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We report a thorough and rigorous analysis of the plasmon modes of axisymmetric metallic nanoparticles,
based on group theory techniques and block diagonalization of the scattering T matrix. In particular, we
discuss plasmonic excitations under plane-wave illumination of a silver nanorod and a nanodisk, and present
a detailed comparative study of elongated silver nanoparticles of different shape, but with the same length
and thickness. Our methodology allows for an unambiguous classification of the eigenmodes of nonspherical
particles, according to the irreducible representations of the appropriate point symmetry group, and provides
a consistent explanation of relevant extinction spectra elucidating aspects of the problem to a degree that
goes beyond usual interpretation.

Introduction

The problem of scattering of electromagnetic (EM) waves
by isolated particles has long been investigated in its different
aspects. These investigations are motivated by a plethora of
diverse applications ranging from radar meteorology1 to nano-
medicine.2 A rigorous solution of the problem of scattering of
EM waves by a homogeneous sphere of arbitrary size embedded
in a homogeneous medium was given by Mie3 and Debye.4 On
the other hand, for nonspherical scatterers, analytic solutions
are only effective when the boundary surface is described
conveniently in one of the coordinate systems for which the
vector Helmholtz equation is separable.5-8 However, because
of the analytical complexity of the overall boundary value
problem, even for such shapes, numerical solutions are generally
more efficient9-14 and are currently employed in the study of
nonspherical particles of various types.

The optical properties of metallic nanoparticles attract
considerable attention for a variety of reasons, not least of which
are technological applications. The extinction spectrum of these
particles in the visible region is characterized by pronounced
resonances due to the excitation of particle plasmons.15 These
are collective electron oscillations at the surface of the particle
that cause large enhancement of the local field and strong light
absorption, effects that are interesting in nonlinear optics,16,17

solar energy absorption,18,19 thermal emission,20,21 enhanced
random lasing,22 sensing and optoelectronics applications.23 In
particular, large scientific interest in this area is devoted to
the investigation of nonspherical and core-shell particles,
because of the strong tunability of their plasmon modes.24,25

These particles can efficiently enhance fluorescence,26 be useful
in the detection of DNA hybridization,27 control radiation
damping,28 and so forth. The most promising materials for such
applications appear to be gold and silver,29-31 and novel
synthetic methods have led to precise control over particle size,
shape, and stability.32,33 Furthermore, it has been shown that a
precise knowledge of the scattering cross section spectrum can
give information about the particle size and shape,34 and various
theoretical methods have been applied for predicting and
understanding the optical response of such nanoparticles.35

Although the eigenmodes of spherical particles have a well-
defined multipole character and polarization (magnetic or
electric) type, and can be excited by a plane wave at the
resonance frequency incident from any direction and with any
polarization, this is not the case with nonspherical particles. In
the present article, we present a methodology, based on group
theory, for a rigorous analysis of the eigenmodes of nonspherical
particles. This method provides a unique framework for
understanding the nature of the modes of the EM field about
such a particle and their coupling efficiency with an externally
incident wave (dark and bright modes). Besides single particles,
the proposed methodology is also useful for the analysis of
complex systems consisting of many particles. The efficiency
and versatility of the various three-dimensional EM multiple-
scattering methods developed in the last few decades36-45 lie
in the fundamental notion that the scattering properties of a
composite system can be obtained from those of the individual
parts comprising the system. That is to say, the optical response
of an assembly is determined to a considerable extent from the
properties of the individual scattering centers. Therefore, a
proper rigorous analysis of the optical modes of single particles,
in terms of group theory, allows for a deeper understanding of
the behavior of complex structures of such particles, in the same
manner as the electronic structure and resulting properties of
molecules and solids can be understood from the properties of
the individual atoms. Such an analysis is more or less
straightforward for EM structures of spherical particles;43,46-48

however, for particles of lower symmetry, the analysis is much
more involved,49-51 and the classification of modes as dipole,
quadrupole, etc.,52 is not accurate. In view of the considerable
research activity relating to complex photonic architectures with
building units of nonspherical shape, especially in relation to
plasmonic nanostructures53-55 but also in relation to optical
metamaterials,56-58 we believe that the present work is timely
and, hopefully, useful.

