
User's and Administrator's Manual of AMGA

Metadata Catalog v 2.4.0 (EMI-3)

S. Ahn, A. Calanducci, T. Huh, S. Hwang, G.Park, N. Kim, B. Koblitz, N. Santos

February 5, 2013

Abstract

This is the manual for users and administrators of AMGA. It intends to give an overview

on the installation of the client and server packages as well as the client-api packages.

Examples of the usage of the command line clients and the client APIs are given.

1

Contents

1 Overview 5

2 Installation 5
2.1 Client installation . 5
2.2 Server installation . 6
2.3 Server upgrade . 8
2.4 Installation from Source . 9
2.5 Creating a script for the site-BDII . 10
2.6 Creating a json �le for EMIR . 10
2.7 Installing on Debian . 11

3 Con�guration of the C++ and Java command line clients 11
3.1 Con�guration of the C++ command line client 11
3.2 Con�guration of the Java command line client . 13

4 Metadata Access from the Shell 14
4.1 Manipulating Collections . 14
4.2 Commands for Manipulating Attributes . 16
4.3 Commands for entry manipulation . 17
4.4 Finding and Updating Entries . 18
4.5 Native SQL Query . 20
4.6 Permission Handling . 20
4.7 Capabilities . 20
4.8 Index Management . 21
4.9 Sudo . 21
4.10 Table Constraints . 21
4.11 Views . 21
4.12 Sequences . 22
4.13 Backing Up Data . 22
4.14 Site management . 23
4.15 Various administrative commands . 24
4.16 Replication . 24

4.16.1 Commands for Slave Nodes . 24
4.16.2 Commands for Master Nodes . 25

4.17 Federation . 26
4.18 Commands for Replica Management . 26

5 Metadata Queries 27

6 Native SQL Queries 29
6.1 SQL-92 Entry Level <direct_data_statements> 30
6.2 LIMIT, OFFSET and JOIN . 31
6.3 Current Limitation . 31

7 AMGA data types 31

8 Con�guring the AMGA Server and the Replicatin Daemon 32
8.1 Format of the Con�guration File . 32
8.2 Example of a server con�guration �le . 32
8.3 Description of the server options . 33

8.3.1 Replication Settings . 35
8.3.2 Federation Settings . 35

2

9 Replication in AMGA 36
9.1 Overview . 36

9.1.1 Features Overview . 36
9.1.2 Concepts . 36
9.1.3 Architecture Overview . 36
9.1.4 Operation . 37

9.2 Setup . 38
9.2.1 Setting up a Master node . 38
9.2.2 Setting up a Slave node . 39

9.3 Security . 39
9.3.1 Replicating Security Information . 39
9.3.2 Security at Slave Nodes . 40
9.3.3 Connections from the Slave to the Master 40
9.3.4 Granting the replication right on the master 40

9.4 Limitations . 40
9.4.1 Concurrent Updates on Master . 40

9.5 Tutorial - Setting up a Master to Single Slave Setup 41
9.5.1 Con�guring the master . 41
9.5.2 Con�guring the slave . 42

10 Federation in AMGA 43
10.1 Overview . 43
10.2 Setup . 43
10.3 Authentication . 44
10.4 Accessing Patterns . 44
10.5 Fault Handling . 44
10.6 Limitations . 45

11 User Management 45
11.1 Con�guration . 45
11.2 Management via a Grid Map �le . 46
11.3 Management of Users using the database backend 46
11.4 Management via a VOMS . 47
11.5 Management via VO-Certi�cates . 47

12 Users, Groups and ACLs 47
12.1 Users . 47
12.2 Groups . 47
12.3 Access Control Lists . 48
12.4 The sudo command . 48
12.5 The sticky bit . 48

13 Accessing preexisting databases in AMGA 48

14 Using the C++ Client API 50

15 Using the Java Client API 51

16 Using the Python Client API 53

17 De�nition of the Client Server Protocol 54

18 Monitoring support in AMGA 56

19 Multi-threaded AMGA Server 57
19.1 Con�guration . 57

3

20 SOAP Interface 57
20.1 Installation . 58

20.1.1 SOAP client installation . 58
20.1.2 SOAP server installation . 58

20.2 How to use SOAP client tools . 58
20.3 WS-DAIR Architecture . 60

20.3.1 Data access service and data resources . 60
20.3.2 Data Resource Abstract Name & Data Resource Address 61
20.3.3 Supported Dataset and Language . 61
20.3.4 Installation from Source . 61

20.4 Howto make WSDAIR clients . 62

A Changelog 64

4

1 Overview

AMGA is a metadata service for the Grid. In a more general way this is a database access
service for Grid applications which allows user jobs running on the Grid to access databases by
providing a Grid style authentication as well as an opaque layer which hides the di�erences of
the di�ernet underlying database systems from the user. To achieve this, AMGA is a service
sitting between the RDBMS and the user's client application.

In addition to this database translation layer, AMGA intends to solve another problem
database services face on the Grid which is latencies. AMGA intends to provide a replication
layer which makes databases locally available to user jobs and replicate the changes between the
di�erent participating databases. A simple implementation based on PostgreSQL asynchronous
replication is already working.

All examples given in this manual as well as additional documentation in particular the
reference manuals of all APIs are given on the projects home page at http://amga.web.cern.
ch/amga/

2 Installation

The server and the clients (C++, Java and Python) are provided as RPMs packages. RPMs
are currently only supported for CERN Scienti�c Linux or RedHat Enterprise Linux. For users
running other operating systems (including Windows and other unix �avours), the Java client is
also provided as a platform-independent package (a tar ball), including the Java API, a command
line client, some examples and the documentation. You can �nd the packages in the download

directory. Download the latest version. As of writing this it is 2.4.0
You can install the emi.amga.amga-cli and the python and java api packages independently

of the server package, however the server packages depend on the client package.

2.1 Client installation

To install the command line client and C++ api, you will only need to download the emi.amga.amga-cli
rpm itself. By default the package will be installed into /usr, so you will need to have write per-
mission for this directory. Install the package via

$ rpm -i emi.amga.amga-cli-${version}.${platform}.rpm

or

$ sudo yum install emi.amga.amga-cli

Copy the /etc/mdclient.config client con�guration �le into the directory from which you
intend to work or into ∼/.mdclient.config and customize it according to the instructions in
Con�guration of the C++ and Java command line clients (p. 11).

If the amga client was built against the editline library instead of the standard unix readline
library, you will need to also install that RPM.

To install the RPM with Java API, install the �le named glite-amga-api-java-0.X.Y.rpm.
This RPM is architecture-independent and will install in any Unix platform that supports RPM
packages. This RPM contains only the Java API (no command line client or documentation). It
installs the �le glite-amga-api-java.jar in /opt/glite/share/java/. To use the Java API,
this �le must be included on the classpath.

The tar ball with the Java Client API does not need any special installation procedure, apart
from unpacking it. It provides both the documentation, the Java API, and two command line
utilities similar to the ones installed by the C++ RPM, with the advantage of running in any
platform with a Java virtual machine implementation (must be at least Java 1.4 compliant).
These command line tools are:

• mdjavaclient - an interactive command line shell with the server.

• mdjavacli - an utility to submit a single command to the server. For use in shell scripts.

The tar ball includes two scripts to start these command line tools:

• mdjavaclient.sh : for Linux

5

• mdjavacli.sh : for Windows The interactive command line client can also be started
directly by executing the class arda.md.javaclient.ConsoleClient.

There is also a Python Client API module available as an RPM package, which will install
the modules under /opt/glite/python2.2/site-packages/amga.

• RPM package name : glite.amga.api-python-1.1.0-1.noarch.rpm

Alternatively you can use the Python2.3 RPM which works nicely on Debian Sarge. If you pre-
fer a custom installation you can download the source tarball glite.amga.api-python-1.1.0.tar.gz
and install it via the Python installation mechanism (if you don't know how this works, ./setup.py
�help should get you started.

2.2 Server installation

The AMGA server depends on some external dependencies which are provided by the EMI team
for yum based installation.

The following packages are necessary to use AMGA and must be installed �rst: These are
standard SL packages and can be also found in the ususal EMI repositories.

- boost

- editline

- gdbm

- libxml2

- openssl

- unixodbc

- libuuid(SL6 only,SL5 is OS Default)

If AMGA was compiled against the Globus environment and not the SL environment in order
to use the Globus versions of several SL system libraries like openssl, then you will also need to
install the Globus RPM. The EMI project currently only provides versions of AMGA which does
not depend on Globus.

Now install the server RPMs for AMGA (the server needs the client):

$ wget http://amga.web.cern.ch/amga/downloads/${version}/${platform}

/emi.amga.amga-server-${version}.${platform}.rpm

$ rpm -i emi.amga.amga-server-${version}.${platform}.rpm

or

$ sudo yum install emi.amga.amga-server

You also need a database and the appropriate ODBC driver. AMGA currently supports 4
di�erent database backends via ODBC drivers. You will need to get at least one of the currently
supported 4 database backends installed, including their ODBC driver. You have the choice
among PostgreSQL, MySQL, Oracle and SQLite. The default is PostgreSQL and this database
should be set-up correctly when installing the AMGA RPM if you have PostgreSQL and its
ODBC driver installed:

$ sudo yum install postgresql-server postgresql

If you want to use a di�erent database or you want to have a di�erent setup of the ODBC
driver, have a look at the more detailed instruction in the Installation from Source (p. 5) .

Note: For AMGA to work properly, you need at least version 08.01.0200 of the PostgreSQL
ODBC driver. On the defalut SL, the driver is too old, so that it is necessary to install the
lastest driver as follows.

$ sudo yum install postgresql-odbc

You will need to get at least one of these 4 database backends in order to use the service.
ODBC should have been installed correctly by the AMGA rpm, if you want to use a standalone
installation using PostgreSQL. If you don't know about ODBC, some more hints can be found in
the Installation from Source (p. 5) or on a general page on the Unix ODBC User Manual.

For the con�guration, you �rst have to create a DB user, make sure he can connect via a
TCP/IP connection (even locally this is required since ODBC does not work via a Unix Domain
socket) and then set up an ODBC data source. This can be done with the single script as follows.

6

$ su root

$ /etc/rc.d/init.d/mdservice init

The steps in manual are:

$ su root

$ service postgresql initdb (If you are using postgreSQL 8.4 or higher)

$ /etc/init.d/postgresql start

$ /etc/init.d/postgresql stop

$ cat /var/lib/pgsql/data/pg_hba.conf

....

local metadata arda trust

host metadata arda 127.0.0.1/24 trust

host metadata arda ::1/128 trust

$ /etc/init.d/postgresql start

$ su postgres

$ createuser -S -d arda # Create DB user arda, allow him new DBs

$ createdb -O arda metadata # New DB metadata owner is arda

$ createlang plpgsql metadata # Allow stored procedures

The ODBC data source is created by appending the following lines to /etc/odbc.ini:

[PSQL]

Description = AMGA metadata catalogue database

Driver = PostgreSQL_AMGA

Trace = No

TraceFile = /tmp/metadata/odbc.log

Database = metadata

Servername = localhost

Port = 5432

ReadOnly = No

Address = localhost:5432

User = arda

The Driver needs to name a valid driver description in the /etc/odbcinst.ini �le:

[PostgreSQL_AMGA]

Description = ODBC for AMGA PostgreSQL

FileUsage = 1

CPTimeout = 120

CPReuse =

Debug = 0

Threading = 1

CommLog = 0

DontDLClose = 1

Driver = /usr/lib/psqlodbc.so

This setup should be done automatically correctly when installing the unixODBC or postgresql-
odbc RPMs on other distributions. If you want to check your ODBC installation, you can use
the DataManagerII application which can be found in the unixODBC-kde package on SLC.

Now you can initialize the database using the createInitialXXX.sql scripts, where XXX
has to be replaced with the DB of choice. You can �nd the createInitialXXX.sql �le in the
/usr/share/doc/glite-amga-server/ after the installation of the server RPM:

Initialization for PostgreSQL:

7

$ psql -Uarda metadata < /usr/share/doc/glite-amga-server/createInitialPG.sql

Finally activate this data source and con�gure the AMGA server in the amgad.config in
/etc/ �le as described in Con�guring the AMGA Server and the Replicatin Daemon
(p. 32) .

You should now be able to start the service and verify whether it is running by doing

$ /etc/init.d/mdservice start

$ tail /var/log/amgad.log

If the server is complaining about a missing boost-library (starting amgad: /usr/bin/amgad:

error while loading shared libraries: libboost_thread-gcc-mt-1_32.so.1.32.0: cannot

open shared object file: No such file or directory), create one with:

$ su

$ cd /usr/lib

$ ln -s libboost_thread.so.1.32.0 libboost_thread-gcc-mt-1_32.so.1.32.0

If you want to set up AMGA and postgreSQL to start at system boot on Linux, you can use
follow steps

$ sudo chkconfig postgresql on

$ sudo chkconfig --add mdservice

To con�rm whether everything was registered properly, run the following :

$ chkconfig --list postgresql

$ chkconfig --list mdservice

If you want to change the con�guration of the metadata server, you should go on and read
Con�guring the AMGA Server and the Replicatin Daemon (p. 32) .

2.3 Server upgrade

To upgrade from an old version(1.3, 1.9) to the 2.x version, The �rst thing you need is to to
backup metadata.

$ mdcli "dump /" > amga.backup

If you �nished to backup your metadata, install the AMGA 2.x rpm after deleting the old
version.

$ rpm -e glite-amga-server

$ rpm -e glite-amga-cli

$ rpm -i emi.amga.amga-server-${version}.${platform}.rpm

After upgrading the amga software, it is necessary to upgrade the backend DB schema.
Here, let us assume that you were using AMGA 1.3 and trying to upgrade to AMGA 2.1 and
the backend DB used was PostgreSQL. Then, upgrading can be easily done with the following
command.

$ psql -Uarda metadata < /usr/share/doc/glite-amga-server/upgradePG_13_20.sql

$ psql -Uarda metadata < /usr/share/doc/glite-amga-server/upgradePG_20_21.sql

Currently we provide various upgrade scripts for Oracle, MySQL5, and PostgreSQL. There
are also scripts upgrading from 1.9 to 2.x version at /usr/share/doc/glite-amga-server/ directory.

If you have a failure on upgrade, it is possilbe to go back to the old version with the data
backup. To recover data, you need to reinstall the old version after deleting new version and
restore data as follows.

$ mdclient < amga.backup

8

2.4 Installation from Source

To install the ARDA metadata server from source you will need to �rst download the source
distribution from the download directory.

For compilation you need to install a development package for ODBC (e.g. unixodbc) This
should be part of any standard distribution. On CERN SLC you simply should be able to do:

$ yum install unixODBC unixODBC-devel

You will then need the libxml2 development library, which should also be part of any distri-
bution. On SLC you can simply install it using

$ yum install libxml2-devel

For the server you will �nally need to install the boost libraries:

$ yum install boost-devel

Now you should be ready to compile and install the AMGA server:

$ tar xvfz emi.amga.amga-server-2.x.x.tar.gz

$ cd emi.amga.amga-server-2.x.x

$./configure

$ make

$ su

$ make install

If you want to make rpm packages for your architecture and install them so that you will be
able to deinstall them easily later or install them also on other machines, do

$ tar xvfz emi.amga.amga-server-2.x.x.tar.gz

$ cd emi.amga.amga-server-2.x.x

$./configure --with-readline --enable-rpm-rules --without-globus

$ make rpm

You will need to get at least one of the currently supported 4 database backends installed,
including their ODBC driver. You have the choice among PostgreSQL, MySQL, Oracle and
SQLite:

• PostgreSQL. This is the easiest solution, since ODBC drivers are included in any distribu-
tion package. On SLC you can install the Postgres ODBC driver using

$ yum install postgresql-odbc

PostgreSQL needs a little setup: You need to create a database and a user. Access should be
made possible via TCP/IP from localhost. The scrpts/init-arda-psqldb.sh script should be
able to do this for you.

• MySQL. Again, ODBC drivers are included in any distribution. On SLC you can install the
MySQL ODBC driver using

$ yum install MyODBC

Again, make sure you have a user created which gets access to the database on MySQL.

• SQLite is a �le-based database. You need to get the ODBC driver and compile if it is not
part of your distribution.

• Oracle can be used from CERN. You need to get the instant client and ODBC driver from
Oracle. Which you can freely download after a registration here. . You will need to set
up Oracle for the service names at you place. At CERN you might try to learn something
from the Oracle Linux pages.

9

Examples of ODBC con�guration �les can be found in the scripts directory. Copy the
odbc.ini and odbcinst.ini con�gurations into /etc or into your home directory (but then
called .odbc.ini and .odbcinst.ini). In odbc.ini you need to con�gure the database used
by the server and which server is being connected to. Examples are given for all 4 databases.
The users(and passwords if required) must then be setup in the amgad.config �le. The ODBC
con�guration can be checked with e.g. gODBCConfig or DataManagerII which are probably
installed along the ODBC package or other ODBC clients like OpenO�ce. If you don't know
about ODBC, some more hints can be found in <a http://www.unixodbc.org/doc/> the Unix
ODBC User Manual .

Some inital tables need to be setup in the database. You need to run one of followings to
setup the database.

$ sqlplus user/passwd < createInitialOracle.sql

$ psql -Uuser database < createInitialPG.sql

$ sqlite3 dbfile.db < createInitial.sql

$ mysql database < createInitialMySQL5.sql

You should now proceed to con�gure the server (Con�guring the AMGA Server and
the Replicatin Daemon (p. 32)) and start it up.

The following database and ODBC versions are known to work:

• SQLite 3.2.1, but not 3.2.7 with the 0.64 and 0.65 ODBC drivers. In 3.2.7 the ODBC
driver is incompatible to the library.

• MySQL 4.0.x and 4.1.x work, 3.x does not.

• PostgreSQL works starting from version 7.2, however only one attribute can be added at
a time in versions before 8.0. Explicitely tested were versions 7.2, 7.3, 7.4 and 8.0 allways
in their latest sub-versions.

2.5 Creating a script for the site-BDII

To create a script for publishing version information for AMGA server, you can use the single
script as follows.

$ su root

$ /etc/init.d/mdservice site <SITENAME>

This script will install glite-info-provider-service(If it is not installed) and make a script �le
named glite-data-metadata-amga. If you already have the site-BDII then this new script �le will
be created in the /var/lib/bdii/gip/provider directory, otherwise, the �le will be create in
your home directory.

This script can be used for publishing GLUE2 information via LDAP.

2.6 Creating a json �le for EMIR

To create a json �le for EMIR, you can use the single script as follows. However, First of all, you
must create a script �le for the site-BDII(See previous section).

$ su root

$ /etc/init.d/mdservice json

This script will make a json �le named amga_json. The �le will be create in your home
directory.

This �le can be used for EMIR-SERP.

10

2.7 Installing on Debian

To install AMGA on Debian, there are some di�erences. Debian uses other commands and has
di�erent dependencies.

You must use a APT command instead of a YUM command and a dpkg command instead
of rpm.

