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Abstract

Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling
properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely
dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online
social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive
twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan earthquake. We uncover a
number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model
that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our
analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides
general insights into the control of information spreading on such networks.
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Introduction

Online social networks have become an indispensable part of

our modern society for obtaining and spreading information. A

piece of breaking news can activate a corresponding online social

network, through which the news topic can spread rapidly to many

individuals. By its very nature an online network is necessarily time

dependent, growing rapidly in size initially as the news spreads out

and saturating after certain amount of time. Since online social

networks concerning certain topics can be active for only a

transient period of time, they are extremely dynamic, which is quite

distinct from, e.g., the typical networks studied in the literature

where they can be regarded as stationary with respect to the time

scale of typical dynamical processes supported. A question of

interest is whether there are general rules underlying the evolution

of online social networks. A viable approach to addressing this

question is to analyze large empirical data sets that are becoming

increasingly accessible [1]. In fact, recent years have witnessed a

growing research interest in online social network systems. There

have been efforts in issues such as network and opinion co-

evolution [2], users participation comparison for topics of current

interest [3], information diffusion patterns in different domains

[4,5], the dynamics of users’ activity across topics and time [6,7],

users behavior modeling on networks [8,9], popular topic-style

analysis in the Twitter-like social media [10–12], users influence in

social networks [13], and language geography studies of Twitter

data set [14].

In this paper, we aim to uncover the fundamental mechanisms

underpinning the dynamical evolution of online social networks

through empirical-data analysis. Our data come from Sina Weibo, a

twitter-like microblogging social network medium in China. The

appealing features of the data include wide publicity, real-time

availability of information, and message compactness. Similar to

Twitter, Weibo attracts users through all kinds of breaking news and

spotlight topics, such as the "Japan Earthquake", "Oscar Ceremony",

"Boston Marathon Terrorist" and so on. All users can see messages,

called Weibos in Chinese, published by concerned users. Given a

specific topic of interest, an individual can join the corresponding

online social network simply by retweeting (forwarding) or tweeting

(posting) the interesting Weibo [15]. To be concrete, we take the

empirical data set of the Weibo topic on "Japan Earthquake" and

focus on the spatiotemporal dynamics of the user-user retweeting

network in terms of characterizing quantities such as the network size,

the in-degree and out-degree distributions which correspond to the

frequencies of retweeting other or being retweeted by others, and the

in- or out-degree correlations. Our main findings are the following: (1)

initially the network size increases algebraically with time but it begins

to plateau at a critical time when another significant topic of interest

emerges; (2) both the in- and out-degrees of the dynamic online-social

network follow fat-tailed, approximately algebraic distributions, and

(3) the average out-degree is approximately independent of the
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average in-degree from degree correlation analysis. Based on these

results and the rules of online social-network systems, we articulate a

theoretic model for the dynamical evolution of these networks.

Simulation results of the model agree well with those from the

empirical data. Our analysis also suggests a controlled approach to

significantly enhancing information spreading on online-social

networks.

Results

The 2011 Japan earthquake is a 9:0 magnitude undersea mega-

thrust earthquake occurred on March 11 in the north-western

Pacific Ocean near Tohoku, Japan. It was the most powerful

earthquake ever hit Japan, which triggered powerful tsunami

waves and caused nuclear accidents in the Fukushima Daiichi

Nuclear Power Plant complex [16], leading to tremendous loss of

human lives and large-scale infrastructure damages. This catas-

trophe aroused wide concerns and discussions all over the world,

especially in China. Since Weibo is the most accessible online

social medium in China, a large number of Chinese users joined

Weibo to discuss the earthquake and related issues, forming an

extremely dynamic user-user retweeting network. We analyze

more than 500 thousands Weibo items concerning "Japan

Earthquake", starting from the 1st day of earthquake until the

100th day (defined in Methods). A simple way for a user to join the

Weibo social network is to retweet other users’ Weibos. The user-

user retweeting network can be generated from the data by

identifying the retweeting actions among the users. In particular,

when a Weibo published by user i is retweeted by user j, we draw a

directed link from i to j. If j retweets the Weibo published by i
again, another link from i to j is added, and so on. There can then

be duplicate links between any two users in the retweeting

network. For the case that a Weibo published by user i is retweeted

by user j, and then retweeted again from j (instead of i) by user m,

we draw two directed links both from i to j and m. No link from j
to m is established since j just plays as a intermediary in the

associated information spreading process. In the network, a

relatively large value of the out-degree indicates that the

corresponding user may act as a main source of information,

while a large value of the in-degree suggests a high level of

retweeting activities of the corresponding user.

