
EMI is partially funded by the European Commission under Grant Agreement RI-261611

Performance testing of distributed
computational resources in the
software development phase

J. Cernak, E. Cernakova and M.
Kocan,

P. J. Safarik University in Kosice,
Slovak Republic

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Outline

● Performance testing-basic terms,
motivations and requirements

● Tools for performance testing

● Test cases in EMI for ARC
components

● Conclusions

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Performance testing-basic

● Performance testing is testing to
determine a response and stability of
system under specific workload

● It can cover investigation, measurement or
verification of:

● quality attributes:

– scalability,

– Reliability (started before EMI 1.0.0) ,

– duration of events (started before EMI. 1.0.0),

● resource usage (started before EMI 2.0.0).

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Performance testing-motivation

● Factors which can influence performance

● implementation of common standards in existing middleware
solutions can increase complexity of the software,

● core middleware software depends on many software
solutions which could affect the final parameters.

● Reasons to introduce performance testing:

● to provide detail feedback for developers about possible
performance issues in early state of development,

● an effort to produce high quality software-be compliant with
EMI policies [6].

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Performance testing-requirements

● Load testing-investigate performance parameters in
specific load, for example extensive job submission.

● Stress testing-investigate upper limits for load testing.

● Endurance testing-monitoring of memory or CPU usage to
detect memory leaks or CPU workload during load testing.

● Parameter testing-searching for the optimal setting to
ensure the best performance results.

● Setting the performance goals:

● to define performance criteria,

● compare software parameters between release candidates or other
software solutions,

● determine a weak part of software.

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Performance testing tools

● We have identified two major testing tools:

● mature tools deployed to monitor daily operation of:

– Networks (MRTG),

– Servers(Ganglia, Nagios, Monalisa),

– web services(Nagios, Monalisa);

● custom solutions - set of specific scripts (.sh, .py) and
visualisation tools

● Both solutions could be used in the software
development phase, however in the development phase
specific needs exist to provide more detail information
about software properties, for example activity of
process.

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Performance tools-cont.

● Initially we used custom bash scripts (.sh). Required information
about process activity was provided by Linux ps utility. A lot of
manual work was needed to visualise the results [1,2].

● At present we proposed a solution based on utilisation of cross
platform psutil module for Python [3], MySQL database and
control layer (xlm-rpc). We proposed a web page [4] with PHP
interface to DB and jqplot to plot graphs of the test results.

● The performance tool connects an advantage of python module
psutil, central DB, separated communication layer and power of
jqplot.

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Performance tools-cont.

● Key parts of proposed advanced
performance tool:

● Python script p1.py is used to monitor
process activity

● Python script p2.py is used to send data
from monitored distributed resources
(server or client) to the central database

● Control layer is used to synchronise events,
for example remote start or stop of scripts
p1.py or p2.py.

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Performance tool-cont.

● p1.py - monitors set of daemons (processes) and their
subprocesses

● The script was tested with:

– Python v 2.4.4, v2.6.5,

– psutil v. 0.4.1,

– OS SL5,CentOS5, Ubuntu 10.4.

● Script usage -list of process names separated by spaces:

– command: nice -n -16 python p1.py “p1 p2 … pn” &

● p2.py reads temporary file and sends data to central
DB.

● Script usage- list of process names separated by spaces

– Command: python p2.py “p1 p2 … pn”

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Performance tool-cont.

● Control layer

● unsecure communication “client - server” using
python xml-rpc module (tested)

● Plan to use secure communication

● Visualisation of results

● For each process and sub-processes we can determine
six parameters:

– mem %, CPU%, CPU usage by user CPU0 and system
CPU1, and memories parameters rrs and vms.

● Format of the results:

– Iterative graphs (zooming), .gif figure and .csv file

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Performance tool-design

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Test cases in EMI for ARC components

● Client-server performance characteristics of
task management (load testing):

● time to

– submit 1000 sequential tasks,

– time to download the results of submitted tasks (1000
tasks)

● Reliability (ratio of successful to all tasks) of :

– job submission, acceptance criteria R=1,

– job downloading, R=1,

– successful jobs, R=1.

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Test cases in EMI for ARC-cont

● Identified issues by using performance
testing:

● Memory leak of CE

● Reliability testing (increase reliability of job
submission EMI 1.0.0)

● Duration of job submission (reduction of time to
submit 1000 jobs)

● Duration of download 1000 jobs (identified issue)

● BDII configuration issue (a big memory usage)

Test cases in EMI for ARC

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Endurance testing

● Obviously two important parameters are
monitored:

● Memory usage

● CPU usage

● Example of monitoring CPU usage of
slapd of ARC0 CE:

● Load characteristics:

– no job submission from client

– job submission of 1000 tasks

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Example of endurance testing CPU usage

No job submission, however slapd is
active

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Endurance testing-cont.

slapd activity during 1000 job
submission

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

slapd CPU usage during 1000 job
performace test

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

slpad memory usage during 1000 job
submission performance test

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Plans:

● to provide the results of performance
tests for EMI 2.0.0.

● To extend the number of test scenarios

● Systematic performance analysis after
EMI 2.0.0.

● trying to define minimal performance
parameters for ARC components.

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

Conclusions

● Prototype of performance tool:

● was developed and tested as part of EMI SA2.4 task,

● the python scripts could be integrated into similar test frameworks,

● can be used in similar software projects.

● Realisation of performance testing in development phase:

● can discover potential issues very early,

● increase a quality of the final software.

● Need of definition of common performance parameters to
evaluate a quality of grid software

●
E
M

I
IN

F
S

O
-R

I-
2
6
1
6
1
1

References

● [1] D5.4-1 RESOURCE CONSUMPTION PROFILE AND PERFORMANCE BENCHMARK
STUDY OF THE EARLY PROTOTYPE RELEASE OF KNOWARC:
http://www.knowarc.eu/documents/Knowarc_D5.4-1_07.pdf

● [2] D5.4-1 RESOURCE CONSUMPTION PROFILE AND PERFORMANCE BENCHMARK
STUDY OF THE FINAL RELEASE OF KNOWARC:
http://www.knowarc.eu/documents/Knowarc_D5.4-1_09.pdf

● [3] “psutil” cross-platform process and system monitoring module for Python:
http://code.google.com/p/psutil/

● [4] ARC tools for revision, functional and performance testing (including DB of test
results and tool to generate EMI test reports): http://arc-emi.grid.upjs.sk/tests.php

● [5] ARC test coordination: http://wiki.nordugrid.org/index.php/Testing

● [6] EMI testing policies: https://twiki.cern.ch/twiki/bin/view/EMI/EmiSa2TestPolicy

http://www.knowarc.eu/documents/Knowarc_D5.4-1_07.pdf
http://www.knowarc.eu/documents/Knowarc_D5.4-1_09.pdf
http://code.google.com/p/psutil/
http://arc-emi.grid.upjs.sk/tests.php
http://wiki.nordugrid.org/index.php/Testing
https://twiki.cern.ch/twiki/bin/view/EMI/EmiSa2TestPolicy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

