
NORDUGRID

NORDUGRID-TECH-19

18/2/2013

The Hosting Environment of the Advanced Resource
Connector middleware

D. Cameron, M. Ellert, J. Jönemo, A. Konstantinov∗, I. Marton, B. Mohn, J. K. Nilsen, M.
Nórden, W. Qiang, G. Roczei, F. Szalai, A. Wäänänen

∗aleksandr.konstantinov@fys.uio.no

2

Contents

1 Introduction 5

2 How to read 7

3 Architecture 9

3.1 Requirements . 9

3.2 Technical design . 9

3.2.1 MCC . 10

3.2.2 Services and Clients . 12

3.2.3 Plexer . 12

3.2.4 Error handling . 12

3.2.5 Instantiation of the Chain . 13

3.2.6 Sessions and Contexts . 13

3.2.7 DMC . 14

3.2.8 Generic purpose components . 14

3.2.9 Web Service related components . 14

3.2.10 Daemon . 15

3.2.11 Alternative implementation languages . 15

4 Implemented elements 17

4.1 Implemented MCCs . 17

4.1.1 TCP MCC . 17

4.1.2 TLS MCC . 18

4.1.3 HTTP MCC . 20

4.1.4 SOAP MCC . 21

4.2 Implemented Security Handlers . 21

4.3 Implemented DMCs . 21

4.3.1 File DMC . 21

4.3.2 GridFTP/FTP DMC . 21

4.3.3 HTTP DMC . 22

4.3.4 LDAP DMC . 22

4.3.5 LFC DMC . 22

4.3.6 RLS DMC . 22

3

4 CONTENTS

5 Future work 23

6 Appendices 25

6.1 Step-by-step instructions to add registration ability to HED services 25

6.1.1 General knowledge . 25

6.1.2 Change your source . 26

6.1.3 Compose the Registration Entry . 27

6.1.4 Modify your configuration . 29

Chapter 1

Introduction

The Hosting Environment Daemon (HED) is the container of all the functional components of the next
generation of the Advanced Resource Connector (ARC) middleware on the server side. It is the central part
in a new very lightweight incarnation of ARC that is aimed at - but not limited to - providing Web Service.

The whole design of the HED is built around the idea of flexibility and modularity. Inside HED the developer
or deployer is supposed to use the minimum amount of components and external dependencies only. This is
why the HED mostly consists of pluggable modules with some glue among them.

Because in its current state it mostly provides modules for building SOAP based Web Services, it is easy
to think that HED is just another Web Services development framework like Axis, gSOAP, XFire or any
other out of the numerous implementations. Instead, the idea of HED is to provide framework for gluing
functionalities and not a re-implementation of various standards. Effectively that means if Apache 2 web
server is considered by developers as necessary for serving as frontend to services there could be plugin
written which places Apache 2 into a chain of other plugins of the HED.

In the current implementation there are no Apache or Axis plugins. That is because the developers of HED
were very much concerned about making the solution lightweight and needed an implementation of those
supported protocols that was both simple and lightweight. As a result essentials like SOAP and HTTP are
implemented inside HED, while external software is used whenever was appropriate - as in the case of TLS,
(Grid)FTP, LDAP and some other cases. That does not exclude possibility to have plugins using entirely
external solutions either developed or accepted from third parties.

The HED is a relatively young framework and there are quite a few rough edges and non-flexible solutions.
The situation will hopefully improve with time. We would be grateful for any constructive comments and
suggestions how to improve the architecture and the code of the HED.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

How to read

This document does not (yet?) include in depth description of C++ classes which constitute the HED.
Instead most sections contain notes entitled ”Relevant classes”. Technical description of those classes can
be found in automatically generated ”Hosting Environment (Daemon) Reference Manual” document .

For examples please see the source code in the NorduGrid repository . Many components and libraries are
accompanied with test and example applications.

7

8 CHAPTER 2. HOW TO READ

Chapter 3

Architecture

3.1 Requirements

In the design of the HED, several goals and requirements were considered. These were weighed against each
other and the factual context.

The implementation language had to be object oriented, efficient and capable of providing easy access to
system functionality. This eventually lead to the adoption of C++. But languages such as Java and Python
were also considered in the early stage. Our investigation showed that there are Open Source tools which
allow C++ modules to be relatively easy interfaced from modules written in other considered programming
languages. C++ modules also work in opposite way being capable to use modules written in various other
languages.

External dependencies needed to be kept to a minimum while also taking into consideration their ubiquity
or relative rarity as well as license related concerns. Software of this level of complexity must depend on
many external libraries and components but each such dependency has been introduced only after thorough
consideration.

Using resources in efficient way was an important goal. The present design enables many services sharing
both the same process and the same network port(s) while exhibiting a remarkably low memory footprint.

3.2 Technical design

In the technical design it turned out that providing dynamic loading, portability and a well tested high level
memory management could all be greatly assisted by introducing glibmm – the C++ interface made for the
GNOME projects library for memory management and related functionality. This enables the developers to
write code easily portable across various operating systems and architectures.

The term HED means three things:

1. the daemon (called arched) which hooks up the system and initialize components the way as it is
described in the configuration files. This configuration describes the components and their relations
to each other. In optimal cases these single services run on any node where ARC1 is deployed and
started. Without loadable components the daemon itself does nothing useful.

2. sometimes using the HED terms to refer to collection of libraries which is used by service or other
component developers. These libraries define interfaces and implement some common classes which may
simplify the life of service and component developers however only few of these classes are mandatory
to use to make the components and services loadable and hookable by the daemon.

3. the collection of components implementing minimal set of protocols needed for implementing so called
Web Services.

Unless otherwise stated the term HED will be used through this document to refer to the second option
- framework of C++ classes.

