings; it will

print out the event names known to the L&B library:

edg_wll_EventCode ev_type ;

for (ev_type = 1; ev_type < EDG_WLL_EVENT__LAST; ev_type ++) {
char ∗ev_s t r i ng = edg_wl l_EventToStr ing (ev_type) ;
i f (ev_s t r i ng) {

/∗ there may be holes ∗ /
p r i n t f ("%s \ n " , ev_s t r i ng) ;
f r ee (ev_s t r i ng) ;

}
}

For more information see file include/glite/lb/events.h

12/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

2.1.6 JOBSTATUS

The transparent data type edg_wll_JobStat represents status of a job as computed by the L&B from
received events. Much like the edg_wll_Event structure it can be viewed as a set of attributes, where
some attributes are common and some specific for a given job state (but unlike the edg_wll_Event it is
not implemented as union of structs but rather as one big struct). Generally speaking, when the attribute
value is set, it is a valid part of job state description. Most important common attributes are summarized
in table 4.

Attribute name Attribute type Description
jobId glite_jobid_t Job identifier of this job.
state edg_wll_JobStatCode Numeric code of the status, for example

EDG_WLL_JOB_SUBMITTED.
type enum edg_wll_StatJobtype Type of the job, for example

EDG_WLL_JOB_SIMPLE.
children char** List of subjob JobId ’s
owner char* Owner (certificate subject) of the job.

Table 4: Common job status attributes

Job status structure is returned by the L&B consumer API job status queries. When no longer used, it has
to be freed by calling

void edg_wl l_FreeStatus (edg_wl l_JobStat ∗) ;

The following example prints out the states of jobs given in the input list; the job states are printed together
with their subjobs on the same input list:

File: util.c

12 d i s t r i b u t e d under the License i s d i s t r i b u t e d on an "AS IS " BASIS ,
13 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , e i t h e r express or imp l ied .
14 See the License for the s p e c i f i c language governing permiss ions and
15 l i m i t a t i o n s under the License .
16 ∗ /
17
18
19 #include < s t d i o . h>
20 #include < s t d l i b . h>
21 #include < s t r i n g . h>
22 #include <expat . h>
23
24 #include < g l i t e / j o b i d / c j o b i d . h>
25 #include < g l i t e / l b / j o b s t a t . h>
26
27 i n t use_proxy = 0;
28
29 void
30 p r i n t _ j o b s (edg_wl l_JobStat ∗s ta tes)
31 {
32 i n t i , j ;
33
34 for (i =0; s ta tes [i] . s t a t e != EDG_WLL_JOB_UNDEF; i ++) {
35 char ∗ i d = edg_wlc_JobIdUnparse (s ta tes [i] . j ob Id) ;
36 char ∗ s t = edg_wl l_Sta tToSt r ing (s ta tes [i] . s t a t e) ;
37

13/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

38 i f (! s ta tes [i] . parent_ job) {
39 i f (s ta tes [i] . j ob type == EDG_WLL_STAT_SIMPLE) {
40 p r i n t f (" %s %s %s \ n " , id , s t , (s ta tes [i] . s t a t e ==EDG_WLL_JOB_DONE) ?

edg_wll_done_codeToString (s ta tes [i] . done_code) : " ") ;
41 }
42 else i f ((s ta tes [i] . j ob type == EDG_WLL_STAT_DAG) | |
43 (s ta tes [i] . j ob type == EDG_WLL_STAT_COLLECTION)) {
44 p r i n t f ("%s %s %s %s \ n " , (s ta tes [i] . j ob type==EDG_WLL_STAT_DAG) ? "DAG " : "COLL" , id ,

st , (s ta tes [i] . s t a t e ==EDG_WLL_JOB_DONE) ? edg_wll_done_codeToString (s ta tes [i] .
done_code) : " ") ;

45 for (j =0; s ta tes [j] . s t a t e != EDG_WLL_JOB_UNDEF; j ++) {
46 i f (s ta tes [j] . parent_ job) {
47 char ∗par_ id = edg_wlc_JobIdUnparse (s ta tes [j] . parent_ job) ;
48
49 i f (! strcmp (id , par_ id)) {
50 char ∗sub_id = edg_wlc_JobIdUnparse (s ta tes [j] . j ob Id) ,
51 ∗sub_st = edg_wl l_Sta tToSt r ing (s ta tes [j] . s t a t e) ;
52
53 p r i n t f (" ‘− %s %s %s \ n " , sub_id , sub_st , (s ta tes [j] . s t a t e ==

EDG_WLL_JOB_DONE) ? edg_wll_done_codeToString (s ta tes [j] . done_code) : " ") ;
54 f ree (sub_id) ;
55 f ree (sub_st) ;
56 }
57 f ree (par_ id) ;
58 }
59 }
60 }
61 }
62
63 f ree (i d) ;
64 f ree (s t) ;
65 }
66
67 p r i n t f (" \ nFound %d jobs \ n " , i) ;
68 }

For more information see file include/glite/lb/jobstat.h

2.2 C++ LANGUAGE BINDING

The C++ languague binding now only supports the consumer (querying) API. It is not the (re)implementation
of the library in C++; instead it is just a thin adaptation layer on top of the C API, which means all the
structures and functions of the C API can be used in C++. The C++ classes wrap up the concepts and
structures of C API and provide convenient access to the functionality. The namespace used for L&B C++
API is glite::lb.

While the C++ API closely follows the C API functionality, there are also two important differences: errorExceptions

handling and memory management.

When the L&B method call fails, the exception of class glite::lb::Exception (derived from std::runtime_error)
is raised that holds the error description and information about the source file, line and method the excep-
tion was thrown from (possibly accumulating information from other exception).

When the C L&B library calls return allocated structures, they are encapsulated within C++ accessorReference
counting objects. Copying the C++ object does not copy the underlying structure, it increases the reference count

instead, making use of the same allocated data. The reference count is decremented with destruction of
the wrapper object, when it drops to zero, the allocated memory is freed.

14/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

Using this scheme all the data allocated by the L&B library are held in memory only once.

The context in C API is part of common components, the C++ API on the other hand differentiates betweenContext

query context (see Section 4.3.5) and logging context; the description is therefore part of the respective
chapters.

2.2.1 HEADER FILES

Header files for the C++ version of common definitions are summarized in table 5.

glite/jobid/JobId.h Definition of job identifier.
glite/lb/LoggingExceptions.h Exception class for L&B–specific errors.

Table 5: Header file for common C++ classes

2.2.2 BUILDING PROGRAMS

The recommended way to build programs using the C++ L&B library is, like in the C case, to use the
libtool utility:

flavour=gcc32dbg
libtool --mode=compile gcc -c example1.c util.c \

-I\$GLITE_LOCATION/include -D_GNU_SOURCE
libtool --mode=link gcc -o example1 example1.o util.o \

-L$GLITE_LOCATION/lib -lglite_lb_clientpp_$flavour

The only difference is the library name, the RPM package required is again glite-lb-client.

2.2.3 JOBID

The glite::jobid::JobId class represents job identification and provides convenient methods for ma-
nipulating the data. The JobId object can be created:

• from the C structure (this is used mainly internally within the library):

using namespace g l i t e : : j o b i d ;
g l i t e _ j o b i d _ t c j o b i d ;

JobId j o b i d (c j o b i d) ;

Note: This creates copy of the structure, the original structure has to be deallocated as usual.

• parsed from the string:

JobId j o b i d (" h t t ps : / / some . host :9000/ OirOgeWh_F9sfMZjnIPYhQ ") ;

• from the components:

JobId j o b i d (Hostname ("some . host ") , 9000 , " OirOgeWh_F9sfMZjnIPYhQ ") ;

The last two arguments are optional, so you have to specify only name of the L&B server machine
(the Hostname class is used to disambiguate the constructors):

15/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

JobId j o b i d (Hostname ("some . host ")) ;

In that case new unique part is generated automatically.