Evolution of the user-user retweeting network
Figure 1(a) shows the evolution of the number N of users

involved by retweeting links in days (green circles). We observe

that for the initial period of about 7 days, the size of the network

increases approximately algebraically with the scaling exponent of

about 1:3. At the critical time tc, where tc&7, a crossover

behaviors occurs, after which the number of nodes increases slowly

or plateaus. While in general, an algebraic scaling relation does

not permit the definition of some global growth rate, we can still

define an "instantaneous" growth rate, the increment DN per day.

As shown in Fig.1(b), the "instantaneous" growth rate is

approximately constant for tvtc, but for t§tc, the rate decreases

approximately algebraically from about 104 per day to about 101

per day at the end of the data duration.

The remarkable change in the temporal behavior of the system

on the 7th day demands a sensible explanation. By looking into the

data further and searching for other medium information about

"Japan Earthquake", we find that, at the critical time tc, many

users switched to discuss the issue of "Salt Rush", which is closely

related to "Japan Earthquake." In fact, on the 7th day after the

earthquake, a rumor began to spread in Weibo that salt may offer

protection against radiation, but the radiation leak from the

Fukushima nuclear plant explosion would contaminate sea-salt

products [17]. This new topic switched many users’ attention from

the primary "Japan Earthquake" topic to the "Salt Rush" topic,

and for twtc many users stopped discussing the "Japan

Earthquake" topic. As a consequence, the instantaneous growth

rate for the original topic began to decrease.

Fat-tailed distribution of in- and out-degrees
Figure 2(a) displays the distributions of the in- and out-degrees

on a logarithmic scale, where we observe approximately algebraic

scaling behaviors. Here, the out-degree of user j, denoted by k
j
out,

is the total times of j’s Weibo(s) being retweeted by other users in

the network, and the in-degree of j, denoted by k
j
in, is the

retweeting times j has performed. We note that the algebraic

scaling exponents are are 3:50 for in-degree and 2:48 for out-

degree distributions. Moreover, the maximum value of in-degree is

67 while the out-degree has a much larger maximum value

(5,825). This means that, while the capacity of any individual user

to retweet others is limited, users’ collective retweeting behavior

may congregate, generating superhubs with very large out-degrees.

This can be considered as an evidence for the preferential selection
in the retweeting process introduced by the scheme that Weibo

system updates and recommends information.

Figure 1. Evolution of user-user retweeting network triggered
by the 2011 Japan earthquake. (a) evolution of the cumulative
number N of users with time (green circles), where Ne is from our
model (blue squares). (b) The corresponding "instantaneous" growth
rates DN and DNe .
doi:10.1371/journal.pone.0111013.g001
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Model of user-user behavior network
In the Weibo system, up-to-date topics emerge all the time and

are recommended to users through the list of retweeted actions of

their friends in the order of time. As soon as a new item is added to

the recommendation list, one of the early items is removed from

the list. This rule stipulates that, when some extreme event occurs,

the related topics may rapidly cover the entire recommendation

list to attract more users who might not have paid any attention

initially. This process could also attract users who are less likely to

be interested in the topic. Thus, the number of potential users who

may join the retweeting network and then become the enabled
users will increase. This mechanism in fact generates a self-

reinforcing (positive feedback) process that makes the messages

spread extremely fast initially in the Weibo system. Conversely,

this kind of recommendation mechanism may also reduce the

number of nodes in the network dramatically when alternative

topics emerge. As can be seen from Fig. 1, the event of "Salt Rush"

occurring at the 7th day after the Japan earthquake is a typical

distractive topic with respect to the original earthquake topic. After

the distractive topic emerged, the retweeting dynamics associated

with the original topic enters into a phase with distinct scaling

behaviors.

The sketch map in Fig. 3 briefly illustrates the generation

scheme of retweeting network in our model with the aforesaid

empirical rules and observations taking into consideration. The

dynamical process of retweeting is usually initiated by some

primary users’ reporting of some specific events. The basic element

in the process is the spontaneous retweeting action of some users,

i.e., one potential user voluntarily built up a directed link pointed

from another user towards him-herself. The final in-degree of each

user characterizes its inherent property, i.e., the level of activity in

the related topic. The algebraic in-degree distribution signifies the

heterogeneity and diversity in the user activities. We are thus led to

define the activity level of individual i as

ai~ki
in=max½kin�, ð1Þ

where max½kin� is the maximum in-degree of all users in the

system. A potential user i will retweet a related message from

others, i.e., to add one in-link, with probability Ii:ai at each time

step. As soon as the first in-link is established, the user is enabled to

behave as a new source of the topic and can be retweeted by

others. The enabled users are thus those connected to the user-user

retweeting network, which can be identified from real data. The

probability Oi for an enabled user i to be retweeted by another

potential user, i.e., to add an out-link, is

Oi:(ki
outz1)=

X

j[Pe

(k
j
outz1), ð2Þ

where Pe denotes the set of enabled users and the proportional

relation is for the reason that, if a user is retweeted by others more

frequently, its actions will appear in the recommendation list more

times and thus are more likely to be further retweeted.

