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Abstract

The growth of laminar streaks in a flat-plate boundary layer is investigated in the presence of both spanwise wall oscillations and

steady streamwise-dependent spanwise wall forcing. The laminar streaks are forced by free-stream vortical disturbances, which

interact with the boundary layer to produce disturbances, which first grow and then decay. The oscillating plate produces a base

flow that matches Blasius boundary layer in the streamwise and wall-normal directions, but produces a generalized Stokes layer

(GSL) in the spanwise direction. This depends on the Blasius flow and tends to the classical Stokes layer (CSL) in the asymptotic

limit of high oscillation frequency or large downstream distance. Spanwise oscillations of the plate and spanwise wall forcing can

both reduce the total energy and maximum amplitude of the disturbances. Their relative effects are discussed.
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1. Introduction

Laminar streaks (or Klebanoff modes as they are also known), have been observed1,2 as a precursor to boundary

layer transition in flow near the leading edge of a flat plate, when the level of free-stream turbulence, Tu ≈ 1%

or higher. These streaks consist of alternating spanwise regions of high and low streamwise velocity, which can

subsequently break down to form turbulent spots and ultimately a fully turbulent flow. Attenuating the growth of

laminar streaks is therefore important to delay boundary layer transition, and thus to reduce drag over aircraft aerofoils

and turbine blades.

The earliest analysis of laminar streak growth, forced by free-stream vortical disturbances, is due to Leib et al.3.

This analysis has been extended to consider gas compressibility4, the streak structure in the outer portion of the

boundary layer5 and nonlinear effects6. Several approaches to reducing the growth of laminar streaks have been

investigated, including wall suction7,8,9,10, wall heating and cooling11,12,13, and steady spanwise wall forcing14. Span-

wise plate oscillations have also been investigated in the context of Görtler vortices above concave surfaces15. In this

paper, within the original linearized incompressible streak framework of Leib et al.3, spanwise oscillations above a

flat plate are investigated as a streak reduction mechanism and their effectiveness is compared to steady spanwise wall
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forcing. Figure 1 shows schematics of both flow domains and associated forcing. Currently the only work on laminar

streak growth above an oscillating plate assumes a parallel boundary layer flow structure, while the disturbance growth

is excited by the continuous spectrum of the Orr-Sommerfeld equation16. A recent study has shown that this use of

the continuous spectrum of the Orr-Sommerfeld equation is inappropriate to describe the penetration of free-stream

turbulence into a laminar boundary layer17.

In an incompressible flow of density ρ∗, which is non-dimensionalized by the far-field velocity U∗∞, the spanwise

wavelength of the free-stream disturbance λ∗z , and pressures ρ∗U∗ 2∞ ; a vortical free-stream disturbance of the form

u = ı̂ + εû∞ei(kx x+kyy+kzz−kxt) + c.c., (1)

is assumed, where ε is a measure of the turbulence intensity of the free stream and c.c. indicates the complex conjugate.

The components of the free-stream disturbance velocity û∞ = (û∞, v̂∞, ŵ∞) and the wave numbers k = (kx, ky, kz),

satisfy the solenoidal condition û∞ · k = 0. If the dynamic viscosity of the fluid is μ∗, then a Reynolds number Rλ =
ρ∗U∗∞λ∗z/μ∗ can be formed, which in the regime of interest is expected to be much greater than one. The flow structure

is linearised by the small value of the turbulent Reynolds number εRλ, while, to retain the spanwise momentum

diffusion necessary for streak interactions, we must consider distances x ∼ x/Rλ downstream from the leading edge.

Fig. 1: An illustration of free-stream convective gusts interacting with a spanwise oscillating plate (left) and a plate with steady spanwise

sinusoidal forcing (right).