The structure of this paper is as follows. In the first section
we describe the scattering of EM waves by a single particle
and introduce the T matrix. In the second section we discuss
the symmetry of the eigenmodes of nonspherical particles. We
project both vector spherical waves and plane waves to the C∞V

and D∞h point groups, which are appropriate for axisymmetric
particles, and discuss the condition that must be fulfilled so that* E-mail: ggantzou@phys.uoa.gr.
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a specific mode can be excited by an incoming plane wave. In
the third section we apply the above methodology to silver
nanoparticles of various shapes: disks versus rods, as well as
cylinders, capped cylinders, and prolate spheroids. We thor-
oughly analyze the corresponding extinction spectra and discuss
similarities and differences in the optical response of the
different shapes. Finally, a summary of all findings is given in
the fourth section.

Scattering by a Single Particle

The electric field associated with a harmonic, monochromatic
EM wave, of angular frequency ω, has the form E(r, t) )
Re[E(r) exp(-iωt)]. For a plane wave of wavevector q,
propagating in a homogeneous medium characterized by a
relative dielectric function ε and a relative magnetic permeability
µ (we shall denote it by an index 0), we have

where E0 is the magnitude and p̂, a unit vector, is the polarization
of the electric field. The plane wave given by eq 1 can be
expanded into regular vector spherical waves about a given
origin of coordinates as follows:45

where P ) 1 or 2 is the polarization mode: magnetic or electric
type, respectively, and q ) ω(εµ)1/2/c, with c being the velocity
of light in vacuum, is the wavenumber. The wave functions
JPlm(r) are defined as

with jl(qr) being the spherical Bessel functions, which are finite
everywhere, and Xlm(r̂) ≡ -ir × ∇Ylm(r) being the vector
spherical harmonics.59 Finally, the expansion coefficients aPlm

0 ,
can be written as

with

and

where Rl
m ) (1/2)[(l - m)(l + m + 1)]1/2; (θ, φ) ≡ q̂ denotes

the angular variables of q in the chosen system of spherical
coordinates; and ê1 and ê2 are the polar and azimuthal unit
vectors, respectively, which are perpendicular to q. We note
that if p̂ ) ê1 (ê2) the wave is p (s) polarized.

We now consider a homogeneous particle of arbitrary shape,
centered at the origin of coordinates, and assume that its relative
dielectric function εs and/or magnetic permeability µs, in general
complex functions of ω, are different from those of the
surrounding medium. When the plane wave described by eq 2
is incident on the particle, it is scattered by it, so that the wave
field outside the particle consists of the incident wave and a
scattered wave, which can be expanded in spherical waves as
follows:

where H1lm(qr) ) hl
+(qr)Xlm(r̂) and H2lm(qr) ) (i/q)∇ ×

H1lm(qr), with hl
+(qr) being the spherical Hankel functions

appropriate to outgoing spherical waves: hl
+(qr) ≈ (-i)l exp(iqr)/

iqr as r f ∞.
In general, the expansion coefficients aPlm

+ of the scattered
wave can be expressed in terms of those of the incident wave
(aPlm

0 ) through the scattering T matrix as follows:

The T matrix is evaluated, through different methods, by
imposing the proper boundary conditions, i.e., continuity of the
EM field at the surface of the particle, and describes the EM
response of the particle. For example, the scattering and
extinction cross sections are given by45

respectively, where / denotes a complex conjugate, while the
absorption cross section is defined by σabs ) σext - σsc. It is
clear from eq 9 that, in general, the cross sections depend on
the polarization and the direction of propagation of the incident
wave. In the particular case of a spherically symmetric particle,
the T matrix becomes diagonal: TPlm; P′l′m′ ) TPlδPP′δll′δmm′, and
the cross sections depend only on the T matrix, since ∑m|APlm

0 · p̂|2

) 2π(2l + 1). The particle eigenmodes, i.e., wave field solutions
in the absence of incoming wave, are obtained through the
condition det T-1 ) 0, which follows from eq 8. In general, a
single particle supports resonant modes of the EM field at the
poles of the eigenvalues of the corresponding T matrix in the
lower complex frequency half-plane, as requested by the
causality condition, near the real axis, i.e., at ωi - iγi, γi g 0;
ωi is the eigenfrequency, while γi denotes the inverse of the
lifetime of the respective mode. Contrary to the case of spherical
scatterers, the T matrix of a nonspherical particle is not diagonal
in the spherical-wave basis, and thus no unambiguous clas-
sification of its eigenvalues, according to polarization and
angular momentum, can be made. Though the plasmon modes
of nonspherical nanoparticles may also have a predominant