$ rpm -i emi.amga.amga-cli-${version}.${platform}.rpm

will change

$ dpkg -i emi.amga.amga-cli-${version}.${platform}.rpm

$ sudo yum install emi.amga.amga-cli

will change

$ sudo apt-get install emi.amga.amga-cli

The dependencies of AMGA server are di�erent between SL and Debian. The following
packages are necessary to use AMGA and must be installed �rst on Debian: These are standard
Debian packages and can be also found in the ususal EMI repositories.

- boost-build

- libedit-dev

- libxml2

- libldap-2.4-2

- openssl

- unixodbc

- libboost-thread1.42.0

- sudo(for init script)

3 Con�guration of the C++ and Java command line clients

3.1 Con�guration of the C++ command line client

The AMGA C++ command line clients as well as all other executables using theMDClient (p.
??) class of the C++ client package need to read an mdclient.config �le for their con�guration.
This con�guration �le is searched �rst in the current directory, then as $HOME/.mdclient.con�g
and �nally as /usr/etc/mdclient.con�g. Only the port and server of the con�guration �le can be
overridden on the command line of the clients:

$ mdclient [-p port] [hostname]

The following is an example con�guration �le:

$ cat mdclient.config

Connection options

Host = localhost

Port = 8822

User settings

Login = koblitz

PermissionMask = rwx

GroupMask = r-x

Home = /

Security options

UseSSL = yes

AuthenticateWithCertificate = 1

CertFile=/home/koblitz/.globus/usercert.pem

KeyFile=/home/koblitz/.globus/userkey.pem

UseGridProxy = 1

Password = secret

11

VerifyServerCert = 1

IgnoreCertificateNameMismatch = 0

If server certificates are verified, local certificates need to be loaded:

TrustedCertDir = /etc/grid-security/certificates

The following options are supported:

• Host: The name of the host to connect to. This option can be overridden on the
command line of mdclient. (Default: localhost)

• Port: Port of the mdserver to connect to. Can be overridden on the command line of
mdclient using the -p option. (Default: 8822)

• Login: The login name of the user on the AMGA server. All entries created in the
catalogue will have this owner. This is also the user which you need to authentiate to the
AMGA server if authentication is enabled. (Default: NULL which gives the default role
when authenticating with a VO certi�cate)

• PermissionMask: A 3 character string giving the owner permissions of newly created
entries in the metadata catalogue.

• GroupMask: A 3 character string giving the group permissions of newly created entries in
the metadata catalogue.

• Home: The home-directory. The default is "/".

• Name: Can be used to give a full name to the server, comparable to the comment in an
/etc/passwd �le. Currently only used for information in the server.

• UseSSL: Possible values are no, try, require (synonyme is yes). Default is no. Needed for
any authentication using certi�cates (also proxy certi�cate). You want this if you intend
to use passwords which are not sent in plain text. If you use SSL the entire session will be
encrypted. Some servers may require you to use SSL to connect. If you want to be sure
that SSL is allways used you need to set this to require or yes.

• AuthenticateWithCertificate: Set this to 1 to enable certi�cate based authentication,
also grid-proxy certi�cates. You will need to either enable normal certi�cates via a Cert-
File, KeyFile option pair, or use a grid proxy certi�cate via the UseGridProxy option. If
you specify both, then the grid proxy gets precendence. This option does not work if you
have not enabled SSL via UseSSL! In fact you will try to authenticate as the user named
in Login, so you need to have this �eld set as well. However, the Password �eld is ignored
unless certi�cate based authentication fails in which case the password is tried.

• CertFile: Path to your x509 certi�cate in .pem format. For this option to have any e�ect,
you need also options UseSSL and AuthenticateWithCerti�cate enabled and UseGridProxy
disabled!

• KeyFile: Path to your x509 private key in .pem format. If the key is encrypted you will be
asked for the passphrase on client startup. For this option to have any e�ect, you need also
options UseSSL and AuthenticateWithCerti�cate enabled and UseGridProxy disabled!

• UseGridProxy: Tries to use the a grid proxy certi�cate in /tmp/x509up_u[user-id].

• Password: If a password is given, password based authentication will be tried. You should
want to use an SSL connection with this. This is _not_ the password for your private
key. For that you will allways be promted on the command line. For a discussion on
how to escape special characters (#\) see Con�guring the AMGA Server and the
Replicatin Daemon (p. 32) .

• VerifyServerCert: Veri�es the server certi�cate against CA certi�ates in TrustedCert-

Dir, default is 1: yes.

12

• IgnoreCertificateNameMismatch: Do not try to match the DN in the server certi�cate to
the canonical name of the server. Useful for services that have an alias or are multi-homed.
Default is o�.

• TrustedCertDir: A directory with certi�cate authority certi�cates to verify the server
certi�cate.

3.2 Con�guration of the Java command line client

The Java client also reads its con�guration from a �le, called by default mdjavaclient.config.
This �le is searched in the same places as the C++ API looks for the mdclient.config, that is,
�rst in the current directory, then in $HOME/.mdclient.con�g and �nally on /usr/etc/mdjavaclient.config.
Like the C++ client, only the port and server of the con�guration �le can be overridden on the
command line of the clients:

$ mdjavaclient.sh [-p port] [hostname]

Next are the properties recognized on the mdjavaclient.con�g �le. The following have the
same sintax as in the C++ con�guration.

• Host

• Port

• Login

• PermissionMask

• GroupMask

• Name:

The following exist only on the the Java con�guration �le or else have a slightly di�erent
syntax:

• AuthMode: Possible values are GridProxy, Certi�cate, Password, None. Default is None.

• Password: The user password. Only used when the AuthMode is set to Password. If not
provided here, it must be provided at runtime by the user.

• UseSSL: Possible values are 1 for enable, 0 for disable. Default is 0. Needed for any
authentication using certi�cates and grid proxies. If you use SSL the entire session will be
encrypted. Some servers may require you to use SSL to connect.

• CertFile: Path to your x509 certi�cate in .pem format. For this option to have any e�ect,
you need also options UseSSL and the AuthMode set to Certi�cate.

• KeyFile: Path to your x509 private key in .pem format. If the key is encrypted you will
be asked for the passphrase on client startup. For this option to have any e�ect, you need
also options UseSSL and the AuthMode set to Certi�cate.

• PrivateKeyPassword: Password for private key. If not de�ned, the password must be
provided at runtime.

• VerifyServerCert: Veri�es the server certi�cate against CA certi�ates in TrustedCert-

Dir.

• TrustedCertDir: A directory with certi�cate authority certi�cates to verify the server
certi�cate.

13

4 Metadata Access from the Shell

You can access the metadata catalogue either with the mdclient metadata terminal tool as
con�gured in the last section, or via the mdcli (or mdjavacli for those using the java package)
command line tool which allows you to directly issue metadata commands on the shell, it's output
is intended to be easily parseable by scripting languages:

$ mdcli -p8822 -slocalhost listattr /

t

text

f

float

Metadata commands are parsed into pieces which are each separated by white space similarly
to shell commands. If you want the white space to be part of one piece of the command itself,
for example when you want to set an attribute to a string which contains white space, you must
enclose it in singe quotes: ' '. Single quotes are part of the command syntax and used when
parsing the commands into parts. You need them every time a part shall contain spaces. Double
quotes however are used in queries Metadata Queries (p. 27) (expressions evaluated by the
database backend) to distinguish strings from variable references and common values. In order
to put a single quote into a command argument or any other character, you can use an octal
code, e.g. to get a "'".

Note that quotes may be removed by the shell when parsing a shell command, so if you are
using the mdcli tool where the AMGA command is given on the command line, you will need to
protect these single quotes from being removed by the shell with double quotes:" ". The various
APIs will in contrast usually (that is the Python and Java APIs do so, but not the C-API)
automatically quote any arguments you pass to them with single quotes so they are not to be
used in those APIs. The following is an example with mdclient, mdcli and the Python API
showing how quotes are being used:

$ mdclient

Query> find /files '/files:producer="CERN"'

$ mdcli find /files "'/files:producer="CERN"'"

An in python:

mdclient.find('/files', '/files:producer="CERN"');

The metadata server uses a streaming protocol. Some APIs (for example the Java one) allow
to interrupt the streaming of a response. The same is true for the mdclient. Pressing CTRL-C

once during the transmission of the result will interrupt the streaming of the result. Only
pressing CTRL-C a second time will terminate the client.

In the following is given a list of metadata commands. Additionally commands may be
available for group or user access management, as described in Users, Groups and ACLs (p.
47) or Management of Users using the database backend (p. 46) depending on the
server setup. To �nd out which commands are available on the server you are connected to, use
the help command.

4.1 Manipulating Collections

• createdir /parentdir/dir [option]: Creates the directory dir if it does not yet exist but
parentdir already exists. The directory is created with the current owner and the same
ACLs as the parent directory. The option �led is a comma seperated list of options (no
spaces allowed). The following options are available as of AMGA 1.1:

� shared: Subdirectories created under this directory share the same schema and database
table of the parent directory

� acls: Creates a directory with acls for every entry, this is currently only supported
by PostgreSQL and MySQL5 and only if the necessary supporting stored procedures
have been installed �rst.

14

� type=<type> Speci�es the data type of the entry column. Explicitely supported are
int, �oat, date.

� table=<TableType>: Only MySQL. Allows to specify the storage type of the table,
e.g. InnoDB. Neccessary because not all tables are alike. Specify e.g. MyIsam, this
allows for example GIS functionality.

• ls [options] [directory]: Returns the name of all subdirectories, �les, indexes, sequences,
and views in the directory in a very similar way to the UNIX ls command. The following
options can be used with ls.

� l : use a long listing format

� s : returns subdirectories only

• dir [directory]: Returns the name of all subdirectories and �les in the directory. The
result is returned in the following way:

0

entry 1

entry-type-1

...

entry n

entry-type-n

EOT

where the entry-type is either 'entry' or 'collection'. If AMGA collaborates with a �le
catalogue this command will e�ectively show the content of the �le catalogue. If you want
to see which entries have already been attached to a schema in the AMGA part use the
listentries command.

• stat [dir/entry]: Returns information on a given entry or directory. They can also be a
pattern in the case of several entries. You need read permission to get this information.
For an entry the following is returned (if the information is not stored in the table, it

0

name

type (=entry)

owner-permissions

group-permissions

owner

size

creation time (Format: 1999-12-22 04:05:06)

guid

expires

link

EOT

For a directory the following is returned:

0

name

type [options]

owner-permissions

owner

acls

EOT

• rmdir path: Removes all directories matching path. Directories are only deleted if they
are empty and they have no attributes de�ned.

15

• pwd: Prints the current directory which you can change with cd.

• cd path: Changes the directory to the given path. Possible errors are:

� 1 No such �le or directory

� 4 Permission denied

4.2 Commands for Manipulating Attributes

• addattr dir (key type)+: Adds new keys to the list of keys of a directory. In a relational
database backend these keys become the columns of a table associated to a directory. You
should only use one key/type pair currently for compatibility reasons because some older
backends like PostgreSQL <=7.4 do not allow to alter a table adding several columns.
Possible types are explained in AMGA data types (p. 31). The type is only used as a
hint for the back end to store the data e�ciently and allow e�cient queries. The type may
be ignored by the implementation (e.g. if the back end is a �lesystem). In a �lesystem the
types and de�ned keys could be stored as attributes of directories. Some storage backend
may allow you to de�ne keys on a per-entry basis. Possible errors are:

� 1 No such �le or directory

� 4 Permission denied. You need write permission on the directory.

� 7 Illegal Key: Keys must be alphanumeric. The following keys are reserverd: ACL,
CREATED, FILE, GROUP_RIGHTS, GUID, LINK, MD5, OWNER, PERMISSIONS,
SIZE.

� 9 Internal error: All kinds of errors like duplicate keys

� 23 Not a directory. You can only add attributes to a directory.

• removeattr dir/entry key+: Removes the attributes or keys from the list of attribtues
of the directory dir or the directory of the given entry, or if the implementation allows it
from the list of attributes of a given entry. Attributes can only be removed if they are not
used by any entry. So you either have to remove all entries for which this key is set or use
clearattr to set the value of the attributes to NULL In order to remove an attribute, write
permissions on the directory are necessary. Possible Errors are:

� 1 No such �le or directory

� 4 Permission denied. You need write permission on the directory.

� 10 No such key

� 14 Attribute in use

• schema_create dir (attr type)+ [option]: Createds a new directory with a given
schema. This is an atomic replacement for a sequence of createdir and addattr. The
meaning of the optional option argument is backend dependent and you should not use it
if you want to retain this independence. With a MySQL backend you can give here the
name of the table engine, for PostgreSQL the keyword inherit will make the table inherit
its schema from the parent directory.

• setattr �le (attribute value)+: Sets a list of attributes of a �le to given values. The
attributes must exist.

• getattr pattern (attribute)+: Returns the �lename and all attributes in turn for every
�le matching pattern The following output is returned on success:

0

file 1

attr 1

...

attr n

file 2

16

attr 1

...

attr n

...

file n

attr 1

...

attr n

EOT

• listattr �le: Returns a list of all attributes and their types in the following format:

0

attr 1

type 1

attr 2

.

.

.

type n

EOT

• clearattr path attribute: Sets the attributes of all �les matching path to NULL. Path
may currently contain wildcards only in the �le-part. On success returns 0.

4.3 Commands for entry manipulation

• addentry entry (attr value)+: Creates a new entry and assigns the given values to the
provided attributes. Examples:

Query> addentry /testdir/a id 10

Query> addentry b id 10 finished 'Oct-10-2004'

Possible errors are:

� 3 Illegal command: Syntax error

� 4 Permission denied: You need write permission on the directory to create a �le in it.

� 7 Illegal Key

� 10 No such key

� 15 Entry exists

• insert entry (attr value)+: Creates a new entry and assigns the given evaluated values
to the provided attributes. Same as addentry, except that the values are evaluated �rst,
similar to an INSERT statement in SQL.

• addentries (entry)+: Creates the given entries in the catalogue. This command is done
in a transaction, that is either all entries are inserted or none. Entries can be spread over
several directories. Example:

Query> addentries a

Query> addentries /test1/a /test2/a /test1/b

Possible errors are:

� 1 No such �le or directory: You tried to insert into a directory which did not exist.

� 3 Illegal command: Syntax error

� 4 Permission denied

17

• rm [-options] pattern [condition]: Removes all �les matching pattern, where pattern
may only contain wild cards in the �le part. If a condition is given, than that condition
needs to be met by the entry's metadata. In order to remove an entry you need write
permissions on the parent directory. The pattern can also be the name of a directory if a
condition is given, if the table is a plain table, the pattern _must_ be a directory name
and there must be a condition given. Valid �ags are: -r (recursively delete). Possible errors
are:

� 1 No such �le or directory: You tried to insert into a directory which did not exist.

� 4 Permission denied

� 20 Not an entry.

� 29 Operation not permitted on plain table.

• listentries [directory/schema]: Returns the name of all entries in a given directory or
schema. This di�ers from the dir command in that it will not show any directories but
also that it shows only entries attached to a schema in the case of an AMGA catalogue
collaborating with a �le-catalogue. The result is returned in the following way:

0

entry 1

...

entry n

EOT

• transaction: Starts a transaction. Any changes to the backend of AMGA are done only
when commited. To cancel a transaction use abort.

• upload dir (attribute)+: Starts an upload of entries into the catalogue. Currently a
static restriction of the prototype is that there can be only up to 98 attributes assigned
like this. After the upload is initialized, the put, abort and commit commands are allowed.
Errors are returned by the call immediately, the OK code is delayed till the entire upload
is successfully commited.

• put �le (values)+: Inserts a new entry during upload. Errors are returned by the call
immediately, OK is delayed until upload is commited.

• abort: Aborts upload or transaction. Errors and OK are returned by the call immediately.

• commit: Commits upload or transaction. Errors and OK are returned by the call imme-
diately.

4.4 Finding and Updating Entries

• �nd path query: Returns a list of �lenames matching path and ful�lling the query with
their attributes. The path may currently contain only wild cards in the �le name part.
Query must be enclosed in single quotes. Strings in the query must be quoted with double
quotes. For the supported syntax see the chapter about Metadata Queries (p. 27).
WARNING: Be careful with patterns which also match a subdirectory, the result is
unde�ned. The result is returned in the following way:

0

file 1

.

.

.

file n

EOT

18

The following errors may occur: 8 Illegal query: The query could not be parsed or violates
security rules. No further information is currently provided on the reasons for this error.
2 Connection to DB failed or syntax error in path or query

• updateattr pattern (attribute value)+ condition: Updates attributes of entries
matching a pattern in a single collection based on a condition. The values to which the at-
tributes are updated can contain attributes as variables. Complex expressions are allowed
as values. The condition may reference attributes of other collections. Updates are atomic.
Examples:

Query> updateattr /testdir1/* events events+1 'events>100'

Query> updateattr /testdir1/* events events+1 '/testdir2:key > 0'

The �rst example increases the number of events of every �le in /testdir1 which has more
than 100 events by one. The second example increases the number of events of every �le in
/testdir1 provided there is an entry in the collection /testdir2 which has the attribute "key"
set to anything larger than 1 (usefull to do locking by clients: putting such an entry into
/testdir2 would lock /testdir1). For the supported syntax for the queries see the chapter
about Metadata Queries (p. 27).

• updateattr_single pattern (attribute value)+ condition: Almost same as up-
dateattr, but this updates attributes of a random single entry matching a pattern in a
single collection based on a condition. This command is useful when AMGA is used as a
placeholer for task retrieval. Example:

Query> updateattr_single /task status "running" 'status="waiting"'

>> /task/simulration-005

• update pattern (attribute value)+ condition: Same as updateattr, but the values are
not evaluated prior to insertion into the table. This command works with bound variables,
which will also �x problems with SQL command length limitations in Oracle.

• selectattr (attribute)+ condition: Selects attributes from several collections based on
a condition doing an inner join on the collections based on a join condition. The FILE
attribute is used to select the entry name of an entry. Example:

Query> selectattr /jobdir:FILE /configdir:id /jobdir:eventGen /configdir:id

'/jobdir:events>1000 and /configdir:key=/jobdir:key'

This selects the entry-name of a job, the id in the con�guration, the event generator name
of a job and the id in a con�guration for all jobs and con�gurations where the job has more
than 1000 events and the keys attributes of the jobs and con�gurations match. For the
supported syntax for the queries see the chapter about Metadata Queries (p. 27).

As of AMGA 1.2 selectattr also supports constraints to the query similar to a SELECT clause.
Queries can now take the form:

query [distinct] [limit xx [offset yy]] [order exp] [group_by exp]

where the distinct keyword translates into a SELECT DISTINCT, the limit and offset

clause limits the number of rows returned and with the order clause rows can be ordered ac-
cording to the given expression. The group_by construct corresponds to the GROUP BY SQL
statement.

19

4.5 Native SQL Query

Supporting native SQL query greatly eases the work needed to port existing SQL-based database
applications to the Grid using AMGA and complements the existing metadata query language
in AMGA.

