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Abstract

This article summarises progress to date over an exciting and very enjoyable first 15 years of collaboration with

Bob Banks. Our collaboration began when I contacted him with (to me) an unexpected observation that a dye used

to mark recycling synaptic vesicle membrane at efferent terminals also labelled muscle spindle afferent terminals.

This observation led to the re-discovery of a system of small clear vesicles present in all vertebrate primary

mechanosensory nerve terminals. These synaptic-like vesicles (SLVs) have been, and continue to be, the major focus

of our work. This article describes our characterisation of the properties and functional significance of these SLVs,

combining our complementary skills: Bob’s technical expertise and encyclopaedic knowledge of mechanosensation

with my experience of synaptic vesicles and the development of the styryl pyridinium dyes, of which the most

widely used is FM1-43. On the way we have found that SLVs seem to be part of a constitutive glutamate secretory

system necessary to maintain the stretch-sensitivity of spindle endings. The glutamate activates a highly unusual

glutamate receptor linked to phospholipase D activation, which we have termed the PLD-mGluR. It has a totally

distinct pharmacology first described in the hippocampus nearly 20 years ago but, like the SLVs that were first

described over 50 years ago, has since been little researched. Yet, our evidence and literature searches suggest this

glutamate/SLV/PLD-mGluR system is a ubiquitous feature of mechanosensory endings and, at least for spindles, is

essential for maintaining mechanosensory function. This article summarises how this system integrates with the

classical model of mechanosensitive channels in spindles and other mechanosensory nerve terminals, including hair

follicle afferents and baroreceptors controlling blood pressure. Finally, in this time when there is an imperative to

show translational relevance, I describe how this fascinating system might actually be a useful therapeutic drug

target for clinical conditions such as hypertension and muscle spasticity. This has been a fascinating 15-year journey

in collaboration with Bob who, as well as having an astute scientific mind, is also a great enthusiast, motivator and

friend. I hope this exciting and enjoyable journey will continue well into the future.

Key words: baroreceptors; glutamate; lanceolate endings; mechanosensory terminal; metabotropic glutamate

receptor; muscle spindle; synaptic-like vesicles.

vesicles, though characteristic of (presynaptic)

terminals, are certainly not restricted to them.

Bernard Katz, Nerve, Muscle and Synapse, p. 98.

Introduction

My first contact with Bob Banks was by telephone in 1999.

The call was to ask him, ‘Do muscle spindle afferent termi-

nals contain vesicles?’ I had asked Clarke Slater (Newcastle

University), who was my last postdoctoral employer, but he

did not know (a very rare circumstance in itself). However,

he said, ‘if anyone knows it will be Bob Banks in Durham’.

And he was correct. Bob immediately replied, that, yes, 50-

nm clear vesicles had been reported > 40 years earlier in

mechanosensory afferent terminals at the same time as syn-

aptic vesicles but, as they had no obvious function, this had

largely been ignored ever since. He then emailed me a

beautiful electron microscope image of vesicles in a termi-

nal, plus some quantitative analysis of vesicle abundance

from David Barker’s work (Fig. 1A,B). Finally, Bob pointed

me to p. 98 of Bernard Katz’ seminal work Nerve, Muscle

and Synapse (Katz, 1966) and the above quotation, which

reads in full,
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Attempts have been made to [] classify all neuro-

nal structures which contain vesicles as ‘chemically

transmitting presynaptic terminals’. Without more

direct evidence, this would be difficult to defend

because the presence of vesicles, though character-

istic of such terminals, is certainly not restricted to

them.

And thus began the rich seam of research we continue to

mine to this day.

My question was prompted by my work 10 years earlier

in Bill Betz’ lab (University of Colorado), with his wonderful

technician Steve Fadul, while developing the styryl pyridini-

um dyes (RH414, FM1-43 and FM4-64) to label synaptic

vesicles in efferent terminals. While studying the activity-

dependent labelling of presynaptic motor terminals with

these dyes and finding it was due to synaptic vesicle recy-

cling, we noted that they also labelled annulospiral afferent

endings of muscle spindles (Betz et al. 1992). Not being

spindle experts, we passed this observation on to Cuy Hunt,
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Fig. 1 Synaptic-like vesicles (SLVs) in muscle spindle annulospiral endings. (A) The upper drawing is a reconstruction of a serially sectioned cat

muscle spindle showing the incoming myelinated afferent axon arriving from below, as it then branches and eventually loses its myelin sheath to

deliver a series of characteristically annulospiral endings wrapping around intrafusal muscle fibres. Scale bar: 100 lm. The red box delineates an

area of terminal typically sampled to reveal the clusters of 50-nm-diameter, clear ‘synaptic-like’ vesicles within. Shown below is one such section.

The regular array of contractile proteins is seen at the top, with the paler, floccular sensory nerve terminal seen below. The most obvious SLV clus-

ters are indicated with arrowheads, but closer inspection shows that SLVs are scattered throughout. Note that the clusters are not all focussed

towards the muscle fibre, i.e. they do not appear to be truly ‘synaptic’. SLVs are as likely to be clustered adjacent to terminal membrane facing

away from the muscle fibre (e.g. cluster indicated by the right-most arrowhead) as towards it. (B) An historical quantification (for younger readers:

1 �A = 10�10 m, i.e. 10 �A = 1 nm) of the diameters of all vesicles within primary sensory endings revealed a range of diameters and a mix of clear

and dense-cored vesicles. However, by far the most abundant population is about 500 �A, or 50 nm. (C) Top: fluorescent labelling of motor nerve

terminals stimulated in RH414, a prototype styryl pyridinium dye used in the development of the more commonly used dye, FM1-43. During this

work with Bill Betz and Steve Fadul (University of Colorado Health Sciences Center, Denver), we showed dye internalisation occurred by endocyto-

sis with recaptured vesicle membrane. This is when we first noticed (Bottom) the characteristic labelling of the annulospiral endings of muscle spin-

dle primary afferent terminals in the same muscle (rat lumbrical muscle). Spindle labelling occurred even if the muscle was unloaded (i.e. not

stretched) and in the presence of tetrodotoxin (TTX) to block afferent discharge. Thus, electrical and mechanical activity were not required to get

labelling, suggesting at least a basal level of SLV endocytosis occurs at rest. From Bewick et al. (2005) with permission.
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who immediately confirmed it. However, Cuy did not then

pursue it further, so any implications of this discovery lay

essentially dormant until that phone call to Durham.