Apart from that there are the usual copy constructor and assignment operator that make deep copy of the
object, and the destructor that deallocates the memory.

The JobId class provides methods for obtaining the host, port and unique part of the JobId as well asData access

conversion into C glite_jobid_t type and into string representation. There is also a defined ordering
(operator<) on the JobId ’s, which is just the lexicographical ordering of corresponding string represen-
tations. The following example illustrates these features:

JobId a (Hostname ("me")) ;
JobId b (Hostname ("me")) ;

cout << " j o b i d host and po r t : " << a . host () << " , " <<
a . po r t () << endl ;
cout << (a < b) ? a . unique () : b . unique () << " comes f i r s t " << endl ;
cout << " Complete j o b i d : " << a . t o S t r i n g () << endl ;

2.2.4 EXCEPTION

The glite::lb::Exception is a base class for all exceptions thrown by the L&B library. It inherits from
std::runtime_error and adds no additional members or methods except constructors. The typical
usage is this:

t r y {
/ / some code wi th LB c a l l s

} catch (g l i t e : : l b : : Except ion &e) {
ce r r << "LB l i b r a r y except ion : " << e . what () << endl ;

}

16/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

3 L&B LOGGING (PRODUCER) API

3.1 C LANGUAGE BINDING

The L&B logging API (or producer API) is used to create and deliver events to the L&B server and/or
proxy, depending on the function used:

TODO: kouril: verify ChangeACL

Function Delivers to
edg_wll_LogEvent(...) asynchronously through locallogger/interlogger to the L&B server
edg_wll_LogEventSync(...) synchronously through locallogger/interlogger to the L&B server
edg_wll_LogEventProxy(...) through L&B proxy to the L&B server
edg_wll_Register*(...) directly to both L&B server and proxy
edg_wll_ChangeACL(...) synchronously to the L&B server

These general functions take as an argument event format (which defines the ULM string used) and
variable number of arguments corresponding to the given format. For each defined event there is pre-
defined format string in the form EDG_WLL_FORMAT_EventType, for example EDG_WLL_FORMAT_UserTag,
as well as three convenience functions edg_wll_LogUserTag(...), edg_wll_LogUserTagSync(...),
edg_wll_LogUserTagProxy(...).

For most developers (that is those not developing the WMS itself) the edg_wll_LogUserTag*(...) and
edg_wll_ChangeACL(...) are the only functions of interest.

3.1.1 CALL SEMANTICS

L&B producer calls generally do not have transaction semantics, the query following succesful logging
call is not guaranteed to see updated L&B server state. The typical call – loging an event – is returned
immediatelly and the success of the call means that the first L&B infrastructure component takes over
the event and queues it for delivery. If you require transaction semantics, you have to use synchronous
edg_wll_LogEventSync(...) call.

The L&B proxy on the other hand provides a local view semantics, events logged into proxy using
edg_wll_LogEventProxy(...) are guaranteed to by accessible by subsequent queries on that proxy.

Job registrations are all synchronous.

3.1.2 HEADER FILES

glite/lb/producer.h Prototypes for all event logging functions.

3.1.3 CONTEXT PARAMETERS

The table 6 summarizes context parameters relevant to the event logging. If parameter is not set in the
context explicitly, the L&B library will search for value of corresponding environment variable.

The GLITE_WMS_LOG_DESTINATION environment variable contains both locallogger host and port sepa-
rated by colon (that is “host:port”).

17/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

Name Description
EDG_WLL_PARAM_HOST Hostname that appears as event origin.

Type: char∗
Environment:

EDG_WLL_PARAM_SOURCE Event source component.
Type: edg_wll_Source

Environment:
EDG_WLL_PARAM_DESTINATION Hostname of machine running locallogger/interlogger.

Type: char∗
Environment: GLITE_WMS_LOG_DESTINATION

EDG_WLL_PARAM_DESTINATION_PORT Port the locallogger is listening on.
Type: int

Environment: GLITE_WMS_LOG_DESTINATION

EDG_WLL_LOG_TIMEOUT Logging timeout for asynchronous logging.
Type: struct timeval

Environment: GLITE_WMS_LOG_TIMEOUT

EDG_WLL_LOG_SYNC_TIMEOUT Logging timeout for synchronous logging.
Type: struct timeval

Environment: GLITE_WMS_LOG_SYNC_TIMEOUT

EDG_WLL_LBPROXY_STORE_SOCK L&B Proxy store socket path (if logging through L&B Proxy)
Type: char∗
Environment: GLITE_WMS_LBPROXY_STORE_SOCK

EDG_WLL_LBPROXY_USER Certificate subject of the user (if logging through L&B proxy).
Type: char∗
Environment: GLITE_WMS_LBPROXY_USER

Table 6: Producer specific context parameters

In addition to the above list, there are two more parameters that must be set before logging call is made:Logging job and
sequence
numbers

JobId of the logging job and sequence number. There is a special call for this task:

extern i n t edg_wll_SetLoggingJob (
edg_wl l_Context context , context to work with
g l i t e _ j o b i d _ c o n s t _ t job , jobid of the job
const char ∗ code , sequence code
i n t f l a g s flags on code handling

) ;

After setting the logging job identity, all the following logging calls refer to this JobId and the sequence
code is incremented according to the source component. See [2] for information about sequence codes
and event numbering, especially the description, how the sequence codes are updated.

3.1.4 RETURN VALUES

The logging functions return 0 on success and one of EINVAL, ENOSPC, ENOMEM, ECONNREFUSED,
EAGAIN on error. If EAGAIN is returned, the function should be called again to retry the delivery; it is not
guaranteed, however, that the event was not delivered by the first call. Possibly duplicated events are
discarded by the L&B server or proxy.

TODO: ljocha: check these

18/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

The synchronous variants of logging functions can in addition return EDG_WLL_ERROR_NOJOBID or EDG_WLL_ERROR_DB_DUP_KEY.

3.1.5 LOGGING EVENT EXAMPLE

In this section we will give commented example how to log an UserTag event to the L&B.

First we have to include neccessary headers:

File: prod_example1.c

26 #include " g l i t e / j o b i d / c j o b i d . h "
27 #include " g l i t e / l b / events . h "
28 #include " g l i t e / l b / producer . h "

Initialize context and set parameters:

File: prod_example1.c

87 edg_w l l _ In i tCon tex t (& c tx) ;
88
89 edg_wll_SetParam (ctx , EDG_WLL_PARAM_SOURCE, EDG_WLL_SOURCE_USER_INTERFACE) ;
90 edg_wll_SetParam (ctx , EDG_WLL_PARAM_HOST, server) ;
91 / / edg_wll_SetParam (ctx , EDG_WLL_PARAM_PORT, po r t) ;

TODO: honik: proper setting of sequence codes

File: prod_example1.c

95 i f (edg_wll_SetLoggingJob (ctx , j ob id , seq_code , EDG_WLL_SEQ_NORMAL)) {
96 char ∗et ,∗ed ;
97 edg_wl l_Er ror (ctx ,& et ,&ed) ;
98 f p r i n t f (s tde r r , " SetLoggingJob(%s,%s) : %s (%s) \ n " , job id_s , seq_code , et , ed) ;
99 e x i t (1) ;

100 }

Log the event:

File: prod_example1.c

104 e r r = edg_wll_LogEvent (ctx ,
105 EDG_WLL_EVENT_USERTAG,
106 EDG_WLL_FORMAT_USERTAG,
107 name, value) ;
108 i f (e r r) {
109 char ∗et ,∗ed ;
110
111 edg_wl l_Er ror (ctx ,& et ,&ed) ;
112 f p r i n t f (s tde r r , "%s : edg_wll_LogEvent ∗ () : %s (%s) \ n " ,
113 argv [0] , et , ed) ;
114 f ree (e t) ; f r ee (ed) ;
115 }

The edg_wll_LogEvent() function is defined as follows:

extern i n t edg_wll_LogEvent (
edg_wl l_Context context ,
edg_wll_EventCode event ,
char ∗ fmt , . . .) ;

19/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

If you use this function, you have to provide event code, format string and corresponding arguments
yourself. The UserTag event has only two arguments, tag name and value, but other events require more
arguments.