E0(r) ) p̂E0(q) exp(iq · r) (1)

E0(r) ) ∑
P)1,2

∑
l)1

∞

∑
m)-l

l

aPlm
0 JPlm(r) (2)

J1lm(r) ) jl(qr)Xlm(r̂)

J2lm(r) ) i
q

∇ × J1lm(r)
(3)

aPlm
0 ) APlm

0 (q̂) · p̂E0(q) (4)

A1lm
0 (q̂) ) 4πil(-1)m+1

√l(l + 1)
{[Rl

m cos θeiφYl-m-1(θ, φ) +

m sin θYl-m(θ, φ) + Rl
-m cos θe-iφYl-m+1(θ, φ)]ê1 +

i[Rl
meiφYl-m-1(θ, φ) - Rl

-me-iφYl-m+1(θ, φ)]ê2} (5)

A2lm
0 (q̂) ) 4πil(-1)m+1

√l(l + 1)
{i[Rl

meiφYl-m-1(θ, φ) -

Rl
-me-iφYl-m+1(θ, φ)]ê1-[Rl

m cos θeiφYl-m-1(θ, φ) +

m sin θYl-m(θ, φ) + Rl
-m cos θe-iφYl-m+1(θ, φ)]ê2} (6)

Esc(r) ) ∑
Plm

aPlm
+ HPlm(qr) (7)

aPlm
+ ) ∑

P'l'm'

TPlm;P'l'm' aP'l'm'
0 (8)

σsc )
1

q2 ∑
Plm

| ∑
P'l'm'

TPlm;P'l'm'AP'l'm'
0 · p̂|2

σext ) - 1

q2
Re ∑

Plm

(APlm
0 · p̂)* ∑

P'l'm'

TPlm;P'l'm'AP'l'm'
0 · p̂

(9)
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polarization and 2l-pole character,61 a rigorous assignment of
the different modes can be made by using group theory.51,62

Symmetry of Particle Eigenmodes

The symmetry transformations that leave a given particle
invariant form a subgroup of the orthogonal point group O(3).
Such symmetry operations are the identity (E), the inversion
(I), rotations through an angle 2π/n around an axis A (CnA), as
well as combinations of them, and transform a scalar (f) or vector
(F) function as follows:64

respectively, where R is the transformation matrix in the three-
dimensional euclidian space, which corresponds to operation
R. Let us consider application of proper (R) and improper (IR)
rotations to the vector spherical waves. It is well-known that,
while the polar vector operators commute with R, i.e., Rr )
rR, or R∇ ) ∇R, their vector product transforms like a
pseudovector, i.e., R(r × ∇) ) det [R](r × ∇)R.65 As a result,
a vector spherical wave of electric type, F2lm(r) (F ) J or H),
which can be written in the form [f1(r)r + f2(r)∇]Ylm(r̂), is
always transformed like Ylm(r̂), i.e., as a scalar spherical wave.
On the contrary, a vector spherical wave of magnetic type,
F1lm(r) (F ) J or H), which can be written in the form f(r)(r ×
∇)Ylm(r̂), is transformed like Ylm(r̂) for proper rotations and with
an opposite sign for improper rotations.

We shall now project the vector spherical waves FPlm(r),
following the above rules (see also the Supporting Information),
onto the irreducible representations of the C∞V and D∞h point
groups, which are appropriate for axisymmetric particles and
axisymmetric particles with an additional mirror plane normal
to the symmetry axis (cylindrical symmetry), respectively. For
the C∞V group we obtain

i.e., {F2l0(r)} and {F1l0(r)}, project on the one-dimensional
representations A1 and A2, respectively, while {FPlm(r)} projects
on the two-dimensional representations E|m|. Similarly, for the
D∞h group we obtain

i.e., {F2l0(r),l:even}, {F1l0(r),l:even}, {F1l0(r),l:odd}, and {F2l0(r),l:
odd} project on the one-dimensional representations A1g, A1u,
A2g, and A2u, respectively, while {FPlm(r), P + l:even} and
{FPlm(r), P + l:odd} project on the two-dimensional representa-
tions E|m|g and E|m|u, respectively.