Experimental results have shown that free-stream vortical disturbances with kx � ky, kx � kz and ky/kz = O(1)

penetrate most deeply into the boundary layer1. In the distinguished limit Rλ � 1 and kxRλ = O(1), a coupled

system of equations is found linking the spanwise base flow and the disturbance flow in the Linearized Unsteady

Boundary Region (LUBR) of Leib et al.3. In §2 the base flows are described, while §3 outlines the LUBR equation

structure. Comparative results and energy reductions produced by both spanwise forcing types are described in §4,

before conclusions are drawn in §5.

2. Base flow behaviour

For both forcing types the streamwise and wall-normal base flows match the Blasius boundary layer. On the flat

plate y = 0 and x > 0, the spanwise base flow satisfies the boundary condition Woscil = 2Wm cos(ωt) in the case

of spanwise plate oscillations and Wforce = 2Wm sin(Kxx) in the case of steady spanwise forcing. Here 2Wm is the

amplitude of the oscillation, the Strouhal number ω is the ratio of the plate oscillation frequency to the convective

time scale of the gust, and Kx is the ratio of the streamwise gust wavelength to the wavelength of the forcing. The

scaled spanwise base flow above an oscillating plate, Woscil, is time periodic and therefore can be decomposed as

Woscil

(
x, η, t

)
= W(x, η) eiωt +W�(x, η) e−iωt, (2)

where � denotes a complex conjugate, t = kxt, x = kxx and the wall-normal Blasius similarity variable η =
y (Rλ/2x)1/2. The streamwise and wall-normal dependence of the complex-valued W is determined by the parabolic
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equation

iωW + F′
∂W
∂x
− F

2x
∂W
∂η
=

1

2x
∂2W
∂η2
, (3)

subject to W(x, 0) = Wm, W → 0 as η → ∞, and W = Wm (1 − F′) for x small. Here F satisfies the Blasius equation

F′′′ + FF′′ = 0. The solutions to this equation satisfy a generalized Stokes layer (GSL), which retains non-parallel

flow effects and consequently evolves along the streamwise direction.

For the oscillating plate, if a new streamwise coordinate x̂ = Nx is defined, then the WBKJ ansatz

W = W(x̂, η) e−(2x̂)1/2Θ(η), (4)

leads to

Wgsl

∣∣∣
x̂�1
=

WmF′′(η)
F′′(0)

exp
(Fη

2

)
exp
[
−x̂1/2(1 + i)η

]
exp
(
iNt
)
+ c.c. (5)

Here large x̂ corresponds to either large downstream distances or at a fixed downstream distance a series of flows in

which the plate oscillating frequency increases. It can be shown that the large-x̂ behaviour of the GSL tends to the

classical Stokes layer (CSL) and in dimensional variables the profile is given by

Wgsl

∣∣∣
x̂�1
∼Wm exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣−(1 + i)

√
ω∗

gsl

2ν∗
y∗
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ exp
(
iω∗gslt

∗) + c.c.. (6)

This behaviour is verified in figure 2, which shows the convergence of the GSL and CSL at large downstream distances

for N = 1 (top), and also at x = 0.5 for increasing N (bottom). The right most column shows the similarity in the

solutions for two different cases corresponding to x̂ = 8.

The dotted horizontal lines in figure 2 correspond to the Blasius boundary layer thickness 0.99U∗∞. For small x̂
the CSL penetrates much further into the boundary layer than the GSL, which remains bounded within the Blasius

boundary layer throughout. This is because the viscous effects in the spanwise momentum equation are now balanced

by the steady convection term rather than the unsteady term. For increasing values of x̂ the proportion of the Blasius

layer occupied by the GSL decreases.

For steady spanwise wall forcing the scaled spanwise base flow Wforce satisfies the parabolic equation

F′
∂Wforce

∂x
− F

2x
∂Wforce

∂η
=

1

2x
∂2Wforce

∂η2
, (7)

which matches (3) when ω = 0. Representative steady spanwise base flow velocity profiles with Kx = 5 are shown in

the top row of figure 2. The vertical extent of this spanwise base flow is roughly equivalent to that of the GSL base

flow and also remains confined in the Blasius layer throughout.