The followings are currently supported commands for native SQL queries.

• SELECT

• INSERT

• UPDATE

• DELETE

They conforms to the SQL-92 Entry Level <direct_data_statements>. All the keywords
in native SQL queries should be provided in capital letters. However table names, aliases, and
column names can be either of capital or small. For the details, refer Native SQL Queries (p.
29) .

4.6 Permission Handling

• whoami: Prints out the name of the current user. Note that this command does not need
any connections of the AMGA server and can thus be also used to do a test on whether an
AMGA server is alive and what response time it has.

• chown [-R] entry/dir new_owner: Changes the owner of a directory or entry. Only
the owner of an entry is allowed to execute this, or the root-user. chown does not check
whether the user exists, since user management is considered to be handled outside of
AMGA (ideally). [-R] option changes owner of all the subdirectories recursively. Possible
errors are:

� 1 No such �le or directory

� 4 Permission denied

• chmod entry/dir new_permissions: Changes the access permissions of an entry or
directory. Entries have owner and group-permissions, while directories have owner permis-
sions and group permissions are handled via ACLs. Group permissions for entries allow
you to remove priviliges granted for all entries in a directory via the directories ACLs. The
format of new_permissions is rwxrwx for entries and rwx for directories where "-"-signs
can be substitued for the letters if you do not want to give a certain privilege. The per-
missions for entries are the concatanation of �rst the user and then the group rights. The
x-Flag allows a user to enter a directory or respectively list an entry. r-and w-�ags allow
users to read/write metadata while the w-�ag for directories allows users to create or delete
entries in the given directory. Users cannot list directories for which they don't have read
permissions. The command works also for patterns and uses a transaction. Possible errors
are:

� 1 No such �le/directory

� 4 Permission denied

4.7 Capabilities

Capabilities are additional attributes assigned to individual users. They are used for example to
allow a user to replicate login information. Currently no mapping of VOMS capabilities is done,
but this could be a future use-case.

• capabilities_add <user> <capability>: Adds the given capability to the user's capa-
bilities. Only root can do this.

• capabilities_remove <user> <capability>: Removes the given capability from the
user's capabilities. Only root can do this.

• capabilities_list [user]: Lists all capabilities of a user, default is the current user.

20

4.8 Index Management

• index_create name dir 'key1...keyn' [type]: Creates an index name on a collection di-
rectory using several attributes and a given algorithm. Algorithms depend on the backend.
The index is later referred to /collection/name in index_remove.

• index_remove /path: Removes an index.

• index_list /path: lists all indexes.

4.9 Sudo

Since AMGA 2.0 a sudo command exists, which allows the root user to become any other user.
The syntax is: sudo <user>

4.10 Table Constraints

• constraint_add_not_null directory attribute name: Adds a not NULL constraint
for the given attribute of the directory. Name is the name used to refer to the name of the
constraint. It must be unique for that directory. Write permissions on the directory are
necessary for this operation.

• constraint_add_unique directory attribute name: Adds a UNIQUE constraint for
the given attribute of the directory. Name is the name used to refer to the name of the
constraint. It must be unique for that directory. Write permissions on the directory are
necessary for this operation. NOTE: On MySQL you can use attribute(length) to set the
lenght of indexed columns.

• constraint_add_reference directory attribute re�ered_attr name: Adds a for-
eign key constraint for the given attribute of the directory. The foreign key is given by the
referenced attribute which must fully qualify that attribute including the table part, e.g.
/dir:attr. Name is the name used to refer to the name of the constraint. It must be unique
for that directory. Write permissions on the directory are necessary for this operation.

• constraint_add_check directory check name: Adds a check constraint to the direc-
tory. Check constraints are boolean expression which must be true for all entries inserted
into the directory. An example would be events > 0 requiring the value assigned to
the events attribute to be positive. Name is the name used to refer to the name of the
constraint. It must be unique for that directory. Write permissions on the directory are
necessary for this operation.

• constraint_add_primary_key directory key(s): Adds primary key constraint of the
given directory, which by default is on the entry name only. Example:

Query> constraint_add_primary_key . t,i

In the given example a the primary key becomes the pair of the t, and i attributes.

• constraint_drop directory p_key: Drops the constraint with the given name from
the directory. Write permissions on the directory are necessary for this operation. The
primary key of a table can be removed by specifying the name "p_key".

• constraint_list directory: Prints all constraints of a directory. You need read permis-
sions on the concerned directory.

4.11 Views

Views allow you to create virtual new tables (directories) that combine the information of other
tables, similar to what selectattr does. AMGA uses the native support of the database to
provide views, so the actual behaviour depends on the database backend. For example some

21

backends (like PostgreSQL) allow you to update an existing view, which actually updates the
tables behind it.

An important use-case of views are to support access restrictions to attributes (the columns
of the underlying table). This is a typical use-case for views also in normal databse usage.

Views can be accessed and deleted like normal directories.

• view_create name maindir attr_1 ... attr_n condition: Creates a view with the
given name based on the entries in the given directory, attaching the attribtues given in
the list to these entries, based on the join condition.

In the following examples, the �rst one shows a use case where a view (view1) is created
using all the entries in the current directory, but using only the attr1 or attr2 columns. After
assigning the right permissions to the resulting new directory (./view1), this can be made
readeable for users who need to read these attributes, while they will not have access to the resto
of the attibutes in the . directory. In the second example a view (view2) is created combining
attributes from the current directory and the dir subdirectory.

Query> view_create view1 . attr1 attr2 ''

Query> view_create view2 . attr1 ./dir:attr2 'dir:FILE = FILE'

4.12 Sequences

Sequences allow the creation of a sequence of integer numbers, which are guaranteed to be
unique. They are also monotonically increasing at least during a single AMGA connection. The
exact implementation depends on the database backend, which can optimize handing out parts
of the sequence in batches, so that two consecutive connections not necessarily get �rst a smaller
number in the sequence and then the larger. Sequences are not supported by MySQL <5.0 and
SQLite. On MySQL and Oracle sequences are implemented through stored proceedures. In
PostgreSQL the native mechanism is used.

Sequences behave like another directory in a directory. They cannot be deleted with rmdir,
howerver, instead sequence_remove must be used. The name of the sequence must be lower case
due to limitations in some backends.

• sequence_create name dir [increment] [start value]: Creates a new sequences with
the given name in the given directory. The name of the sequence is then /dir/name. It is
possible to de�ne the increment as well as the start value. Note that backends may not
necessarily follow this behaviour strictly if multiple connections are being used.

• sequence_next sequence: Gets the next value from a sequence.

• sequence_remove sequence: Deletes a sequence.

4.13 Backing Up Data

• dump [-sec_all|sec_none] [dir]: Recursively dumps the contents of a directory and all
subdirectories so that they can be recreated by calling the sequence of AMGA commands
printed out. If no directory is speci�ed, it uses "/", making a full catalogue dump. The �rst
option controls whether entry permissions and ACLs are included in the dump: -sec_all
includes them, while -sec_none only dumps the metadata.

Only root is allowed to use this command. Possible errors are:

� 4 Permission denied

• user_dump [dir]: Dumps the contents of a the user database such that it can be
recreated from the sequence of AMGA commands printed out.

Only root is allowed to use this command. Possible errors are:

� 4 Permission denied

• grp_dump [dir]: Dumps out the information on all existing groups so that they can be
recreated by calling the sequence of AMGA commands printed out.

Only root is allowed to use this command. Possible errors are:

� 4 Permission denied

22

4.14 Site management

For using replication, each AMGA server needs to know about the other servers that take part
in the system, in order to communicate with them. These will be refered to as <it>sites</it>.
The information about other sites is stored in the backend. Sites have the following con�guration
properties:

id

name

hostname

port

login

password

use_ssl

authenticate_with_certificate

cert_file

key_file

use_grid_proxy

verify_server_cert

trusted_cert_dir

require_data_encryption

id is a numeric identi�er internal to each AMGA instance and generated automatically by
AMGA when the site is inserted in the con�guration. name is an human-readable identi�er of the
site, which can be freely chosen by the administrator. hostname and port is the network address
of the remote site. The rest of the properties control the security settings of the connection to
the master and are similar to the ones de�ned in the mdclient.config �le, having a similar
meaning. Section Con�guration of the C++ and Java command line clients (p. 11)
describes their usage.

The following commands can be used to manage the sites and their con�guration:

• site_list: Lists all sites and their IDs. Shows only a summary for each site, consisting
of id, name, hostname and port.

• site_add site_name [hostname:port]: Registers a site. Only root can perform this
operation.

� 4 Permission denied

• site_remove site: Removes a site. Only root can perform this operation.

� 4 Permission denied

• site_set_properties site property value [property value]∗: Updates one or more
con�guration properties of a site. Only root can perform this operation.

� 4 Permission denied

• site_get_properties site property [property]∗: Gets one or more con�guration
properties of a site. Only root can perform this operation.

� 4 Permission denied

• site_list_properties site: List all con�guration properties of a site, as a list of
key/value pairs. Only root can perform this operation.

� 4 Permission denied

• site_dump [siteName]∗: Outputs the con�guration of sites as a list of metadata
commands that can be executed by AMGA to recreate the con�guration. If no siteName

is provided, it dumps all sites in the con�guration. Only root can perform this operation.

� 4 Permission denied

23

4.15 Various administrative commands

• import tablename dir: Makes the table given by tablename available under the given
dir as a plain table. Only root can perform this operation.

� 4 Permission denied

• execute script [Options]...: Executes a script in the directory given by the ExecRoot
option in the server con�guration �le. The script is run with the user-id given in the
ExecUser con�guration variable, if the amgad is started as root. The script has access
to the USER and DN environment variables giving the user name of the amga user and
the distinguished name if a certi�cate was used to authentiate to AMGA. To enable this
feature, ExecRoot must be set. The administrator of AMGA is responsible to set this up
carefully and make sure that scripts are checking the permissions in USER/DN. The stdout
of the script is returned through AMGA to the client. This gives AMGA a functionality
similar to a cgi-bin in a web-server. The following error codes exist:

� 21 Function not implemented: ExecRoot not set.

� 4 Permission denied: Cannot execute anything outside of ExecRoot.

• backend: Returns the name of the current database backend.

• version: Returns a version number of the connected AMGA server.

4.16 Replication

The following are the commands used to control replication from the AMGA command line
interface. Some of them are for nodes acting as slaves, others for nodes acting as masters. Nodes
acting both as slave and master can use all of them. Section Replication in AMGA (p. 36)
provides the background information required to understand these commands.

4.16.1 Commands for Slave Nodes

Slave nodes are responsible for initiating replication, by contacting the master and requesting the
replication of the directories they are interested on. This is done using the following commands:

• rep_list_mounts: Lists all local mounts and their current state. It prints out the
following information for each mount

<nodeID>:<directory> - <currentXID>, <state>

where:

� <nodeID> is the master from where the directory is being replicated.

� <directory> is the root directory of this mount.

� <currentXID> is the xid of the last log that was applied to this mount

� <current state> is either Disconnected if there is no connection to this master,
Reconnecting (after a broken connection, trying to reconnect to master) or Receiving
(connected to master and receiving logs).

• rep_mount [-nosync | -noperms] nodeID remoteDirectory: Mounts remoteDirectory
from the master with id nodeID. After mounted, remoteDirectory is used to refer to this
mount and is therefore also called mountPoint. This command fails if remoteDirectory
already exists locally or if its parent directory does not exist. For instance, to mount /a/b,
directory /a must be created and /a/b should not exist. It also synchronizes the local
directory by coping the contents of the mount point from the master to the slave, but it
does not make the slave start to receive logs. For that, use rep_start_receive. After
this command executes successfully, the mount is on the Inactive state. By default, the
permissions and acls associated with the metadata are also replicated. If -noperms is spec-
i�ed, the metadata will be replicated without any security information. If -nosync option
is speci�ed, existing metadata is not synchronezed but changes are replicated to the slave
after rep_mount. On the slave, the metadata will be owned by the local user performing
replication (which currently must be root).

24

• rep_umount [-noerase] mountPoint: Unmounts the given mount point. The local
contents of mountPoint is deleted, as well as the root directory of the mount point. This
command only works if the connection to this master is inactive, that is, it should not
be receiving logs. See rep_stop_receive. If -noerase option is speci�ed, the existing
metadata are not erased with res_umount. The nodeID has to be assigned via site_add

with the port of the site pointing to the replication daemon, and where at least the login
site-property has to be set.

• rep_mount_users nodeID: Replicates user and group information from the given mas-
ter. The root user and any groups owned by root are not replicated. The slave must not
have any user or group de�ned, except root or groups owned by root. Each slave can
only replicate users and groups from a single master. Apart from these restrictions, the
replication of users and groups is handled by any other mount.

• rep_umount_users: Stops replicating users and deletes all users and groups imported
from the master. This command only works if the connection to the master is inactive,
that is, it should not be receiving logs. See rep_stop_receive.

• rep_users_allow user: Allows the given user to replicate user (login) information. This
needs to be allowed done on the master as well as on the slave.

• rep_users_disallow user: Disallows the given user to replicate user information

• rep_start_receive master: Connects to master starts receiving the replication logs for
all mount points originating from this node. This opens a TCP connection that is kept
open while the slave is running. If the slave is shutdown, the next time it restarts it will
try to reestablish the connection to the master to continue receiving logs. The state of all
mounts from this master is changed to Receiving.

• rep_stop_receive master: Stops receiving logs from master. The TCP connection
is closed and the state of all mount points originating from this node is changed to
Disconnected. In this state, connections will not be reestablished when the slave is
restarted.

4.16.2 Commands for Master Nodes

The main responsibility of master nodes is to con�gure the access control rights of slaves. Slaves
connect to the master using the standard AMGA users and authenticate in the same way. Access
control is done using the replication right, which is granted to users to control the directories
they are allowed to replicate. The following commands allow granting and removing this right:

• rep_allow directory user: Grants to user the right to replicate directory and all its
subdirectories. Having this permission is a necessary and su�cient condition for a user to
be allowed to replicate a directory. In particular, the normal user permissions play no role
in deciding to allow a user to replicate a directory.

• rep_disallow directory user: Remove from user the right to replicate directory and
all its subdirectories.

• rep_users_allow user: Allows the given user to replicate user (login) information. This
needs to be allowed done on the master as well as on the slave.

• rep_users_disallow user: Disallows the given user to replicate user information.

• rep_show_permissions: Show the replication rights for all directories.

• rep_list_subscribers: Show the list of the current subscribers, with their subscriptions.
This includes information about whether users/groups and permissions are being replicated
and the last xid acknowledge by the subscribers.

AMGA also has special commands for user and group management. They are optional and
may not be available on your installation for example if it collaborates with a �le catalogue and
uses the permission system of that catalogue. For more information see Users, Groups and
ACLs (p. 47) and User Management (p. 45).

25

4.17 Federation

The following are the commands used to control federation from the AMGA command line in-
terface. Section Federation in AMGA (p. 43) provides the background information required
to understand these commands. One AMGA server may initiate federation, by contacting other
AMGA server and requesting the federation of the directories it is interested on. This is done
using the following commands:

• fed_list_mounts: Lists all local mounts and their current state. It prints out the
following information for each mount

Query> fed_list_mounts

<directory1>

<site1>

<directory1>

<site2>

...

where:

� <directory> is the root directory of this mount.

� <site> is the site name connected to this mount

• fed_mount site directory: Mounts directory from other AMGA server named with
site. After mounted, directory is used to refer to this mount and is therefore also called
mountPoint. This command fails if remoteDirectory already exists locally or if its parent
directory does not exist. For instance, to mount /a/b, directory /a must be created and
/a/b should not exist.

• fed_umount directory: Unmounts the given mount point.

• fed_policy : shows current policy about federation. The �rst line shows whether connec-
tion failures are allowed in federation, and the second line shows whether execution failures
are allowsed.

• fed_check_failure shows whether last command had failures. The �rst line shows
whether connection failures happened, and the second line shows whether execution failures
happened.

4.18 Commands for Replica Management

The set of commands below provide functionality for the management of replicas, in terms of a
global storage index, as well as a local replica lookup system.

In order to have support for replica management, the entries in the table need to have support
for GUIDs. This is enabled, by using the makedir command instead of the createdir command,
which takes exactly the same options, execpt, that permissions and the guid feature are switched
on by default.

GUIDs are inserted as root via

Query> addentry /fdir/entry GUID beda818d-1090-489c-b9f9-6f3156a81828

If you want to play with this, use the uuidgen UNIX-command to create new guids. To list
the guid values, use the -g switch in ls or stat.

The following commands allow the management of replicas of �les, similar to a �le catalogue
local to a site. This functionality provies the possiblity to map GUIDs to SURLs (also known as
PFNs, Physical File Names). Note that AMGA only supports one SURL per guid. This means
that if you want to support multiple replicas (e.g. on multiple Storage Elements), you need to
have one AMGA catalogue per SE:

26

• replica_add guid surl <expires>: Adds aSURL as a replica to the guid. That GUID
must exist. Optionally it is possible to de�ne an expiration time (e.g. for volatile storage).
That time must be a date parseable by the database (this functionality is not implemented).
The guid must already be known to the system, e.g. by adding an entry in a guid-enabled
table with addentry. This is a root-only command.

• replica_remove surl [guid]: Removes a replica SURL of all �les. It is possible to restrict
the operation to guid only. This command requires root privileges as the permissions on
the entry itself are not checkd.

• replica_get [guid ... | -l lfn ...l]: Returns the SURLs of all guids or lfns given.

• lfn_lookup guid looks up the LFN and the SURL of the guid.

The next set of commands allows to assign sites as locations of replicas to guids. This
is usefull if the catalogue is being used in a global mode. In that case it can easily provide
information on sites with replicas of a given �le. This functionality is also referred to as a Site-
Index (SI) and AMGA stores the information in a highly-optimized bit�eld. The Site (p. ??)
Index functionality can be combined with the AMGA functionality for local replica management
above. Note that the ideal mode of operation would be if local AMGA catalogues store SURLs
and can be locally updated, replicating the information back to a global SI. However, this mode
of operation is currently not supported by AMGA's replication functionality.

The SI functionality is highly optimzed in AMGA for the usage with Oracle, but also Postgre-
SQL was successfully tested and the performance is very good. The guids are stored in binary
format as well as the storage index bitmap, so the information is stored in the most compact
format. Indexes are used for row-lookup.

• replica_register guid site: Registers a replica for guid at the given site. The site can
be either the site id (number) as returned by site_list, or the name of the site. This
command requires root privileges.

• replica_unregiseter guid site: Unregisters a replica guid from a site. The site can
either be the numerical id, or its name. This command requires root privileges.

• replica_list [guid ... | -l lfn ...l]: Returns the sites which hold replicas of all guids or
lfns given.

The function lfn_lookup guid is used to retrieve the LFN and SURL from a given guid,
however in AMGA 2.0 it only returns the directory in which a �le resides.