Instead of using the generic edg_wll_LogEvent() at line 104, we could also write:

e r r = edg_wll_LogUserTag (ctx , name, value) ;

3.1.6 CHANGE ACL EXAMPLE

TODO: kouril

3.2 JAVA BINDING

TODO: mirek

20/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

4 L&B QUERYING (CONSUMER) API

The L&B Consumer API is used to obtain information from L&B server or Proxy using simple query
language (see Sect. 4.1). There are two types of queries based on the results returned:

• query for events – the result contains events satisfying given criteria,

• query for jobs – the result contains JobId’s and job states of jobs satisfying given criteria.

The potential result sets can be very large; the L&B server imposes limits on the result set size, which can
be further restricted by the client.

4.1 QUERY LANGUAGE

The L&B query language is based on simple value assertions on job and event attributes. There are two
types of queries based on the complexity of selection criteria, simple and complex. Simple queries are
can be described by the following formula:

attr1 OP value1∧·· ·∧attrn OP valuen

where attri is attribute name, OP is one of the =, <, >, 6= and ∈ relational operators and value is single
value (or, in the case of ∈ operator, interval) from attribute type.

Complex queries can be described using the following formula:

(attr1 OP value1,1∨·· ·∨attr1 OP value1,i1)∧
(attr2 OP value2,1∨·· ·∨attr2 OP value2,i2)∧

...

∧ (attrn OP valuen,1∨·· ·∨attrn OP valuen,in)

The complex query can, in contrast to simple query, contain more assertions on value of single attribute,
which are ORed together.

The query must always contain at least one attribute indexed on the L&B server; this restriction is nec-Indexed
attributes essary to avoid matching the selection criteria against all jobs in the L&B database. The list of indexed

attributes for given L&B server can be obtained by L&B API call.

4.2 C LANGUAGE BINDING

4.2.1 CALL SEMANTICS

The L&B server queries are, in contrast to logging event calls, synchronous (for asynchronous variant
see Sect. 5, notifications). The server response contains JobId ’s, job states and/or events known to the
server at the moment of processing the query. Due to the asynchronous nature of event delivery it may
not contain all data that was actually sent; the job state computation is designed to be resilient to event
loss to some extent.

When the item count returned by L&B server exceeds the defined limits, the E2BIG error occur. There areResult size
limits two limits — the server and the user limit. The user defined limit may be set in the context at the client side,

while the server imposed limit is configured at the server and can be only queried by the client. The way
the L&B library and server handles the over–limit result size can be specified by setting context parameter
EDG_WLL_PARAM_QUERY_RESULTS to one of the following values:

21/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

• EDG_WLL_QUERYRES_NONE— In case the limit is reached, no results are returned at all.

• EDG_WLL_QUERYRES_LIMITED— A result contains at most “limit” item count.

• EDG_WLL_QUERYRES_ALL— All results are returned and limits have no effect. This option is avail-
able only in special cases such as “user jobs query” and the “job status query”. Otherwise the
EINVAL error is returned.

Default value is EDG_WLL_QUERYRES_NONE.

4.2.2 HEADER FILES

glite/lb/consumer.h Prototypes for all query functions.

4.2.3 CONTEXT PARAMETERS

The table 7 shows parameters relevant to the query API.

Name Description
EDG_WLL_PARAM_QUERY_SERVER Default server name to query.
EDG_WLL_PARAM_QUERY_SERVER_PORT Default server port to query.
EDG_WLL_PARAM_QUERY_SERVER_OVERRIDE host:port parameter setting override even values in JobId

(useful for debugging & hacking only)
EDG_WLL_PARAM_QUERY_TIMEOUT Query timeout.
EDG_WLL_PARAM_QUERY_JOBS_LIMIT Maximal query jobs result size.
EDG_WLL_PARAM_QUERY_EVENTS_LIMIT Maximal query events result size.
EDG_WLL_PARAM_QUERY_RESULTS Flag to indicate handling of too large results.

Table 7: Consumer specific context parameters

4.2.4 RETURN VALUES

L&B server returns errors which are classified as hard and soft errors. The main difference between these
categories is that in the case of soft errors results may still be returned. The authorization errors belong to
“soft error” sort. Hard errors like ENOMEM are typically all unrecoverable, to obtain results the query must
be repeated, possibly after correcting the failure condition the error indicated.

Depending on the setting of context parameter EDG_WLL_PARAM_QUERY_RESULTS, the E2BIG error may
fall into both categories.

4.2.5 QUERY CONDITION ENCODING

The L&B query language is mapped into (one- or two-dimensional) array of attribute value assertions
represented by edg_wll_QueryRec structure:

typedef struct _edg_wll_QueryRec {
edg_wl l_QueryAt t r a t t r ; attribute to query
edg_wll_QueryOp op ; query operation

22/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

union {
char ∗ tag ; user tag name / JDL attribute "path"
edg_wll_JobStatCode s ta te ; job status code

} a t t r _ i d ;
union edg_wll_QueryVal {

i n t i ; integer query attribute value
char ∗c ; character query attribute value
struct t imeva l t ; time query attribute value
g l i t e _ j o b i d _ t j ; JobId query attribute value

} value , value2 ;
} edg_wll_QueryRec ;

The table 8 shows the most common query attributes. For a complete list see query_rec.h.

Name Description
EDG_WLL_QUERY_ATTR_JOBID Job ID to query.
EDG_WLL_QUERY_ATTR_OWNER Job owner.
EDG_WLL_QUERY_ATTR_STATUS Current job status.
EDG_WLL_QUERY_ATTR_LOCATION Where is the job processed.
EDG_WLL_QUERY_ATTR_DESTINATION Destination CE.
EDG_WLL_QUERY_ATTR_DONECODE Minor done status (OK,failed,cancelled).
EDG_WLL_QUERY_ATTR_USERTAG User tag.
EDG_WLL_QUERY_ATTR_JDL_ATTR Arbitrary JDL attribute.
EDG_WLL_QUERY_ATTR_STATEENTERTIME When entered current status.
EDG_WLL_QUERY_ATTR_LASTUPDATETIME Time of the last known event of the job.
EDG_WLL_QUERY_ATTR_JOB_TYPE Job type.

Table 8: Query record specific attributes.

The table 9 shows all supported query operations.

Name Description
EDG_WLL_QUERY_OP_EQUAL Attribute is equal to the operand value.
EDG_WLL_QUERY_OP_LESS Attribute is grater than the operand value.
EDG_WLL_QUERY_OP_GREATER Attribute is less than the operand value.
EDG_WLL_QUERY_OP_WITHIN Attribute is in given interval.
EDG_WLL_QUERY_OP_UNEQUAL Attribute is not equal to the operand value.
EDG_WLL_QUERY_OP_CHANGED Attribute has changed from last check (supported since L&B version

2.0 in notification matching).

Table 9: Query record specific operations.

4.2.6 QUERY JOBS EXAMPLES

The simplest use case corresponds to the situation when an exact job ID is known and the only information
requested is the job status. The job ID format is described in [5]. Since L&B version 2.0, it is also possible
to query all jobs belonging to a specified user, VO or RB.