As a synaptic neuroscientist, the juxtaposition of these

observations – labelling, vesicles and the lack of obvious

function – piqued my interest greatly. This review will

describe the characterisation of the labelling mechanism,

the subsequent discovery of an apparently ubiquitous glu-

tamate secretory system for primary mechanosensory end-

ings, the crucial role of an atypical glutamate receptor, and

the potential relevance of this system to blood pressure

control.
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Fig. 2 Muscle spindle primary afferents express synaptic vesicle-associated proteins and exhibit endocytosis. Immunoreactivity in muscle spin-

dles for the ubiquitous synaptic vesicle proteins (A) synaptophysin (cat) (B) synapsin I (rat: courtesy of Arild Nj�a, University of Oslo) and

Ca2+ -binding protein (C) calretinin (cat). Note the insert showing labelling for synapsin I in a motor nerve terminal of the same muscle in

(B). (D) Evidence of endocytosis in an annulospiral terminal from a cat muscle spindle. (a) Transverse section showing the underlying

nuclear bag intrafusal fibres (dark area, upper left), partially enclosed by the sensory terminal (lighter area, lower right). The arrow indicates

the area of interest shown at higher magnification in (b). There are several things to note at this point. First, note the presence of a

coated pit (arrow) typical of clathrin-mediated endocytosis during membrane recovery of synaptic vesicles. This is typical of membrane

recovery, rather than exocytosis. Second, the pit is of approximately 50 nm diameter. Finally, the membrane recovery is occurring on the side

of the terminal away from the muscle fibre, i.e. such membrane recovery can occur all over the surface of the terminal. (C) Simplified

schema of vesicle recycling from exocytosis (vesicle fusion and neurochemical release), through endocytosis, via specialised budding proteins,

and subsequent refilling with neurotransmitter/modulator, then docking ready for re-release. (B–D) From Bewick & Banks (2015), with

permission.
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Early studies: the classical model of
mechanosensation is incomplete

The classical model of sensory neurone mechanotransduc-

tion is that surface membrane lengthening opens a stretch-

sensitive Na+ channel, depolarising the ending, to produce

the receptor potential (RP). Passive electrotonic spread of

the RP to an initiation site triggers an action potential (AP)

afferent discharge with a rate proportional to the depolar-

isation delivered. Viewed simplistically, this model relies
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Fig. 3 Characteristics of FM1-43 labelling of muscle spindle annulospiral primary sensory endings. (A) FM1-43 labelling of a primary afferent terminal in a

live rat lumbrical muscle, ex vivo. (B) Maximum intensity projections of a confocal series of optical slices in a rat lumbrical spindle at low magnification (a)

and an expansion of the rectangular area is also shown (b). (c) Labelling occurs spontaneously (resting length), but is increased fourfold by stretching

(stretch) during incubation (2 h, 10 lM). The muscle was returned to resting length briefly two–three times each 30 min, before being re-pinned at the max-

imum length. (C) FM1-43 internalisation (a) is strongly inhibited (b) by inorganic salts that block Ca2+ channels, in this case Co2+ . This is quantified below

(c, top). Note that 10 mM Ca, which blocks some stretch-sensitive channels, has no effect on FM1-43 internalisation, suggesting it is not entering through

the mechanosensory channels, but rather by SLV endocytosis. (D) This conclusion of vesicle-mediated labelling is further reinforced by the release of dye

from labelled terminals. This is in sharp contrast to labelling by the dye permeating through the pore of the open mechanosensory channels, which is irre-

versible. (a) A labelled terminal (Start) shows little dye loss during 5 min rest (Rest). However, 5 min of vibration (200 Hz, 50 lm) applied to the pole of the

spindle with a blunt vibrating probe elicits a marked reduction of intensity, i.e. dye loss (Stim1). The rate of destain returns to basal levels on returning to

rest, but resumes on a second vibration (Stim2). This indicates FM1-43 is being lost by SLV exocytosis, and at a rate proportional to the mechanical activity.

(b,c) The vibration-evoked destaining was quantified and was markedly reduced in 0 mM Ca2+. Thus, destaining (i.e. SLV exocytosis) is Ca2+ -sensitive,

which is another parallel with synaptic vesicle turnover. (B–D) From Bewick et al. (2005) with permission.
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Fig. 4 FM1-43 does not block stretch-evoked spindle firing and evidence that endogenous glutamate secretion from SLVs regulates spindle stretch

sensitivity. (A) 2 h in 5 lM FM1-43 does not inhibit stretch-evoked spindle firing in rat 4th lumbrical muscles, indicating the dye does not block the

mechanosensory channels in muscle spindles and, therefore, terminal labelling is unlikely to be due to dye permeation through the channels

expressed in these fully differentiated mature terminals. (B) Immunogold labelling for glutamate in muscle spindle primary afferents. (a) Transverse

ultrathin section through an intrafusal fibre (i) with two paler terminal profiles (t) on its surface, labelled with immunogold for glutamate. (ii)

Higher magnification of the rectangular area in (i) showing the high density of gold particles in vesicle (v) containing areas of the terminal com-

pared with surrounding structures, including the intrafusal muscle fibre. For this technique fixation is milder, to preserve antigenicity, so vesicle

preservation is not as clear in these sections. (b) Quantification of gold particle density of two different spindle Ia primary terminals compared with

other tissues in the same rat (dark and light grey bars, respectively) and no primary controls (small mid-tone grey bars). In both cases, glutamate-

like immunoactivity (gold particle density) was at least twice that in non-glutamatergic tissues, such as glial cell processes, intra- and extrafusal

muscle fibres and motor neurone dendrites. It was also at least as much as in putative central terminals of I afferents on motor neurone dendrites.

In one case (dark bars) it was equivalent to that in cerebellar mossy fibre terminals of the cerebellum (both are glutamatergic synapses). No primary

controls show negligible labelling. IF, intrafusal fibres; XF, extrafusal fibres. From Bewick et al. (2005), with permission. (C) Spindle primary endings

label heavily for the vesicular glutamate transporter vGluT1, indicating the endogenous glutamate is loaded into SLVs (from Wu et al. 2004, with

permission). (D) Inhibition of glutamate re-uptake with TBOA greatly increases stretch-evoked firing from rat lumbrical muscle spindles over a 2–3-

h period, in a reversible manner. This indicates the extracellular accumulation of endogenously secreted glutamate makes the ending more sensi-

tive to stretch. *P < 0.05, ***P < 0.001 vs pre-drug control firing. (E) Latrotoxin application, which causes uncontrolled exocytosis in spindles, sub-

stantially increases stretch-evoked spindle firing in rat 4th lumbricals by 1 h of application, presumably as glutamate exocytosis is greatly increased.

Over the next few hours, firing to a standard stretch slowly declines, becoming inhibited from 210 min (3.5 h) of toxin incubation. This presumably

reflects SLV, and hence glutamate, depletion. Bungarotoxin was added to block interference by the activation of the intrafusal fibres by fusimotor

neurones. Red bar = bungarotoxin application. Yellow bars = statistically significant in comparison to t � 60 min (pre-drug control) at (*) P < 0.01.

Thus, t + 60 min (latrotoxin peak excitation), t + 210–270 min (latrotoxin inhibition).
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only on Na+ channels (mechanosensitive for the RP, then

voltage-gated for the upstroke of the AP) and K+ channels

(repolarisation of the AP), and has no requirement for the

involvement of vesicles. Having ‘re-discovered’ these synap-

tic-like vesicles (SLVs), and being a synaptic physiologist, the

first question we had was how much further the similarities

between vesicles in mechanosensory and efferent motor

endings extended. A literature trawl, plus some of Bob’s

own unpublished work, revealed many more similarities in

anatomy and protein expression. First, all electronmicro-

graph (EM) studies of mammalian primary mechanosensory

endings reported (or, our examination of the published EM

in these studies revealed) 50-nm clear vesicles (Krauhs, 1979;

Akoev et al. 1988; Zelena, 1994), with the first overt

reference to their resemblance to synaptic vesicles noted in

1966 (Cauna, 1966). Second, spindle afferent immunocyto-

chemistry revealed many synaptic vesicle-associated pro-

teins, including synaptophysin (a ubiquitous synaptic vesicle

protein) and synapsin I (Fig. 2A,B; a vesicle clustering pro-

tein) – although not synapsin II (De Camilli et al. 1988).