9

10 CHAPTER 3. ARCHITECTURE

3.2.1 MCC

Relevant classes: Arc::MCC, Arc::Loader

In the HED data channels to the outside world may be set up by chains of small processing units called
Message Chain Components (MCCs). The chain is an ordered list of MCCs and their interconnection can be
described in the configuration file. The MCCs work on units called Messages which represent data going in to
or out of the HED. The Message consists of the so called Payload which is its main content structured in a way
relevant to the protocol of the corresponding MCC, and auxiliary structures such as general Attributes and
Security Attributes where information relevant to each protocol is accumulated as the Message progresses.
Each MCC typically implements one level in the Internet Protocol suite by transforming the Message to an
input suitable to propagate to the next component and then performs the corresponding transformation of
the response on the way back. The components are all dynamically loaded to provide maximum flexibility
and extensibility. Each instance of these MCC’s can be individually configured.

Each MCC has an entry method process() which is called with Message being processed. It then processes
Message by modifying it or creating new Message. Then MCC calls entry method of the next MCC in the
chain. For information how Messages are handled and about memory management policies please see API
description of MCC class.

The developer who writes an MCC is free to choose any 3rd party library and component to implement the
functionality of the MCC but at least currently the MCCs should be written in the same language as the
HED was written (C++) and should use the MCC interface class and Message class provided by arcloader
and arcmessage libraries of ARC1.

The MCC may implement some routing algorithm which means one MCC may have connections to multiple
other MCCs. Typical scenario is that the HTTP MCC at the server side routes the HTTP Messages with
POST HTTP operation to a SOAP MCC but the Messages with GET operation to for example a simple
HTTP service component. For that purpose ¡next¿ elements in MCC configuration may have optional id
attribute which allows to assign labels to all chain links to the next MCCs in the chain. Supported labels
are MCC dependent. By default simple MCCs support only one unnamed link. The MCCs with routing
capabilities must have all supported labels documented.

As the data is passed through the individual MCCs, they each populate structures with both general at-
tributes and special security attributes that are available at that particular protocol level.

In general every MCC has optimal and natural places in certain chains and this place cannot always be
modified. For example on the server side the TCP MCC must be the first MCC in any chain where it is
used and the TLS MCC should be right after the TCP MCC.

Server and Client Side MCCs

Most of the MCCs has a client and a server version because the behavior of an MCC should be different
depending on whether it is sitting on the server or client side. The typical scenario here is illustrated by
the TCP MCC which should listen and wait for incoming messages on a socket on the server side but call
connect() on the client side.

Server and Client side MCCs are separate elements although definitely sharing some code and normally
provided inside the same plugin module.

Payload

Relevant classes: Arc::Payload, Arc::PayloadRawInterface, Arc::PayloadRaw,
Arc::PayloadStreamInterface, Arc::PayloadStream, Arc::PayloadSOAP

Main content of the information is transferred using the Payload part of the Message. There are no limitations
on functionality of Payload object except that it must be inherited from MessagePayload class. Despite being
flexible such approach would be useless. This is why HED defines three Payload interfaces and their simplest
implementations. All MCCs which are distributed with the HED use, implement and extend those interfaces.
Those include:

3.2. TECHNICAL DESIGN 11

1. PayloadRawInterface and its implementation PayloadRaw. This interface represents set of concate-
nated in-memory chunks. It is meant to be used for information available as whole. And also for
prepending and appending information without actually moving and copying data chunks in memory.

2. PayloadStreamInterface and its implementation PayloadStream. It covers case of sequentially accessi-
ble information. The main purpose of that Payload is to serve protocols which define continuous data
stream like TCP.

3. PayloadSOAP represents parsed SOAP message. It’s introduced to cover need for writing SOAP based
Web Services in unified way.

Each MCC developed inside and outside the HED must be accompanied with description of the Payloads it
supports on input and those generated on output. Those types should be taken into account while creating
chains of the MCCs. There are no Payload type checks done during the chain configuration phase. Hence
Payload incompatibility problems will be detected only during runtime.

Attributes

Relevant classes: Arc::MessageAttributes, Arc::Message

The Message object may contain general purpose key and value pairs called Attributes. Keys and values are
simple strings. Each key may have multiple corresponding values. All pairs are handled by MessageAttributes
class. Codewise there are no limitations posed on content and purpose of Attributes.

By convention keys are composed of two parts: name of MCC/Protocol at which Attribute was generated
or must be consumed and name of Attribute itself separated by column. For example the Attribute with
key HTTP:METHOD holds HTTP protocol method like GET, PUT, HEAD, etc. It is either generated by
MCC implementing HTTP protocol or is filled by other code and is used by HTTP MCC to generate proper
HTTP header.

Each MCC developed inside and outside the HED must have generated and consumed Attributes described
in accompanying documentation.

Security Attributes

Relevant classes: Arc::SecAttr, Arc::MessageAuth, Arc::MessageAuthContext, Arc::Message

Here only basic information about security related objects is presented. For more detailed information please
see ”Security Framework of ARC1” [7].

Security Attributes are storing various aspects of Message useful for authorization decisions to be made.
Those normally include the operation being requested, target of operation and identity of subject making
request. They can also contain authorization policies. Actually nothing stops from storing an other type of
information but there is no convention developed for that.

The Security Attributes are stored as key and value pairs. Each key may have only single value attached.
Keys are simple strings. By convention each MCC or Security Handler (see below) produce Security Attribute
with name corresponding to protocol name. For example Security Attribute stored under name TLS holds
information collected at Transport Level Security layer.

The value of Security Attribute is an object of class inherited from SecAttr. The HED implements class
SecAttr which serves as definition of interface for all Security Attributes. It defines the way how collected
information may be turned into format suitable for making authorization decisions. For that each Security
Attribute value implements method Export for converting internal information into one of the supported
formats. Currently only implemented is ARC Authorization Request/Policy (see below). Please see API
description of SecAttr and MessageAuth classes for more information.

Each MCC developed inside and outside the HED must come with explanation of generated and consumed
Security Attributes. Dedicated components for dealing with Security Attribute - Security Handlers are
described below.