The following example shows how to retrieve the status information about all user’s jobs running at a
specified CE.

First we have to include neccessary headers:

23/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

File: cons_example1.c

26 #include " g l i t e / j o b i d / c j o b i d . h "
27 #include " g l i t e / l b / events . h "
28 #include " g l i t e / l b / consumer . h "

Define and initialize variables:

File: cons_example1.c

75 edg_wl l_Context c t x ;
76 edg_wll_QueryRec j c [4] ;
77 edg_wl l_JobStat ∗statesOut = NULL ;
78 edg_wlc_JobId ∗ jobsOut = NULL ;

Initialize context and set parameters:

File: cons_example1.c

84 edg_w l l _ In i tCon tex t (& c tx) ;
85
86 edg_wll_SetParam (ctx , EDG_WLL_PARAM_QUERY_SERVER, server) ;
87 i f (po r t) edg_wll_SetParam (ctx , EDG_WLL_PARAM_QUERY_SERVER_PORT, po r t) ;

Set the query record to all (user’s) jobs running at CE ’XYZ’ :

File: cons_example1.c

91 j c [0] . a t t r = EDG_WLL_QUERY_ATTR_OWNER;
92 j c [0] . op = EDG_WLL_QUERY_OP_EQUAL;
93 j c [0] . value . c = NULL ;
94 j c [1] . a t t r = EDG_WLL_QUERY_ATTR_STATUS;
95 j c [1] . op = EDG_WLL_QUERY_OP_EQUAL;
96 j c [1] . value . i = EDG_WLL_JOB_RUNNING;
97 j c [2] . a t t r = EDG_WLL_QUERY_ATTR_DESTINATION;
98 j c [2] . op = EDG_WLL_QUERY_OP_EQUAL;
99 j c [2] . value . c = "XYZ" ;

100 j c [3] . a t t r = EDG_WLL_QUERY_ATTR_UNDEF;

Query jobs:

File: cons_example1.c

104 e r r = edg_wll_QueryJobs (ctx , j c , 0 , &jobsOut , &statesOut) ;
105 i f (e r r == E2BIG) {
106 f p r i n t f (s tde r r , " Warning : on ly l i m i t e d r e s u l t re tu rned ! \ n ") ;
107 return 0;
108 } else i f (e r r) {
109 char ∗et ,∗ed ;
110
111 edg_wl l_Er ror (ctx ,& et ,&ed) ;
112 f p r i n t f (s tde r r , "%s : edg_wll_QueryJobs () : %s (%s) \ n " , argv [0] , et , ed) ;
113
114 f ree (e t) ; f r ee (ed) ;
115 }

Now we can for example print the job states:

File: cons_example1.c

119 for (i = 0 ; s ta tesOut [i] . s t a t e ; i ++) {
120 p r i n t f (" j ob Id : %s \ n " , edg_wlc_JobIdUnparse (s ta tesOut [i] . j ob Id)) ;
121 p r i n t f (" s t a t e : %s \ n \ n " , edg_wl l_Sta tToSt r ing (s ta tesOut [i] . s t a t e)) ;
122 }

24/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

In many cases the basic logic using only conjunctions is not sufficient. For example, if you need all
your jobs running at the destination XXX or at the destination YYY, the only way to do this with the
edg_wll_QueryJobs() call is to call it twice. The edg_wll_QueryJobsExt() call allows to make such
a query in a single step. The function accepts an array of condition lists. Conditions within a single list are
OR-ed and the lists themselves are AND-ed.

The next query example describes how to get all user’s jobs running at CE ’XXX’ or ’YYY’.

We will need an array of three conditions (plus one last empty):

File: cons_example2.c

74 edg_wl l_Context c t x ;
75 edg_wll_QueryRec ∗ j c [4] ;
76 edg_wl l_JobStat ∗statesOut = NULL ;
77 edg_wlc_JobId ∗ jobsOut = NULL ;

The query condition is the following:

File: cons_example2.c

90 j c [0] = (edg_wll_QueryRec ∗) mal loc (2∗ sizeof (edg_wll_QueryRec)) ;
91 j c [0] [0] . a t t r = EDG_WLL_QUERY_ATTR_OWNER;
92 j c [0] [0] . op = EDG_WLL_QUERY_OP_EQUAL;
93 j c [0] [0] . value . c = NULL ;
94 j c [0] [1] . a t t r = EDG_WLL_QUERY_ATTR_UNDEF;
95
96 j c [1] = (edg_wll_QueryRec ∗) mal loc (2∗ sizeof (edg_wll_QueryRec)) ;
97 j c [1] [0] . a t t r = EDG_WLL_QUERY_ATTR_STATUS;
98 j c [1] [0] . op = EDG_WLL_QUERY_OP_EQUAL;
99 j c [1] [0] . value . i = EDG_WLL_JOB_RUNNING;

100 j c [1] [1] . a t t r = EDG_WLL_QUERY_ATTR_UNDEF;
101
102 j c [2] = (edg_wll_QueryRec ∗) mal loc (3∗ sizeof (edg_wll_QueryRec)) ;
103 j c [2] [0] . a t t r = EDG_WLL_QUERY_ATTR_DESTINATION;
104 j c [2] [0] . op = EDG_WLL_QUERY_OP_EQUAL;
105 j c [2] [0] . value . c = "XXX" ;
106 j c [2] [1] . a t t r = EDG_WLL_QUERY_ATTR_DESTINATION;
107 j c [2] [1] . op = EDG_WLL_QUERY_OP_EQUAL;
108 j c [2] [1] . value . c = "YYY" ;
109 j c [2] [2] . a t t r = EDG_WLL_QUERY_ATTR_UNDEF;
110
111 j c [3] = NULL ;

As can be clearly seen, there are three lists supplied to edg_wll_QueryJobsExt(). The first list specifies
the owner of the job, the second list provides the required status (Running) and the last list specifies the
two destinations. The list of lists is terminated with NULL. This query equals to the formula

(user=NULL) and (state=Running) and (dest=’XXX’ or dest=’YYY’).

To query the jobs, we simply call

File: cons_example2.c

115 e r r = edg_wll_QueryJobsExt (ctx , (const edg_wll_QueryRec ∗∗) j c ,
116 0 , &jobsOut , &statesOut) ;

25/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

4.2.7 QUERY EVENTS EXAMPLES

Event queries and job queries are similar. Obviously, the return type is different —the L&B raw events.
There is one more input parameter representing specific conditions on events (possibly empty) in addition
to conditions on jobs.

The following example shows how to select all events (and therefore jobs) marking red jobs (jobs that
were marked red at some time in the past) as green.

File: cons_example3.c

75 edg_wl l_Context c t x ;
76 edg_wll_Event ∗eventsOut ;
77 edg_wll_QueryRec j c [2] ;
78 edg_wll_QueryRec ec [2] ;

File: cons_example3.c

91 j c [0] . a t t r = EDG_WLL_QUERY_ATTR_USERTAG;
92 j c [0] . op = EDG_WLL_QUERY_OP_EQUAL;
93 j c [0] . a t t r _ i d . tag = " co l o r " ;
94 j c [0] . value . c = " red " ;
95 j c [1] . a t t r = EDG_WLL_QUERY_ATTR_UNDEF;
96 ec [0] . a t t r = EDG_WLL_QUERY_ATTR_USERTAG;
97 ec [0] . op = EDG_WLL_QUERY_OP_EQUAL;
98 ec [0] . a t t r _ i d . tag = " co l o r " ;
99 ec [0] . value . c = " green " ;

100 ec [1] . a t t r = EDG_WLL_QUERY_ATTR_UNDEF;

This example uses edg_wll_QueryEvents() call. Two condition lists are given to edg_wll_QueryEvents()
call. One represents job conditions and the second represents event conditions. These two lists are joined
together with logical and (both condition lists have to be satisfied). This is necessary as events represent
a state of a job in a particular moment and this changes in time.