5 Metadata Queries

AMGA provides its own query language which is similar to the SQL query language. It tries to
o�er a large subset of the common functionality of database systems in a transparent way to the
user. The biggest di�erence to SQL is that in AMGA's query language tables are referred to as
references to directories. AMGA will ensure access restrictions on the data so that users cannot
infer data from queries if they have no read-access to that data.

Queries are performed in the following AMGA commands:

Query> find entry_pattern query_condition

Query> selectattr column_1_query ... column_n_query query_condition

Query> updateattr attr_1 update_query_1 attr_n update_query_n query_condition

Query> updateattr_single attr_1 update_query_1 attr_n update_query_n query_condition

A query condition is a query which returns a boolean in order to select or not select an entry
for retrieval or update. Examples are

/jobdir:events>1000 and /configdir:key=/jobdir:key

like(/jobdir:FILE, "t%")

27

Query conditions are used in the WHERE statements of the SQL queries which are passed
to the backends.

The other queries used in the AMGA commands return general values which are returned to
the user in the selectattr command or which are used to update attributes in the updateattr
command.

Queries can contain either literal values like numbers or strings which are marked by double
quotes. Make sure to use single quotes around double quotes if the string contains spaces. Queries
can also contain attributes which are evalued in the query by �lling in the values of the attribtues
for the current value. In AMGA all queries are in fact inner joins over all tables mentionned in
any of the queries of command, that is the all possible combinations of all entries of all tables
are made and those selected matching the query condition. Inner joins are the most common
type of join. Some database systems provide no other kind.

References to attributes take the form:

<dirctory>:<attribute>

where relative paths to the directory (which is synonyme for table or schema, here) are
allowed. Examples are:

Query> selectattr /test:t 'like(t, "Test%")'

Query> selectattr count(/test:t) 'like(t, "Test%")'

From the above example you can see that also functions are allowed. Function names are
case-sensitive and lowercase. The following functions are available:

• lower(string): Converts string to lower case.

• upper(string): Converts string to upper case.

• count(x): Aggregate function. Counts how often the attribute is set (not = NULL)

• abs(x): Absolute value of x.

• sin(x): The sine of x.

• cos(x): The cosine of x.

• tan(x): The tangens of x.

• atan(x): The arc-tangens of x.

• sqrt(x): The square root of x.

• ln(x): The natural logarithm of x.

• log(x): The base 10 logarithm of x.

• rnd(): A random number between 0 and 1.

• sum(x): The aggregate sum of x.

• max(x): The aggregate maximum of x.

• min(x): The aggregate minimum of x.

• avg(x): The aggregate average of x.

• length(string): The length of the string.

• pow(x, y): x to the power of y.

• mod(x, y): x modulo y.

• concat(str1, str2): The concatanation of str1 and str2.

• like(str, pattern): Whether str is like pattern. The pattern is an SQL90 pattern.

28

• substr(str, n, m): The substring of length m of str starting at n.

• isnull(arg): Checks that the argument is NULL;

• notnull(arg): Checks that the argument is not NULL;

• is(condition, t, e): Evaluates to t if condition is ful�lled, otherwise to e.

Queries can contain the following operators: +, -, ∗, /, =, and, or, not, >=, <=,

<> or !=

Special attribute names refer to the properties of an entry:

• FILE: The name of the entry.

• LINK: The link pointed to.

• OWNER: The owner of the entry.

• PERMISSIONS: The owner's permission.

• GROUP_RIGHTS: The group-rights. These names could e.g. be used to restrict access to
entries using a VIEW.

As of version 1.2.11, AMGA supports other table joins apart from the implicite cross join.
The supported joins are left and right outer joins and the inner join. The following shows some
examples

Query> selectattr /t1:num /t1:name /t2:num /t2:value '/t1:num = 1 join_left_on(/t1:, /t2:,

/t1:num = /t2:num) limit 1'

Query> selectattr /t1:name /t2:value 'join_right_on(/t1:, /t2:, /t1:num = /t2:num)'

The following is a list of the supported joins and their translation into SQL:

• join_left_on(<left>, <right>, <condition>) left LEFT OUTER JOIN right ON
condition

• join_right_on(<left>, <right>, <condition>) left RIGHT OUTER JOIN right
ON condition

• join_inner_on(<left>, <right>, <condition>) left INNER JOIN right ON condi-
tion

• join_cross(<left>, <right>) left C JOIN right ON condition

The exact syntax of AMGA queries is describted in the annotated parser.y++ and lexer.l++
sourcecodes.

6 Native SQL Queries

As of version 1.9, AMGA supports the native SQL query, which greatly eases the work needed to
port existing SQL-based database applications to the Grid using AMGA and complements the
existing metadata query language in AMGA. This feature also makes full use of the advanced
security features of AMGA, namely schema ACLs and access through the GSI.

The followings are currently supported native SQL queries.

• SQL-92 Entry Level <direct_data_statements>

� SELECT, INSERT, UPDATE, and DELETE

• Part of SQL-92 Intermediate Level

� OUTER JOIN

• Not de�ned in the SQL Standard

� LIMIT and OFFSET

29

IMPORTANT NOTE: All the keywords in native SQL queries should be provided
in capital lettersr. However table names, aliases, and column names can be either of capital
or small.

Table names are referred to as references to directories. And reference to an attribute can
take one of the forms as follows:

<attribute>

<directory>:<attribute>

<directory>.<attribute>

Special attribute such as FILE, OWNER, PERMISSIONS, GROUP_RIGHT refer to the
properties of an entry. For detail, refer metadata_quries .

6.1 SQL-92 Entry Level <direct_data_statements>

AMGA supports <direct_data_statements> in the SQL-92 entry level that is supported by
most DBMS such as PostgreSQL, Oracle, MySQL, SQLite and etc. The SQL-92 Entry Level
<direct_data_statements> includes 4 basic statements: SELECT, INSERT, UPDATE, and DELETE.
The brief syntax of supported statements is as follows.

• SELECT [ALL | DISTINCT] select_list from_clause [where_clause] [group_by_clause]

[having_clause] [order_by_clause] [;]

• INSERT INTO table [column_list] VALUES ({ value_list | query_specification }

) [;]

• UPDATE table SET assignment_list [where_clause] [;]

• DELETE FROM table [where_clause] [;]

Examples are as follows.

- Query> SELECT EMPNUM,HOURS FROM WORKS WHERE PNUM='P2' ORDER BY 2 ASC

- Query> SELECT SUM(HOURS),AVG(HOURS),MIN(HOURS),MAX(HOURS) FROM WORKS

WHERE EMPNUM='E1';

- Query> SELECT * FROM STAFF FIRST1, STAFF SECOND2

WHERE FIRST1.CITY = SECOND2.CITY AND FIRST1.EMPNUM < SECOND2.EMPNUM

- Query> INSERT INTO WORKS VALUES ('P22','E22',NULL);

- Query> UPDATE STAFF SET GRADE = NULL

WHERE EMPNUM = 'E1' OR EMPNUM = 'E3' OR EMPNUM = 'E5';

- Query> DELETE FROM WORKS WHERE PNUM='P18';

The exact syntax of SQL-92 entry level is described in the following site.

- http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt.

The output of SELECT statement prints attribute names followed by attributes values. Other
statements return how many rows have been changed as a result.

Possible Errors are:

• 4 Permission denied : You need proper permission on the table

• 88 SQL Parsing Error : SQL syntax is wrong

30

6.2 LIMIT, OFFSET and JOIN

LIMIT, OFFSET and JOIN are supported in AMGA even though they are not de�ned in the SQL-
92 Entry Level, because there were many requirements from user communities. With LIMIT and
OFFSET, it is possible to specify a range of rows to return. The SQL JOIN combines records from
two tables, resulting in a new, temporary table, sometimes called a "joined table".

Examples are as follows.

- Query> SELECT * FROM WORKS RIGHT OUTER JOIN STAFF USING (EMPNUM)

ORDER BY WORKS.EMPNUM LIMIT 1 OFFSET 2

6.3 Current Limitation

• The native SQL queries do not provide means to modify ACLs on tables or entries, which
can be set properly by other AMGA operations.

7 AMGA data types

The AMGA metadata server supports a set of generic datatypes for all the possible backends. It
is guaranteed that if you add an attribute of with one of these types that it is translated into a
type supported by the database. AMGA also guarantees that a listattr command will return
the same data type.

Other datatypes supported by a given back end can be used, however they will be not portable
and it is not guaranteed that listattr will return the type you speci�ed with addattr.

The following table lists the generic metadata data types supported by AMGA and their
internal representation in the back ends:

PostgreSQL MySQL Oracle SQLite Python
int integer int number(38) int int
�oat double precision double precision �oat �oat �oat
varchar(n) character varying(n) character varying(n) varchar2(n) varchar(n) string
timestamp timestamp w/o TZ datetime timestamp(6) unsupported time (unsupp.)
text text text long text string
numeric(p,s) numeric(p,s) numeric(p,s) numeric(p,s) numeric(p,s) �oat

The datatypes have the following properties:

• int: at least 32 bit integer value.

• �oat: 64 bits IEEE double precision �oating point number.

• varchar(n): A string of up to at least n = 254 characters. The low limit of 254 is imposed
by MySQL 4.0 and smaller version. MySQL may also truncate any trailing white space,
see MySQL documentation.

• timestamp: Timestamp with format 'YYYY-MM-DD HH:MI:SS'.

• text: Long text string (2GB size limit).

• numeric(p,s):SQL numeric type with precision p and scale s.

Note that SQLite not really has a strong typing system. SQLite is in fact typeless, so you
can try to store anything into a given column, although internally it distinguishes between text
strings and 64 bit double precision values. A column is of type text if the column type contains
any of the following substrings: BLOB, CHAR, CLOB, TEXT.

The pure Python back end distinguishes strings, �oats (64 bit), integers (64 bit) and times-
tamps.

Both pure python and SQLite will accept any type and guarantee you that the same type is
returned by listattr with the default datatypes being numeric and string respectively.

31

8 Con�guring the AMGA Server and the Replicatin Dae-

mon

The AMGA metadata server amgad the AMGA replication daemon mdservermt.config are
con�gured using the amgad.config �le. By default, they share the same con�guration �le, but
by using the -c command line option it is possible to specify a di�erent con�guration �le for
each. Nevertheless, the format of the con�guration is similar for both programs.

8.1 Format of the Con�guration File

Every line of the �le contains a key value pair seperated by an equal (=) sign. Blank space is
ignored around the equal sign and the end of the line. Keys may not contain any white space but
white space in the value is allowed. To have white space at the beginning of a value (after the
=) or at the end (at the end of the line), escape it with a backslash (\). Lines can be continued
with a backslash (\) at the end of a line (white space after the \ is ignored). Comments can be
put at the beginning or end of a line after a hash-sign (#). The escape character is the backslash
(\). The following escape sequences exist:

• \ : Gives \

• # : Gives #

• \ (): Insert a space at beginning/end of option

The con�guration �le is divided into two sections. The �rst, consisting of settings de�ned
in the global section, contains generic server options. The second section is called Replication

and contains all the settings controlling replication. Sections are opened like this:

[SectionA]

...

[SectionB]

...

8.2 Example of a server con�guration �le

Server options

Port=8822 # Default 8822

MinProcesses = 2

MaxProcesses = 50 # Default: 50

Mode = process # process (default) or thread mode

initThreadNumber = 8

MaxConnectsPerProcess = 1000000

Report = enable

Database options

The DataSource option must match a data source name in the odbc.ini file

#DataSource=sqlitedb

#DataSource=Oracle10g

DataSource=PSQL

DBUser=arda

Session options

Sessions = allow # Values are: no allow force

IdleTimeout = 1200 # Timeout for a connection/query in sec [20m default]

SessionTimeout = 86400 # Timeout for a session in the cache in sec

MaxSessionSize = 3000 # The maximum size that pesistent session info can have

Connection limits

32

#MaxConnectsPerUser = -1 # Maximum concurrent connections per user

#ReservedConnections = -1 # Number of connections reserved for root

Secure Connections

UseSSL = 1

Authentication options

RequireAuthentication = 0 # If this is off, no authentication is done!

AllowCertificateAuthentication = 1

AllowPasswordAuthentication = 1

If you use SSL, you need to load server certificates:

CertFile = cert.pem

KeyFile = key.pem

If Certificate based authentication allowed, you need to load server certs

TrustedCertDir = /etc/grid-security/certificates

AllowGridProxyLogin = 1 # Requires also AllowCertificateAuthentication

Authorization options, choose 0 or more

#MapFile = /etc/grid-map-file # Authorization based on certs

Authorization based on certifictes, put a list of VOMS URL and assigned users, here:

#VOMSGroups = https://lcg-voms.cern.ch:8443/voms/lhcb/services/VOMSAdmin?method=listMembers, lhcb, \

https://kuiken.nikhef.nl:8443/voms/picard/services/VOMSAdmin?method=listMembers, picard

UserDB = 1 # Authorization based on certs & passwords

#VOGroupMap =

#VirtualOrganizations = gildav(gilda) # vo1(defaultUser1), vo2, vo3(defaultUser2)...

#VOGroupMap = gildav:/gildav(gildav:users)

#VOUserMap = gildav:/gildav/Role=TrailersManager(gildav)

#MyProxyHack = 1 # Allow roles in MyProxy certificates for login

########################

Replication settings

########################

[Replication]

Settings for the master

EnableMaster = 0

ReplicationDaemonPort=8833

The remaining slaves are for slave nodes

EnableSlave = 1

NodeName=gridpc1

8.3 Description of the server options

The following options are supported:

• Port: The number of the port the server will listen on. This can be overridden on the
command line with the -p switch. The default port is 8822.

• MinProcesses: This is the minimum number of processes waiting for client connections
the server must o�er. When the server starts up or there are no client connections for some
time, MinProcesses is the number of processes spawned waiting for connections.

• MaxProcesses: This is the maximum number of processes the server will spawn in total.
The server always tries to have 1/3 of the processes in the awaiting connection state. To
achieve this, the server will spawn new processes until the number of MaxProcess is reached.
Please make sure that your database backend can support as many client connections.

• Mode : This de�ne the execute mode of AMGA daemon. In process mode, each AMGA
process is created and responses one client request. In thread mode, each AMGA process
several has threads to response requests. The default value is process.

33

• initThreadNumber : The number of threads each process has. When the server start
up initThreadNumber is the number of threads spawned waiting for connection if Mode
value is thread. The default is 4.

• Report : AMGA contains statistics collection functionality. When the server start up
AMGA sends statistics such as AMGA version, Daemon mode and so on to the collection
server on kisti.re.kr. This is enabled by default.

• MaxConnectsPerProcess: To prevent any very rare memory leaks or other resource
leaks to reduce the stability of the service, server processes can be asked to terminate
themselves after serving a certain number of connections. The default is not to do this.

• DataSource: An ODBC database source which you need to have con�gured in an
odbc.ini �le. Note: you can use programs like gODBCCon�g or iodbcadm-gtk to con-
�gure ODBC. The underlying database needs to be prepared for AMGA by running the
createInitial.sql script in the scripts directory of the AMGA distribution.

• DBUser: The user with which the server will contact the database backend. The user
name given in the odbci.ini �le is the default.

• DBPass: The password the server will give when contacting to the database backend.
The password in odbc.ini is the default.

• DBSchema: The schema within the database AMGA shall use for its own tables. Via the
import feature it is possible to then access tables in di�erent schemas. The default depends
on the database backend and is the user-name on Oracle, the database name on MySQL
and for SQLite and PostgreSQL it is the default schema of the database.

• Sessions: This de�nes whether you want to allow sessions. Sessions create an overhead
on the protocol if they are enforced, so the performance of individual clients may reduce
while you will be able to support more clients which share the available connections (there
is a maximum of MaxProcesses connections, if they are all hogged by a client, then no
new clients will be able to connect). Such a denial-of-service situation can be prevented by
forcing sessions. Values are: no, allow, force. Default is allow.

• IdleTimeout: Timeout for an idle connection (that is a connection that waits for a
client command) in seconds. There are no timeouts currently for database queries apart
from how the database is con�gured. The default is 20 minutes. This is what will make
your mdclient command line tool time out.

• SessionTimeout: Timeouts for session. The lifetime of a session in seconds. Default is
1 day.

• MaxSessionSize: Maximum size a session can have when persistently stored on the
server between connections. Default is 3000 bytes. This should be su�cient for most cer-
ti�cates used. Rember that the total shared memory needed by the amgad is Sessions∗Max-
SessionSize.

• MaxConnectsPerUser: Maximum number of concurrent connections for a user. Default
is -1: No limits.

• ReservedConnections: Number of connections reserved for the root user. Default is
-1: No reserved connections.

• UseSSL: Whether the server will o�er SSL as a connection protocol. This is also required
to allow certi�cate based authentication and if you want to use passwords this is recom-
mended if you want to be sure no one listens in. Values are 0 and 1, default is 1. Note that
you cannot force the client to use an SSL connection.

• RequireAuthentication: Whether users need to be authenticated. Default is 0: no.

34

• AllowCertificateAuthentication: Whether you allow users to authenticate with
their certi�cate. You will need to have CA serti�cates loaded for the server for this to
work in order to be able to verify the client's certi�cate. See TrustedCertDir. You should
also look at User Management (p. 45) because you will need to have a user manager
module running for this to work. Default is 0: no.

• AllowPasswordAuthentication: Allow authentication with a password. You need a
user manager module running for this to work. See User Management (p. 45) .
Default is 0: no.

• CertFile: The path to the server certi�cate in PEM format. Preferably without en-
cryption. Necessary to use SSL.

• KeyFile: The path to the private key of the server in PEM �le format. Necessary to
use SSL.

• TrustedCertDir: Path to a directory with trusted CA certi�cates. Needed to verify a
client certi�cate.

• AllowGridProxyLogin: Whether you allow users to authenticate with a proxy certi�-
cate. Default is 0: no.

8.3.1 Replication Settings

The following options control the replication system. They should be de�ned on the replica-
tion section of the con�guration �le, otherwise AMGA will either not recognize them or will
understand them as referring to one of the generic settings, since some names are equal.

These two settings are used by master nodes:

• EnableMaster: Allow this node to act as a master for replication. In particular, this
setting activates saving of replication logs to the hard disk. Therefore, if the node is not
going to be used as a master, this setting should be disabled for performance reasons.
Default: 0. (Disabled)

• ReplicationDaemonPort: The port used by the replication daemon to listen for con-
nections from slaves. Default: 8823.

The following settings are used by slave nodes:

• EnableSlave: Allow this node to act as a slave for replication. Leaving this setting
active has no impact on performance, the only di�erent is that it allows the use of the
client side replication commands. Default: 0. (Disabled)

• NodeName: The identi�er of the local node. Should be unique among all the nodes on
the system.

For the rest of the options see User Management (p. 45) .

8.3.2 Federation Settings

The following options control the federation system.