12 CHAPTER 3. ARCHITECTURE

Security Handlers

Relevant classes: ArcSec::SecHander, Arc::MCC

Each MCC can also be configured to have loadable modules called Security Handlers attached to it in order
to enforce security policies such as authentication and authorization or to assist such activities by gathering
specialized security related information into Security Attributes. There is no strict distinction of capabilities
between Security Handlers and MCCs. Both can and do populate Security Attributes. The distinction
is more of logical nature. It also makes possible to have Security Handlers dealing with similar kind of
information and capable of acting on different protocol levels.

The Security Handlers are arranged into named queues. Elements in every queue are executed sequentially
with the Message as the only argument. Different queues are executed at different times. Which queue
is executed in which case it depends on the MCC. Most MCCs implement two queues named ”incoming”
and ”outgoing”. The queue ”incoming” is executed for Messages moving through the chain towards hosted
application and passes the Message as argument with Payload of type corresponding to MCC type i.e. HTTP
MCC passes Payload with parsed HTTP message. The ”outgoing” queue is executed for Messages traveling
to outside the HED.

3.2.2 Services and Clients

The services are dynamically loaded on start up just like the MCCs. They are almost identical to MCCs
with an exception that they constitute the last link in the Message Chain. They are attached to the Chain
in the same manner as other MCCs. But differently from MCC the process() method of the Service does
not pass Message to other components of the Chain. Instead they have to process incoming Messages and
produce outgoing ones.

The clients are not represented by any specific component. The client code sees the Chain as single object
with named entry points. Those entries are used by clients to insert request Message and get result Message
on output. For simplifying the task of writing clients there is a library arcclient provided which wraps the
task of creating Chains and Messages for the widely used SOAP, HTTP, TLS, TCP communications.

3.2.3 Plexer

Relevant classes: Arc::Plexer

In general case multiple Services are living in the HED so the incoming Message should be routed to the
proper Service. The Plexer MCC does this job. It takes the ENDPOINT attribute of the Message collected
by other MCCs compares this attribute to regular expression defined in the configuration file and forwards
the Message to the matching service. It acts as a dispatcher. The Plexer is also special in a sense that it is
not a plugin but part of the arcloader library.

The Plexer provides only basic functionality and is capable of doing only simple routing. But because
each MCC has multiple routing capabilities it is possible to provide pluggable MCC implementing more
sophisticated and/or more specific routing algorithms.

3.2.4 Error handling

Relevant classes: Arc::MCC Status

For reporting errors each process() method returns instance of MCC Status class. That object carries
predefined set of common error codes.

This way for error reporting is mostly meant to be used for reporting problems related to code execution. For
errors caused by processing the corresponding protocol MCC should generate proper response Message which
carries error description. Only if protocol does not provide error handling MCC Status should be used. It is
also advised to convert MCC Status error obtained from the next MCC in the Chain into protocol specific
error Message if possible.

3.2. TECHNICAL DESIGN 13

3.2.5 Instantiation of the Chain

Relevant classes: Arc::Loader, Arc::Config, Arc::LoaderFactory, Arc::MCCFactory,
Arc::ServiceFactory, Arc::DMCFactory, Arc::SecHandlerFactory, Arc::PDPFactory,
Arc::ACCFactory

Chain instantiation is handled by Loader component. It takes XML configuration on input and then handles
tasks of loading plugin libraries, identifying plugins in them, creating and linking objects of corresponding
classes.

Each Loader object may create multiple non-intersecting chains and there may be multiple Loader objects
in same executable. For each component mentioned in the configuration the Loader creates single object of
the corresponding class. On Loader destruction all handled components are destroyed too.

The configuration of Loader is made up of the following elements (see also configuration schema at
http://svn.nordugrid.org/trac/nordugrid/export/10146/arc1/trunk/src/hed/libs/loa der/mcc.xsd):

� Chain is base element. It has no special meaning for configuration of chain and is only used to group
other elements in a logical way. Chains may be nested.

� Component represents the MCC. Its attribute name defines the name of the MCC which has to be in-
stantiated. This MCC is being looked up among those contained in modules loaded by ModuleManager
element. If not found then the Loader tries to find a module with name corresponding to name of the
MCC. Each MCC also must have unique identifier specified by id attribute. Subelement next specifies
link to the next MCC in the Chain. It uses unique identifier specified by id. The next element may
have an optional text which is used to distinguish different Message propagation path in MCC specific
way. The SecurityHandler subelement defines the Security Handler and the queue to which it has to
be attached. Also attribute entry may be used to create an entry point to the Chain.

� Plexer element instantiates Plexer component. Its configuration is similar to one of the Component
elements.

� Service element defines plugin implementing final Component in the Chain - service. From Loader
point of view its configuration is identical to that of the Component.

� ModuleManager defines parameters needed to find loadable modules containing plugins. Currently only
subelement path is supported which defines path on file system where loadable modules may be found.

� Plugins specifies name of the loadable module.

3.2.6 Sessions and Contexts

Relevant classes: Arc::MessageContext, Arc::MessageContextElement,
Arc::MessageAuthContext, Arc::ChainContext

The HED defines three lifetimes for operations happening inside the Chain and components which can be
associated with them:

1. The Message lifetime - lasts as long as incoming and outgoing Messages are passing through the Chain
forth and back. The Message itself in this case is used as container for associated components.

2. The Session lifetime - is defined by existence of some logical connection between Messages being pro-
cessed. Corresponding container MessageContext is normally created by the first MCC in a chain and
attached to the Message. Actual lifetime of that container is MCC specific. For TCP MCC it corre-
sponds to TCP connection. The MessageContext holds objects inherited from the MessageContextEle-
ment class. The Security Attributes can also be stored in dedicated container - MessageAuthContext
- with Session lifetime. At the end of the Session all associated objects are destroyed.

3. The Chain lifetime - is the time period while component that made the Chain exists. This lifetime is
represented by ChainContext class. Differently from other context objects this one does not allow free
manipulation of contained objects. Instead, it provides an interface to some internal structures of the
Loader object. Those include factories and lists of objects of all types created by particular instance
of the Loader.