File: cons_example3.c

104 e r r = edg_wll_QueryEvents (ctx , j c , ec , &eventsOut) ;

The edg_wll_QueryEvents() returns matched events and save them in the eventsOut variable. Re-
quired job IDs are stored in the edg_wll_Event structure.

File: cons_example3.c

122 for (i = 0 ; eventsOut && (eventsOut [i] . type) ; i ++) {
123 / / p r i n t f (" j ob Id : %s \ n " , edg_wlc_JobIdUnparse (eventsOut [i] . j ob Id)) ;
124 p r i n t f (" event : %s \ n \ n " , edg_wl l_EventToStr ing (eventsOut [i] . type)) ;
125 }

In a similar manor to edg_wll_QueryJobsExt(), there exists also edg_wll_QueryEventsExt() that
can be used to more complex queries related to events. See also README.queries for more examples.

Last L&B Querying API call is edg_wll_JobLog() that returns all events related to a single job. In fact, it
is a convenience wrapper around edg_wll_QueryEvents() and its usage is clearly demonstrated in the
client example job_log.c (in the client module).

4.3 C++ LANGUAGE BINDING

The querying C++ L&B API is modelled after the C L&B API using these basic principles:

26/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

• queries are expressed as vectors of glite::lb::QueryRecord instances,

• L&B context and general query methods are represented by class glite::lb::ServerConnection,

• L&B job specific queries are encapsulated within class glite::lb::Job,

• query results are returned as (vector or list of) glite::lb::Event or glite::lb::JobStatus
read-only instances.

4.3.1 HEADER FILES

Header files for the L&B consumer API are summarized in table 10.

glite/lb/Event.h Event class for event query results.
glite/lb/JobStatus.h JobStatus class for job query results.
glite/lb/ServerConnection.h Core of the C++ L&B API, defines QueryRecord class for spec-

ifying queries and ServerConnection class for performing the
queries.

glite/lb/Job.h Defines Job class with methods for job specific queries.

Table 10: Consumer C++ API header files

4.3.2 QUERYRECORD

The glite::lb::QueryRecord class serves as the base for mapping the L&B query language into C++,
similarly to the C counterpart edg_wll_QueryRecord. The QueryRecord object represents condition on
value of single attribute:

using namespace g l i t e : : l b ;

QueryRecord a (QueryRecord : :OWNER, QueryRecord : : EQUAL, "me") ;

The QueryRecord class defines symbolic names for attributes (in fact just aliases to EDG_WLL_QUERY_ATTR_
symbols described in table 8) and for logical operations (aliases to EDG_WLL_QUERY_OP_ symbols, table
9). The last parameter to the QueryRecord constructor is the attribute value.

There are constructors with additional arguments for specific attribute conditions or logical operators that
require it, that is the QueryRecord::WITHIN operator and queries about state enter times. The query
condition “job that started running between start and end times’ can be represented in the following
way:

struct t imeva l s t a r t , end ;

QueryRecord a (QueryRecord : : TIME , QueryRecord : : WITHIN , JobStatus : : RUNNING,
s t a r t , end) ;

4.3.3 EVENT

The objects of class glite::lb::Event are returned by the L&B event queries. The Event class intgstr
roduces symbolic names for event type (enum Event::Type), event attributes (enum Event::Attr) and
their types (enum Event::AttrType), feature not available through the C API, as well as (read only)
access to the attribute values. Using these methods you can:

27/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

• get the event type (both symbolic and string):

Event event ;

/ / we suppose event gets somehow f i l l e d i n
cout << " Event type : " << event . type << endl ;

cout << " Event name : " << endl ;
/ / these two l i n e s should p r i n t the same s t r i n g
cout << Event : : getEventName (event . type) << endl ;
cout << event . name () << endl ;

• get the list of attribute types and values (see line 34 of the example),

• get string representation of attribute names,

• get value of given attribute.

The following example demonstrates this by printing event name and attributes:

File:util.C

27 void
28 dumpEvent (Event ∗event)
29 {
30 / / l i s t o f a t t r i b u t e names and types
31 typedef vector <pa i r <Event : : A t t r , Event : : At t rType >> A t t r L i s t T y p e ;
32
33 cout << " Event name : " << event−>name () << endl ;
34 A t t r L i s t T y p e a t t r _ l i s t = event−>g e t A t t r s () ;
35 for (A t t r L i s t T y p e : : i t e r a t o r i = a t t r _ l i s t . begin () ;
36 i != a t t r _ l i s t . end () ;
37 i ++) {
38 Event : : A t t r a t t r = a t t r _ l i s t [i] . f i r s t ;
39
40 cout << Event : : getAttrName (a t t r) << " = " ;
41 switch (a t t r _ l i s t [i] . second) {
42 case Event : : INT_T :
43 case Event : : PORT_T:
44 case Event : : LOGSRC_T:
45 cout << event−>g e t V a l I n t (a t t r) << endl ;
46 break ;
47
48 case Event : : STRING_T :
49 cout << event−>ge tVa lS t r i ng (a t t r) << endl ;
50 break ;
51
52 case Event : : TIMEVAL_T :
53 cout << event−>getValTime (a t t r) . tv_sec << endl ;
54 break ;
55
56 case Event : : FLOAT_T :
57 cout << event−>ge tVa lF loa t (a t t r) << endl ;
58 break ;
59
60 case Event : : DOUBLE_T:
61 cout << event−>getValDouble (a t t r) << endl ;
62 break ;
63
64 case Event : : JOBID_T :

28/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

65 cout << event−>getValJobId (a t t r) . t o S t r i n g () << endl ;
66 break ;
67
68 defaul t :
69 cout << " a t t r i b u t e type not supported " << endl ;
70 break ;
71 }
72 }
73 }

4.3.4 JOBSTATUS

The glite::lb::JobStatus is a result type of job status queries in the same way the glite::lb::Event
is used in event queries. The JobStatus class provides symbolic names for job states (enum JobStatus::Code),
state attributes (enum JobStatus::Attr) and their types (enum JobStatus::AttrType), and read only
access to the attribute values. Using the JobStatus interface you can:

• get the string name for the symbolic job state:

JobStatus s ta tus ;

/ / we suppose s ta tus gets somehow f i l l e d i n
cout << " Job s ta te : " << s ta tus . type << endl ;

cout << " State name : " << endl ;
/ / these two l i n e s should p r i n t the same s t r i n g
cout << JobStatus : : getStateName (s ta tus . type) << endl ;
cout << s ta tus . name () << endl ;

• get the job state name (both symbolic and string),

• get the list of job state attributes and types,

• convert the attribute names from symbolic to string form and vice versa,

• get value of given attribute.