• ServerSideFed: Allow the AMGA server to do actual federation work. Otherwise, the
AMGA server just sends information of federated hosts to clients, and the client does the
actual federation. For the detail, refer Federation in AMGA (p. 43). Default: 1.
(enabled)

• AllowFedConnFail: Allows connection failures while federating data. Default: 1 (en-
abled).

• AllowFedExecFail: Allows command execution failures while federating data. Default:
1 (enabled).

35

9 Replication in AMGA

This section presents the Replication mechanisms that are part of AMGA since version 1.2.

9.1 Overview

In this section we provide the technical background necessary to understand replication in
AMGA. Reading this section is highly recomended for anyone interested in using this feature.
Further details can be found in the following article, available on the AMGA web page:

N. Santos and B. Koblitz, Distributed Metadata with the AMGA Metadata Catalog,

In Workshop on Next-Generation Distributed Data Management - HPDC-15, Paris, France,

June 2006

Some more background is also explained here.

9.1.1 Features Overview

Replication in AMGA follows an asynchronous, master-slave model, and supports partial
replication of the directory hierarchy.

In master-slave replication only one of the replicas, the master, is writable, with all other
replicas being always read-only. This model is su�cient for all applications with read-only
metadata or where the metadata is written only at a single geographical location, which covers
most of the Grid applications.

Slaves can replicate any sub-tree of the metadata hierarchy. This allows slaves to copy only
the data they are interested on, reducing the load both on the slave and on the master, as well as
the bandwidth requirements. If desired, a full replica of the master can be obtained by replicating
the root directory.

9.1.2 Concepts

Next is the description of the main concepts used in AMGA Replication.

• Master: Any node that exports part of its metadata hierarchy for replication.

• Slave: Any node that replicates metadata from a master. A node can be both a slave and
a master at the same time, or neither if working standalone.

• Replication log: Shipped from a master to a slave, containing a metadata command plus
some context information that allows the slave to replay the original command executed
at the master.

• Subscriptions: To replicate a directory, the slave creates a subscription for that directory
with the master that will allow it to receive the replication logs for that particular directory.

• Mount: On the slave side, the root of the sub-tree subscribed from the master is called
the mount. There is a mount for each subscription and it corresponds the the path of
the directory that is replicated. Each mount contains also all the sub-directories of the
mounted directory.

• Initial Synchronization: When a slave subscribes for the �rst time to a directory, it
must copy the existing data for which there are no replication logs.

9.1.3 Architecture Overview

In AMGA replication, the master ships to the slaves logs containing the metadata commands
executed at the master, much in the same way as it is done in Oracle Streams and MySQL
replication. When updated by a client, the master saves a replication log containing the command
and some context information to the logs table on its database backend. A separate program,
the replication daemon, queries the database periodically looking for new logs and shipping
them to the slaves with subscriptions to the directories updated by the command of the log.
This replication daemon is also responsible for managing the list of slaves that are replicating
from the master. At the slave, the logs are replayed to update the slave's metadata. The logs

36

contain only metadata commands, and they are totally independent of the underlying database
backend.

Logs are assigned a unique sequence number at creation time, the log xid. Each AMGA
instance generates its own identi�ers in an independent way, so the xid is unique only inside an
AMGA instance. The xid is necessary for synchronization between the slave and the master.
For each directory replicated, the slave keeps the xid of the last log it received and applied, so
that it knows from what point to resume after connection failures or shutdowns. The master
also keeps track of the subscriptions by storing them persistently on its database backend, on
the subscribers table. For each subscription, it stores the most recent xid that the slave has
acknowledge. This is necessary to know when there are no more slaves waiting for a particular
log, so it can be removed from the logs table.

Replication Daemon The bulk of the operations necessary for replication on master nodes are
implemented outside the amgad process, by the mdrepdaemon program, also called the replication
daemon. The amgad is only responsible for writing the replication logs to the database, while
the replication daemon does everything else related to replication, including:

• Managing subscriptions

• Accepting replication requests from slaves

• Sending the initial snapshot of replicated directories to slaves

• Polling the logs table and shipping logs to the interested subscribers

• Cleaning up the logs table, removing any unnecessary logs.

The replication daemon is independent of the AMGA server it is working for, and needs only
to connect to the database backend used by the AMGA server. Apart from that, there is no
communication between them and they can run separately, even on di�erent machines for better
load balancing.

9.1.4 Operation

Nodes interested in replicating from another node must subscribe to the directories they wish to
receive by contacting the replication daemon of that node. After connecting, the slave informs
the master of the directories it is interested on, and begins copying the contents of the database.
This is done using the dump feature of AMGA, which generates the commands that must be
executed on another AMGA instance to recreate a directory hierarchy. The replication daemon
internally executes a dump and forwards the commands to the slave, that replays them. Each
directory is shipped using a database transaction to isolate it from updates that may be happening
concurrently. It is also tagged with the xid of the last log generated for that directory before
the synchronization started, so the slave will know from what point to start receiving logs after
�nishing the initial synchronization. Updates generated during the synchronization will be saved
as logs and shipped to the slave after the synchronization is done.

The initial synchronization might be a lenghty process and currently there are no provisions
for resuming from failed synchronizations. Nevertheless, if the synchronization is interrupted,
the slave will reestablish a consistent state by discarding all the information received. In the
future, we plan to implement mechanisms to allow resuming partial synchronizations.

After having the initial snapshot, the slave can start receiving and applying logs. In the
current implementation the slave connects to the master using a TCP connection, sends the
xid of the earliest log that it wants to receive and waits for incoming logs. When the slave
receives a log, it executes the log locally, and after making sure that the log is safely committed
to the database, it sends an acknowledge to the master. After receiving the acknowledge, the
master is free to delete the log. To ensure good performance over high-latency connections, this
communication between the master and the slave is asynchronous, that is, the master sends the
logs without waiting for acknowledges of previous logs, and polls the socket periodically with a
non-blocking operation looking for incoming acknowledgments.

The replication daemon stores the information about the subscriptions in the local database
in order for it to survive eventual crashes of the master node. This information includes the
slave's id, address, directories subscribed, and the id of the last log acknowledged.

37

Logs must be deleted when they are no longer needed. This is done also in the replication
daemon, by the same thread that monitors the logs. After polling for new logs, shipping them to
subscribers, and polling for new acknowledges from clients, this thread goes over the logs table
and deletes the logs that are no longer needed by any subscriber. Under normal conditions, that
is, when all subscribers are connected, logs are deleted shortly after being generated. A log is
kept for a longer time only when a subscriber is disconnected.

To tolerate failures resulting in disconnections of the subscribers, subscriptions are persistent,
in the sense that if a subscriber disconnects without having �rst requested to be unsubscribed,
the master will preserve the subscription and continue saving logs for the directories subscribed
by the slave. When the subscriber reconnects, the subscription is resumed from the point it was
interrupted. Currently, there is no provision for dealing with slaves that are disconnected for too
long. In this case, the logs will accumulate on the logs table, eventually causing problems on the
database backend. In the future, we plan to implement mechanisms for controlling the growth
of the log table by removing old subscriptions when certain conditions are met, like the log table
exceeding a maximum size or a subscriber being disconnected for too long.

9.2 Setup

9.2.1 Setting up a Master node

A master node consists of an amga daemon con�gured to save replication logs on the database
plus an associated replication daemon. To simplify the setup, both processes use exactly the
same format for the con�guration �le, allowing them to share the same con�guration �le.

The amgad is con�gured to save logs by setting the following property on the con�guration
�le:

EnableMaster = 1

As an optimization, logs are saved only if there is at least one slave interested on the directory
updated by the log, so if there are no subscriptions, the cost of having replication enabled is only
an extra database query (to look for active subscriptions).

The replication daemon must be con�gured to point to the same database as the amga
daemon. The simplest way of doing this is to reuse the same con�guration �le for both programs,
although it is possible to have separate �les. Additionally, the replication daemon needs to be
assigned to a port where it will listen for incoming connections. This is con�gured by the Port
property on the Replication section of the con�guration �le:

[Replication]

...

ReplicationDaemonPort=8823

This is all that needs to be con�gured for the replication daemon. After this, it can be started
with:

$ mdrepdaemon [-c <amgad.config>]

The accepted options are:

-p <port> : listen port

-d : Activate debug output. Very verbose.

-c <configFile> : configuration file

If no options are given, it will look for amgad.config in the same way as amgad does.
After starting up, the replication daemon waits for connections from slaves and polls the

database periodically looking for new logs. It will also go over the the logs table periodically to
delete logs that are no longer needed.

38

9.2.2 Setting up a Slave node

The slave functionality is implemented fully on the mdserver, and therefore, there is no need
to run an external program like the replication daemon. To activate replication as a slave, the
following setting must be enabled on the con�guration of the mdserver:

EnableSlave = 1

Activating the slave mode enables the rep_∗ commands for the slave, and has no impact on
the performance.

A slave node needs also to be con�gured with the settings of master nodes that it might be
required to contact. This con�guration is de�ned on a per-node basis, which is done through the
site_∗ commands, which can be used to de�ne sites and set their parameters like the login name
the slave will use or the port of the replication daemon to contact on this site. The minimum
con�guration necessary is (pointing to a replication daemon listening on port 8832 and logging
into it as root):

Query> site_add SiteA localhost:8832

Query> site_set_properties SiteA login root

Please consult Section Replication (p. 24) for further information on how to de�ne the
master nodes and Site management (p. 23) for how to con�gure sites. Once con�gured as a
slave node, the server is started normally. There are no special command line options related to
replication.

On startup, the server will consult its database backend to check if there are any subscriptions
on the active state. If so, it will try to restart receiving logs from these masters, by reopening
a TCP connection to each master and asking for the logs after the last one it received. If the
connection can't be established immediately, it will continue to try, waiting 60 seconds between
attempts, until either it succeeds or the subscriptions is stopped using the rep_stop_receive

command.

9.3 Security

9.3.1 Replicating Security Information

There are two types of security information managed by AMGA:

• permissions and acls - This is associated with the metadata.

• groups and users - Global to the catalogue instance, and not associated directly with
the metadata.

Both types of information can be replicated in AMGA. The �rst is replicated as part of the
metadata replication. The rep_mount command by default imports this information from the
master. In this case, the permissions and owner of the metadata on the slave will be exactly
the same as in the master and will be kept synchronized with the master. This behavior can be
disabled by specifying the -noperms option, so that the slave replicates the metadata without
any security information. The resulting replica will be created using the security settings in
e�ect at the slave at the time of replication. After a directory being mounted in a slave, it is not
possible to change its con�guration concerning replication of permissions and acls.

Groups and users are replicated on their own, using the commands rep_mount_users and
rep_umount_users. They are handled like a virtual mount, in the sense that they have to be
synchronized initially by executing rep_mount_users and will be updated after establishing a
connection to the master with rep_start_receive. The hash of the password of the user is also
replicated. This allows the slave to authenticate the replicated users locally. A slave can only
replicate users and groups from a single master and it should have no local users or groups of its
own. The exception is the root user and any group owned by root, which are always considered
local users and are not replicated.

39

9.3.2 Security at Slave Nodes

Only the root user is allowed to initiate or to control replication, that is, to execute the rep_-

∗ commands. For any other users, the replicated directories will be readable depending on
their permissions and access control lists, which may or may not have been replicated from the
master depending on the options given to rep_mount. A replicated directory is always read-only,
regardless of the write permission or access control right.

9.3.3 Connections from the Slave to the Master

Connections from slaves to the replication daemon use a similar protocol as the ones from the
clients to the mdserver, including the support for authentication and encryption. Therefore, the
connection settings (e.g., use SSL, authenticate with password, certi�cates or grid proxies,...)
used by the mdrepdaemon can be con�gured in the same way as the mdserver. In fact, it's even
possible to use the same con�guration �le, in which case the connection settings will be the same.
To have di�erent settings, it's enough to specify di�erent con�guration �les using the command
line options of each program.

When connecting to the replication daemon, slaves may need to authenticate. Once again,
this is done just like if the slave were a client connecting directly to the master. The replication
daemon will accept the same credentials and users as the mdserver of that node. The slave node
is con�gured in the con�guration �le of the slave's mdserver, on the [Replication] section. The
slave can specify several di�erent master nodes, with di�erent connection settings for each. It is
possible to check the list of known nodes at a slave during an interactive client session using the
rep_list_nodes command.

9.3.4 Granting the replication right on the master

The master controls what groups can replicate which directories by granting the replication right.
This right is granted to groups, allowing them to replicate the speci�ed directory, including the
full sub-tree rooted on it and all their entries. The right is granted using an interactive session
to the master with the commands rep_allow and rep_disallow.

An important point about this right is that for replication it is the only access control per-
formed by the master. This is easier to illustrate with an example. Suppose that user joe does
not have permission to read or write directory /jobs when connected as a client, but has the
replicate permission over that directory. Then, if a slave connects to this master authenticating
as joe it will be able to replicate the full contents of /jobs. Once this information is on the
slave, it is completely exposed to the slave's administrator. If the administrator is trustworthy,
he will allow the system to enforce the original access permissions. But malicious administrators
can easily expose the information to any user.

9.4 Limitations

9.4.1 Concurrent Updates on Master

When two or more clients are updating the master concurrently, there is a small probability that
the slaves become inconsistent with the master. For this to happen, the clients must be writing
(updating, deleting or inserting) to the same collection and to intersecting sets of rows. This is a
concurrency problem, so it will happen randomly depending on the interleaving of the execution
of two or more concurrent commands. This problem can be avoided in two ways:

• Prevent concurrent updates to the same directory.

• Set the transaction isolation mode of the database to serializable.

The second solution is generic but has a high overhead on the database backend. Another
disadvantage is that the database backend will abort the commands that cannot be serialized
due to con�icts with other concurrent clients, and this will create a new failure mode that clients
might not be expecting.

Technical Details
The replication mechanisms of AMGA are based on the assumption that it is possible to or-

der the write commands received by the master into a sequence that if replayed in the slave will

40

produce the exact same results. But this is not necessarily true, depending on the transaction iso-
lation level used by the database back-end. Most database systems use an isolation mode (Read
Committed) that allows transactions to interleave in a way that makes then non-serializable.
This is, there is no ordering of transactions that if replayed sequentially on a di�erent database
would produce the same results. This basically means that with the default isolation levels used
by databases, there is no way of guaranteeing consistency between the master and the slave in
all possible situations. Databases support stricter isolation levels, including a Serializable level.
This mode will provide the guarantees needed by AMGA, but has a high overhead and therefore
should be used only when the server needs to support concurrent updates.

9.5 Tutorial - Setting up a Master to Single Slave Setup

This section provides a step by step tutorial of how to prepare a simple replication setup. It will
show how to setup replication from a master to a single slave. These are the names of the hosts
that will be used:

• master - gridpc1.cern.ch, port 8822

• slave - gridpc2.cern.ch, port 8822

The tutorial assumes that the master and the slave nodes have already valid AMGA instances
con�gured and operational, but with replication disabled. On the master, we assume the following
directory hierarchy:

\users

\files

\files\2005

\files\2006

We assume that the slave is interested in replicating the \files\2006 directory.

9.5.1 Con�guring the master

• Con�gure the AMGA instance at gridpc1 to act as a master and con�gure the port where
the replication daemon will listen. This is done on the mdserver.config �le, with the
following properties:

[Replication]

EnableMaster = 1

ReplicationDaemonPort=8823

• Setup authentication and security for connections from slaves. For this tutorial we will
require no security and accept plain text connections. Edit amgad.config at the server
adding the following lines to the main section:

UseSSL = 0

RequireAuthentication = 0

• Con�gure access permissions to replication. This is done by connecting to the mdserver
instance of the master over a normal interactive session using mdclient. First we create a
group for users allowed to replicate. We will call it replicators, but any group name will
do:

$ mdclient gridpc1

Connecting to localhost:8822...

ARDA Metadata Server 1.2.0

Query> grp_create replicators

• Now we must add to this group the users allowed to replicate. For this tutorial, we will
create a new user called joe but any existing user can be used:

41

Query> user_create joe

Query> grp_adduser replicators joe

• Add the replicators group to the list of groups allowed to replicate the /files directory.

Query> rep_allow /files replicators

This will allow the replicators group to replicate all the contents and subdirectories of
the /files directory.

• Back at the shell, start the replication daemon:

$ mdrepdaemon -c amgad.config

9.5.2 Con�guring the slave

Now we are going to con�gure the AMGA instance at gridpc2 to act as a slave. We start by
editing the mdserver.config �le.

• Activate the slave functionality:

[Replication]

...

EnableSlave = 1

...

• Con�gure the list of master nodes. In this case, it's only a single master, you need to be
root to set up the sites:

Query> site_add GridPC1 gridpc1.cern.ch:8823

Query> site_set_properties GridPC1 login joe

Query> site_set_properties GridPC1 use_ssl 0

Query> site_set_properties GridPC1 authenticate_with_certificate 0

Note that only the login property is mandatory, the other settings are the default, anyway.

We can now start the AMGA server on the slave and connect to it using the mdclient. The
rest of the tutorial is done from inside the mdclient shell.

• Create the parent directory of the directory we are going to mount.

Query> createdir /files

The slave expects this directory to exist, otherwise it will fail. We should also make sure
that there is no directory with the same name as the one we are going to mount, in this
case /files/2006.

• Mount the directory.

Query> rep_mount GridPC1 /files/2006

The slave connects to the master, subscribes to this directory and copies its contents. When
the command �nishes executing, we should have a local copy of the remote directory. We
can check the status of the mount:

Query> rep_list_mounts

>> GridPC1:/files/2006 - 23628, Disconnected

42

The Disconnected state means that we are currently not receiving logs. The number
before the state is the xid corresponding to the position of our local snapshot on the log
sequence.

• Start receiving logs. The slave now must connect to the master and wait for logs. This is
done with the command:

Query> rep_start_receive GridPC1

Query> rep_list_mounts

>> gridpc11:/files/2006 - 23645, Receiving

The slave will keep the connection to the Master open until it is shutdown or until the we
stop the subscription. If the slave is restarted, it will resume automatically the subscriptions
that were active when it was shutdown. It will also try to reconnect if the connection fails
for some external reason.

• Removing the subscriptions. If we want to cancel the subscription we have �rst to stop
receiving the logs and them unmount the remote directory:

Query> rep_stop_receive GridPC1

Query> rep_umount /files/2006

Query> rep_list_mounts

Query>

10 Federation in AMGA

This section presents the Federation mechanisms that are part of AMGA since version 2.1.

10.1 Overview

The federation mechanism in AMGA provides a user a virtualized view on metadata as if one
metadata server has all data which are actually distributed at multiple sites.

Federation in AMGA is very similar to mounting in NFS. That is, if a remote directory is
mounted to a local directory, a user may access it as it is located at local site. Federation actually
redirects user's query to other multiple AMGA nodes and integrates the results. The list of other
AMGA nodes to redirect user's query should be set properly on a per-directory basis.