14 CHAPTER 3. ARCHITECTURE

3.2.7 DMC

Relevant classes: Arc::DataPoint, Arc::DataMover, Arc::DataBuffer and related classes.

The HED defines an interface for pluggable components implementing higher-level information transfer and
query. Those are Data Management Components (DMC). Each DMC is inherited from Datapoint class and
provides subset of methods for performing the following operations on data endpoint:

1. Read data from specified endpoint into DataBuffer class object

2. Write data into specified endpoint from DataBuffer class object

3. List subcontent of endpoint (i.e. list files in directory)

4. Register and unregister presence of data - for indexing endpoints

5. Resolve final or lower level location of data from stored metadata - for indexing endpoints

The DMC may be implemented using third party software like it is currently done for (Grid)FTP DMC.
But implementation may use Message Chains too like in case of HTTP MCC.

Along with ordinary endpoints defining the location of data directly - like HTTP, FTP, LDAP - the DMC can
be used with indirect/indexing endpoints. Those are endpoints which define only the location of meta-data
associated with actual data or an interface/service providing functionality of managing/requesting data. For
more information about indexing endpoints see description of supported URLs in [4].

More in depth technical information about the DMC can be found in [3].

3.2.8 Generic purpose components

The HED also includes vast amount of common purpose components:

� XMLNode is class for managing parsed XML structures. It provides minimal functionality for operating
on XML elements, attributes and namespaces.

� Thread management functions provide few mostly used functions for thread creation.

� URL class gives access to various parts of URL. It has support for many specific URLs built-in.

� String utilities for easy conversion between various types to strings and back.

� Run class for starting, communicating and monitoring external processes.

� Logger class provides multilevel controllable logging functionality.

� Time and Period classes allows parsing and generating textual description of times, dates and time
periods in various formats.

� RegularExpression class providing C++ wrapper for regexp related functions.

� Config class makes it possible to manipulate configuration file. And related classes give an access to
specific parts of configuration.

� Counter and IntraProcessCounter provide a way to count abstract resources.

3.2.9 Web Service related components

There is also a set of components implementing various Web Service related functionality. Those include:

� WSAEnpointReference and WSAHeader manipulate WS-Addressing [8] information in XML element
and SOAP header correspondingly.

3.2. TECHNICAL DESIGN 15

� SAMLToken, UsernameToken and X509Token are for consuming and generating token of same name
according to various profiles of WS Security specifications [5].

� WSRF and related and inherited classes offer a way to generate and analyze various Web Services
Resource specification [6] related elements.

� DelegationConsumerSOAP, DelegationProviderSOAP and DelegationContainerSOAP implement web
service interface which enables client to delegate X509 credentials to service.

� InformationInterface and related classes may be used to implement information interface service and
client part in a way common for services built on top of HED. Also InfoCacheInterface extends it with
caching functionality and InfoRegister provides service registration ability.

3.2.10 Daemon

All componets of the Hosting Environment are compiled into loadable libraries and may be used in various
executables. But there is also a dedicated executable provided - arched. It accepts configuration file
containing XML document and passes it to the Loader component. Then the Loader component takes
care of loading all modules and instantiating all Message Chains. The arched also initializes the Logger
component, configures it and directs its output to where it is specified or to the standard output. The
arched normally runs as background process but can be run in foreground as well. For more information
about arched capabilities please read its manual page.

3.2.11 Alternative implementation languages

In order to facilitate the development of services, API bindings for languages other than C++ are provided
and some service development has already been done in Python language. Currently the only available
language bindings are Python and Java. Currently it is possible to write only SOAP Service modules in
Python and Java due to multiple inheritance limitation.

16 CHAPTER 3. ARCHITECTURE

Chapter 4

Implemented elements

This chapter describes components which are implemented alongside with the HED infrastructure. Al-
though strictly not belonging to the infrastructure this minimal set of components is necessary to make the
infrastructure usable.

4.1 Implemented MCCs

4.1.1 TCP MCC

Plugin names: tcp.service, tcp.client

Library name: {lib}mcctcp

Security handler queues: incoming, outgoing

Message attributes: TCP:HOST, TCP:PORT, TCP:REMOTEHOST, TCP:REMOTEPORT, TCP:ENDPOINT,
ENDPOINT

The server side TCP MCC in the HED is special in that it produces Messages by listening on a network
socket rather than processing Messages from other MCCs. As such it spawns new thread for every new
connection to handle Messages and their responses throughout the Message Chain. One could envision other
MCCs having these properties but producing Messages from other sources such as e.g. UNIX sockets.

This MCC can be configured with one or more <tcp:Listen> elements which in turn contain the elements
<tcp:Port>, <tcp:Interface> and <tcp:Version>. The <tcp:Port> element is mandatory and should
contain an integer corresponding to the TCP port to listen to. The <tcp:Interface> element is optional
and is meant to identify the network interface to bind to. It is currently not used. The <tcp:Version>
element is used to specify IP version. It is optional and should if present contain the single digit 4 or 6.

The server side TCP MCC generates PayloadStreamInterface payload in the Message passed to the next
MCC which can be used for communicating through open TCP channel. Currently it ignores any payload
attached to the returned Message. That MCC also fills following Message Attributes in the incoming Message
while passing to the next MCC:

1. TCP:HOST - IP address of local interface which was used to establish TCP connection

2. TCP:PORT - local TCP port which was used for connection

3. TCP:REMOTEHOST - IP address of contacting client

4. TCP:REMOTEPORT - TCP port of contacting client

5. TCP:ENDPOINT - URL-like combination of ://(TCP:HOST):(TCP:PORT)

6. ENDPOINT - same as TCP:ENDPOINT

17

18 CHAPTER 4. IMPLEMENTED ELEMENTS

The client side TCP MCC performs TCP connection to host and port specified in <Host> and
<Port> elements inside <Connect> element of the MCC configuration. Then all incoming Messages of
process() method are transferred over TCP connection. Accepted Payload type of incoming Message is
PayloadRawInterface. Returned Payload is of PayloadStreamInterface type. It represents established
TCP connection and may be used by previous MCCs in chain for direct communication. It is still preferred
to call process() method instead.