Third, a large number of Ca2+ -binding proteins are present

in annulospiral endings, including calretinin (Fig. 2C), cal-

bindin D-28k, neurocalcin, NAP-22 and frequenin (Hieta-

nen-Peltola et al. 1992; Duc et al. 1993; El-Tarhouni &

Banks, 1995; Iino et al. 1998; Werle et al. 2000). Finally, ele-

ments of both the vesicle and terminal membrane SNARE

vesicle docking and fusion complexes had been shown to

be present, i.e. the v-SNARE synaptobrevin I/II (Li et al.

B
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1996) and t-SNARE syntaxin IB, but not syntaxin IA (Aguado

et al. 1999). SNAREs are a protein family, whose acronym

derives from SNAP Receptors, which are intimately involved

in rapid and specific synaptic vesicle docking and fusion

events. Given the exclusively Na+- and K+-channel-depen-

dent nature of the classical model, these findings are sur-

prising. However, we were excited to see that they are

suggestive of Ca2+ -dependent synaptic/secretory vesicle

turnover.

The next question was, is there evidence that SLVs can

undergo exo-/endocytosis and that this is functionally

important? Bob’s image library of Ω-profiles and coated pits

was clear evidence of SLV recycling (Fig. 2D), while synaptic

neurotoxin studies revealed its functional implications. Black

widow spider venom, containing latrotoxin, elicits uncon-

trolled synaptic vesicle exocytosis (Ushkaryov et al. 2008). It

also causes depletion of SLVs and subsequent destruction of

annulospiral endings (Queiroz & Duchen, 1982), indicating

the presence and functional importance of the ‘presynaptic’

proteins latrophilin and/or neurexin. A critical functional

role for SLV exocytosis was first suggested by studies with

tetanus toxin (Mizote & Takano, 1985). This toxin very selec-

tively cleaves the v-SNARE synaptobrevin. When injected

into cat gastrocnemius, as expected, the toxin gradually

blocked nerve-stimulated muscle contraction, reflecting the

progressive inhibition of neuromuscular transmitter release.

Strikingly, however, it also gradually abolished muscle spin-

dle stretch-evoked firing – and over the same time-course.

Thus, an intact SNARE complex seems essential to sustain

the annulospiral ending’s ability to respond to stretch. An

important role for Ca2+ was first hinted at when Hunt et al.

(1978) revealed it made a small contribution to the stretch-

activated RP. A central role for Ca2+ in the mechanosensory

responsiveness, as implied by the abundance of Ca2+ -bind-

ing proteins, was revealed when spindle responses were

abolished either by removal of Ca2+ from the external med-

ium, or addition of cationic Ca2+channel blockers (Co2+ or

Ni2+/Cd2+; Kruse & Poppele, 1991). These observations are

important for two reasons. Firstly, they show strong func-

tional parallels with synaptic terminals: viz. an absolute

requirement for Ca2+, perhaps to support SLV recycling;

and, secondly, and perhaps most tellingly, they show the

classical model is incomplete. This model being entirely

based on monovalent cations (Na+ and K+), it has no

requirement for Ca2+ and, therefore, there is no reason why

Ca2+ should have such a profound effect.

Thus, the literature held many clues that the classical

model was incomplete. That these clues lay largely ignored

was not surprising, as they were usually hidden in studies of

neuromuscular synaptic function, including our own report

of spindle labelling with the styryl pyridinium dyes. This,

then, was a period of great excitement for us, as trawling

the literature uncovered many disparate pieces for an

emerging jigsaw puzzle that began to fit together.

SLV recycling is the basis of FM1-43 labelling

So, this is the point where our own experiments into SLV

function began. Why not start by asking if SLVs do indeed

undergo recycling, using the styryl pyridinium dyes I’d help

develop 10 years earlier? Our 1992 report used the orange/

red dye RH414, so now we first asked if the more widely

used yellow/green FM1-43 was also internalised – which it

was (Fig. 3A). The next studies asked how ‘synaptic-like’ was

the labelling functionally, and again reinforced the synaptic

similarities – but also revealed some significant differences.

Indeed, the first observation showed a major difference –

that dye uptake occurred spontaneously (Fig. 3B). However,

like synapses, uptake was proportional to activity. In

spindles, however, this was evoked by mechanical activity,

whereby repeated stretching increased labelling fourfold.

Labelling, like stretch-evoked firing, was Ca2+ -dependent

Fig. 5 Spindle stretch sensitivity is regulated by an atypical glutamate receptor with the pharmacology of the hippocampal PLD-mGluR. (A) (Top

to bottom). A trapezoid profile of the stretch applied to the rat 4th lumbrical muscles. Muscles are stretched by 1 mm, which represents ~10%

increase in length, for 5 s before returning to the original length. The ‘spike rate’ is shown in 100-ms windows, revealing a rapid increase in firing

for this particular muscle during the stretch to a new length (dynamic response). Firing then settles to a slightly lower plateau rate at the new

length, until released to the original length, when firing stops. The ‘afferent discharge’ is shown in the raw electroneurogram, which is recorded

from the whole muscle nerve, and thus represents the firing from all the 8–12 spindles found in this lumbrical muscle. Below this, the same muscle

response is shown following 1 h incubation in 1 mM glutamate. This approximately doubles the firing rate for the same stretch. The very bottom

histogram shows quantification for n = 6 preparations. This increase in stretch-sensitivity is entirely reversible (not shown). (B) The reversible

increase in firing rate with 100 lM glututamate (a). (b) This response cannot be blocked by antagonists of all the 11 cloned glutamate receptors

(kynurenate: all three iGluRs; MCPG/CPPG: all eight mGluRs), even when applied together. This indicates glutamate is not acting through any of

the cloned receptors. (c) Glutamate excitability is totally blocked by RS 3,5-DHPG, an agonist at group I mGluRs but an antagonist of the PLD-

mGluR first reported in the hippocampus. (d) Glutamate excitability is blocked somewhat more potently by PCCG-13, a selective antagonist specifi-

cally developed for this receptor. These experiments indicate exogenous glutamate is activating the PLD-mGluR to regulate spindle stretch-sensitiv-

ity. (C) Quantification of stretch-evoked firing in a single rat 4th lumbrical muscle during prolonged PCCG-13 application. When applied alone,

without exogenous glutamate, high concentrations (10 lM) of the selective PLD-mGluR antagonist PCCG-13 can totally abolish stretch-evoked

responses, over a period of 4–6 h. This effect is entirely reversible. This illustrates that blocking the activation of the PLD-mGluR by endogenous

glutamate secretion from SLVs means the ending cannot sustain a sensitivity to stretch, i.e. endogenous glutamate-mediated activation of the

receptor is necessary to maintain its stretch sensitivity. From Bewick et al. (2005), with permission.
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as it was blocked by replacing Ca2+ with Mg2+ or Co2+