AMGA provides two types of federation methods; server-side federation and client-side fed-
eration. In server-side federation, an AMGA server does the actual federation, which redirects a
query and integrates results. Meanwhile, in client-side federation, an AMGA server provides a
client with a list of AMGA nodes to redirect user's query and a client side does the actual feder-
ation. The client-side federation puts little overhead on the AMGA server caused by federation,
but it only works with C++ APIs currently. The server-side federation may have high overhead
caused by federation at the server-side, but it works with all the clients APIs. This type can be
set at the server con�guration as follows.

$ cat amgad.config

...

ServerSideFed = 1 # Federation at Server Sider

...

10.2 Setup

It is necessary to have one central AMGA server which maintains all the information about
federation. That is, it needs to be con�gured with the settings of other AMGA nodes that it
might be required to contact for federation. The con�guration is de�ned on a per-node basis,
which is done through the site_∗ commands, which can be used to de�ne sites and set their
parameters like the login name the central AMGA server will use. Please consult Section Site
management (p. 23) for how to con�gure sites.

43

Query> site_add SiteA hostA:8822

Query> site_set_properties SiteA login root

Query> site_add SiteB hostB:8822

Query> site_set_properties SiteB login root

The next step is to initiate federation, that is, to execute the fed_mount commands. Only
the root user is allowed to initiate or to control federation.

Query> fed_mount SiteA /dir

Query> fed_mount SiteB /dir

10.3 Authentication

In federation, connections to other AMGA nodes use the same protocol as the ones from clients
to an AMGA server, including the support for authentication and encryption. With the client-
side federation, all the necessary con�guration settings should be stored at the mdclient.config
�le. And with the server-side federation, site information should hold necessary con�guration
settings (e.g., use SSL, authenticate with password, certi�cates or grid proxies,...).

10.4 Accessing Patterns

Accessing patterns di�er depending on a command type. For example, if the "listattr" command
accesses a federated directory, it is redirected to one of random federated hosts (access random
type). However, in case of the "SELECT" command, a query is redirected into all the federated
hosts (access all type). The following list types and corresponding commands. Other commands
not listed below may result an error if they access a federated directory.

• Access random type : listAttr, addentry, addentries, stat, insert, INSERT

• Access all type : getAttr, �nd, listentries, ls, dir, chmod, chown, acl_∗, removeEntries,
selectattr, SELECT, DELETE, setAttr, updateattr, update, UPDATE, rm

10.5 Fault Handling

It is possible to have a failure while connecting and executing a command for federation. In case
of "access random type" commands, it reports a success if there is any host which executed the
given command successfully. If no hosts have a success, a failure is reported to a user. In case
of "access all type" commands, it is allowed to de�ne policies. It is possible to set two policies;
AllowFedConnFail and AllowFedExecFail. This policies can be set at the server con�guration
�le as follows.

$ cat amgad.config

...

AllowFedConnFail = 1 # Allows connection failures in federation

AllowFedExecFail = 1 # Allows execution failures in federation

...

AllowFedConnFail allows connection failures in federation. If AllowFedConnFail is set to 1,
then it reports a success if there is any one host having a successful connection. If it is set to 0,
then all federated hosts should be connectable in order not to have a failure. AllowFedExecFail
is very similar to AllowFedConnFail, but it is related to execution failures. By default, these
policies are set to 1.

Even though there was a success to execute a command, a user may want to know there
was failures with federation. There are two commands supporting this purpose. With these
commands, it is possible to check partial failures when the policy is set to ignore the connection
or execution failures. The fed_policy command shows the current policy about federation.
The �rst line of the result shows whether connection failures are allowed in federation, and the
second line shows whether execution failures are allowed. The fed_check_failure command
shows whether last command had failures. The �rst line of the result shows whether connection
failures happened, and the second line shows whether execution failures happened.

44

Query> fed_policy

>> 1

>> 1

Query> SELECT * FROM /dir

>> ...

Query> fed_check_failure

>> 1

>> 0

10.6 Limitations

The current limitions related to federations are as follows

• No Schema Heterogeneity is allowed

• Federating Directories with di�erent Names is not allowed

• No Distributed Join is allowed

• No Transaction is Supported

11 User Management

The standalone AMGA server comes with a powerful system to manage users as well as to control
access to entries and metadata. If AMGA is run as an add on to a �le catalogue, however, these
features are not available and the access controls of the �le catalogue is used instead.

To understand the user management of the AMGA server it is necessary to know that the
server does not really manage users but only their authentication and authorization. When
changing the owner of an entry for example, the server does not check that this owner exists.
Users are only relevant for logging in. This allows to manage users outside of the server, e.g. in
a VOMS.

IMPORTANT NOTE: When you use sessions or connections, then changes to the way a
user is authenticated or how the authorization is done through the mapping to an AMGA user,
will not a�ect active sessions or connections. You must restart the server to propagate
changes to the user managment to active sessions or connections.

11.1 Con�guration

To use the metadata service, a user must be authenticated and authorized. Authentication can be
done via a certi�cate or a password, seeCon�guring the AMGA Server and the Replicatin
Daemon (p. 32) . After the authenticity of a user is established in the handshaking of the client
with the server, the client needs to be authorized to use the role of a certain user. Authorization
is optional, if authorization is not enabled for the server, any authenticated user can assume any
role he wishes. Authorization is controlled via the mdserver.config con�guration �le:

Authorization options, choose 0 or more

MapFile = /etc/grid-map-file # Authorization based on certs

Authorization based on certifictes, put a list of VOMS URL and assigned users, here:

VOMSGroups = https://lcg-voms.cern.ch:8443/voms/lhcb/services/VOMSAdmin?method^=listMembers, lhcb, \

https://kuiken.nikhef.nl:8443/voms/picard/services/VOMSAdmin?method^=listMembers, picard

UserDB = 1 # Authorization based on certs & passwords

Authorization can be done via certi�cates or passwords (password authentication actually
includes authorization), both must be explicitely enabled. For authentication via certi�cates
to work, both the server and the client must have SSL enabled (UseSSL). Four ways
are foreseen to accessing the necessary information to match user names with their credentials,
one or more must be enabled for the RequireUserAuthorization to work:

• A grid-map �le mapping certi�cate subjects, that is distinguished names (DN of users) to
users. This is a static setup and no new users can be added at runtime. No password
authorization is possible via a grid map �le. Option MapFile.

45

• A user database using the database backend. This allows creation of users and the manage-
ment of their credential at runtime. This is the only option which allows password based
login. Option UseDB.

• Authorization using a VOMS. All users registered with a VO will be assigned to the user
speci�ed here. You can give several VOMS-URL user pairs here. Option VOMSGroups.

• Authorization via VOMS certi�cates. All users connecting with a VO information-enriched
certi�cate obtained via voms-proxy-init will be assigned to speci�c AMGA users depend-
ing on the role within the VO. Option VirtualOrganizations. Note that only the DB
based user management module is able to make changes to the user setup. If you have sev-
eral user management modules activated at the same time, then listing users and checking
their credentials for authorization will go through the users in all of the modules. A user
is authorized as soon as he has been found in any of the modules.

11.2 Management via a Grid Map �le

You can give a location of a grid map �le using the MapFile option for user authorization. This
�le contains pairs of distinguished names and user names. The DN must be enclosed in double
quotes and must be in the form where its �elds are seperated by commas on one line (output of
openssl x509 -subject -in usercert.pem -nameopt oneline -noout):

$ cat mapfile

"/C=CH/O=CERN/OU=GRID/CN=Birger Koblitz 9904" koblitz

There are no wild cards currently allowed. The map �le will be read only once at server
startup. It is not possible to add or change users using the command line tool.

11.3 Management of Users using the database backend

To enable user management using your database backend, you need to enable this feature by
setting UserDB = 1. If you have run the createInitial.sql script, to set up you database,
the necessary tables have already been created. You can now manage users via the mdclient

command line tool:

• user_list: Lists all users known to the authentication subsystem.

• user_listcred user: Lists the credentials with which the user can be authenticated.
Returns �rst the user name, then whether there is a password and then the certi�cates
which are mapped in a Grid-Map�le and via the user database. Finally the di�erent VO
and VO roles which allow you to become that user are listed. Only root is allowed to see
the credentials of other users.

• user_create user [password]: Creates a new user and assigns a password if give. This
command is for the root user only. Only hashes of passwords are stored in the database
backend. Charaters that should be avoided in the user name are ', ", \, :, |, and <space>

• user_remove user: Deletes a user. This command is for root only. It does not check
whether there are still �les or directories owned by that user.

• user_password_change user password: Changes the password of a user. Only root
can change the password of any user. Non-priviliged users may only change their own
passwords.

• user_subject_add user subject:Adds a certi�cate identi�ed by its subject line to be
used to authenticate a user. While every user can only have one password. Several certi�-
cates can point to the same user. Remember that in order to have spaces in the subject,
you need to enclose it by single quotes (�). See De�nition of the Client Server Pro-
tocol (p. 54). The form of the subject needs to be the one where parts are separated by
commas as in the output of e.g. openssl x509 -subject -in usercert.pem -nameopt

oneline -noout.

• user_subject_remove user subject:Removes a certi�cate from the list of certi�cates
which allow to login as a certain user.

46

11.4 Management via a VOMS

Giving pairs of VOMS member list URLs and user names in the VOMSGroups option, you can
assign all members of a VO to a user (role would be the better word here).

11.5 Management via VO-Certi�cates

You can allow users to log in with VO-enabled certi�cates by using the VirtualOrganizations
option and assigning it a list of VO(default_user) de�nitions. By enabling MyProxyHack this
works also with certi�cates issued by a MyProxy server. The VOGroupMap and VOUserMap options
allow to map VO groups to AMGA groups and special VO roles to AMGA users with the syntax
used by VirtualOrganizations. You can also manage mapping between a user/group & a
VOMS Role/group in the command line tools.

• user_voms_add - Allows user to log in with a certi�cate with the given VOMS Role

• user_voms_list - Lists all possible VOMS Role

• user_voms_remove - Removes VOMS Role allowed for user

• grp_voms_add - Creates mapping between a group and a VOMS group

• grp_voms_list - Lists all possible VOMS group mapping

• grp_voms_remove - Removes group mapping allowed for VOMS Group

12 Users, Groups and ACLs

The standalone AMGA server comes with a powerful system to manage users as well as to control
access to entries and metadata. If AMGA is run as an add on to a �le catalogue, however, these
features are not available and the access controls of the �le catalogue is used instead.

The permission schema tries to copy the semantics of POSIX APIs. Some of the semantics
are di�erent from the POSIX semantics for a �le system as AMGA is a metadata catalogue. As
an example, it is necessary to have the 'x' permission for a directory to read the attribute list,
while 'r' permissions for any �le are necessary to read the values of the attributes for a �le. The
exact behaviour is described together with the respective commands.

12.1 Users

The size of a username is limited to 64 lower-case latin alphabet characters.

12.2 Groups

Any user can create groups. Group names are scoped with the name of the user creating them.
A fully quali�ed group name has the form user:groupname. If the user scope of the group is the
current user, it does not need to be speci�ed in a command. The size of groupname is limited
to 64 lower-case latin alphabet characters.

A special group exists and is maintained by AMGA internally, the system:anyuser group
which contains automatically any user which is authenticated to the system. Using this group it
is possible to emulate the permissions for 'other'-users in a Unix �lesystem which are missing in
AMGA.

The following commands can be used to manage groups:

• grp_create groupname: Creates a new group with name groupname. It is not possible
to create groups belonging to others.

• grp_delete groupname: Deletes a group with name groupname. Only root can delete
groups of other users.

• grp_show groupname: Shows all the members belonging to group groupname. You can
only look into groups of which you are a member or your own groups. Root can list all
groups.

47

• grp_adduser groupname user: Adds a user to a group. Only owners of a group or
root can change group memebership.

• grp_removeuser groupname user: Removes a user from a group. Only owners of a
group or root can change group memebership.

• grp_member [user]: Shows to which groups a user belongs. Only root can ask this
question for other users.

• grp_list [-a] [user]: Shows the groups owned by user, by default the current user. If
the -a option is given, all groups are shown.

12.3 Access Control Lists

ACLs (Access Control Lists) can be assigned to any directory.
The following commands exist to manipulate ACLs of a directory.

• acl_add directory group rights

• acl_remove directory group: You can use the "∗" to remove all ACLs of a directory.

• acl_show directory

On MySQL5 or PostgreSQL you can create directories with the "acls" option, which will
allow you to put ACLs also on individual �les.

12.4 The sudo command

Since AMGA 2.0 a sudo command exists, which allows the root user to become any other user.
The syntax is: sudo <user>

12.5 The sticky bit

Since AMGA 2.0 a sticky bit exists, which allows an entry inside a directory to be renamed or
deleted only by the entry's owner, or superuser when it is set. To set a sticky bit on a directory,
use chmod command with permission "t".

Query> chmod /test rwt

13 Accessing preexisting databases in AMGA

It is possible to access previously existing databases through AMGA. This is done by importing
them into AMGA's information schema. The importation will just create links to the imported
table, and does not copy the table.

The �rst step is to con�gure an Access through ODBC to your existing database. Please
follow the instructions for UnixODBC or tools like Tora for this.

The next step is to install the AMGA server on a system with direct access to the backend
network. You will need to add the AMGA support tables to the existing database by applying
the suitable createInitial.sql script for your database, you can �nd in the con�g directory of
the source distribution or in PREFIX/share/doc of the binary distributions. Should there be
clashes of the namespace, you can try to solve them using di�erent schema names, provided your
RDBMS supports this.

Once this has been achieved, set up the amgad server to point to your database (see Con-
�guring the AMGA Server and the Replicatin Daemon (p. 32)). Then connect the
client using the AMGA root-user (see Con�guration of the C++ and Java command line
clients (p. 11)) and start importing the tables using the import tablename dir command
(see Metadata Access from the Shell (p. 14)). This will make the table with the given
tablename known to AMGA as the name given in the "dir" option. You can set access permis-
sions to the new table via the chmod/chown commands or via the ACL system. You can also
now use AMGA to alter the table-schema.

48

After reconnecting as an ordinary user, you can start using the imported tables. Since they
do not have the supporting information normal AMGA tables have, only the standard SQL
functionality works, namely insertion of entries, selecting (including joins to other tables) and
updating and deleting. The ls-command is (currently) not supported.

The follwoing is an example using a PostgreSQL database in which we create a simple table
called test.

$ psql -U arda metadata

Welcome to psql 8.1.8, the PostgreSQL interactive terminal.

metadata=> CREATE TABLE test(item integer, name varchar(256));

CREATE TABLE

metadata=> INSERT INTO test (item, name) VALUES (1, 'apple');

INSERT 0 1

metadata=> INSERT INTO test (item, name) VALUES (2, 'pear');

INSERT 0 1

Setting the user to "root" in mdclient.con�g, we can connect to the AMGA server to import
the generated table:

$ mdclient

Connecting to localhost:8822...

ARDA Metadata Server 1.2.10

Query> whoami

>> root

Query> import test /atest plain:main=item

Query> ls -ld /atest

>> rwxrwxr-x root /atest

Query> addattr /atest i int

Query> listattr /atest

>> item

>> int

>> name

>> varchar(256)

>> i

>> int

Query> quit

As shown, it is possible to investigate the table schema, and even alter it.
Now edit mdclient.con�g so that you log in as an ordinary user, and you can use the imported

table:

Query> selectattr /atest:name /atest:item ''

>> apple

>> 1

>> pear

>> 2

Query> selectattr /atest:name /atest:item '/atest:item=2'

>> pear

>> 2

Query> rm /atest 'item=2'

Error: 4: Permission denied.

As you can see, AMGA has protected the table using it's access control mechanisms.
When you import tables, AMGA allows you to use options to describe which properties the

table has. AMGA will assume that the table has the following properties, which must be present
in a way that AMGA can understand and use them, that is they must be implemented in the
standard way AMGA does: shared: The table can be later shared by other directories created
"under" it.

• acl: The table has ACLs.

49

• plain: The table is "plain" that is there are no permissions, or other AMGA speci�c
extensions.

• file: This is a table with the �le extensions: guids, sizes etc. inherit: The table inherits
its structure from a parent table (only PostgreSQL).

• perms: The table has posix permissions.

• type=< type >: The data type of the main column (ignored)

• main=< main >: The main column.

• table=< table >: Ignored, this is the name of the table itself.

14 Using the C++ Client API

There are two di�erent C++ client APIs available for the AMGA metadata service. One is
through the md_api which provides several api functions, the other is directly through the
MDClient (p. ??) class which also serves as a backend to the md_api.

The MDClient (p. ??) class o�ers an interface which allows to issue AMGA commands
directly but does not understand the semantics of the commands and thus does not parse the
responses of the server into suitable structures, while this is done by the md_api. However, the
control on the connection to the server is much better in the case of the MDClient (p. ??)
class, for example it allows you to abort a query easily. It may also happen that some commands
are not available in the md_api yet.

In any case, both ways to access the metadata service from C++ depend on an existing and
accessible mdclient.config �le being either in the current working directory or in the home
directory as ∼/.mdclient.config. See Con�guration of the C++ and Java command
line clients (p. 11) for explanations how to set up the client con�guration.

The following is an example of a program using the md_api to

#include "client/md_api.h"

#include <iostream>

int main (int argc, char *argv[])

{

std::cout << "Listing attributes of /test\";

std::list< std::string > attrList;

std::list< std::string > types;

if((res=listAttr("/test", attrList, types)) == 0){

std::cout << " Result:" << std::endl;

std::list< std::string >::iterator I=attrList.begin();

while(I != attrList.end())

std::cout << " >" << (*I++) << "<" << std::endl;

} else {

std::cout << " Error: " << res << std::endl;

}

std::cout << "Getting gen and events attributes of /test/*\n";

AttributeList attributeList(2);

std::list< std::string > attributes;

attributes.push_back("gen");

attributes.push_back("events");

if((res=getAttr("/test/*", attributes, attributeList)) == 0){

std::cout << " Result:" << std::endl;

while(!attributeList.lastRow()){

std::vector< std::string > attrs;

std::string filename;

attributeList.getRow(filename, attrs);

std::cout << "File: >" << filename << "<" << std::endl;

50

for(size_t i=0; i< attrs.size(); i++)

std::cout << " >" << attrs[i] << "<" << std::endl;

std::cout << std::endl;

}

} else {

std::cout << " Error: " << res << std::endl;

}

return 0;

}

A full overview of the available API functions is given at the following url.

http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/md__api_8cc.html

#include <MDClient.h>

#include <iostream>

int main (int argc, char *argv[])

{

int res;

MDClient client;

// client.setDebug(true);

if(client.connectToServer()){

std::cout << client.getError() << std::endl;

return 5;

}

std::string command="pwd";

if((res=client.execute(command))){

std::cout << " ERROR: execute failed"

<< " (" << res << "): "

<< client.getError() << std::endl;

return res;

}

while(!client.eot()) {

std::string row;

if(res=client.fetchRow(row)){

std::cout << "Error fetching: " << res << std::endl;

return res;

}

std::cout << row << std::endl;

}

return 0;

}

All capabilities of the MDClient (p. ??) like cancellation of requests or the catching of
CTRL_C are explained in the reference at http://project-arda-dev.web.cern.ch/project-arda-dev/
metadata/class\-MDClient.html a short(!) example of how to make use of them is the
mdclient.cc program itself.