The temporal evolution of the number of enabled users Ne can

be obtained analytically. The recommendation mechanism

requires that the number of potential users (denoted by Np)

increases with time rapidly in the initial phase of the retweeting

process. To gain insights, we first consider the simple case where

Np is assumed to be constant. The probability for a potential user i

to retweet the topic (i.e., to become enabled) at each time step is

Ii~ai (each user’s own level of activity). The probability for user i

to be enabled before time t is then pi
t~1{(1{ai)

t:f (ai,t). For

the case where the users have identical activity level a, the

expectation number of the enabled users at time t is

SNe(t)T~Npf (a,t), where Ne(t) is distributed binomially:

P(Ne)~CNe

Np
(pi

t)
Ne (1{pi

t)
Np{Ne . Assuming that the user activity

obeys a given probability distribution P(ai), the expectation

number of enabled users is

SNe(t)T~
X

ai

NpP(ai)f (ai,t): ð3Þ

As can be seen from real data in Fig. 2(a), user activities ai are

typically heterogeneous, where the number of retweeted actions

performed (the in-degrees) by users ranges from 1 to 67 and

approximately follows an algebraic distribution P(kin)*k
{c
in , with

c&3:5.

From the expressions of pi
t and SNe(t)T, we see that the growth

rate of SNe(t)T is a monotonic decreasing function of time.

However, from Fig. 1, the rate DNe(t) from the real data increases

in the initial phase after the network emerges. This discrepancy

Figure 2. Degree distribution of user-user retweeting network.
In- and out-degree distributions of user-user retweeting network
generated from real Japan earthquake data (a) and from model (b).
The four distribution can be fitted as P(k)*k{a with algebraic scaling
exponents a&3:50, 2:48, 3:50, and 2:57 for real in- or out-degree and
model in- or out-degree distributions respectively. The distributions
were recorded at t = 100 days, and the value of a are estimated using
the maximum-likelihood estimator [18].
doi:10.1371/journal.pone.0111013.g002
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originates from the simple case assuming constant Np in our

probabilistic model, whereas in the real system, Np increases

rapidly initially as a result of the recommendation mechanism. It is

thus necessary to take into account the fact that, at time step t’,
DNt’

p new potential users become aware of the topic from their

respective recommendation list in the Weibo page and then

retweet with the probability Ii~ai. Here, DNt’
p:Np(t’)

{Np(t’{1) and Np(0)~0. We assume that the time step t’ for

user i to become aware of the topic is independent of its activity

level ai. Equivalently, the activity distribution of new potential

users at each time obeys the same distribution P(ai). Taking the

increment of Np into account, we obtain the expected number of

enabled users as

SNe(t)T~
Xt

t’~1

½
X

ai

DNt’
p P(ai)f (ai,t{t’z1)�, ð4Þ

where t{t’z1 is the duration of the potential users since their

awareness of the topic at t’. The exact form of the function DNt’
p

cannot be obtained explicitly, as we can observe from data only

increment in the number Ne of enabled users. However, we note

that the analog of Np is the coverage of a spreading process of the

topic associated with the recommendation mechanism, which

takes place on the underlying friendship network of the Weibo

Figure 3. Schematic illustration of the theoretical model generation. (a)-(d) illustrate four instants of the system at t1vt2vtcvt3vt4,
respectively. There exists one topic A0 initially, while another topic A1 emerges at tc . The solid circles (gray, yellow or pink) covered in the yellow (or
pink) background areas are the potential users who become interested in the topic A0 (or A1), with those colored (yellow or pink) individuals
"enabled" by retweeting others. The yellow or pink solid circles respectively are the enabled users of topic A0 or A1 .
doi:10.1371/journal.pone.0111013.g003

Figure 4. Degree correlations in the user-user retweeting network generated from real data and model. (a) in-degree (kin) and out-
degree (kout) of each user, (b) average in-degree SkinT over the users of the same out-degree kout, and (c) average out-degree SkoutT over the users
of the same in-degree kin .
doi:10.1371/journal.pone.0111013.g004
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system. We thus have [18], approximately, DNt
p*ntb, where the

parameters n and b can be obtained by fitting to the real data.

As can be seen from Fig. 1, there is a crossover behavior in the

time evolution of Ne due to the emergence of some alternative

topic. For convenience, we name the original topic as A0 that takes

place at t~0 and the new topic as A1 that emerges at t~tc. For

t§tc, as is illustrated in Figs. 3(c)(d), A1 competes for potential

users against A0. We assume that the basic dynamical process

underlying A1 is identical to that of A0. The number of potential

users left in A0 for t§tc is thus given by ~NNp(t)~Np(t){Np(t{tc),

giving rise to a decreasing behavior in the instantaneous growth

rate in the number of enabled users.