3. Linearised Unsteady Boundary Region (LUBR) equations with spanwise forcing

The disturbance behaviour above a spanwise oscillating plate is expected to be periodic behaviour in z and t, and

hence the disturbance velocities and pressure are decomposed as Fourier series in these variables, while the scaled

coefficient of the [n]th mode depend upon x and η. For integer values of the Strouhal number ω = N, this gives rise to
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Fig. 2: Spanwise base flow profiles for the GSL (solid lines) and the CSL (dashed lines). The thick lines are t = 0 profiles while the thin

lines are a π/2 phase shift. Also shown is a representative spanwise base flow with steady Kx = 5 streamwise forcing (dot-dashed lines)

and the Blasius boundary layer thickness 0.99U∗∞ (dotted line).

equations governing linearised laminar streak growth in the form of a coupled system of modified LUBR equations:

∂u[n]

∂x
− η

2x
∂u[n]

∂η
+
∂v[n]

∂η
+ iw[n]

= 0, (8a)(
in + κ2z −

ηF′′

2x

)
u[n]
+ F′
∂u[n]

∂x
− F

2x
∂u[n]

∂η
− 1

2x
∂2u[n]

∂η2
+ F′′v[n]

+ iWu[n−N]
+ iW�u[n+N]

= 0, (8b)

(
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(ηF′)′

2x

)
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− 1
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1
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∂p[n]
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= 0, (8c)(
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)
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− 1

2x
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∂η2
+ iκ2z p[n]

+

(
∂W
∂x
− η

2x
∂W
∂η

)
u[n−N]

+
∂W
∂η

v[n−N]

+iWw[n−N]
+

(
∂W�

∂x
− η

2x
∂W�

∂η

)
u[n+N]

+
∂W�

∂η
v[n+N]

+ iW�w[n+N]
= 0, (8d)

where κz = kz/ (kxRλ)1/2.

Similar equations have also been developed for the LUBR regime above a plate with spanwise wall forcing (see

equations 8-11 of Ricco14). The key difference between the two sets of disturbance equations is that in the steady

forcing case only a single mode (matching on to the free-stream gust) is forced while the remaining unforced modes

are all zero. Above an oscillating plate, while only one mode is forced, the time dependent spanwise base flow couples

unforced modes to the forced mode, leading to non-zero unforced modes. In the limit of negligible spanwise base

flow, the LUBR equations for the oscillating plate case and for the steady spanwise wall forcing case simplify to give

the LUBR equations of Leib et al.3 for streak growth above a stationary.

With both forms of spanwise forcing the initial and large-η boundary conditions for the LUBR equations associated

with the forced mode essentially follow those derived by Leib et al.3 for flow above a stationary plate. These are

derived by asymptotically matching the large-η limit of the LUBR equations to the free-stream gust behaviour at the

edge of the boundary layer, and then producing initial conditions via a composite expansion involving a power series
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for the small x behaviour. The initial and large-η boundary conditions involve a scaled wall-normal wave-number

κy = ky/ (kxRλ)1/2, which for the cases shown is taken to equal κz. For the oscillating plate case only the n = −1 mode

is forced, while the remaining modes in the Fourier series are zero initially (as the modes uncouple for x small), and

tend to zero in the far field.

4. Laminar streak profiles and energy reductions

For flow above an oscillating plate with Wm = 8, N = 1 and κz = 1, the streamwise velocity u[n]
max(x) =

maxη
{
u[n](x, η)

}
, of the forced mode and the next six largest modes are shown in figure 3, alongside the corre-

sponding wall-normal profiles of u[n], v[n] and w[n] at x = 0.5. The velocity associated with the forced mode initially

increases rapidly compared to the unforced modes. The velocity of the unforced modes increase more slowly as a

result of being coupled to the forced mode. The global maximum streamwise velocity associated with each mode

moves downstream, while the maximum streamwise velocity over η moves closer to the wall as the index of a mode

relative to the forced mode increases. The streak energy is dominated the streamwise velocity and hence the energy

of the nth mode is obtained by integrating
∣∣∣u[n](x, η)

∣∣∣2 over x and η. The greatest energy is contained within the forced

mode, while moving up and down the Fourier series away from this mode, the energy contained in each mode decays.
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Fig. 3: The growth and decay of u[n]
max above an oscillating plate for κz = 1, N = 1 and Wm = 8 (top). The corresponding profiles of u[n], v[n]

and w[n] as functions of η at x = 0.5 (bottom).