15 Using the Java Client API

The AMGA Java API is distributed in two forms. As an RPM and as a tar ball. The tar ball
is provided so that the Java API can be used in other platforms other than Linux, including
Windows and MacOS.

51

To use the Java API it is necessary to include the glite-amga-api-java.jar �le in the
classpath. If the Java API was installed from the RPM, then this �le is typically located at
<GLITE_HOME>/share/java, where <GLITE_HOME> is the base directory where the gLite soft-
ware is installed (typically, /usr). If the Java API was installed directly from the tar ball availabe
on the AMGA Web Site (p. ??), the glite-amga-api-java.jar is located on the top level
directory to where the tar ball was unpacked.

A jar can be included in the classpath in two ways: by setting the CLASSPATH environment
variable of by using the -classpath option in the command line arguments when running java.

To set the classpath variable:

• Unix (bash): export CLASSPATH=.:glite-amga-api-java.jar

• Windows: set CLASSPATH=.;glite-amga-api-java.jar

After setting the CLASSPATH, to run a Java program it is only necessary to do the following
to run a class called, for instance, QueryMetadata:

java QueryMetadata

To specify the jar �le directly on the command, one must do:
Unix:

java -classpath .:glite-amga-api-java.jar QueryMetadata

On Windows the command line is similar, except the path separator is ; instead of :.
The Javadocs for the Java API can be found here http://project-arda-dev.web.cern.

ch/project-arda-dev/metadata/java.
Like the C++ API, the Java API can be used in two ways. Either through the higher-level

interface exposed by the class arda.md.javaclient.MDClient or by sending the commands
directly to the server using the low-level API in arda.md.javaclient.MDServerConnection.
Next are the two examples given for the C++ client API rewritten using the Java API. The �rst
uses the higher-level Java API.

import java.io.IOException;

import arda.md.javaclient.*;

public class MDJavaAPI {

public static void main(String[] args) throws IOException {

MDServerConnection serverConn = new MDServerConnection(

MDServerConnectionContext.loadDefaultConfiguration());

MDClient mdClient = new MDClient(serverConn);

System.out.println("Listing attribues of /test");

try {

AttributeDef[] attrs = mdClient.listAttr("/test");

System.out.println("Result: ");

for (int i = 0; i < attrs.length; i++) {

System.out.println(" >" + attrs[i].name + ":" + attrs[i].type);

}

} catch (CommandException e) {

System.out.println("Error: " + e.getMessage());

}

System.out.println("Getting gen and events attributes of /test");

try {

String[] keys = {"gen", "events"};

NamedAttributesIterator attrs = mdClient.getAttr("/test", keys);

while (attrs.hasNext()) {

NamedAttributes entry = attrs.next();

52

System.out.println("File: " + entry.getEntryName());

String[] keys1 = entry.getKeys();

for (int i = 0; i < keys1.length; i++) {

System.out.println(" >" + keys1[i] + "=" + entry.getValue(keys1[i]));

}

}

} catch (CommandException e) {

System.out.println("Error: " + e.getMessage());

}

}

}

The following example uses the low-level API directly:

import java.io.IOException;

import arda.md.javaclient.*;

public class DirectServerConnection {

public static void main(String[] args) throws IOException

{

// Loads default configuration and connects to server

MDServerConnection serverConn = new MDServerConnection(

MDServerConnectionContext.loadDefaultConfiguration());

try {

serverConn.execute("pwd");

while (!serverConn.eot()) {

String row = serverConn.fetchRow();

System.out.println(">" + row);

}

} catch (CommandException e) {

System.out.println("Error executing command: " + e.getMessage());

}

}

}

16 Using the Python Client API

The Python client for AMGA is distributed in the in the glite.amga.api-python RPM. After
installation the amga package is available with the mdclient and mdinterface modules. The
mdclient class o�ers an interface similar to the MDClient (p. ??) interface in C++ plus
methods for most AMGA command. All arguments are automatically quoted before being sent
to the server.

The following is an example script which creates a directory, cd's into it and then gets the
"sin" and "events" attributes of all entries in the directory.

#!/usr/bin/env python

#import amga classes

from amga import mdclient, mdinterface

#instantiate an AMGA client connecting to localhost:8822 as 'guest'

client = mdclient.MDClient('localhost', 8822, 'guest')

try:

print "Creating directory /pytest ..."

client.createDir("/pytest")

except mdinterface.CommandException, ex:

print "Error:", ex

53

try:

print "cd /pytest"

client.cd("/pytest")

except mdinterface.CommandException, ex:

print "Error:", ex

try:

print "Getting all attributes of the files in /pytest..."

client.getattr('/pytest', ['sin', 'events'])

while not client.eot():

file, values=client.getEntry()

print "->",file, values

except mdinterface.CommandException, ex:

print "Error:", ex

17 De�nition of the Client Server Protocol

The protocol is a streamed ASCII protocol which is line oriented. Three bytes are special control
characters: \n (012) is the line-ending byte which needs to be attached to any line, EOT (004) is
the end of transmission sent by the server after any response because server responses can have
many (also empty) lines and CAN (030) is the cancel byte which can be sent out-of-band by the
client to abort the request or inline in the servers response if during response processing an error
occurs.

This de�nes the full client server protocol including the handshaking with four example
commands(�rst one OK, second cancelled by user, third has an execution error, fourth is cancelled
by the server):

SERVER CLIENT

Greeting\n

Protocol <protocol number>\n

<space sep. list of serv opts>\n

<requested serv option>\n

<more opts>\n

<...>\n

\n

OK\n

---------- SSL handshaking if required ------------------

SSL_accept()

SSL_connect()

<command>

0 <number of columns>\n

<line 1 of response>\n

...

<line n of response>\n

EOT[<session-id>]EOT

<command>

<error-code> <literal err.>\n

... CAN (Out-of-Band!)

CAN

<abort error code>\n

EOT[<session-id>]EOT

<command>

<err-code> <comment>\n

EOT[<session-id>]EOT

<command>

0\n

54

<line 1 of response>\n

...

CAN (timeouts, back end-error...)

<err-code> <comment>\n

EOT[<session-id>]EOT

Remarks: The greeting is a free-form greeting string sent by the server. The client cannot
make any assumptions about the content, apart that it ends in a version number, which may
contain dots. The intention is to allow the client to display this greeting. The client should only
depend on the protocol version number, which is integer for any assumptions on the protocol or
the available calls.

As of protocol version 2 the server options can include "plain", "ssl" and "statistics" giving the
possible ways for the connection security/encryption. The statistics option, used for monitoring
is explained in the Monitoring support in AMGA (p. 56) section.

The requested server option sent by the client is either "plain" or "ssl", requesting an ssl
connection. Alternatively the client may resume a session by responding "resumeSSL<session-
ID>" or "resume<sessionID>". The other options sent one by one on a line consist of an integer
number and the value for that option:

• 0 <login name>="">

• 1 <Plain text="" full="" name>="">

• 2

• 3 <group mask>="">

• 4 <current directory>="">

• 5 <password> Where the login name is the requested user id string, the full name is
entirely optional and should contain the full user name of the user as in the comment �eld
of /etc/passwd. The group and user permission masks are 3 character �elds like umask.
All of these �elds are optional, unless e.g. the server requires that particular user to use a
password for authentication.

In case a session is resumed, the server ignores any additional options requested by the client,
and will expect a command next if no SSL session is requested, that is the "OK\\n" will only be
sent if SSL is being used. This reduces round-trips in case of No-SSL, but the OK is necessary
to synchonize SSL startup in case of an SSL session.

Any authentication failure is sent by the server as the response to the �rst command, to
save round-trips in the case of sessions (see below) and because the result of the authentication
may only be known after the initialization of the SSL session if the certi�cate is being used for
authentication.

Commands are strings terminated by a newline as explained in theMetadata Access from
the Shell (p. 14) section . Sending a wrong command does not violate the protocol, but results
in an error "3 Illegal command". Three special commands are part of the protocol:

• quit Asks the server to close the connection.

• exit The same as quit.

• close Ask the server to send a session ID and then close the connection.

Every command is answered by an integer error code, which is 0 in case of everything OK.
Error codes are not part of the protocol, but part of the responses to commands.

If sessions are forced on the server, then the server will always send a sessionID at the end of
any response to the command and then simply close the connection. This also saves round-trips.

The CAN bytes to interrupt the streaming of a result sent by the server are sent in a TCP
out-of-band message. However if the server decides to interrupt the streaming of a response the
CAN byte is sent in-band.

55

18 Monitoring support in AMGA

AMGA supports monitoring via the <a href="http://sourceforge.net/projects/monami/"Mon-
AMI monitoring service which can also forward information into MonALISA. The following is
an example script in Python which requests information from an AMGA server. The server is
contacted on the standard port:

#!/usr/bin/env python

import socket

Open TCP socket to AMGA server

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect(("localhost", 8822))

Request statistics

s.send('statistics\n\n')

Read response

result = ''

while 1:

r = s.recv(1000)

result = result + r

if not r:

break

start = result.find('<Service>') # Skip response header

result = result[start:]

print result

The server is contacted and monitoring is requested via the "statistics\n\n" command. In
the response of the server the server greeting needs to be skipped. The rest of the result is then
an XML encoded status report according to the GLUE schemas as described here.

The following is an example result:

<Service>

<Name>AMGA</Name>

<Version>1.1.0</Version>

<Data>

<Key>MaxConnections</Key>

<Value>50</Value>

<Key>PreparedConnections</Key>

<Value>1</Value>

<Key>UsedConnections</Key>

<Value>1</Value>

<Key>MaxSessions</Key>

<Value>1024</Value>

<Key>UsedSessions</Key>

<Value>0</Value>

<Key>SessionStorage</Key>

<Value>shm</Value>

</Data>

</Service>

You can use a Nagios probe for AMGA. You can �nd this probe named check_amga in the
scripts directory. This probe needs a perl-XML-Simple package. You must install this package
�rst.

$ sudo yum install perl-XML-Simple

You can test as follow.

56

$ cd org.glite.amga.server/scripts

$./check_amga

Return :

OK: Success|0.001s;10;0

or

CRITICAL: Failed to connect AMGA Server (localhost:8822)

19 Multi-threaded AMGA Server

AMGA is implemented as a multi-process server, each process with one backend DB connection.
On receiving a request from clients, if there is a pre-forked AMGA server process that is idle, it
will pick up the request and take care of it. If there is no idle process available, another process
is supposed to be forked and create a new backend DB connection to handle the request. This
one process per client approach works well unless thousands of clients try to have access to the
server at the same time. In case of that thousands of server processes should be able to run on
the server machine, with each holding one DB connection. Due to the fact that DB connection
is a system resource that is very expensive for some backend database systems such as Oracle,
thousands of DB connections are certainly not permitted to open. To deal with this kind of
situations, in AMGA 2.0, users are allowed to con�gure a multi-threaded mode that allows one
server process to hold multiple threads that share one DB connection to its backend database
system. With this approach, when a client request comes to the server, a thread is supposed to
pick up the request. Since one AMGA process is set up to have multiple threads, there is no
need for thousands of process with thousands of DB connection to be forked to handle thousands
of concurrent requests from clients on the Grid.

19.1 Con�guration

In order to congure the AMGA server in multi-threaded mode, you should set the following option
to the amgad.cong �le. More detailed information about AMGA con�guration is described in
the chapter "Con�guring the AMGA Server and the Replication Daemon".

Mode = thread

initThreadNubmer = 4

The "Mode" is the option variable for users to choose process or thread mode of AMGA
daemon. The "initThreadNumber" is used to indicate the number of threads a process maintains.
In the above example, each process will have 4 threads that share one DB connection. This
number should be con�gured appropriately on an application basis.

20 SOAP Interface

The AMGA implementation uses TCP streaming to communicate between client and server
which shows a very promising performance. To meet the EGEE requirements, we have also
implemented an alternative SOAP-based frontend.

The interface provide by the SOAP frontend is compliant to OGF WS-DAI & WS-DAIR
speci�cation.

• WS-DAI : "Web Services Data Access and Integration - The Core (WS-DAI) Speci�cation,
Version 1.0", http://www.ogf.org/documents/GFD.74.pdf

• WS-DAIR : "Web Services Data Access and Integration - The Relational Realization
(WSDAIR) Speci�cation, Version 1.0", http://www.ogf.org/documents/GFD.76.pdf

57

20.1 Installation

20.1.1 SOAP client installation

To install the command line soap client tools and C++ api, you need to install glite-amga-cli
and glite-amga-soapclient packages. By default the packages will be installed in /usr.

$ rpm -i glite-amga-cli-${version}.${platform}.rpm

$ rpm -i glite-amga-soapclient-${version}.${platform}.rpm

The con�guration �le(mdclient.conf) used in the soap client tools are the same as one used
in the mdclient. If you want to change the con�guration, you should go on and read Con�guring
Con�guration of the C++ and Java command line clients (p. 11) .

20.1.2 SOAP server installation

The AMGA SOAP server depends on the AMGA server package. To install the soap server, you
need to install glite-amga-server and glite-amga-soapserver packages.

$ rpm -i glite-amga-server-${version}.${platform}.rpm

$ rpm -i glite-amga-soapserver-${version}.${platform}.rpm

To setup a database and ODBC driver, refers Server installation (p. 6) . You should now
be able to start the service and verify whether it is running by doing

$ /etc/init.d/mdsoapservice start

$ tail /var/log/amgasoap.log

The AMGA SOAP server is con�gured using the mdsoapserver.config �le. The options are
almost same as the options in amgad.config �le. For the con�guration on amgad.config �le,
you should go on and read Con�guring the AMGA Server and the Replicatin Daemon
(p. 32) . For a soap server, the following additional options are supported.

• MaxConnections - This is the maximum number of DB connections shared by AMGA
soap threads

• WorkerThreads - This is the number of threads waiting for client connections

• SoapKeepAlive - HTTP KeepAlive enabled/disabled

• IndirectServiceLimit - This is the maximum number of indirect services/resouces a single
user can create. If it is set to -1, then there is no limitation

• SoapMaxBu�er - This is the maximum bu�er space assigned for a single soap message.
If the user's quried result exceeds the limit, the rest of data are just ignored

• CertKeyFile - This is just a concaternated �le of two �les (CertFile and KeyFile)

20.2 How to use SOAP client tools

You can access the metadata catalogue with the soap client tools. These tools are:

• wsdair_access_execute - an interactive command line shell with the soap server

• wsdair_access_cli - an utility to submit a single command to the server

• wsdair_access_factory - an utility to create an indirect data resource with the given
command

• wsdair_list - an utility to list all the data resources including indirect data resources
created by wsdair_access_factory

• wsdair_destory - an utility to remove an indirect data resource

• wsdair_rowset - an utility to retrieve dataset from the given indirect data resource

58

• wsdair_property - an utility to show the property of a data resource

The wsdair_access_execute tool is very similar to mdclient tool. The following is an exam-
ple with the the wsdair_access_execute. The default port number SOAP server uses is 8833.
However, you can change the port number you want to connect with "-p" option.

$ wsdair_access_execute -p 8833

Query> ls

/STAFF

/PROJ

/WORKS

Query> SELECT * FROM STAFF

STAFF.FILE

STAFF.EMPNUM

STAFF.EMPNAME

STAFF.GRADE

STAFF.CITY

S1

E1

Alice

12

Deale

S2

E2

Betty

10

Vienna

The wsdair_access_cli tool is also similar to mdcli tool, which allows you to directly issue
metadata commands on the shell. The following is an example with the the wsdair_access_cli.

$ wsdair_access_cli -p 8833 "SELECT * FROM WORKS"

WORKS.FILE

WORKS.EMPNUM

WORKS.PNUM

WORKS.HOURS

W1

E1

P1

40

W2

E1

P2

20

W4

E1

P4

20

W5

E1

P5

12

The wsdair_access_factory tool creates an indirect data resource with the given command.
When creating "indirect data resouce", a user does not receive the results in the response to a
request made, and the results is made available to the user indirectly as a new data resource.
The following is an example with the the wsdair_access_execute.

$ wsdair_access_factory -p 8833 "SELECT * FROM WORKS"

http://localhost:8833/SQLResponse/responses186_4

DRAN : http://localhost:8833/SQLResponse/responses186_4

59

The newly created indirect data resource can be accessed with wsdair_rowset command.
The follwoing example retrieves two rows from the indirect data resource with wsdair_rowset

command. "-P" option de�nes the location where the retrieval starts and "-C" option is the
number of rows to be retrieved.

$ wsdair_rows -p 8833 -P 0 -C 2 http://localhost:8833/SQLResponse/responses186_4

/SQLResponse/responses186_4.FILE

/SQLResponse/responses186_4.EMPNUM

/SQLResponse/responses186_4.PNUM

/SQLResponse/responses186_4.HOURS

W1

E1

P1

40

W2

E1

P2

20

The wsdair_list lists all the data resources including indirect data resources created by
wsdair_access_factory.

$ wsdair_list -p 8833

Address : http://localhost:8833/SQLResponse/responses186_4

DRAN : http://localhost:8833/SQLResponse/responses186_4

Address : http://localhost:8833/SQLAccess/Metadata

DRAN : http://localhost:8833/SQLAccess/Metadata

The wsdair_destory utility removes an indirect data resource. The following is an example
with the the wsdair_destroy.

$ wsdair_destroy -p 8833 http://localhost:8833/SQLResponse/responses186_4

$ wsdair_list -p 8833

Address : http://localhost:8833/SQLAccess/Metadata

DRAN : http://localhost:8833/SQLAccess/Metadata

20.3 WS-DAIR Architecture

20.3.1 Data access service and data resources

WS-DAI de�nes that a data access service is a web service that implements one or more of the
WS-DAI speci�ed interfaces to provide access to data resources. A single standalone service
manages all the WS-DAI & WS-DAIR interfaces in AMGA WS-DAIR.

There are two types of data accesses de�ned in WS-DAI. The �rst one is "direct data access",
which means that a consumer receives a direct response, containing the requested data, following
a request made to a data access service. The second is "indirect data access". It means that a
consumer does not receive the results in the response to a request made to a data access service.
The request to access data will be processed by the data access service and data resource, with
the results being made available to the consumer indirectly as a new data resource, often through
a di�erent data access service that may support a di�erent set of interfaces.

To support these two data access types, there are two types of resources in AMGAWS-DAIR.
The �rst one is SQLAccess (p. ??) type, which is the data source to support "direct data
access." In AMGA WS-DAIR, it is possible to have only one SQLAccess (p. ??) resource; a
relational database which is managed by AMGA for a metadata catalogue service. A consumer
accesses it through the SQLAccess (p. ??) interface. And the second one is a SQLRowset
(p. ??) type. It is a data resource newly created by "indirect data access." A SQLRowset (p.
??) type resource is a data source that AMGA WS-DAIR service accesses to handle requests
from both SQLResponse interface and SQLRowset (p. ??) interface. Because AMGA does not
support a stored procedure, the queried result is always a single dataset or number of updated

60

rows. Therefore, it would be redundant if we separate SQLRowset (p. ??) resource from
SQLResponse resource.