In order to excite an eigenmode of specific symmetry,
compatibility with the symmetry of the incident field is
necessary, i.e., the corresponding coefficients aPlm

0 of eq 2 must
be nonzero. For incidence along the particle axis (θ ) 0, π),
from eqs 5 and 6 we find that |APlm

0 · p̂|2 ) (2l + 1)πδ|m|1, i.e.,
both s- and p-polarized waves can excite states only of E1

symmetry in the case of the C∞V group, or of E1g and E1u

symmetry in the case of the D∞h group. If θ ) π/2, |APlm
0 · p̂|2 *

0 if and only if l + m + P is even (odd) for s- (p-) polarized
waves. At any other angle of incidence (θ * 0, π/2, π) all
doubly degenerate modes can be excited. Furthermore, A1l0

0 · ê1

) A2l0
0 · ê2 ) 0 and A1l0

0 · ê2 ) A2l0
0 · ê1 ) 4πilYl1(θ, 0). Therefore,

a p-polarized wave for θ * 0, π/2, and π can excite, in addition,
nondegenerate modes of A1 symmetry in the case of the C∞V
group or of A1g and A2u symmetry in the case of the D∞h group.
Correspondingly, an s-polarized wave for θ * 0, π/2, and π
can excite nondegenerate modes of A2 symmetry in the case of
the C∞V group or of A1u and A2g symmetry in the case of the
D∞h group. These results are summarized in Table 1.

In the specific case of axisymmetric particles, i.e., particles
that are invariant under the symmetry operations of the C∞V
group, the evaluation of the eigenvalues and eigenvectors of T
is simplified by taking advantage of its block-diagonal form
TPlm; P′l′m′ ) TPl; P′l′

m δmm′. For m * 0, since TPl; P′l′
-m ) (-1)P+P′TPl; P′l′

m ,
the two submatrices T(|m| have the same set of eigenvalues, as
follows from basic matrix algebra for partitioned matrices,63

while for m ) 0, TPl; P′l′
0 ) Tll′

P0δPP′.12 If we further assume
cylindrical symmetry, i.e., particles that are invariant under the
symmetry operations of the D∞h group, the individual Tm also
take a block-diagonal form: Their elements are identically zero,
unless P + l and P′ + l′ have the same parity, even or odd,
these blocks corresponding to the two-dimensional irreducible
representations E|m|g or E|m|u of D∞h, respectively. For m ) 0,
TPl; P′l′

0 ) Tll′
0PδPP′, where Tll′

0P ) 0 if l and l′ do not have the same
parity. In this case, according to the previous discussion, the
submatrices correspond to the one-dimensional irreducible
representations: A1g for l,l′:even and P ) 2; A2u for l,l′:even
and P ) 1; A2g for l,l′:odd and P ) 1; A2u for l,l′:odd and P )
2. A given mode can be excited only if the electric field
component of the incident light has a nonvanishing projection
onto the appropriate irreducible subspace. For example, as
discussed in the previous paragraph, a plane EM wave incident
at an angle θ (0 < θ < π/2) with respect to the particle axis
(taken as the z axis) can excite modes of A1u, A2g, E|m|g, E|m|u∀m
symmetry if it is polarized normally to the particle axis (s
polarization) and modes of A1g, A2u, E|m|g, E|m|u∀m symmetry if
it is polarized in the plane of incidence defined by the direction
of incidence and the particle axis (p polarization). The different

Rf(r) ) f(R-1r) or

RF(r) ) RF(R-1r)
(10)

P (A1)FPlm(r) ) δm0
[1 + (-1)P]

2
FPlm(r)

P (A2)FPlm(r) ) δm0
[1 - (-1)P]

2
FPlm(r)

P (En)FPlm(r) ) δ|m|nFPlm(r)

(11)

P (A1g)FPlm(r) ) δm0
[1 + (-1)P][1 + (-1)l]

4
FPlm(r)

P (A1u)FPlm(r) ) δm0
[1 - (-1)P][1 + (-1)l]

4
FPlm(r)

P (A2g)FPlm(r) ) δm0
[1 - (-1)P][1 - (-1)l]

4
FPlm(r)

P (A2u)FPlm(r) ) δm0
[1 + (-1)P][1 - (-1)l]

4
FPlm(r)

P (Eng)FPlm(r) ) δ|m|n
1 + (-1)P+l

2
FPlm(r)

P (Enu)FPlm(r) ) δ|m|n
[1 - (-1)P+l]

2
FPlm(r)

(12)