(Fig. 3C). Dye was also lost again with vibrational activity,

and this was also Ca2+ -dependent (Fig. 3D). Whether the

increased dye fluxes are driven by stretch-evoked AP firing,

or by mechanical activity alone, is not clear. Nevertheless,

these observations show the dye intensity changes reflect

endo- and exocytosis of SLVs. This point is important as it is

in sharp contrast to labelling in mechanically stimulated

cochlear hair cells and in neurites of dorsal root ganglia

(DRG) neurones in culture (Gale et al. 2001; Drew & Wood,

2007). In these preparations, dye enters irreversibly by per-

meation of mechanosensory channels, a process blocked by

elevated external Ca2+ (10 mM), which blocks the mechano-

sensory channels in these preparations (Ricci & Fettiplace,

A B
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1998; McCarter & Levine, 2006). Upon entry, the dye subse-

quently blocks the channels (Gale et al. 2001; Drew &

Wood, 2007). In contrast, our observations in mature spin-

dle terminals differed in all three significant respects. Spin-

dle dye internalisation was not inhibited by elevated Ca2+,

was reversible and dye did not block stretch-evoked firing

at 5 lM (Fig. 4A). Even after 3 h at 10 lM, routinely used

by us to label the endings (Fig. 1A), firing was only

reduced by 30% – and this too was reversible. In DRG

neurites, this concentration very rapidly produces an 80%

block. Thus, the labelling of mature, fully differentiated

afferent endings seems at least predominantly due to SLV

endocytosis and has a different basis to that in neonatally

derived tissues.

SLVs secrete glutamate, maintaining stretch-
sensitivity

We next reasoned that if SLVs undergo exocytosis, they

should presumably store and release a neuroactive chemical

of sorts, and sought to identify it. Using Dale’s Principle

(Dale, 1935) that a neurone secretes the same neuroactive

substance at all of its terminals, and knowing that the cen-

tral terminals of primary afferents are glutamatergic (Eng-

berg et al. 1993; Walmsley & Bolton, 1994) we, with

excellent technical assistance from Christine Richardson,

used immunogold EM to show there was indeed gluta-

mate-like immunoactivity in annulospiral endings, and at

levels equivalent to central synaptic Ia endings, or other

glutamatergic central synapses (Banks et al. 2002). Again,

this finding was supported 2 years later by a report that pri-

mary afferent terminals expressed a transporter specific for

loading glutamate into vesicles (i.e. vGluT1, although not

vGluT2 or 3; Wu et al. 2004). The next obvious question

was, if SLVs secreted glutamate, what role secretion might

play. We found exogenous glutamate enhanced stretch-

evoked firing (Fig. 5) in a dose-dependent manner (up to 1

mM), supplementing the previous experiments by Mizote &

Takano (1985) showing blocking SLV exocytosis with teta-

nus toxin profoundly inhibited firing. More recent experi-

ments (by Anna Simon, postdoctoral research fellow) have

produced more evidence that SLVs secrete endogenous glu-

tamate, as TBOA (DL-threo-beta-benzyloxyaspartate), the

competitive, non-transportable glutamate re-uptake inhibi-

tor strongly increases spindle excitability (Fig. 4D), while

latrotoxin, which potentiates SLV exocytosis to the point of

total depletion (Queiroz & Duchen, 1982), initially

enhances, then inhibits stretch-evoked firing (Fig. 4E).

There are three things that all these manipulations have

in common that suggest they involve a common target.

All enhancements are to a maximum of 75–100%, they

take ~1 h to become significant, and take several hours to

reach a maximum. Thus, all these modulations are long

term. While some of this delay is undoubtedly due to the

physical and physiological barriers to drug access (penetra-

tion past first the surrounding extrafusal muscle fibres,

then the selectively permeable spindle capsule), the pro-

tracted time-course even after drug penetration suggests

delayed penetration is not the only factor. Rather, it

implies the ultimate target is a metabotropic glutamate

receptor (mGluR) and these effects are second-messenger

mediated.

However, identifying this glutamate receptor has proven

quite a challenge, as this glutamate-stimulated excitation

was not blocked by the classical antagonists of either iono-

tropic glutamate receptors (iGluRs) or mGluRs, whether

applied singly or simultaneously as one large cocktail at su-

pramaximal concentrations (Bewick et al. 2005). This engen-

dered another trawl through the literature. Here we

unearthed a little known mGluR linked to phospholipase D

(PLD) activation, first reported in the hippocampus (Boss

et al. 1994; Pellegrini-Giampietro et al. 1996). This receptor

was actually inhibited by the classical agonist for group I

mGluRs R,S 3,5-DHPG, and rather more effectively by a spe-

cific antagonist PCCG-13, the only one of 16 isoforms tested

(PCCG-1 to 16) that produced such profound inhibition in

this hippocampal receptor (Albani-Torregrossa et al. 1999).

As in the hippocampus, we found glutamate-stimulated

Fig. 6 Baroreceptor terminals have SLV, internalise and release FM1-43, and exhibit glutamate sensitivity for stretch-evoked firing. (A) Barorecep-

tor terminals on the aortic arch of the rat (lower image) have a high density of SLVs, when viewed at the EM level. D, aortic depressor nerve;

LCC, left common carotid artery; LSC, left subclavian artery. (B) Aortic baroreceptor terminals take up and release FM1-43. Adapted from Krauhs

(1979), with permission. (a) Schematic of the anatomical position of the aortic baroreceptors in humans. Inset, FM1-43 labelling of baroreceptor

terminals in mouse. (b) Higher magnification of FM1-43-labelled baroreceptor terminals shown in the inset in (a). Terminal depolarisation with 60

mM K+ stimulates FM1-43 release, indicating dye internalisation and release is due to SLV recycling. (C) Responses of various working heart brain-

stem preparation outputs to topical glutamate application to the baroreceptors. (a) Glutamate application to the aortic baroreceptors increases fir-

ing rate of the aortic depressor nerve (ADN). ∫ADN, integrated ADN activity. (b) Increasing (arrow) perfusion pump pulse pressure (PP) in the aorta

evokes a marked increase in ADN firing. Topical PCCG-13, the selective PLD-mGluR antagonist, onto the baroreceptor greatly reduces the evoked

response, an effect that can be washed out. Subsequent exogenous glutamate application increases pressure-evoked ADN firing again. (c) Topical

glutamate application to the baroreceptors produces a dramatic decrease in heart rate, and sympathetic nerve firing. Thus, enhancing baroreceptor

sensitivity causes reflex inhibition likely to induce a reduction in peripheral blood pressure. bpm, beats per minute; HR, heat rate; ∫SNA, integrated

sympathetic nerve activity. (d) Just as topical glutamate application to the aortic baroreceptors increases sympathoinhibition, PCCG-13 reduces it.

These experiments show the PLD-mGluR on baroreceptor terminals can be a suitable target for regulating sympathoinhibition, which controls

peripheral blood pressure.

© 2015 The Author. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

SLVs and MS channels in mechanosensory terminals, G. S. Bewick202



spindle excitation was inhibited by PCCG-13 or RS 3,5-DHPG

or by PLD inhibition (using FIPI; Monovich et al. 2007)

(Fig. 5B). Strikingly, PCCG-13 applied in the absence of glu-

tamate could abolish stretch-evoked spindle firing entirely

when applied at high concentrations (10 lM) for long peri-

ods (4 + h), an effect that was entirely reversible (Fig. 5C).

This is important as it implies that the constitutive SLV-med-

iated glutamate secretion revealed by spontaneous FM1-43

uptake, is to ensure tonic PLD-receptor activation and this

in turn is necessary to maintain the spindle’s ability to

respond to stretch.