The following example demostrates this by printing job status (name and attributes):

File:util.C

78 void dumpState (JobStatus ∗s ta tus)
79 {
80 typedef vector <pa i r <JobStatus : A t t r , JobStatus : : At t rType >> A t t r L i s t T y p e ;
81
82 cout << " Job s ta tus : " << sta tus−>name << endl ;
83
84 A t t r L i s t T y p e a t t r _ l i s t = s ta tus−>g e t A t t r s () ;
85 for (A t t r L i s t T y p e : : i t e r a t o r i = a t t r _ l i s t . begin () ;
86 i != a t t r _ l i s t . end () ;
87 i ++) {
88 JobStatus : : A t t r a t t r = a t t r _ l i s t [i] . f i r s t ;
89 cout << JobStatus : : getAttrName (a t t r) << " = " ;
90 switch (a t t r _ l i s t [i] . second) {
91
92 case INT_T :

29/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

93 cout << sta tus−>g e t V a l I n t (a t t r) << endl ;
94 break ;
95
96 case STRING_T :
97 cout << sta tus−>g e t V a l I n t (a t t r) << endl ;
98 break ;
99

100 case TIMEVAL_T :
101 cout << sta tus−>getValTime (a t t r) . tv_sec << endl ;
102 break ;
103
104 case BOOL_T:
105 cout << sta tus−>getValBool (a t t r) . tv_sec << endl ;
106 break ;
107
108 case JOBID_T :
109 cout << sta tus−>getValJob id (a t t r) . t o S t r i n g () << endl ;
110 break ;
111
112 case INTLIST_T :
113 vector < int > l i s t = s ta tus−>g e t V a l I n t L i s t (a t t r) ;
114 for (vector < int > : : i t e r a t o r i = l i s t . begin () ;
115 i != l i s t . end () ;
116 i ++) {
117 cout << l i s t [i] << " " ;
118 }
119 cout << endl ;
120 break ;
121
122 case STRLIST_T :
123 vector < s t r i n g > l i s t = s ta tus−>g e t V a l S t r i n g L i s t (a t t r) ;
124 for (vector < s t r i n g > : : i t e r a t o r i = l i s t . begin () ;
125 i != l i s t . end () ;
126 i ++) {
127 cout << l i s t [i] << " " ;
128 }
129 cout << endl ;
130 break ;
131
132 case TAGLIST_T : /∗∗< L i s t o f user tags . ∗ /
133 vector <pa i r < s t r i n g , s t r i n g >> l i s t = s ta tus−>getVa lTagL is t (a t t r) ;
134 for (vector <pa i r < s t r i n g , s t r i n g > >: : i t e r a t o r i = l i s t . begin () ;
135 i != l i s t . end () ;
136 i ++) {
137 cout << l i s t [i] . f i r s t << "= " << l i s t [i] . second << " " ;
138 }
139 cout << endl ;
140 break ;
141
142 case STSLIST_T : /∗∗< L i s t o f s ta tes . ∗ /
143 vector <JobStatus > l i s t = s ta tus−>ge tVa lJobSta tusL is t (a t t r) ;
144 for (vector <JobStatus > : : i t e r a t o r i = l i s t . begin () ;
145 i != l i s t . end () ;
146 i ++) {
147 / / recu rs ion
148 dumpState (& l i s t [i]) ;
149 }
150 cout << endl ;
151 break ;

30/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

152
153 defaul t :
154 cout << " a t t r i b u t e type not supported " << endl ;
155 break ;
156
157 }
158 }
159 }

4.3.5 SERVERCONNECTION

The glite::lb::ServerConnection class represents particular L&B server and allows for queries not
specific to particular job (these are separated into glite::lb:Job class). The ServerConnection
instance thus encapsulates client part of edg_wll_Context and general query methods.

There are accessor methods for every consumer context parameter listed in table 7, for example for
EDG_WLL_PARAM_QUERY_SERVER we have the following methods:

void setQueryServer (const std : : s t r i n g& host , i n t po r t) ;
s td : : pa i r <s td : : s t r i n g , int > getQueryServer () const ;

We can also use the generic accessors defined for the parameter types Int, String and Time, for
example:

void setParam (edg_wll_ContextParam name, i n t value) ;
i n t getParamInt (edg_wll_ContextParam name) const ;

The ServerConnection class provides methods for both event and job queries:

void queryJobs (const s td : : vector <QueryRecord>& query ,
s td : : vector < g l i t e : : j o b i d : : JobId >& j o b L i s t) const ;

void queryJobs (const s td : : vector <s td : : vector <QueryRecord> >& query ,
s td : : vector < g l i t e : : j o b i d : : JobId >& j o b L i s t) const ;

void queryJobStates (const std : : vector <QueryRecord>& query ,
i n t f l ags ,
s td : : vector <JobStatus > & s ta tes) const ;

void queryJobStates (const std : : vector <s td : : vector <QueryRecord> >& query ,
i n t f l ags ,
s td : : vector <JobStatus > & s ta tes) const ;

void queryEvents (const s td : : vector <QueryRecord>& job_cond ,
const s td : : vector <QueryRecord>& event_cond ,
s td : : vector <Event>& events) const ;

void queryEvents (const s td : : vector <s td : : vector <QueryRecord> >& job_cond ,
const s td : : vector <s td : : vector <QueryRecord> >& event_cond ,
s td : : vector <Event>& e v e n tL i s t) const ;

You can see that we use std::vector instead of NULL terminated arrays for both query condition lists
and results. The API does not differentiate simple and extended queries by method name (queryJobs and
queryJobsExt in C), but by parameter type (vector<QueryRecord> vs. vector<vector<QueryRecord>>).
On the other hand there are different methods for obtaining JobId ’s and full job states as well as conve-
nience methods for getting user jobs.

31/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

Now we can show the first example of job query from section 4.2.6 rewritten in C++. First we have to
include the headers:

File: cons_example1.cpp

26 #include " g l i t e / j o b i d / JobId . h "
27 #include " g l i t e / l b / ServerConnect ion . h "
28 #include " g l i t e / l b / Job . h "

Define variables:

File: cons_example1.cpp

77 ServerConnect ion lb_serve r ;
78 g l i t e : : j o b i d : : JobId j o b i d ;
79 std : : vector <QueryRecord> job_cond ;
80 std : : vector <JobStatus > statesOut ;

Initialize server object:

File: cons_example1.cpp

85 j o b i d = g l i t e : : j o b i d : : JobId (job id_s) ;
86
87 lb_serve r . setQueryServer (j o b i d . host () , j o b i d . po r t ()) ;

Create the query condition vector:

File: cons_example1.cpp

91 job_cond . push_back (QueryRecord (QueryRecord : :OWNER, QueryRecord : : EQUAL, s td : :
s t r i n g (user))) ;

92 job_cond . push_back (QueryRecord (QueryRecord : : STATUS, QueryRecord : : EQUAL,
JobStatus : : RUNNING)) ;

93 job_cond . push_back (QueryRecord (QueryRecord : : DESTINATION , QueryRecord : : EQUAL,
s td : : s t r i n g (" xyz "))) ;

Perform the query:

File: cons_example1.cpp

97 statesOut = lb_serve r . queryJobStates (job_cond , 0) ;

Print the results:

File: cons_example1.cpp

101 for (i = 0 ; i < sta tesOut . s i ze () ; i ++) {
102 cout << " j ob Id : " << statesOut [i] . getValJobId (JobStatus : : JOB_ID) .

t o S t r i n g () << endl ;
103 cout << " s ta te : " << statesOut [i] . name () << endl << endl ;
104 }

The operations can throw an exception, so the code should be enclosed within try–catch clause.