Configuration schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.nordugrid.org/schemas/ArcMCCTCP/2007"
xmlns:arc="http://www.nordugrid.org/schemas/ArcConfig/2007"
targetNamespace="http://www.nordugrid.org/schemas/ArcMCCTCP/2007"
elementFormDefault="qualified">

<xsd:simpleType name="Version_Type">
<!-- This element defines TCP/IP protocol version. -->
<xsd:restriction base="xsd:string">

<xsd:enumeration value="4"/>
<xsd:enumeration value="6"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:element name="Version" type="Version_Type"/>

<xsd:complexType name="Listen_Type">
<!--

This element defines listening TCP socket. If interface is missing socket
is bound to all local interfaces (not supported). There may be multiple Listen elements.

-->
<xsd:sequence>

<xsd:element name="Interface" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="Port" type="xsd:int" minOccurs="1" maxOccurs="1"/>
<xsd:element name="Version" type="Version_Type" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="Listen" type="Listen_Type"/>
<xsd:complexType name="Connect_Type">

<!--
This element defines TCP connection to be established to specified Host at specified Port.
If LocalPort is defined TCP socket will be bound to this port number (not supported).

-->
<xsd:sequence>

<xsd:element name="Host" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="Port" type="xsd:int" minOccurs="1" maxOccurs="1"/>
<xsd:element name="LocalPort" type="xsd:int" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="Connect" type="Connect_Type"/>

</xsd:schema>

4.1.2 TLS MCC

Plugin names: tls.service, tls.client

Library name: {lib}mcctls

4.1. IMPLEMENTED MCCS 19

Security handler queues: incoming, outgoing

Message attributes: TLS:PEERDN, TLS:IDENTITYDN

The server and client TLS MCCs provide transport level security (TLS) over any stream channel. Currently
they interoperate well with TCP MCCs.

The server side MCC accepts payload of type PayloadStreamInterface. It then creates own instance of object
inherited from PayloadStreamInterface bound to initial payload and passes it to the next MCC. This object
is maintained inside Message Context under name tls.service and is destroyed when Context becomes
inactive. Currently this MCC does not expect any payload to be returned from the rest of the chain and
passes no payload to previous MCC.

The server MCC fills Message Attributes TLS:PEERDN and TLS:IDENTITYDN representing subjects of
last certificate in client’s certificate chain used for establishing secure connection and the subject of last
certificate which is not a proxy certificate correspondingly. Use of those attributes is deprecated. It is
advised to use Security Attributes instead.

The client side MCC behaves in similar way. It also establishes PayloadStreamInterface type object linked
to same type of payload of the next MCC. To obtain that last payload it makes a first call to the next MCC
with payload of type PayloadRawInterface and then uses the returned payload - which is expected to be of
PayloadStreamInterface type - to create its own payload object with streaming capabilities and returns it to
previous MCC for further usage.

Both client and server side MCCs are implemented using OpenSSL toolkit [1] and use X.509 infrastructure
[2] for establishing secure connection and may be configured to get private key, certificate or proxy credentials
from files residing at local file systems. It is also possible to specify the location of Certification Authority
certificate or to use all certificates located in specified directory. for more information see configuration
schema with comments below.

Configuration schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.nordugrid.org/schemas/ArcMCCTLS/2007"
xmlns:arc="http://www.nordugrid.org/schemas/ArcConfig/2007"
targetNamespace="http://www.nordugrid.org/schemas/ArcMCCTLS/2007"
elementFormDefault="qualified">
<xsd:complexType name="CACertificatesDir_Type">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="PolicyGlobus" type="xsd:boolean" use="optional" default="false"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
<!-- Location of private key.
Default is /etc/grid-security/hostkey.pem for service
and none for client. -->

<xsd:element name="KeyPath" type="xsd:string"/>
<!-- Content of private key - not supported -->
<xsd:element name="Key" type="xsd:string"/>
<!-- Location of public certificate.
Default is /etc/grid-security/hostcert.pem for service
and none for client. -->

<xsd:element name="CertificatePath" type="xsd:string"/>
<!-- Content of public certificate - not supported -->
<xsd:element name="Certificate" type="xsd:string"/>
<!-- Location of proxy credentials - includes certificates, key and
chain of involved certificates. Overwrites elements Key, KeyPath,
Certificate and CertificatePath.

20 CHAPTER 4. IMPLEMENTED ELEMENTS

Default is none for client and none for service. -->
<xsd:element name="ProxyPath" type="xsd:string"/>
<!-- Content of proxy credentials - not supported -->
<xsd:element name="Proxy" type="xsd:string"/>
<!-- Location of certificate of CA. Default is none. -->
<xsd:element name="CACertificatePath" type="xsd:string"/>
<!-- Content of certificate of CA - not supported -->
<xsd:element name="CACertificate" type="xsd:string"/>
<!-- Directory containing certificates of accepted CAs.
Default is /etc/grid-security/ . -->

<xsd:element name="CACertificatesDir" type="xsd:string"/>
</xsd:schema>

4.1.3 HTTP MCC

Plugin names: http.service, http.client

Library name: {lib}mcchttp

Security handler queues: incoming, outgoing

Message attributes: HTTP:METHOD, HTTP:CODE, HTTP:REASON, HTTP:RANGESTART, HTTP:RANGEEND,
HTTP:ENDPOINT, HTTP:*, ENDPOINT

The server side HTTP MCC accepts Messages with PayloadStreamInterface payload and parses HTTP
related information from it. Information from the HTTP header is added to the Message Attributes. The
body of HTTP message is passed to the next MCC as PayloadRawInterface payload. In response this MCC
expects also the Message with PayloadRawInterface. It is then prepended with HTTP response header
and pushes it into initially provided stream channel. As an output it returns empty PayloadRawInterface
payload.