Our model can be simulated to yield behaviors that reproduce

those from the real data. In particular, in the simulation, each

user’s activity level ai is proportional to its in-degree, whose

distribution can be obtained from data. The increment of potential

users obtained from data fitting is DNp(t)&1:89|105t{1:1. The

topic A0 is initially notified by Ne(0) enabled users to trigger the

retweeting process [e.g., Ne(0)~3]. Results of Ne(t) from our

model agree well with those from the data, as shown in Fig. 1. The

reproduced in- and out-degree distributions are shown in Fig. 2,

which again agree with the distributions from the real data.

To further validate our model, we calculate and compare the

degree-degree correlation behaviors from the real data and our

model. Figure 4(a) plots the out-degree versus the in-degree for all

users in the network at time t~100. Figures 4(b) and 4(c) show,

respectively, the average in-degrees for users having the same out-

degrees and the average out-degrees for users with the same in-

degrees. The two types of average values are approximately

constant but with significant spreads, and the results from our

model are qualitatively consistent with those from the real data.

The spread can be attributed to the fluctuation due to small

amount of large in- or out-degree nodes. Furthermore, we have

also calculated the Pearson correlation of the directed networks

[19] of the user-user retweeting relation, and the network

generated from our model. The four directed assortativity

measures from Pearson correlation, i.e., the (in, in), (in, out),

(out, in), and (out, out) degree correlations averaged over pairs of

neighbor nodes are all found to be around zero.

What would be an effective way to spread information? In a

twitter-like virtual social network, the performance of individual

users in the spreading process is determined by their out-degrees

ki
out [20,21]. To select users with larger out-degrees as the sources

of spreading would then result in higher coverage in the

subsequent time steps. To better understand the spreading process,

we plot in Figs. 5(a) and 5(c) the average out-degrees of each user’s

neighbors, denoted by Skni
outT, versus the user’s own out-degree

ki
out, obtained from both real data and from model, respectively,

where the solid circles denote the average values of Skni
outT over the

users with the same value of ki
out. We see that for those users with

one given out-degree kout, the value of Skni
outT is distributed in a

wide interval of about 3 orders of magnitude. However, the

average of Skni
outT over each ki

out (the solid circle) is approximately

constant. Figures 5(b) and 5(d) plot the product of the out-degree

and the average neighbor out-degree kout
:Skni

outT, which measures

the new information coverage one step after spreading from that

particular user. The correlation of kout
:Skni

outT and kout on a

logarithmic scale is approximately linear with unit slope both for

real data and model. Moreover, the users with larger sum of

neighboring out-degrees are those who perform well in the

spreading process if they are selected to be the source. The upper-

left regions in Figs. 5(b) and 5(d) thus locate the users who are not

so popular (small out-degrees) but can spread news efficiently

because they have relatively large sums of neighboring out-

degrees. These users are the optimal candidates to be controlled

for spreading information if a rapid growth of the underlying

network is desired.

Figure 5. Neighboring out-degrees in user-user retweeting network generated from real data and model. (a) average neighboring out-
degree (Skni

outT) and out-degree (ki
out) of each user from real data, (b) product between the out-degree and the average neighboring out-degree

(kout
:Skni

outT) of each user from real data, and (c,d) respective results from model.
doi:10.1371/journal.pone.0111013.g005
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Discussion

Online social network systems are becoming increasingly

ubiquitous in a modern society. At the present few research are

considering their dynamical behavior. Using the approach of

empirical-data analysis, we have developed a probabilistic model

for the growth dynamics of an important class of such systems:

user-user retweeting networks. Our model is capable of reproduc-

ing the dynamical and statistical behaviors of the key character-

izing quantities such as the growth of the network size, in- and out-

degree distributions, and the degree-degree correlations. The

development of our model also leads to insights into controlling the

information-spreading dynamics on these extremely dynamic

networks. Our work represents an initial step in understanding,

modeling, and controlling online social network systems, with

potential applications not only in social sciences (e.g., for

controlling opinion spreading) and commerce (e.g., for developing

efficient recommendation algorithms), but also in other disciplines

where rapidly time-varying, dynamic networks arise.

Materials and Methods

Data collection
We obtain the data from Weibo Open Platform provided by

Sina, where we can access the data through accessing Sina API

interface freely. The dataset contains 529,390 Weibo items with

the key word "Japan Earthquake", starting from the day of

earthquake (March 11) and ending on June 19, so the duration of

the data set is 100 days. The retweeting or retweeted actions of

89,113 users’ were recorded in the dataset. The collected Weibos

have the following features: unique message ID of each published

Weibo (Mid), unique user ID of each Weibo user (Uid), the

publishing time of each Weibo (CreatedAt), the source Weibo’s

Mid if it is retweeted (rtMid, empty if the Weibo is not retweeted).
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