The second example rewritten to C++ is shown here; first the query condition vector:

File: cons_example2.cpp

91 j c _ p a r t . push_back (QueryRecord (QueryRecord : :OWNER, QueryRecord : : EQUAL, " ")) ;
92 j c . push_back (j c _ p a r t) ;
93
94 j c _ p a r t . c l ea r () ;

32/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

95 j c _ p a r t . push_back (QueryRecord (QueryRecord : : STATUS, QueryRecord : : EQUAL,
JobStatus : : RUNNING)) ;

96 j c . push_back (j c _ p a r t) ;
97
98 j c _ p a r t . c l ea r () ;
99 j c _ p a r t . push_back (QueryRecord (QueryRecord : : DESTINATION , QueryRecord : : EQUAL, "

XXX")) ;
100 j c _ p a r t . push_back (QueryRecord (QueryRecord : : DESTINATION , QueryRecord : : EQUAL, "

YYY")) ;
101 j c . push_back (j c _ p a r t) ;

The query itself:

File: cons_example2.cpp

105 statesOut = lb_serve r . queryJobStates (jc , 0) ;

The third example shows event query (as opposed to job state query in the first two examples). We are
looking for events of jobs, that were in past painted (tagged by user) green, but now they are red. The
necessary query condition vectors are here:

File: cons_example3.cpp

92 j c . push_back (QueryRecord (" co l o r " , QueryRecord : : EQUAL, " red ")) ;
93 ec . push_back (QueryRecord (" co l o r " , QueryRecord : : EQUAL, " green ")) ;

The query itself:

File: cons_example3.cpp

97 events_out = lb_serve r . queryEvents (jc , ec) ;

The resulting event vector is dumped using the utility function dumpEvent() listed above:

File: cons_example3.cpp

102 for (i = 0 ; i < eventsOut . s i ze () ; i ++) {
103 dumpEvent (&(eventsOut [i])) ;
104 }

4.3.6 JOB

The glite::lb::Job class encapsulates L&B server queries specific for particular job as well as client
part of context. The Job object provides method for getting the job status and the event log (that is all
events belonging to the job):

JobStatus s ta tus (i n t f l a g s) const ;

void log (s td : : vector <Event> &events) const ;

It is important to notice that Job contain ServerConnection as private member and thus encapsulateImportant!

client part of context. That makes them relatively heavy–weight objects and therefore it is not recom-
mended to create too many instances, but reuse one instance by assigning different JobId ’s to it.

33/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

4.4 WEB-SERVICES BINDING

TODO: ljocha: Complete review, list of all relevant (WSDL) files, their location, etc.

In this section we describe the operations defined in the L&B WSDL file (LB.wsdl) as well as its custom
types (LBTypes.wsdl).

For the sake of readability this documentation does not follow the structure of WSDL strictly, avoiding to
duplicate information which is already present here. Consequently, the SOAP messages are not doc-
umented, for example, as they are derived from operation inputs and outputs mechanically. The same
holds for types: for example we do not document defined elements which correspond 1:1 to types but are
required due to the literal SOAP encoding.

For exact definition of the operations and types see the WSDL file.

TODO: ljocha: Add fully functional WS examples - in Java, Python, C?

Aby se na to neapomnelo:

perl-SOAP-Lite-0.69 funguje perl-SOAP-Lite-0.65 ne (stejne rve document/literal support is EXPERIMEN-
TAL in SOAP::Lite), tak ma asi pravdu

musi mit metodu ns()

34/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

5 L&B NOTIFICATION API

The L&B notification API is another kind of L&B consumer API which provides streaming publish/subscribe
model instead of query/response model. It is designed to provide the same information and use the same
query conditions encoding as the consumer API described in sec. 4

Basic usage of the L&B notification API is described in the L&B user’s guide ([2]) in section “Tools” as
there is described a tool called glite-lb-notify which is a command line interface wrapper around
the L&B notification API. Its source code can also serve as a complete exaple of the L&B notification API
usage.

The L&B notification API have currently fully implemented C language binding and partially implemented
C++ binding.

5.1 HEADER FILES

glite/lb/notification.h Prototypes for all notification API functions.

5.2 CALL SEMANTICS

The API have two main parts: notification subscription management and receiving data. Each sub-
scription (registration of notification) have its unique identifier called Notification ID represented by type
edg_wll_NotifId. This ID is returned to the caller when creating a new notification and it is used by
receiver to get data from the notification.

The API uses EDG_WLL_NOTIF_SERVER context parameter to set the source server (L&B server name
and port).

The typical notification workflow consist of 3 tasks:

• Create a new notification registration based on given conditions.

• Refresh the registration. Each notification registration is soft-state registration and must be reg-
ullarly refreshed by the owner.

• Receiving the data from notification. The L&B infrastructure provides data queuing and garanteed
delivery (while the registration is valid).

The client notification library contains a code providing a pool of receiving sockets/connections to optimize
a parallel receiving of notifications.

For complete reference of all API funcions please see the header file. The next sessions briefly describe
main facts about API funcions.

5.3 NOTIFICATION SUBSCRIPTION AND MANAGEMENT

• New notification is created using edg_wll_NotifNew call. The call needs properly initialized con-
text and returns a unique notification ID. To create a new notification the same encoding of condi-
tions as for the L&B query/response API is used (sec. 4.2.5).

In version 1.x there is a restriction that at least one particular JobId must be defined. Since L&B 2.0L&B 2 and
higher

35/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

you can make a registration based on other attributes without referencing a particular JobId (you
can select owner, VO, network server). It is also a feature of L&B 2.0 and higer versions, that you
can use attributes derived from JDL (VO).

• Refresh of a notification. When a new notification is created using edg_wll_NotifNew call, the
notification validity parameter is intended to set the refresh period, not the lifetime of the notification
itself. The owner of notification must periodically call edg_wll_NotifRefresh to ensure validity of
the notification. See also next sections.

• It is possible to change existing notification (its conditions) by edg_wll_NotifChange call.

• If the user does not want to receive notifications anymore, edg_wll_NotifDrop call removes the
registration for notifications from L&B server.

5.4 RECEIVE DATA

To receive data from a notificaton the API provides edg_wll_NotifReceive call. It returns first incoming
notification if at least one is available or waits for a new one. The maximal waiting time is limited to a
specified timeout. You can also set the timeout to zero if you want to poll.

If the user wants to move the client receiving the notifications to a different machine than where the
registration was done, it is possible. The client must use the edg_wll_NotifBind call to inform the
notification infrastructure (interlogger) about its location change.

The notification API cleanup procedure should be called when finalizing the client (edg_wll_NotifClosePool
and edg_wll_NotifCloseFd calls – where the later is optional – see the next section).

5.5 ADVANCED ASPECTS

5.5.1 EXTERNAL VERSUS INTERNAL MANAGEMENT OF NOTIFICATION SOCKET

A notification socket used by edg_wll_NotifReceive call to receive the notifications is automatically
created during the edg_wll_NotifNew or edg_wll_NotifBind calls.

It the user wants to use its own socket (for example to be used in main select() call) it can be created and
closed by the user and set as a parameter (fd) to all calls mentioned above.

When using automatically created socket it must be closed explicitly by calling edg_wll_CloseFd.

5.5.2 MULTIPLE REGISTRATIONS

Each user can register for multiple notifications (call edg_wll_NotifNew function more than once). Every
registration gets its own notification ID and must be managed separately (refresh, change, drop). But the
edg_wll_NotifReceive call is common for all the registrations created in the same context (all previous
edg_wll_NotifNew calls).

If the user wants to distinguish between multiple registrations it is needed to inspect a notification ID value
of each received notification.

A edg_wll_NotifBind works in similar way like edg_wll_NotifNew. For each notification ID it must be
called once and subsequent edg_wll_NotifReceive call will work with the whole set of registrations.
Will receive a first notification from any of registations.

36/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

5.5.3 OPERATOR CHANGED

The notification events are generated by LB server based on primary events send by grid components.L&B 2 and
higher Each of the primary events (called LB events) generates one notification event to be possibly sent to the

client but not each LB event for example changes the job state. You can use notification conditions to
filter only the notification events you want to receive, for example jobstatus = done. If you want to receive
all job status changes you need to setup a condition on job status attribute using special unary operator
CHANGED. Otherwise (without any condition) you will receive more events that you want – even events
where job state was not changed. Operator CHANGED is available since L&B 2.0.

5.5.4 RETURNED ATTRIBUTES

Each LB notification contains a structure describing job state including job’s JDL. For optimization pur-L&B 2 and
higher poses the API user can set the JDL flag in edg_wll_NotifNew flags parameter to prevent sending of

unnecessary JDL data with each notification.

