

Services for Grid Data Management

Oliver Keeble & Jean-Philippe Baud

On behalf of IT-GT-DMS at CERN

Overview

CERN**IT** Department

ERN

- Service overview
- Recent developments
- Status
- Short term outlook
- Longer term directions

Switzerland

www.cern.ch/it

Data Management Services

Clients: gfal/lcg_util

A coherent set of services for DM

Storage : Disk Pool Manager (DPM)

Catalogue: LCG File Catalogue (LFC)

Transfer: File Transfer Service (FTS)

FTS

- Recent developments
- Available on SL5
 - SL4 security updates till Apr 2011
- 2.2.5 (in certification)
 - srmless endpoints
 - removal of voms server cert dependency
- 2.2.4
 - finalisation of checksum handling

DPM/LFC

- Recent developments
- 1.8.0 (in certification)
 - user banning with Argus support
 - internal 3rd party rfcp
- 1.7.4
 - configurable RFIO readahead buffer size on client
 - db cleanup
 - SURL bulk lookup
 - dual architecture installations 32/64
- 1.7.3
 - xrootd plugin update

DPM around the grid

T Group > Data Management Stats						
Number of Deployed SE Instances FTS Versions		LFC Versions	LFC Numbers			
			S	earch:		
Implementation		\$	Instances	*	Sites	
DPM		251		223	223	
DCACHE		80		63	63	
STORM		51		42	42	
CLASSICSE		38		37		
BESTMAN		34		32		
CASTOR		20		4		
Unknown		8		7		
ARC		2		2		
XROOTD		1		1		
UNDEFINED		1		1		
		1		1		

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

DPM & LFC deployment

- DPM
 - 251 instances at 223 sites
 - Largest installations are over 1PB
 - In total manages over 15PB of storage
 - ~15% of online storage

- LFC
 - running at 56 sites
 - de-facto standard catalogue

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

DPM/LFC future

- Adapt to new requirements
 - Performance & manageability
 - DPM: Instrumentation of disk servers
 - monitoring
 - filesystem selection
 - traffic management
 - DPM: Usage information
 - accounting
 - quotas
 - DPM: Replication
 - drain
 - hot files
 - DPM/LFC: access to logs
 - Catalogue Consistency

"3rd party" gridftp/rfio comparison

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

Credit: Martin Draexler

Services for Data Management - 9

CERN

DPM future

- Standards
 - NFS4.1
 - access via file protocol with standard clients
 - performance to be established
 - reasons for optimism

- SSL
 - $httpg \rightarrow https for SRM$
 - sessions
- http file access
 - allowing standard clients, eg curl
- http access to LFC

- The problem
 - If an SE looses a file, the LFC does not know
 - Absent files are expensive errors right now
 - A change in the permissions of a file in LFC is not automatically reflected by the peripheral catalogues
- Synchronisation now
 - Triggered by application software (copy/reg)
 - not atomic
 - Maintained by slow, periodic interventions

Catalogue consistency

- The solution
 - Status changes communicated over messaging
 - Eventual consistency
- Standardise message format (EMI)
 - Any SE or catalogue can become a participant in the consistency framework
- Demonstrator
 - using DPM/LFC
 - permissions changes and lost files
 - goal: demo December 2010

Catalogue consistency

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

FTS - limitations

- While FTS operates as a workhorse for certain distribution scenarios, it has reached limitations in adapting to the evolution of infrastructure and workflows
 - Grid architecture
 - designed for the monarc model
 - now require something much less structured
 - T1/T1, T1/T2, T2/T2...
 - current FTS architecture will not scale, N squared problem
 - star channels are difficult to manage
 - move from channel paradigm to endpoint-centric
 - Configuration Model
 - Currently requires lots of configuration, with very little discovery
 - need opposite emphasis, where FTS decides number of concurrent transfers
 - permitted concurrent transfers become property of and endpoint not a channel
 - There is currently limited information on network or SE state
 - will require more information to be available to start with
 - inc feedback from recent transfers

FTS - opportunities

- Create a more generic file transfer scheduler serving other use cases, such as 'chaotic' user initiated transfers
 - migration of output files
 - needs site reconfiguration as output files are typically removed at end of job
 - intermediate copy? stage area?
 - lcg-cr could hand over to asynchronous scheduling
 - cache population
 - remote files can be used via
 - remote byte access
 - transfer for local byte access
 - with vanilla local disk caching there is no scheduling
 - hand over instead to a scheduling service
 - namespaces for access
 - global logical namespace
 - » remote site not mounted directly (eg by NFS)
 - » Implementation could trigger transfer transparently

FTS – design considerations

- Zero configuration
 - Through messaging and new information in the Infosys.
 - Access to more information
 - Info on SEs
 - free space
 - load
 - Info on networking
 - different for dedicated / shared links
 - what other info required?
- Endpoint-centric information model

٠

- Dynamic selection of FTS server for a particular transfer
 - this is useful even without new use cases
 - can be implemented via messaging
 - promote interoperability between providers
- Catalogue Interaction
 - Should copy-register style operations be directly supported?
- Allow other db backends, even non relational

FTS - information sources

- How can site policy, network info and SE state be encapsulated?
 - Instrument SEs
 - query directly by FTS
 - populate Infosys
 - Messaging
 - FTS could consume 'not available' messages from SEs
 - messaging good for incidents
 - catalogue synchronisation work
 - Direct FTS config (last resort)

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

Summary

- DPM/LFC/FTS are alive and well
 - and have just recruited 2 new developers
- DPM/LFC evolutionary development
 - standards
 - Dedicated talk by Ricardo Brito Da Rocha
 - catalogue consistency
- FTS has more radical plans under discussion
 - generic transfer scheduler
 - existing service will be maintained
- A coherent set of services is required
 - using standards promotes participation
- Program of Work:

https://twiki.cern.ch/twiki/bin/view/LCG/DMProgramOfWork

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