WS-DAI consider two kinds of data resources: externally managed data resource and service
managed data resource. In AMGA WS-DAIR, data resources are externally managed. This
means that the managed data resources exist outside the WS-DAIR services and their lifetime
can be managed in ways that are not speci�ed in the WS-DAI speci�cations. AMGA WS-DAIR
services do not support WSRF, which is optional in WS-DAI.

20.3.2 Data Resource Abstract Name & Data Resource Address

A data resource abstract name is de�ned as a unique and persistent name for a data resource.
The WS-DAI speci�cation mandates an abstract name to use the form of a URI. A URI has two
specializations known as URL and URN. The AMGA WS-DAIR implementation uses the form
of a URL. A data resource address is a name that speci�es the locations of a data resource as
accessed through a data access service. A data resource address is the same as a data resource
abstract name in the AMGA WS-DAIR implementation. A data resource abstract name on the
initial data resource for "direct data access" can be con�gured in con�guration �le, which is
usually located in etc directory of installed root.

20.3.3 Supported Dataset and Language

The WS-DAIR speci�cation mandates the SQLAccess (p. ??) interface provide at least Web-
RowSet format. The AMGA WS-DAIR implementation supports WebRowSet format. Sup-
ported Languages are <direct_data_statements> in SQL-92 entry level & and some of AMGA
metadata languages

• Native SQL Language : Direct data statements in SQL-92 entry level : DELETE,
INSERT, SELECT, UPDATE (JOIN, LIMIT, OFFSET keywords are supported)

• AMGA Language : AclAdd, AclRemove, AclShow, AddAttr, AddEntries, AddEntry,
Backend, CapabilitiesAdd, CapabilitiesList, CapabilitiesRemove, Chmod, Chown, Clear-
Attr, CreateDir, Dir, Find, GetAttr, GrpAddUser, GrpCreate, GrpDelete, GrpList, Grp-
Member, GrpRemoveUser, GrpShow, Help, Import, IndexCreate, IndexRemove, Insert,
Link, ListAttr, Ls, MkDir, RemoveAttr, RemoveEntries, RenameAttr, Rm, RmDir, Select-
Attr, SetAttr, Update, UpdateAttr, UpdateSingle, UserCreate, UserList, UserPassChange,
UserRemove, ViewCreate, ViewCreateUnion, ViewRemove, WhoAmI

20.3.4 Installation from Source

To install the SOAP server from source, you will need to frist download the source distribution
from the download directory.

For compilation you need to install gsoap package.

$ wget http//sourceforge.net/projects/gsoap2/files/gSOAP%20/gsoap_2.7.7.tar.gz

$ tar xzvf gsoap_2.7.7.tar.gz

$ cd gsoap-2.7

$./configure --prefix=$PWD/out

$ make

$ make install

$ cd ..

Now you should be ready to compile and install the AMGA server

$ wget

http://amga.web.cern.ch/amga/downloads/glite-amga-server-${version}.tar.gz

$ tar xzvf glite-amga-server-${version}.tar.gz

$ cd org.glite.amga.server

$ sh bootstrap

$./configure --with-readline --with-editline-prefix=/usr --with-server

--with-soapserver --with-gsoap-location=../gsoap-2.7/out --enable-rpm-rules

$ make

$ make install

61

You also need a database and the appropriate ODBC driver To setup a database and ODBC
driver, refers Server installation (p. 6) .

20.4 Howto make WSDAIR clients

WS-DAIR is a soap-based interface, that allows you to create clients by creating interface bindings
in any language out of the so called wsdl �les, that describe the soap interface.

In the following an example is given how to create a client using the Ruby programming
language for AMGA from the wsdl. Creating other interfaces for other languages is similar.

You need the 1.8 version of Ruby and the 1.5.8 version of soap4r, that provides the soap
support for Ruby. The instructions are for debian, but this should work similarly on other OSs.

Install the gem support package

$ apt-get install rubygems

$ gem install soap4r

$ export PATH=/var/lib/gems/1.8/bin/:$PATH

$ mkdir wsdair

$ cd wsdair

$ cp org.glite.amga.server/src/soap/base/*.xsd .

$ cp amga/org.glite.amga.server/src/soap/base/*.wsdl .

Unfortunately there is an incompatibility between the gsoap soap implementation and the
python/ruby implementations that were studied. You will therefore need to slightly modify the
imple.wsdl �le: Please insert the folling lines before the part <binding> starts in imple.wsdl

<wsdl:import namespace="http://www.ggf.org/namespaces/2005/12/WS-DAIR"

location="./sqlaccess.wsdl"/>

<wsdl:import namespace="http://www.ggf.org/namespaces/2005/12/WS-DAIR"

location="./sqlresponse.wsdl"/>

<wsdl:import namespace="http://www.ggf.org/namespaces/2005/12/WS-DAIR"

location="./sqlrowset.wsdl"/>

<wsdl:import namespace="http://www.ggf.org/namespaces/2005/12/WS-DAIR"

location="./wsdai_core_porttypes.wsdl"/>

Now the Ruby client can be created

$ wsdl2ruby.rb -d --type client --force --wsdl imple.wsdl

Several .rb ruby interface �les are being created. If you have to use a gem for the 1.5.8 soap4r
packages, like on debian, you need to edit wsdairDriver.rb and add the following 2 lines at the
top

require 'rubygems'

gem 'soap4r'

so that the soap4r packages are being found.
Create the following small demonstration client:

$ cat amgaclient.rb

#!/usr/bin/ruby

Start me with -d to get debug output

#$DEBUG = true

require 'wsdairDriver.rb'

endpoint_url = 'http://localhost:8833/'

obj = SQLAccessPT.new(endpoint_url)

obj.wiredump_dev = STDERR if $DEBUG

expression = SQLExpressionType.new("SELECT * FROM /tutorial/cities")

62

request = SQLExecuteRequest.new("AMGA_Metadata",

"http://java.sun.com/xml/ns/jdbc", expression)

response = obj.sQLExecute(request)

print response

dataset=response.sQLDataset() # Type: SQLDatasetType

print "Dataset format URL >#{dataset.datasetFormatURI()}<\n"

print "Dataset data >#{dataset.datasetData()}<\n"

print "Update count >#{dataset.sQLUpdateCount()}<\n"

print "Output parameter >#{dataset.sQLOutputParameter()}<\n"

print "Return value >#{dataset.sQLReturnValue()}<\n"

print "Communication >#{dataset.sQLCommunicationsArea()}<\n"

returnValue = dataset.sQLReturnValue()

data = dataset.datasetData()

print "Return value >#{returnValue}<\n"

print "Data retrieved >#{data}<\n"

wrs = data.webRowSet()

print "Web Row set >#{wrs}<\n"

wrsMetadata = wrs.metadata()

print "Web Row set metadata >#{wrsMetadata}<\n"

wrsColumnCount = wrsMetadata.column_count()

print "Web Row set columns >#{wrsColumnCount}<\n"

for i in 0...wrsColumnCount.to_i()

print "#{wrsMetadata.column_definition[i].table_name} :

#{wrsMetadata.column_definition[i].column_name}\n"

end

currentRow = wrs.data().currentRow()

print "WRS Data >#{wrs.data()}<\n"

currentRow.each { |v| p v }

And change the query in the expression variable as well as the endpoint_url according to
your setup.

Start the soap-server:

$./mdsoapserver -c mdsoapserver.config

now you can run the client:

$ chmod +x amgaclient.rb

$./amgaclient.rb

63

A Changelog

Changes in 2.3.0: (emi-2)

• Added support for SL6 x86_64

• Added a Nagios probe for AMGA

• Added mdservice site option for Version Information Publish

Changes in 2.2.0:

• Added support for openssl 1.0.0.0 or higher

Changes in 2.1.2: (emi-1)

• �xed a bug which chmod fails with ∗

• Added R option with chown : recursive

• �xed a bug that rep_mount failes in replicating a table with too many rows because of
memory problem.

• changed the default installation directory from /opt/glite to /usr

Changes in 2.1.1:

• Added nosync option with rep_mount : nosync option makes rep_mount at the slave not
to synchronize to the master. However, changes at the master are replicated to the slave
after rep_mount.

• Added noerase option with rep_umount : noerase option makes rep_umount not to remove
the contents of mounted directory.

• �xed a bug which rep_umount does not umount a directory cleanly after some replication
failure

• �xed a bug which rep_mount lets a master send dumped commands continuously even
after there is a failure at the slave

• �xed a bug wihch user_create inside a transaction can not be replicated.

• limitations of group name are removed. Now only charaters which should be avoided are
'. ", \, :, |, <space> at the group name.

• Added s option with ls : ls -s prints only subdirectories.

• Added version command which prints a version of the connected amga server

Changes in 2.1.0:

• Added support for federation

• Added support for replicating plain tables

• Added support for replicating indexes

• Fixed a bug which WS-DAIR does not replicate properly

• Fixed a bug which native SQL does not replicate properly

Changes in 2.0.0 :

• Added support for WS-DAIR (SOAP) Interface : Integration of AMGA into the DAIS
framework of OGF standardized Grid Data Access Services

• Added support for sticky bit

• Added support for dynamic mapping from VOMS Role/Group to AMGA user/group

64

• Added support for Entry level ACL & permission check in native SQL query

• Added support for run-time con�gurable AMGA server : Existing Multi Process model or
new Multi-threaded & Multi-process Model can be chosen through con�guration

• Added support for native SQL Query Support on Oracle

• Changed command name madir to makedir

• Added support for accessing FILE, OWNER, PERMISSIONS, GROUP_RIGHTS at-
tributes in native SQL query

• Fixed "SELECT ∗" to print FILE followd by user's attributes

• Fixed a bug which a deleted group can not be removed from an ACL

• Fixed a bug which permission is not checked when creating sequence

• Fixed a bug which acl_show generates error 9 when it accesses an entry

• Fixed a bug which index is not removed automatically with "rm -r"

• Fixed a bug which "rm -r" and "rmdir" do not require permission check

• Fixed a bug which permissions are checked in a wrong way with setattr, clearattr, getattr
and �nd when a target in an entry

• Removed showing Group Permission with "ls -l" command, because it is useless information

• Fixed a bug which sequence_next does not produce correct sequence in MySQL5

• Fixed a bug which con�gure does not fail when boost-thread library is not found

• Fixed a bug of rm command in Oracle

• Fixed a bug of view_create command

• Added support for varbit (only works with PostgreSQL)

• Fixed a bug that rep_allow command produces "Error: 4: Directory not found" in Oracle

• Fixed a bug that rep_mount produces "Local execution failed. 4 Directory not found" in
Oracle

• Fixed a bug that rep_umount produces ""Error: 4: Permission denied ..."

• Fixed a bug that inherit option is not shown with stat and dump command

• Fixed a bug that native sql does not compile in gentoo (�tags=CXX)

• Fixed a bug that very long SQL executes very slow (200K length query took about 1
minute)

• Fixed a bug that very long input data is truncated when inserted

Changes in 1.9.0:

• Added support for native SQL query

• Added support for multi-threaded multi-process service model with DB connection sharing

• Added support for more �exible masterindex schema

Changes in 1.3 (glite 3.1):

• Added support for admin �ag in ACLs

• Added support for database schemas

• Added support for outer and inner joins

65

• Fixed nasty bug in stream bu�er corrupting output under load when transactions were
used

• Made directory traversal use bound paramters (DB performance)

Changes in 1.2.10:

• Fixed user replication

• Added monitoring of user connections numbers

• Added limits on number of connections per user

• Added possibility to reserve connections for root

• Fixed constraints in MySQL, in particular for plain directories

• Added capabilities (only used for repliation), to use, please update schema: ALTER TABLE
users ADD COLUMN "capabilities" VARCHAR(256); See "help capabilities"

• Added the possibility to allow ordinary users to replicate login information via rep_users_-
allow, rep_users_disallow

• Added new type of view to create a union of several (replicated) directories, see: create_-
view_union

• Made create_union more powerful, please read the docs

• Added custom primary keys: constraint_add_primary_key

• Fixed username/password default from odbc.ini to work (thanks to Tamas Hauer).

• Fixed several bugs on 64 bit architecture (thanks to Tamas for reporting them).

• Added isnull() and notnull() function to give IS [NOT] NULL syntax in SQL.

• Added if() function for conditional evaluation.

• Loosened permission checking on ACL changes for entry-ACLs

Changes in 1.2.9:

• Fixed dump command in MySQL < 5.0 and for SQLite

• Fixed parsing problem with capital "AND"

• Problems with table creation �xed for SQLite, MySQL < 5.0 and PostgreSQL

• Seperated MySQL initialization �les for version < 5.0 from those for 5.x

• Stat shows possible directory options

• New regression testing tool for the query parser

• Sequences implemented for MySQL5.x

Changes in 1.2.8:

• Added type=<TYPE> option in createdir/mkdir to create entry column with custom type

• Added execute command to run server-side scripts

• Initial implementation of import feature for existing tables

• Added update command, which updates using bound variable to circumvent Oracle prob-
lems with SQL command length limitations

• �xes for rm command

• �xed constraint_add_unique and constraint_add_not_null on MySQL

66

Changes in 1.2.7:

• Reimplemented mdserver as amgad.

• addattr checks for system columns and rejects them

• addattr works only on directories

• Support for preexisting tables as plain tables

• Added backend command to allow user to �gure out the database backend.

• Added documentation for views.

• Fixed command option check for index_create.

• Support for ACLs for sequences, indices, views.

• Changed listattr to use 'x' �ag for permission checking.

• Fixed getattr to allow showing of entries when default ACL allows it.

• Changed selectattr to allow access to individual entries.

• Initial version of renameattr (works only on Postgres and Oracle)

Changes in 1.2.6:

• Fixing CRL checking, adding CRLDir option to amgad.con�g

• Create all groups successfully mapped by VOGroupMap automatically on login

• Cleaning up include �les of C++ API

• Adding several functions to C++ API to make it more Posix-IO like

• Several Oracle bugs found by Viktor �xed

• rm -r added

• Added -a option to grp_list. Users can now see other user's groups.

• Fixed constraint_add_reference and constraint_add_check

Changes in 1.2.5:

• Replication of users and groups

• Fixed stat output, now it is doing ls -lP

• Fixed bug in user_listcred if no certi�cate was assigned to a user

• updateattr reports error if no update performed

• Improved mdclient behaviour if upload command is messed up by the user

Changes in 1.2.4:

• Support for GLITE_LOCATION environment variable for the client con�guration �le

• Support for X509_USER_PROXY environment variable to locate the grid-proxy

• Support for limited proxies

Changes in 1.2.3:

• Fix login problem with VO certi�cates and Groups-on-the-�y

• Replication layer �xes

67

• Increased listen queue in mdserver to 500: Much better performance with high number of
clients

Changes in 1.2.2:

• Replication layer refactored

• Standalone (without gLite build system) RPMs now possible

Changes in 1.2.1:

• Java API: Implemented on the MDClient (p. ??) the methods for constraints, groups,
acls and sequences

• Java API: Fixed a bug in the MDClient (p. ??) constructor where the username and
password were not being properly initialized on th

• Adding date in log messages

• Nicer debug messages

• Fixed constraint removal when removing attribute

• Fixed reading of con�guration �le in home-directory on SLC3

• Fixed request cancellation in C++ client

• Fixed uninitialized memory in command encoding routine problem

• Fixed several bugs of replication with Oracle

• Fixed replication of some commands where the logs were not being saved with the correct
directory information.

• Improved dump performance

• Implemented replication of indices and of the upload/put/commit commands

Changes in 1.2.0:

• Added support for distinct, order and limit clauses in selectattr

• New parser for con�guration �les. New escape char is \. Read the documentation!

• Support for MonAMI (and from there to MonALISA) monitoring of the service.

• Support for explicite transaction handling.

• AMGA commands added to set up table constraints.

• BDII support including fallback to another AMGA server for the client

Changes in 1.1.0:

• Support for MySQL5

• Support for GIS on MySQL5

• Directories with shared schema may share a table (createdir parent shared)

• Per-entry ACLs in a directory (Postgres only!): createdir dir acls

• Inheriting schemas has been removed from the PostgreSQL version (was never supported
elsewhere and shared directories make up for it)

• mdclient silent mode (-S) �xed

• mdclient command completion added

Changes in 1.0.0 (gLite 1.5):

68

• Dependency on readline optional (./con�gure �with-readline) by default editline is used

• Fixes to work with openssl 0.9.6 to 0.9.8, not only 0.9.7

• Log() function returns always natural logarithm

• dir(), stat(), listentries(), �nd() take r-�ag into account

• listattr() and getattr() honour r-�ag of directory

• Fixed group-existance checking in group commands

• Seperating user_list into user_list and user_listcred

• Dump method improved

• Directory matching operation �xed in SQLite

• Fixing rollback mechanism in uploads

• Several checks on put-command arguments added

• SQL query added to error output

• Disallow creation of subdirectories of entries

• Adding grp_dump, user_dump

• Fixed ACL-inheritance of new directories

• Cleaned up certi�cate checking

• Package can compile against Globus

Changes in 0.9.9:

• Move to gLite build environment

• Removed ZThreads dependency, Boost is not used instead

• External dependency on gSOAP removed, instead generated code is included

• Bug with unary minus �xed in parser

• Change to use 3 RPMs: client, server, soapserver

• Move to GLITE_LOCATION home-directory, default is /opt/glite

• Use datetime as timestamp datatype on MySQL

• listschemas command added to support PTF-API

• Move to �ex 2.5.4 for improved compatibility, �exer object

• Several new functions in parser

• vomsattrusermanager added

• MyProxy works

• like() and count() added

• Added man-pages for client and server executables

• Lots of documentation improvements

• New grp_list command

Changes in 0.9.6:

• gLite integration

69

• New authentication and authentication module vomsinfo based on VOMS attribute certi�-
cates

• Introduction of default system:anyuser group

• Enabled 'x' entry visibility �ag

• Delete() operation performance problem solved

• Separation into client, server and soapserver RPMs

• like() and count() functions in queries

Changes in 0.9.4:

• Support for LFC running with an Oracle back-end

• Fixes for several problems with the new Oracle ODBC driver

• New dump command to backup the database

• Fixes for wildcards in �lenames

Changes in 0.9.3:

• Introduction of basic datatypes which are supported on all backends.

• Initial support of MySQL as a standalone backend, everything except sequences, views and
indices should work.

• Moving to the new Oracle ODBC driver: The new release need the Oracle 10.2 ODBC
driver for Oracle access. The EasySoft driver will not work.

• Many bugs �xed for the Oracle backend, more performant access to large metadata made
possible through new ODBC driver.

70

Acknowledgement : This work is co-funded by the EC EMI project under the FP7 Collabo-
rative Projects Grant Agreement Nr. 261611.

71