5.5.5 TIMEOUTS

A user of the notification API should distinguish between various timeouts:

• Registration validity timeout. Each registration is soft-state entity which must be refreshed in a given
timeout. If there is no refresh received by the LB server in validity timeout period the registration is
dropped. On the other hand for that timeout all events are queued in the LB infrastructure for the
case of client’s temporary unavailability.

The registration validity timeout can be set by the user when creating a new registration but only
to a reasonably short time period. The validity of a registration is driven by the refresh process
not the timeout itself. For a exaple of registration management via the refresh calls please see the
glite-lb-notify source code as mentioned above.

• Receive call timeout. The timeout used in the edg_wll_NotifReceive call is inteded just to control
the receiving loop. It is the maximum time the API can spend in the call before returning the control
to user code.

5.6 REGISTERING AND RECEIVING NOTIFICATION EXAMPLE

The following example registers on L&B server to receive notifications triggered by any event belonging
to a given user and waits for notification (until timeout).

First we have to include neccessary headers:

File: notif_example.c

26 #include " g l i t e / s e c u r i t y / g l i t e _ g s s . h "
27 #include " g l i t e / l b / con tex t . h "
28 #include " g l i t e / l b / n o t i f i c a t i o n . h "

Define and initialize variables and context. During context initialization user’s credentials are loaded and
environment variable GLITE_WMS_NOTIF_SERVER is used as a LB notification server:

37/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

File:notif_example.c

65 edg_wl l_Context c t x ;
66 edg_wll_QueryRec ∗∗ cond i t i ons ;
67 edg_w l l _No t i f I d n o t i f _ i d = NULL, r e c v _ n o t i f _ i d = NULL ;
68 edg_wl l_JobStat s t a t ;

Set the query record to all user’s jobs:

File: notif_example.c

85 cond i t i ons [0] [0] . a t t r = EDG_WLL_QUERY_ATTR_OWNER;
86 cond i t i ons [0] [0] . op = EDG_WLL_QUERY_OP_EQUAL;
87 cond i t i ons [0] [0] . value . c = user ;

New registration based on prepared query record is created and a unique notification ID is returned:

File:notif_example.c

91 i f (edg_wll_Noti fNew (ctx , (edg_wll_QueryRec const∗ const∗) cond i t ions ,
92 0 , −1, NULL, &n o t i f _ i d , &v a l i d)) {
93 char ∗et ,∗ed ;
94
95 edg_wl l_Er ror (ctx ,& et ,&ed) ;
96 f p r i n t f (s tde r r , "%s : edg_wll_Noti fNew () : %s (%s) \ n " , argv [0] , et , ed) ;
97
98 f ree (e t) ; f r ee (ed) ;
99 goto r e g i s t e r _ e r r ;

100 }
101 f p r i n t f (s tdout , " R e g i s t r a t i o n OK, n o t i f i c a t i o n ID : %s \ n v a l i d : (% l d) \ n " ,
102 edg_wl l_Not i f IdUnparse (n o t i f _ i d) ,
103 v a l i d) ;

The edg_wll_NotifReceive call returns one notification. If no notification is ready for delivery, the call
waits until some notification arrival or timeout:

File: notif_example.c

109 i f ((e r r = edg_wl l_Not i fRece ive (ctx , −1, &t imeout , &s ta t , &r e c v _ n o t i f _ i d))) {
110 i f (e r r != ETIMEDOUT) {
111 char ∗et ,∗ed ;
112
113 edg_wl l_Er ror (ctx ,& et ,&ed) ;
114 f p r i n t f (s tde r r , "%s : edg_wl l_Not i fRece ive () : %s (%s) \ n " , argv [0] , et , ed) ;
115
116 f ree (e t) ; f r ee (ed) ;
117 goto rece i ve_e r r ;
118 }
119 f p r i n t f (s tdout , "No job s ta te change rec ived i n given t imeout \ n ") ;
120 }
121 else
122 {
123 /∗ Check r e c v _ n o t i f _ i d i f you have r e g i s t e r e d more n o t i f i c a t i o n s ∗ /
124 /∗ P r i n t rece ived s ta te change ∗ /
125 p r i n t f (" j ob Id : %s \ n " , edg_wlc_JobIdUnparse (s t a t . j ob Id)) ;
126 p r i n t f (" s t a t e : %s \ n \ n " , edg_wl l_Sta tToSt r ing (s t a t . s t a t e)) ;
127 edg_wl l_FreeStatus (& s t a t) ;
128 }

TODO: zminit http interface - podporujeme ho jeste? tusim ze fila to nejak resuscitoval

38/39

TITLE:
Logging and Bookkeeping – Developer’s Guide

Date: March 29, 2013

REFERENCES

[1] E. Laure, F. Hemmer, F. Prelz, S. Beco, S. Fisher, M. Livny, L. Guy, M. Barroso, P. Buncic, P. Kunszt,
A. Di Meglio, A. Aimar, A. Edlund, D. Groep, F. Pacini, M. Sgaravatto, and O. Mulmo. Middleware for
the next generation grid infrastructure. In Computing in High Energy Physics and Nuclear Physics
(CHEP 2004), 2004.

[2] A. Křenek et al. L&B User’s Guide. http://egee.cesnet.cz/en/JRA1/LB/.

[3] A. Křenek et al. L&B Administrator’s Guide. http://egee.cesnet.cz/en/JRA1/LB/.

[4] A. Křenek et al. L&B Test Plan. http://egee.cesnet.cz/en/JRA1/LB/.

[5] EGEE JRA1. EGEE Middleware Architecture—Release 2. https://edms.cern.ch/document/594698/.

39/39

http://egee.cesnet.cz/en/JRA1/LB/
http://egee.cesnet.cz/en/JRA1/LB/
http://egee.cesnet.cz/en/JRA1/LB/
https://edms.cern.ch/document/594698/

	L&B Documentation and versions overview
	1 Introduction
	1.1 Language Bindings
	1.2 Getting and Building Client Libraries
	1.3 General Guidelines
	1.4 Context and Parameter Settings
	1.5 Connection Pool

	2 L&B Common Components
	2.1 C Language Binding
	2.1.1 Header Files
	2.1.2 Building Client Programs
	2.1.3 Context
	2.1.4 JobId
	2.1.5 Event
	2.1.6 JobStatus

	2.2 C++ Language Binding
	2.2.1 Header Files
	2.2.2 Building Programs
	2.2.3 JobId
	2.2.4 Exception

	3 L&B Logging (Producer) API
	3.1 C Language Binding
	3.1.1 Call semantics
	3.1.2 Header files
	3.1.3 Context parameters
	3.1.4 Return values
	3.1.5 Logging event example
	3.1.6 Change ACL example

	3.2 Java binding

	4 L&B Querying (Consumer) API
	4.1 Query Language
	4.2 C Language Binding
	4.2.1 Call Semantics
	4.2.2 Header Files
	4.2.3 Context Parameters
	4.2.4 Return Values
	4.2.5 Query Condition Encoding
	4.2.6 Query Jobs Examples
	4.2.7 Query Events Examples

	4.3 C++ Language Binding
	4.3.1 Header Files
	4.3.2 QueryRecord
	4.3.3 Event
	4.3.4 JobStatus
	4.3.5 ServerConnection
	4.3.6 Job

	4.4 Web-Services Binding

	5 L&B Notification API
	5.1 Header files
	5.2 Call semantics
	5.3 Notification subscription and management
	5.4 Receive data
	5.5 Advanced aspects
	5.5.1 External versus internal management of notification socket
	5.5.2 Multiple registrations
	5.5.3 Operator CHANGED
	5.5.4 Returned attributes
	5.5.5 Timeouts

	5.6 Registering and receiving notification example