That MCC routes results to multiple next MCCs in the chain. For that it accepts only labeled ¡next¿
elements in the configuration. Label names are those of HTTP methods (uppercase). HTTP Messages will
be routed to their destinations according HTTP method requested.

That MCC also fills following Message Attributes in the incoming Message while passing to the next MCC:

� HTTP:METHOD - HTTP method as defined in HTTP request header.

� HTTP:RANGESTART - Range request start offset.

� HTTP:RANGEEND - Range request end offset.

� HTTP:ENDPOINT - URL or path as specified in HTTP request header.

� HTTP:* - Here * stands for any name. All HTTP options from HTTP request header are converted
into Message Attributes named HTTP:{option name}.

� ENDPOINT - same as HTTP:ENDPOINT.

For outgoing Message server MCC converts all HTTP:* Message Attributes into corresponding HTTP re-
sponse header attribute.

The client side HTTP MCC will accept PayloadRawInterface payload as HTTP body and after prepend-
ing it with HTTP information passes to the next MCC also as PayloadRawInterface. It accepts
PayloadStreamInterface in response and after processing passes PayloadRawInterface back through the
chain.

The client MCC also converts all HTTP:* Message Attributes into corresponding HTTP header options
while creating HTTP request. If defined it uses HTTP:METHOD and HTTP:ENDPOINT as method and
URL/path of HTTP request. If not specified parameters defined in the configuration are used. For HTTP
response it sets HTTP:CODE and HTTP:REASON to response code and reason correspondingly. It also
performs conversion from header options into HTTP:* Message Attributes.

4.2. IMPLEMENTED SECURITY HANDLERS 21

Configuration schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.nordugrid.org/schemas/ArcMCCHTTP/2007"
xmlns:arc="http://www.nordugrid.org/schemas/ArcMCCHTTP/2007"
targetNamespace="http://www.nordugrid.org/schemas/ArcMCCHTTP/2007"
elementFormDefault="qualified">

<!--
These elements define endpoint and HTTP method for client HTTP MCC.

-->
<xsd:element name="Endpoint" type="xsd:string"/>
<xsd:element name="Method" type="xsd:string"/>

</xsd:schema>

4.1.4 SOAP MCC

Plugin names: soap.service, soap.client

Library name: {lib}mccsoap

Security handler queues: incoming, outgoing

Message attributes: SOAP:ENDPOINT, ENDPOINT

These MCCs convert payloads between data chunks presented by PayloadRawInterface type object into
dedicated PayloadSOAP payloads and vice versa. Currently it has no specific configuration parameters.

The server side MCC sets Message Attributes SOAP:ENDPOINT and ENDPOINT to URL present in To
element of Web Service Addressing information stored in SOAP header. For proper SOAP over HTTP
binding it also sets HTTP:Content-Type Message Attribute to value application/soap+xml or text/xml
for SOAP version 1.2 and 1.1 respectively for response Message. Also in case of SOAP fault response
HTTP:CODE is set to 500 and HTTP:REASON to SOAP FAULT.

The client side MCC for outgoing Message accepts SOAP:ACTION Message Attribute and uses it to fill
HTTP:Content-Type or HTTP:SOAPAction depending on SOAP version.

4.2 Implemented Security Handlers

For more information about security related capabilities of the HED please see dedicated document at [7].

4.3 Implemented DMCs

4.3.1 File DMC

Protocol name: file

This DMC implements access to local or remote mounted file systems. It allows reading and writing the
content of file, listing the content of directories and checking the presence of the object.

Name of plugin is file and it is located in {lib}dmcfile loadable module.

4.3.2 GridFTP/FTP DMC

Protocol name: ftp, gsiftp

22 CHAPTER 4. IMPLEMENTED ELEMENTS

This DMC implements access to a data server using FTP or GridFTP protocol. It allows reading and writing
the content of stored file, listing the content of directories and checking the presence of the object.

Name of plugin is gridftp and it is located in {lib}dmcgridftp loadable module.

4.3.3 HTTP DMC

Protocol name: http, https, httpg (not implemented yet)

This DMC implements access to a data server using HTTP over TCP or over TLS protocol. It uses GET for
reading and PUT for storing files. Data is always transferred in chunks due to current limitation of HTTP
MCC. Listing is also supported. For that DMC extracts references from the A tags of the obtained HTML
content. If retrieved content is not HTML or if content of its TITLE tag does not start from ””Index of /””
then only information about resquested URL itself is listed.

Name of plugin is http and it is located in {lib}dmchttp loadable module.

4.3.4 LDAP DMC

Protocol name: ldap

The LDAP DMC implements access to a data accessible through LDAP protocol. Currently it can only
retrieve content of LDAP tree. Retrieved content is converted into XML. The DMC supports following kind
of URL:

ldap://host[:port]/base[?[attributes][?[scope][?filter]]]

� attributes is comma separated list of attributes which has to be retrieved,

� scope is either base, one or sub as defined by LDAP,

� filter is LDAP filter.

Name of plugin is ldap and it is located in {lib}dmcldap loadable module.

4.3.5 LFC DMC

Protocol name: lfc

The LFC DMC provides an access to LCG File Catalog service and supports file listing, URL resolution and
(un)registration of file locations. It uses LFC protocol implementation provided by gLite middleware.

Name of plugin is lfc and it is located in {lib}dmclfc loadable module.

4.3.6 RLS DMC

Protocol name: rls

The RLS DMC provides an access to Replica Location Service and supports file listing, URL resolution and
(un)registration of file locations. It uses RLS protocol implementation provided by Globus Toolkit.

Name of plugin is rls and it is located in {lib}dmcrls loadable module.

Chapter 5

Future work

Interfaces in HED are mature and stable with only the security infrastructure still being extended.

Most of the work has shifted to the development of higher level libraries and services based on the HED.
But the HED also continiously being expanded by adding new plugins.