Implications for the role of SLV-mediated
glutamate secretion

If our interpretations of these observations concerning SLVs

are correct, they lead to a number of quite interesting con-

clusions. First, SLVs undergo tonic exocytosis. Terminals must

therefore continuously release glutamate. Second, as dye

uptake is increased by stretch, the rate of SLV recycling (and

presumably glutamate secretion) is accelerated by activity.

Third, PLD-mGluR antagonists and transporter inhibitors

applied alone are only regulating responses to this tonic
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endogenous glutamate release. The strong inhibition by

PLD-mGluR antagonists implies tonic receptor activation by

endogenous secretion is required to maintain spindle

stretch sensitivity. Conversely, because the TBOA-induced

sensitivity increase is as great as for any exogenous ligand, it

implies endogenously released glutamate can stimulate as

effectively as any exogenously applied ligand. Fourth, this

system has evolved to work over the extremely long term. It

takes at least 1 h to significantly change stretch-evoked fir-

ing, and often several hours to reach maximal effect. There-

fore, it seems very unlikely the stretch-activated secretion of

glutamate is the first step in the gating of mechanosensory

channels that produce the RP in mechanotransduction.

Rather, the SLV/PLD-mGluR system seems more important

for long-term regulation of terminal stretch sensitivity. I

tend to think of this control system using a radio analogy;

the transduction channels of the classical system are the ‘on/

off’ or ‘power on’ button, while the SLV/glutamate/PLD-

mGluR system acts as the ‘volume’ control.

However, these experiments leave two fundamental

questions unanswered. Where is the PLD-mGluR located?

And, how does its activation lead to increased ending

stretch sensitivity? These are the subjects of ongoing

research in the laboratory. Sonia Watson’s article in this vol-

ume describes the progress we are making towards devel-

oping tools to isolate and label the receptor protein. This

will hopefully help us to make substantial progress towards

answering at least the first of these questions. Possible

mechanisms by which the second might be achieved include

increasing the channel open probability or their abundance

in the membrane. The latter would be consistent with the

regulation of ENaC (epithelial sodium channel) activity in

the kidney cortical collecting duct, where they are stored in

sub-plasmalemmal vesicles and recycled into/out of the

membrane, with a half-life of 20–120 min (Butterworth,

2010). I raise ENaCs at this juncture as they are candidate

mechanosensory channels (see below).

SLVs, glutamate secretion and PLD-mGluRs: a
general principle of mechanosensory endings

This seems an appropriate point to look at the generality or

otherwise of this glutamatergic regulatory system. One of

the earliest thoughts Bob and I had on reviewing the litera-

ture was that all primary mechanosensory endings exam-

ined at the on ultrastructural level had been reported to

have SLVs, i.e. clear, 50-nm-diameter vesicles (Bewick et al.

2005). This, in turn, implied the glutamatergic signalling

should be a ubiquitous feature of such endings. We should,

therefore, find evidence of glutamate signalling and SLV

turnover in other primary mechanosensory endings. And so,

we chose two other, quite diverse systems to test this

hypothesis – aortic baroreceptors that monitor blood pres-

sure, and lanceolate endings from skin hair follicles (Paton

Fig. 7 Hair follicle lanceolate mechanosensory endings of the anterior skin of the mouse pinna have SLVs, secretion-associated proteins and gluta-

mate. (A) (a) The mouse pinna preparation pinned, anterior skin face down, in a Sylgard-lined dish filled with Liley’s solution, and set up for elec-

trophysiological recording. The whole posterior skin has been removed, as well as a large area of elastic cartilage and adipose tissue (at) from the

cleared area (ca). By folding the cleared area back, access was gained to the hair shafts, allowing two or three within the vibrated area (va) to be

mechanically displaced by a fire-polished glass capillary (not shown). The nerves (n) are branches of the mandibular division of the trigeminal and

are set up for differential recording of the neurogram using recording (re) and indifferent (i.e.) suction electrodes. (b) Brightfield image of mouse

pinna skin viewed from the dermal side, showing several hair follicles. The bases of the hair shafts are clearly seen; each shaft is partly surrounded

by a sebaceous gland that appears dark. Scale bar: 100 lm. (c) Diagram of the structure and location of the innervation of a hair follicle. The lan-

ceolate ending consists of the group of terminals forming the palisade-like structure immediately below the lobular sebaceous gland (from Bannis-

ter, 1976). The dashed line indicates the typical plane of section for subsequent images for fluorescence and light microscopy. (d) Semi-thin (1 lm)

cross-section through a hair follicle (hf) at the level of the sebaceous gland (sg) and lanceolate ending, as indicated in (c). The lanceolate ending

surrounds the follicle (arrows), and terminals appear as dark structures alternating between lighter accessory cells, shown in greater detail in the

inset at top right. Mouse pinna, Toluidine Blue; scale bar (main image) indicates 20 lm. (e) EM of an ultrathin cross-section through a lanceolate

ending, showing a single, darkly stained, sensory terminal (st) almost completely enclosed by pale-staining glial cell (gc) processes. Note the numer-

ous 50-nm-diameter vesicle profiles in the terminal axoplasm (white arrows). Mouse pinna; scale bar indicates 0.5 lm. (B) SLVs shown in higher

magnification (white arrows), and labelling with FM1-43 produces a characteristic circle of lanceolate endings around a central hair shaft. (C)

Immunohistochemical and genetic identification of the sensory terminals and glial cells of lanceolate nerve endings. (a) Anti-neurofilament protein

(NFP)-like immunoreactivity is localized in structures identified as preterminal axons (pa) and sensory terminals in a mouse pinna follicle. Several ter-

minals are shown enlarged in the inset. Epifluorescence; scale bar indicates 10 lm. (b) Structures identified as sensory terminals also react strongly

with anti-synapsin I antibody. Mouse pinna, epifluorescence; scale bar indicates 20 lm. (c) SynaptopHluorin fluorescence shows the expression of

the v-SNARE synaptobrevin in the lanceolate terminals in a very similar pattern to NFP and synaptophysin. Mouse pinna, epifluorescence; scale bar

as in (B). (d) Anti-S-100 antibody, in contrast, labels paired structures identified as glial cells (gc) and their processes in a mouse pinna follicle. Pair-

ing of the processes is particularly apparent in the enlarged inset and is distinct from the unpaired processes seen in (a). Epifluorescence; scale bar

indicates 10 lm. (e) A follicle from rat pinna double-labelled with antibodies against synaptophysin (red) and S-100 (green). Where the ending is

precisely orthogonal within the section (white arrows), individual red profiles can be seen clearly to be almost entirely enclosed by paired green

profiles, identified as sensory terminals and glial cell processes, respectively. Laser-scanning confocal microscopy; scale bar indicates 5 lm. (D)Lan-

ceolate sensory terminals are enriched in glutamate. An EM of a thin section of a sensory lanceolate terminal (st) is shown with enclosing glial cells

(gc) immunogold labelled to show glutamate-like immunoreactivity. A portion is enlarged in the inset, showing gold particles more clearly. (E) A

histogram (means � SEM) summarising the quantitative assessment of glutamate-like immunoreactivity. From Banks et al. (2013), with permission.
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et al. 2010; Banks et al. 2013). Lanceolate endings can be

very rapidly adapting, in contrast to spindle annulospiral

endings, i.e. firing only during movement and not

sustaining firing for a maintained deflection of the hair.