The streamwise root mean squared disturbance velocity,

urms(x, η) ≡
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣2

∞∑
n=−∞
n�0

∣∣∣u[n](x, η)
∣∣∣2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/2

, (9)

while the total energy of the streak is calculated by integrating |urms(x, η)|2 over both x and η. The streamwise

disturbance velocity maximum umax(x) = maxη {urms(x, η)} is shown in figure 4 (left) for N = 1, κz = 1, and a range of

different Wm. As Wm increases the global velocity maximum falls, with the maximum streamwise disturbance velocity
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for Wm = 16 being nearly half the equivalent velocity above a stationary plate. The location of the velocity maxima

moves upstream as Wm increases. Figure 4 (right) shows the corresponding reductions in relative streak energy

ER = 100%

(
Estat − Eoscil

Estat

)
,

over a wider range of Wm values. For these free-stream-gust and plate-oscillation parameters a reduction in streak

energy of over 80% is possible as the oscillation amplitude increases. However, for alternative parameters energy

increases are also possible.
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Fig. 4: Streamwise velocity evolution above an oscillating plate with changes in plate oscillation amplitude (left) and the percentage

energy reduction with changes in plate oscillation amplitude (right), for N = 1 and κz = 1.

Variations in umax(x) with increasing frequency ratios N are shown in figure 5 (left) for Wm = 8 and κz = 1.

Compared to a streak above a stationary plate, lower streamwise velocities and streak energies are achieved in all the

cases shown. Compared to the N = 1 streak, the streamwise disturbance velocities are higher in the tail of the streak

when N > 1, with these differences propagating upstream towards the global velocity maximum as N increases. After

rescaling time, profiles for N < 1 can be calculated. Representative samples of these cases are shown in figure 5 (right).

These profiles correspond to cases in which the plate oscillations take longer than the free-stream gust oscillations. In

these cases higher global streamwise disturbance velocity maxima are obtained as N decreases, which suggests that

for Wm = 8 and κz = 1, the streak energy is minimized when N = 1.
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Fig. 5: Streamwise disturbance velocity evolution above an oscillating plate with Wm = 8 and κz = 1, for a range of frequency ratios N.

This result is confirmed and shown across a wider range of free-stream gust properties in figure 6. Over this range

of κz, the value of N associated with the streak minimum energy increases with κz, with the minimum energy of κz = 3

streaks occurring when N = 2. The relative energy reductions on figure 6 (right) show that compared to a stationary
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plate, streak energy reductions of nearly 90% are achieved when κz = 0.5, while streak energy increases occur for

κz = 3 and N < 1
2
.
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Fig. 6: Streak energy (left) and streak energy reduction relative to a stationary plate (right) for disturbances above an oscillating plate with

Wm = 8, κz = 1 and a range of frequency ratios N.

4.1. Comparison with streaks generated with a classical Stokes layer
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Fig. 7: As figure 3, but showing streaks forced by a CSL, rather than a GSL.