There are also significant pieces of functionality not addressed in the HED yet like user-friendly configuration,
efficient inter-service internal Message routing, etc.

23

24 CHAPTER 5. FUTURE WORK

Chapter 6

Appendices

6.1 Step-by-step instructions to add registration ability to HED
services

6.1.1 General knowledge

The HED has a brand new self-register ability. If your Service is prepared to co-operate with this mechanism
then there will be an InfoRegister connecting to it. There are other, so called InfoRegistrar objects present
that are the HED self-register mechanism’s active elements communicating with different ISIS clouds. (The
InfoRegisterContainter is an instance that connects them, but this is just a good-to-know detail.) The system
administrator can connect the Services with ISIS clouds connecting InfoRegisters with InfoRegistrars. The
configuration (for example during testing your service) has to cover the both side. (It is possible to connect
one InfoRegister to more InfoRegistrars and vice versa. See figure 6.1.)

Figure 6.1: The HED internal registration infrastructure

The configuration details will be shown on the section Modify your configuration6.1.4.

The InfoRegistrar that are connected with your Service (by configuration) will periodically ask your Service
for a Registration Entry what are stored in the information system. This ”poll” is done by executing the
RegistrationCollector function that provide an XML document in a given format. For further details see
section Compose the Registration Entry6.1.3! Actually this interface can be accessed in every C++ or
Python service.

The InfoRegistrar collect the simultaneous generated Registration Entries and compose a Registration Mes-
sage by aggregating them (if any aggregation is possible).

25

26 CHAPTER 6. APPENDICES

The general ”sandbox” echo services are already prepared to this functionality and will be referenced at the
proper locations.

6.1.2 Change your source

C++ source

� Your Service have to extend the RegisteredService instead of the Service class. This class is imple-
mented in the infosys library and not in the message library as before. (Of course the new library
have also to be linked to your Service.) In your constructor please call the RegisteredService class’s
constructor!

� You have also to implement the RegistrationCollector function that will provide the Registration Entry
XML document.

Your Service.h

...
#include <arc/infosys/RegisteredService.h>
...
class Your_Service: public Arc::RegisteredService {
...

bool RegistrationCollector(Arc::XMLNode &doc);
...
}

For example see: src/tests/echo/echo.h in the source tree. Your Service.cpp

...
Your_Service::Your_Service(Arc::Config *cfg):RegisteredService(cfg) {
...

bool Your_Service::RegistrationCollector(Arc::XMLNode &doc) {
Arc::NS isis_ns; isis_ns["isis"] = "http://www.nordugrid.org/schemas/isis/2008/08";
Arc::XMLNode regentry(isis_ns, "RegEntry");
regentry.NewChild("SrcAdv").NewChild("Type") = "Your_Service_Type";
regentry.New(doc);
return true;

}
...
}

For example see: src/tests/echo/echo.cpp in the source tree. Makefile.am

libyourservice_la_LIBADD = ... \
$(top_srcdir)/src/hed/libs/infosys/libinfosys.la

For example see: src/tests/echo/Makefile.am in the source tree.

Python source

� The PythonService is already extending the RegisteredService class so you have nothing to do on this
place.

� Your only to-do is to implement the RegistrationCollector function and provide the Registration Entry
XML document.

Your Service.py

6.1. STEP-BY-STEP INSTRUCTIONS TO ADD REGISTRATION ABILITY TO HED SERVICES 27

def RegistrationCollector(self, doc):
regentry = arc.XMLNode(’<RegEntry />’)
regentry.NewChild(’SrcAdv’).NewChild(’Type’).Set(’Your_Service_Type’)
#Place the document into the doc attribute
doc.Replace(regentry)
return True

For example see: src/services/echo python/EchoService.py in the source tree.

6.1.3 Compose the Registration Entry

The Registration Entry is an XML document with a given format. The HED internal mechanism tries to
aggregate these messages in the Registration Messages.

There are 6 mandatory element in a Registration Entry. At least these should be provided by the service
developer. The Type, Endponint reference and the ID of the Service, and the Expiration and Generation
time of the message. If the ID is not present then it will be deputized with the Endpoint reference. Finally
the Generation time of the message will be also automatically filled if missing from the Registration Entry.
(See figure 6.2.) The schema of the Registration Entry:

Figure 6.2: The structure of an aggregated Registration Message

<!-- List of the service types will be provided by the GLUE-2.0 -->
<xsd:simpleType name="ServiceTypeType">

<xsd:restriction base="xsd:string">
</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="NameValuePairType">
<xsd:sequence>

<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="Value" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ServiceAdvertisementMetadataType">
<xsd:sequence>

<!-- Globally unique and persistent ID of the service -->
<xsd:element name="ServiceID" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
<!-- Time of information generation or collection -->
<xsd:element name="GenTime" type="xsd:dateTime" minOccurs="1"

28 CHAPTER 6. APPENDICES

maxOccurs="1"/>
<xsd:element name="Expiration" type="xsd:duration"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ServiceAdvertisementType">
<xsd:sequence>

<!-- General part of the Service Advertisment -->
<xsd:element name="Type" type="isis:ServiceTypeType"/>
<xsd:element name="EPR" type="wsa:EndpointReferenceType"/>
<!-- Service specific part of the Service Advertisment -->
<xsd:element name="SSPair" type="isis:NameValuePairType" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="RegistrationEntryType">
<xsd:sequence>

<xsd:element name="SrcAdv" type="isis:ServiceAdvertisementType"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="MetaSrcAdv" type="isis:ServiceAdvertisementMetadataType"
minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

It can be also found in the source tree on the path: src/services/isis/schema/isis.xsd An examle Registration
Entry XML document:

<RegEntry>
<MetaSrcAdv>
<ServiceID>http://your.domain.com/echo<ServiceID>
<GenTime>1994-11-05T13:15:30Z</GenTime>
<Expiration>PT3H</Expiration>

</MetaSrcAdv>
<SrcAdv>
<Type>org.nordugrid.tests.echo</Type>
<EPR>
<Address>http://your.domain.com/echo</Address>