Thus, they might prove an informative contrast to the very

slowly adapting spindle endings. Furthermore, we had been

told by our mutual long-term friend Prof Clarke Slater (see

below), that these endings took up FM dyes much more rap-

idly than spindle endings, and so might be a useful prepara-

tion to examine the pharmacology of SLV recycling. We

chose to examine baroreceptor terminals to see if aspects of

this new system, if present, might have translational poten-

tial. We felt that in baroreceptors the glutamate signalling

system may be a new target for controlling blood pressure

in hypertensives.

Baroreceptor terminals are packed with SLVs (Fig. 6A;

Krauhs, 1979), so in collaboration with Julian Paton in Bris-

tol, we sought evidence for a role for the PLD-mGluR in

baroreceptor function. We found that aortic baroreceptors

in the isolated aortic arch take up and release FM1-43, i.e.

the SLVs recycled locally, undergoing endocytosis (dye

uptake). The subsequent exocytosis (dye release; Fig. 6B)

again ruled out this labelling was by direct permeation of

the mechanically gated channel by the dye. Using Julian

Paton’s working heart brainstem preparation (Paton, 1996),

we studied the effect of topical glutamate application on

baroreceptor outputs and feedback pathways (Paton et al.

2010). Glutamate application to the baroreceptors increased

aortic depressor nerve discharge, while PCCG-13 inhibited it

(Fig. 6D). Moreover, this evoked reflex inhibition of the

heart rate and increased sympathetic nerve activity (SNA;

Fig. 6Dc). Sonia Watson, a PhD student in my laboratory, has

now shown in this same model that other PLD-mGluR

ligands applied to baroreceptor endings also modulate SNA

in a predictable manner – agonists inhibit SNA, while antag-

onists enhance it.

As noted briefly above, lanceolate terminals are me-

chanosensory endings detecting hair movements in hair fol-

licles of the skin (Fig. 7A,B). Professor Clarke Slater

(Newcastle University) developed a mouse ear skin prepara-

tion, and showed the terminals contain SLVs and they read-

ily internalised FM1-43 (Kain & Slater, 2003). Our four

laboratories [Clarke Slater, Bob Banks and myself, together

with Peter Cahusac (then University of Stirling, now Alfaisal

University, Saudi Arabia)] subsequently found the terminals

immunolabelled for the synaptic vesicle proteins synapsin I

and synaptophysin, expressed synaptobrevin (syna-

ptopHluorin) and synaptic levels of glutamate, the SLVs

underwent local recycling (internalising/releasing FM1-43)

and latrotoxin accelerated destaining (Banks et al. 2013).

FM1-43 had no effect on afferent firing either, as further

evidence that dye uptake was not due to internalisation

through mechanosensory channels. Thus, lanceolate prepa-

rations proved extremely convenient for studying SLV

recycling: there are large numbers of follicles per prepara-

tion (Fig. 7A) and dye uptake is rapid (~30 min vs. 120 min

for spindles). They were, therefore, an ideal preparation to

explore how SLV recycling is regulated.

Regulation of SLV recycling

Like spindle annulospiral endings, we found Co2+ reduced

dye uptake by ~90%, while 10 mM Ca2+, which blocks FM1-

43 internalisation through mechanosensory channels (Nis-

hikawa & Sasaki, 1996; Gale et al. 2001), had very little

effect on labelling (Banks et al. 2013). Unlike synaptic termi-

nal vesicles, SLV turnover showed no dependence on the

two major voltage-gated Ca2+ channels responsible for syn-

aptic transmission, the N- or P/Q-type channels. The L-type

Ca2+ channel blockers nifedipine and taicatoxin did reduce

labelling. However, this was only by ~50%, indicating they

are important but that there are still other Ca2+ sources

involved in supporting SLV recycling. Conversely, glutamate

increased, while PCCG-13 decreased, labelling markedly.

PCCG-13 also completely blocked the glutamate-stimulated

uptake (Fig. 8A,B). Again, like spindle firing, classic iGluR

(kynurenate) and mGluR (MCPG, 4-CPG, CPPG) antagonists

had little effect on labelling, and did not block glutamate-

mediated stimulation, even when all were applied together

(Fig. 8C). This cocktail should block all of the glutamate

receptors that have been cloned. These data suggest, there-

fore, that like spindle afferent discharge, PLD-mGluRs regu-

late SLV recycling, a deduction further supported when we

found PLD inhibition (with FIPI) reduced labelling by 80%

(Fig. 8D,E).

Ca2+ -activated potassium channels and
candidate mechanosensory channels

The most recent set of experiments Bob and I have

undertaken together, which are still very much ongoing

and yet to reach firm conclusions, concern understand-

ing the channels underlying the RP. In a seminal paper,

Hunt et al. (1978) reported the major ion contribution to

the RP’s initial dynamic current on stretching a muscle

spindle is Na+, at ~80%, with Ca2+ contributing a further

~20%. Various K+ channels seemed to be responsible for

the repolarisation when movement stopped at the new

length and the hyperpolarisation on returning back to

the original length. The articles by Bob Banks and Zhuoyi

Song in this volume discuss this complex potential wave-

form in more detail. Here, I will briefly summarise our

findings regarding candidate channels involved. Given

the preponderance of Na+ in the ionic basis of the RP,

we have been examining Na+-selective candidate me-

chanosensory channels, particularly members of the

degenerin (DEG)/ENaC family. Homologues of the DEG/

ENaCs have been identified as the stretch-sensitive

channels in primary mechanosensory nerve terminals in

the nematode worm Caenorhabditis elegans (reviewed
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by Arnad�ottir & Chalfie, 2010). We tested for both ENaC

itself and also the closely related acid-sensing ion

channels (ASICs). This work was undertaken with two

very talented postdoctoral workers, Fiona Shenton (in

Durham) and Anna Simon (in Aberdeen). In 2010, using

spindles, we reported Western blotting, immunolabel-

ling of whole-mount preparations and amiloride-sensi-

tive inhibition of stretch-evoked firing consistent with

ENaC and ASIC2a channels underlying these currents

(Fig. 9A,B). In lanceolate endings we have not yet looked

for ENaC, but we again find ASIC2 (Fig. 10; Shenton

et al. 2014), while other studies report ASICs and ENaC

subunits in baroreceptors (Drummond et al. 1998; Lu

et al. 2009). To date, the functional importance of these

channels in spindles awaits validation in genetically mod-

ified animals. ENaC knockout is lethal, due to its great

physiological importance in kidney function and has not

been studied in mechanosensory function, while ASIC

knockout studies, even triple knockouts (Kang et al.

2012; Gautam & Benson, 2013), reveal at most modest

perturbance of mechanosensation in touch afferents.