Figure 7 shows the same case as figure 3 except with a CSL spanwise base flow instead of a GSL. While for κz = 1,

Wm = 8 and N = 1, the relative error in the streak energy induced by using a CSL rather than the GSL is less than 11%,

there are significant differences between the underlying structure of the velocity modes. With the CSL the maximum
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velocity associated with the forced mode is less than two-thirds of that of the GSL case. The maximum streamwise

velocities with the CSL case are associated with unforced modes rather than the forced mode for x > 0.13. This is

because the CSL penetrates deeper into the boundary layer than the GSL for small x (refer to figure 2), and hence

more readily transfers energy away from the forced mode, producing higher velocities in the unforced modes.
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Fig. 8: A comparison of the streamwise disturbance velocity profiles of the forced mode for a GSL with N = 1 and Wm = 8 (top left),

a CSL with N = 1 and Wm = 8 (top right), steady spanwise wall forcing with Kx = 5 and Wm = 9 (bottom left) and a stationary wall

(bottom right). In all cases κz = 1.

Wall-normal profiles of the streamwise disturbance velocity of the forced mode at a series of streamwise locations

are shown in figure 8 for the GSL (top left), the CSL (top right) and a stationary plate (bottom right). The η height of

the streamwise disturbance velocity maximum in a GSL increases with streamwise distance, while above a stationary

plate these maxima have occur at a constant η. As a consequence of this, a reduction in the wall shear occurs with

spanwise plate oscillations compared to a stationary plate. The corresponding profiles generated with the CSL contain

multiple local velocity maxima, which are not observed in profiles created by the GSL or a stationary plate. The

wall-normal position of these velocity maxima varies non-monotonically with increasing streamwise distance, and is

neither fixed (like in a stationary plate), or moves away from the wall with streamwise distance (like in a GSL).

4.2. Comparison with streaks generated with steady spanwise wall forcing

Figure 9 shows the streak evolution and relative steak energy reductions for streaks above a plate with steady

spanwise wall forcing withKx = 5. As with the oscillating plate case, reductions in streak velocity and energy are seen

as Wm increases. Energy reductions for this particular wavelength ratio Kx in excess of 90% are obtained. However,

as with the oscillating plate, depending on the parameters associated with the free-stream gust and the forcing, smaller

energy decreases and also significant energy increases are possible. More details of the streak behaviour with steady

spanwise forcing can be found in Ricco14.
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Fig. 9: As figure 4, except with steady sinusoidal spanwise wall forcing with Kx = 5 rather than spanwise plate oscillations.

Wall-normal profiles for the forced mode streamwise disturbance velocity with steady spanwise forcing withKx =

5 are shown in figure 8 (bottom right). These exhibit many similarities with the profiles generated by spanwise plate

oscillations, with both the η-height of the velocity maximum increasing with streamwise distance and reductions in

wall shear compared to the stationary plate.

5. Conclusions

Equations governing laminar streak evolution in the linearized unsteady boundary region have been developed for

flow above both a spanwise oscillating plate and a plate with steady sinusoidal spanwise wall forcing. These equations

are natural generalizations of the LUBR equations of Leib et al.3 for flow above a stationary plate (which are recovered

in the limit of vanishing spanwise base flow), and form an initial value problem with an explicit dependence on the

free-stream vortical gust parameters. Both plate oscillations and steady spanwise wall forcing can produce streak

energy reductions in excess of 80% across a range of different free-stream-gust and plate-motion parameters, although

significant streak energy increases can also be obtained.

In the oscillating wall case it has been shown that the evolution of the spanwise base flow satisfies a GSL, which

contains non-parallel flow effects and hence evolves with streamwise distance. A direct comparison with streaks

forced by a CSL shows significant differences in the streak structure, indicating that it is inappropriate to force streaks

above an oscillating plate with a CSL.

Spanwise plate oscillations and steady spanwise wall forcing are effective techniques for diminishing both the

total streak energy of laminar streaks and their associated maximum disturbance velocity. While further experimental

investigation is required to validate the effectiveness of these techniques, they can be added to boundary-layer suction

and boundary-layer cooling as possible techniques for delaying laminar turbulent transition. Further results in the

steady spanwise wall forcing case are contained in the paper by Ricco14, while a Journal of Fluid Mechanics paper

currently under revision18 shows further results for the oscillating plate case.
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