</EPR>
</SrcAdv>

</RegEntry>

The service type follows the GLUE2 naming convention and organize the services into categories based on
their functionality. The following service types are already defined:

1. Storage:

� org.nordugrid.storage.ahash

� org.nordugrid.storage.bartender

� org.nordugrid.storage.librarian

� org.nordugrid.storage.shepherd

� org.nordugrid.storage.hopi

2. Security:

� org.nordugrid.security.charon

� org.nordugrid.security.saml

6.1. STEP-BY-STEP INSTRUCTIONS TO ADD REGISTRATION ABILITY TO HED SERVICES 29

� org.nordugrid.security.slcs

� org.nordugrid.security.delegation

3. Infosys:

� org.nordugrid.infosys.isis

� org.nordugrid.infosys.eils

� org.nordugrid.infosys.rte-catalog

4. Execution:

� org.nordugrid.execution.arex

� org.nordugrid.execution.janitor

� org.nordugrid.execution.sched

� org.nordugrid.execution.paul

5. Accounting:

� org.nordugrid.accounting.mars

6. Tests:

� org.nordugrid.tests.echo

� org.nordugrid.tests.echo java

� org.nordugrid.tests.echo python

� org.nordugrid.tests.isistest

6.1.4 Modify your configuration

The configuration have to contain the connection between the InfoRegisters (Services) and InfoReg-
istrars (ISIS clouds). The schema of the configuration can be also found in the source tree
(src/hed/libs/infosys/InfoRegisterConfig.xsd). There is also an example configuration between the con-
figuration templates in the source tree (src/hed/profiles/SecureP2PIIS/SecureP2PIIS.xml).

The Service configuration should contain the InfoRegister and implicitly the InfoRegistrar configuration.

<infosys:InfoRegister>
<infosys:Period>PT20S</infosys:Period>
<infosys:Endpoint>https://localhost:50000/example_service</infosys:Endpoint>
<infosys:Expiration>PT100S</infosys:Expiration>
<infosys:Registrar>

<infosys:URL>some_url</infosys:URL>
<infosys:KeyPath>some_local_path</infosys:KeyPath>
<infosys:CertificatePath>some_local_path</infosys:CertificatePath>
<infosys:CACertificatesDir>some_local_path</infosys:CACertificatesDir>

</infosys:Registrar>
<infosys:Registrar>

<infosys:URL>some_other_url</infosys:URL>
<infosys:KeyPath>some_local_path</infosys:KeyPath>
<infosys:CertificatePath>some_local_path</infosys:CertificatePath>
<infosys:CACertificatesDir>some_local_path</infosys:CACertificatesDir>

</infosys:Registrar>
</infosys:InfoRegister>

If the same InfoRegistrar would exist at more then one Serivce (the URL have to be the same) then the
internal HED mechanism detect the similarity and tries to aggregate the messages if it’s possible. You can
also override the default Period, Endpoint, Expiration values inside the single Registrar elements and them
too by written some value in the document in your source.

If the service configuration contains a

30 CHAPTER 6. APPENDICES

<NoRegister/>

element then it won’t be registered.

Acknowledgements

This work was supported in parts by the EU KnowARC project (Contract nr. 032691) and the EU EMI
project (Grant agreement nr. 261611).

31

32 CHAPTER 6. APPENDICES

Bibliography

[1] The Open Source toolkit for SSL/TLS. Web site. URL http://www.openssl.org/.

[2] Public-Key Infrastructure (X.509) (PKI), Proxy Certificate Profile. URL http://rfc.net/rfc3820.
html.

[3] M. Ellert. ARC Data Manager Component (DMC) – Implementation Guide. The NorduGrid Collabo-
ration. URL http://www.nordugrid.org/documents/dmc.pdf. NORDUGRID-TECH-23.

[4] A. Konstantinov. Protocols, Uniform Resource Locators (URL) and Extensions Supported in ARC. The
NorduGrid Collaboration. URL http://www.nordugrid.org/documents/URLs.pdf. NORDUGRID-
TECH-7.

[5] OASIS. OASIS Web Services Security specification. February 2006. URL http://www.oasis-open.
org/specs/index.php#wssv1.1.

[6] OASIS. OASIS Web Services Resource specification. April 2006. URL http://docs.oasis-open.org/
wsrf/wsrf-ws_resource-1.2-spec-os.pdf.

[7] W. Qiang and A. Konstantinov. Security framework of ARC. The NorduGrid Collaboration. URL
http://www.nordugrid.org/documents/arc-security-documentation.pdf. NORDUGRID-TECH-
16.

[8] W3C. Web Services Addressing 1.0 - SOAP Binding. May 2006. URL http://www.w3.org/TR/2006/
REC-ws-addr-soap-20060509/.

33

http://www.openssl.org/
http://rfc.net/rfc3820.html
http://rfc.net/rfc3820.html
http://www.nordugrid.org/documents/dmc.pdf
http://www.nordugrid.org/documents/URLs.pdf
http://www.oasis-open.org/specs/index.php#wssv1.1
http://www.oasis-open.org/specs/index.php#wssv1.1
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://www.nordugrid.org/documents/arc-security-documentation.pdf
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/

	Introduction
	How to read
	Architecture
	Requirements
	Technical design
	MCC
	Services and Clients
	Plexer
	Error handling
	Instantiation of the Chain
	Sessions and Contexts
	DMC
	Generic purpose components
	Web Service related components
	Daemon
	Alternative implementation languages

	Implemented elements
	Implemented MCCs
	TCP MCC
	TLS MCC
	HTTP MCC
	SOAP MCC

	Implemented Security Handlers
	Implemented DMCs
	File DMC
	GridFTP/FTP DMC
	HTTP DMC
	LDAP DMC
	LFC DMC
	RLS DMC

	Future work
	Appendices
	Step-by-step instructions to add registration ability to HED services
	General knowledge
	Change your source
	Compose the Registration Entry
	Modify your configuration