Interestingly, most other mechanosensory channel candi-

dates (e.g. transient receptor potential (TRPs), reviewed

in Arnad�ottir & Chalfie, 2010; and Piezos, see Ranade,

Woo, et al. 2014) are non-selective cation channels, pass-

ing Na+ and Ca2+ equally or with a Ca2+ bias. This alone,

at least at a simplistic level, seems to exclude them as

likely candidates to underlie the spindle RP. Despite this,

Piezo2, a non-selective cation channel, is currently the

leading candidate as a transducer of many aspects of

touch mechanosensation (Ranade et al. 2014), so further

work is clearly needed in this area to explain these

apparently conflicting findings. However, we have

strong evidence for Ca2+ -activated K+ channels in both

spindles and lanceolate terminals. Both types of terminal

express SK2-type channels, while SK3 seems to be mainly

in the glial cells surrounding the lanceolate terminals

and is absent from spindle endings (Shenton et al. 2014).

This is further evidence of commonality of properties in

these types of ending. These channels seem likely to be

responsible for at least some of the K+ currents Hunt

et al. identified in the stretch-activated RP.

Summary and musings on the nature of the
PLD-mGluR

Overall, the studies Bob and I have undertaken together

over the last 15 years have uncovered a SLV-based glutama-

tergic secretory system that seems to be a feature of all

mammalian mechanosensory endings studied to date.

There is now substantial evidence for a somewhat similar

system in Merkel endings, in addition to our own studies in

lanceolate endings and baroreceptors. Interestingly, in Mer-

kel endings the secretion is from both the terminal and

accessory Merkel cells. The relative importance of these two

systems remains to be established (Woo et al. 2012). This

SLV-based system therefore seems to be an important

adjunct to the classical model of mechanosensation,

A B

C
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Fig. 8 Glutamate regulates SLV recycling by activating the PLD-mGluR.

(A) Like spindle afferent terminals, lanceolate endings spontaneously

label with FM1-43. Exogenous glutamate increases, while (B) PCCG-13

decreases, dye internalisation. (C) Top to bottom. Histogram summaris-

ing the effects of various GluR ligands on FM1-43 internalisation. Light

grey bars – the glutamate-mediated increase is blocked by PCCG-13 but

not the cocktail of classical iGluR and mGluR antagonists (4-CPG, CPPG,

kynurenate). Dark grey bars – MCPG (group I and group II antagonist)

does not significantly inhibit FM1-43 internalisation, while glutamate

increases it, and PCCG-13 produces a dose-dependent decrease. The

other antagonist cocktails produce little if any effect on labelling. (D) FIPI,

the PLD inhibitor, also causes a dose-dependent decrease in FM1-43

uptake/SLV endocytosis. These effects are quantified in (E). These data

indicate that, as for spindle firing, the PLD-mGluR regulates SLV endocy-

tic uptake of FM1-43. From Banks et al. (2013), with permission.
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although why this might be the case is not yet clear. In the

classical model, tension gates stretch-sensitive channels in

the membrane, triggering ion fluxes that generate the RP.

We now propose that, simultaneously, the same mechanical

stimulus also triggers increased glutamate secretion from

SLVs. Over the course of the next several tens of minutes,

the glutamate activates a pathway of events through a

highly unusual mGluR linked to PLD activation. At least in

spindles this constitutive, activity-modulated autogenic PLD-

mGluR stimulation seems to be necessary to maintain the

ending’s ability to respond to stimuli. Our studies since have

attempted to understand how the SLV/PLD-mGluR system

fits into the systems controlling mechanosensory ending

responsiveness. Those findings, and associated control

mechanisms, have recently been reviewed in detail else-

where (Bewick & Banks, 2015), and are summarised in

Figs 11 and 12. We suggest that the SLV/PLD-mGluR system

is one of several feedback mechanisms that regulate spindle

output, from shaping the complex RP (see articles by Zhuoyi

Song et al. and Bob Banks in this volume), to exquisitely

fine-tuning the afferent discharge rate for each stimulus in

this, the most complicated of sensory organs outside of the

central nervous system. It seems likely it is these multiple

control networks, including the glutamate autoregulatory

system constituent of it, that allow the spindle to respond

with exquisite sensitivity to both dynamic and static stimuli

over a wide range of lengths and velocities.

As for the future, there are a number of pressing ques-

tions we are addressing together. First, what is the receptor

– is it a new type of mGluR and, if so, what is its sequence?

Second, where is it located in the spindle? And, finally, is

there translational clinical potential for targeting the SLV/

PLD-mGluR system?

Is it a new glutamate receptor? Is it metabotropic?

As mentioned above, we are developing tools and tech-

niques to isolate this mysterious glutamate receptor, whose

true nature and identity continue to tantalise and fascinate.

It is certainly activated by glutamate, so at least at this mini-

malist level it meets the fundamental criterion of a ‘gluta-

mate receptor’. It has been regarded as a mGluR since its

discovery in the 1990s. A major reason for us to regard this

designation as still appropriate is the persistent resistance

A B

Fig. 9 Anti-ENaC and anti-ASIC 2 subunit immunoreactivity localises to sensory terminals of rat muscle spindles. (A) Double-immunofluorescent

labelling of the sensory regions of rat muscle spindles, comparing anti-ENaC subunit with anti-synaptophysin reactivities. Upper panels (red): anti-

ENaC a, b, c or d immunoreactivity; lower panels (green): anti-synaptophysin immunoreactivity of the corresponding spindles. Control: anti-ENaC

antibody replaced with non-immune rabbit IgG. Immunoreactivity was clearly visible with antibodies to the a, b and c subunits, but there was little

reaction with the anti-ENaC d antibody; this is in contrast to the control where no specific reactivity was discernible. (B) Double-immunofluoresent

labelling of the sensory regions of rat muscle spindles, comparing anti-ASIC2 with anti-synaptophysin reactivities. Upper panels (red): anti-ASIC2

immunoreactivity; lower panels (green): anti-synaptophysin immunoreactivity of the corresponding spindles. Anti-ASIC2 immunoreactivity was

evident on sensory terminals in contrast to controls (anti-ASIC2 antibody blocked with peptide, or replaced with non-immune goat IgG) where

specific immunoreactivity of the sensory terminals was not visible. From Simon et al. (2010), with permission.
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of all glutamate-mediated responses in our mechanosenso-

ry endings to the application of 1 mM kynurenate, which

should inhibit all known iGluRs. However, the PLD-mGluR

pharmacology and what little is known of its intracellular

signalling linkage are very different from any receptor,

either ionotropic or metabotropic, to have been isolated

and/or cloned so far. Moreover, BLAST searches by our labo-

ratory and others have found no unassigned closely related

sequences, suggesting there are no iGluR- or mGluR-like

receptors waiting to be discovered. So, it could either be a

splice variant of a known receptor, or a totally unrelated

type of receptor that also happens to be activated by gluta-

mate. Alternatively, we have also considered whether our

‘receptor’ may simply be the mechanosensitive channel(s).

After all, most GluR ligands are acids that could affect the

activity of ASIC channels, a candidate MS channel family.

However, this seems unlikely because all our solutions are

buffered and there are no systematic effects of ligands on

pH. Moreover, it would not be expected that effects

involve such long time-scales, nor necessarily be associated

with effects on PLD activity and SLV recycling. An associa-

tion of receptor activation with one of these may be coinci-

dental, but we think coincidence is unlikely to consistently

explain all three (long latency, PLD activity and SLV

recycling) simultaneously without the involvement of a me-

tabotropic receptor. However, we continue to keep the

option of the receptor being a mechanosensory channel

open during our search for the receptor protein, as

discussed below.