TABLE 1: Projection of a Plane EM Wave Propagating at
an Angle θ with Respect to the z Axis, of s or p Polarization,
to the Irreducible Representations of C∞W and D∞h

angle of
incidence polarization C∞V D∞h

θ ) 0, π s or p E1 E1g, E1u

θ * 0, π/2, π s A2, En A1u, A2g, E1g, E1u, E2g, E2u, · · ·
p A1, En A1g, A2u, E1g, E1u, E2g, E2u, · · ·

θ ) π/2 s A2, En A2g, E1u, E2g, E3u, E4g, · · ·
p A1, En A2u, E1g, E2u, E3g, E4u, · · ·
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blocks of each Tm submatrix can be readily diagonalized using
standard eigenvalue-eigenvector routines for nonhermitian
matrices, and thus the symmetry of the different modes is
unambiguously defined from the corresponding block. More-
over, the predominant polarization and multipole character of
a given mode is deduced from the form of the corresponding
eigenvector.

Applications

We shall now apply the group-theory methodology discussed
in the previous section to analyze the plasmon modes of silver
nanoparticles of D∞h symmetry, in air (ε ) 1). We calculate
the T matrix using a very efficient extended-boundary-condition
(EBC) method,12 properly modified.45 Truncating the relevant
angular-momentum expansions at lmax ) 6, lcut ) 18 and using
a Gaussian quadrature integration formula with 4000 points for
the integrals involved is sufficient to obtain well-converged
results in all the cases considered. For the dielectric function
of silver, we interpolate to the bulk values measured by Johnson
and Christy66 that include dissipative losses. Since absorption
smooths out sharp resonance structures, we shall restrict our
discussion only to modes that give discernible features in the
extinction spectrum.

Figure 1 displays the extinction cross section of single silver
nanocylinders in air. The upper diagram refers to a nanorod
with diameter D ) 40 nm and length L ) 200 nm. In this case,
the first three modes at 1.41, 2.47, and 3.04 eV of A2u, A1g and
A2u symmetry, respectively, can be excited only by a p-polarized
wave (solid line) for θ * 0, π/2, π (see Table 1). The third
mode appears as a shoulder because it has a relatively long
lifetime and is wiped out by absorption. These A2u and A1g modes
are mainly of electric dipole and electric quadrupole character,
respectively. In the simple case of the A2u eigenmodes, which
are mainly of electric dipole character, the electric field oscillates
along the cylinder axis. This explains why, if the electric field
of the incident wave oscillates normal to the cylinder axis, it
cannot couple to these modes. However, such a qualitative
picture is unable to explain the selective excitation of other,
more complex, modes. The peak at 3.29 eV is formed from the
excitation of two doubly degenerate modes of E1g and E1u

symmetry and thus, in agreement with Table 1, it appears for
both s- and p-polarized waves incident at θ ) π/4, as well as
for θ ) 0, as shown in Figure 1. Similarly, the peak at 3.57 eV
is a double peak formed from an E1g mode at 3.56 eV and an
E2u mode at 3.58 eV.

In the lower diagram of Figure 1 we show the extinction
spectrum of a silver nanodisk with diameter D ) 200 nm and
thickness H ) 40 nm. The first three peaks at 1.86, 2.66, and
3.06 eV correspond to modes of E1u, E2g and E3u symmetry,
respectively, and thus for θ ) 0, only the lowest E1u mode is
excited (see Table 1). The peaks at 3.36 and 3.70 eV have a
similar character: They are formed mainly from two modes of
A1g and A2u symmetry with relatively short lifetimes but also
contain modes of E1g symmetry, which have a mixed electric
quadrupole/electric 16-pole character. The one at 3.36 eV has
a relatively long lifetime, while that at 3.70 eV has a shorter
lifetime. Therefore the first peak is discernible only for θ )
π/4 and p-polarized light, because in the other cases it is
completely wiped out by absorption. On the contrary, the peak
at 3.70 eV subsists, even as a small structure, in all cases
considered. It is worth noting that a p-polarized wave for θ *
0, π/2, π can excite all the modes of the particles under
consideration, and thus it can be used to probe the different
modes.

In Figure 2 we compare the extinction spectra of three
elongated particles with different shape but the same length (L
) 200 nm) and thickness (D ) 40 nm). A p-polarized plane
wave is incident at an angle θ ) π/4 with respect to the particle
axis. The solid line corresponds to a cylinder, the dashed line
corresponds to a cylinder with hemispherical caps, and the dash-
dotted line corresponds to a prolate spheroid. The first two peaks
at about 1.5 and 2.5 eV, of A2u (mainly electric dipole character)
and A1g (mainly electric quadrupole character) symmetry,
respectively, do not appear at the same frequency for the
different nanoparticles. The third small peak of the spheroid at
2.90 eV, of A2u symmetry, has a mainly electric octapole
character and corresponds to the shoulder at 3.04 eV in the case
of the cylinder, although its character is changed to a mixed
electric dipole/electric octapole type, and to the small peak at
3.11 eV in the case of the capped cylinder, although its character
becomes mainly electric dipole. In the case of the cylinder, there
are two doubly degenerate modes of E1g and E1u symmetry at
about 3.29 eV, which give a prominent peak in the extinction
spectrum that is absent in the other two cases. In the same
frequency region, the capped cylinder has an A1g mode at 3.33
eV, which manifests itself as a small shoulder. A common
feature for the three particles is the peak at 3.57 eV. This peak
results from the excitation of two modes of E1g and E1u

symmetry, at 3.56 and 3.58 eV in the case of the cylinder and
at 3.57 and 3.56 eV in the case of the spheroid, respectively,
while in the case of the capped cylinder only an E1u mode exists
at 3.58 eV. The “missing” E1g mode of the capped cylinder is

Figure 1. Extinction cross section of cylindrical silver nanoparticles
in air, for p- (solid line) and s- (dashed line) polarized light incident at
an angle θ ) π/4 with respect to the particle axis. The results for θ )
0 (dash-dotted line) are also displayed. Upper diagram: Nanorods with
diameter D ) 40 nm and length L ) 200 nm. Lower diagram:
Nanodisks with diameter D ) 200 nm and thickness H ) 40 nm.

Figure 2. Extinction cross section of silver nanoparticles in air, for
p-polarized light incident at an angle θ ) π/4 with respect to the particle
axis. The solid, dashed, and dash-dotted lines correspond to a cylinder
of diameter D ) 40 nm and length L ) 200 nm, a cylinder with
hemispherical caps of diameter D ) 40 nm and total length L ) 200
nm, and a prolate spheroid with major axis (axis of revolution) 200
nm long and minor axis 40 nm long, respectively.

Plasmon Modes of Axisymmetric Metallic Nanoparticles J. Phys. Chem. C, Vol. 113, No. 52, 2009 21563

http://pubs.acs.org/action/showImage?doi=10.1021/jp908019s&iName=master.img-000.jpg&w=131&h=134
http://pubs.acs.org/action/showImage?doi=10.1021/jp908019s&iName=master.img-001.jpg&w=148&h=110


shifted down to 3.48 eV and gives a peak near the sharp
resonance at 3.52 eV that corresponds to a mode of A1g

symmetry.
The computational efficiency and reliability of the EBC

T-matrix method, which was employed in the present work,
has also been demonstrated through comparison with the well-
established discrete dipole approximation (DDA) method. For
example, significant improvement between calculations and
measurements in the short-wavelength part of the extinction
spectrum of randomly oriented gold nanorods has been achieved
by the EBC T-matrix method, as compared with DDA
simulations.52,60 It is also worth noting that the DDA algorithm
does not include an explicit multipole representation; instead,
it considers a dense array of interacting elementary dipoles that
describe the electrodynamic properties of the actual particle.67,68

Therefore, an analysis of the particle eigenmodes, such as that
presented here, is not straightforward.

Conclusions

In summary, in this article we present a rigorous methodology
for the analysis of the EM field eigenmodes of nonspherical
particles and derive specific selection rules for coupling of these
modes with an externally incident plane wave, of given
polarization and propagation direction. The method, which is
based on group theory and block diagonalization of the scattering
T matrix, is applied to different nanoparticles of cylindrical
symmetry. More specifically, we discuss in detail the plasmonic
excitations of a silver nanorod and a nanodisk, and report a
comprehensive comparative analysis of the plasmon modes of
three different elongated silver nanoparticles: a cylinder, a
capped cylinder, and a spheroid, with the same length and
thickness. Our method provides a consistent interpretation of
relevant extinction spectra and clarifies aspects of the problem
which may be obscured with approximate treatments based on
the assumption of modes with a well-defined multipole character
for nonspherical particles. Finally, it is worth noting that the
methodology reported in this work can also be applied to the
study of the elastic-field eigenmodes of nonspherical particles69

and studies of corresponding phononic structures using multiple-
scattering techniques,70-72 by properly extending the analysis
presented here to longitudinal field components.
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