Isolating the receptor

Regardless of the true nature of the receptor, there does

indeed seem to be a glutamate-activated protein to pursue,

and we are now trying to isolate it with the newly devel-

oped functionalised ligands. From a lack of efficacy in fluo-

rescence-linked Ca2+ oscillation (FLIPR) assays, we have

found our new ligands do not activate any of the eight

cloned mGluRs, whether expressed in cell lines or neonatal

cortical neurones (S. Watson, in preparation). Our most

recent evidence is, therefore, that our ligands are highly

selective for the PLD-mGluR. Our pharmacological charac-

terisations of this receptor in both lanceolate endings (Banks

et al. 2013) and spindles (S. Watson, in preparation) suggest

none of the cloned receptors affect firing or SLV turnover,

i.e. the PLD-mGluR appears to be the only glutamate

receptor involved in regulating terminal responsiveness. The

only mGluR reported to be present in spindles is mGluR5,

whose immunoreactivity is detected in fine nociceptor fibres

passing through spindles (Lund et al. 2010). However, this

A     

B C

Fig. 10 Spindles and lanceolate endings express SK2 Ca2+ -activated K+ channels and ASIC2. (A) SK2-like immunoactivity (red) is present in preter-

minal axons and the terminals, identified by SLV-associated synaptophysin antibodies (green). The merge shows the colocalisation of the two anti-

body distributions, while the widefield brightfield image shows the disposition of the intrafusal fibres. Lanceolate terminals also express SK2 (not

shown). (B) (Upper row) Just like spindle terminals (not shown), SK3-like immunoactivity (red) is not found in lanceolate terminals (green). In hair

follicles, however, SK3 is found in the glial cells enclosing the lanceolate endings [merge and in (C) the higher magnification inset]. (Lower row)

Conversely, ASIC2 immunolabelling (red) co-localises with SLV label (green) – see yellow in merge and indicated by arrows in inset in (C). Scale

bar: 20 lm (A); 5 lm (B). From Shenton et al. (2014), with permission.
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seems unlikely to be responsible for the effects we report.

First, the synaptic circuitry required for nociceptor-mediated

activation is not present (our spindle and lanceolate experi-

ments use excised tissue detached from the spinal cord);

second, the pharmacology of mechanosensory responses

is quite distinctive from that of classical mGluR5; third, noci-

ceptor fibres are not present in all spindles; and, fourth,

this would not explain the similar pharmacology in hair

follicle lanceolate endings, which do not contain nociceptor

fibres.

Collectively, these observations suggest mechanosenso-

ry endings themselves are an excellent source of the

PLD-mGluR, as they seem uncontaminated by other gluta-

mate receptors. We have recently identified a muscle with a

high spindle density (deep masseter muscle) as an enriched

receptor protein source. Now, Karen Thompson (a PhD stu-

dent in my laboratory) is screening spindle homogenates by

mass spectrometry, polymerase chain reaction, microarrays,

Western and ligand blotting to look both for all the known

mGluRs and also for any other gel bands/proteins that

might bind our functionalised ligand (ZCZ180, see Sonia

Watson’s article). Affinity columns with immobilised func-

tionalised ligand are being used to pull out ligand-binding

partners from these homogenates. We are particularly

mindful that such binding partners might include mechano-

sensory channels or other known proteins (e.g. the nocicep-

tor mGluR5), and our strategy should be able to directly

address these possibilities by protein sequencing of any

recovered proteins and cross-validation between recovery

methods and molecular weights. We are hopeful, therefore,

that this multi-pronged approach will soon yield interesting

progress.
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Fig. 11 Emerging model of stretch-evoked firing in muscle spindles. Cartoon schematic showing the steps in the processes evoked by stretch in a

muscle spindle afferent. The points of interest at each step are circled while changes in afferent discharge rate are indicated by the arrow. (A) Tonic

secretion of glutamate from SLVs maintains stretch sensitivity of the ending via low-level activation of the PLD-mGluR, and a low, tonic firing at rest.

(B) Stretch opens a mechanosensitive Na+ channel, producing the depolarising RP. (C) This, in turn, opens the voltage-gated Na+ channels in the AP ini-

tiation site, probably in the first heminode (see Cope article in this volume), greatly increasing the afferent discharge rate. (D) The depolarisation also

opens voltage-gated Ca2+ channels, activating SK2 Ca2+ -activated K+ channels (E). The resulting K+ efflux repolarises the membrane, reducing the

afferent discharge rate to more modest levels. (F) Meanwhile, in the terminal, stretch also opens a Ca2+ channel, which enhances SLV exocytosis (G),

increasing the PLD-mGluR activation. How this maintains ending sensitivity is not clear at present, but may be through regulating mechanosensory Na+

channel insertion from the vesicle store. These may be the same, or a different, pool to the SLVs. From Bewick & Banks (2015), with permission.
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Where is the receptor?

Another big question is which cell type expresses the ‘PLD-

mGluR’, given that spindles contain sensory and motor end-

ings, intrafusal muscle fibres, plus inner and outer capsule

cells. Applying Ockham’s razor, we have suggested the nerve

terminal seems the most parsimonious solution from the

available evidence. This is principally because the receptor

pharmacology is similar in the hippocampus, spindle, lanceo-

late ending and baroreceptor. As the only cellular compo-

nent common to all these diverse tissues is a secretory,

usually afferent, nerve terminal, we feel the most parsimoni-

ous explanation is that the receptor is on the terminal. Also,

the intrafusal fibres do not contract when glutamate is

added (C-L Aryiku, M Durand and G.S. Bewick, unpublished

observations). However, this does not exclude the possibility

the mGluR is indeed on the fibre in spindles, secreting retro-

grade messengers to act on the terminals when glutamate is

applied. Once the receptor isolation and sequencing is

achieved, we will raise antibodies to localise the protein

unequivocally. For these receptor isolation studies, knowing

the cell type expressing the PLD-mGluR is not critical, as the

homogenate is made from the whole spindle organ.

Translational implications?

Reports are emerging that abnormal muscle spindle activ-

ity contributes to the pathophysiology of dystonia in spas-

A

C

D

B

Fig. 12 Progressive geometrical abstraction of a single terminal of a spindle primary ending, leading to a flow-chart summarising the events of

mechanosensory transduction. Green block arrows in (A–C) indicate the direction and distribution of stretch applied to the terminal when the pri-

mary ending is lengthened during muscle stretch or fusimotor stimulation. (A) A single terminal in its annulospiral form, taken from a primary end-

ing reconstructed from serial sections. Several such terminals typically enclose a single intrafusal muscle fibre. The terminal is connected to its

associated heminode by a short, unmyelinated preterminal axonal branch at the point shown. (B) The terminal unrolled and turned through 90 °.

Note that individual terminals may be repeatedly branched and that the direction of stress during stretch is orthogonal to the long axis of the ter-

minal. (C) A terminal and its associated unmyelinated preterminal branch shown in abstract as cylinders whose diameters indicate the relative

diameters of these structures in a spindle Ia primary afferent. The smaller preterminal branch to the right is about 1 lm diameter. The lengths,

especially those of the much larger terminal to the left, are highly variable. (D) Flow chart to illustrate the main events of mechanosensory trans-

duction, as described in this review. The principal feedforward pathway from stimulus (stretch) to output (APs) is shown by the white block arrows.

We envisage that the overall gain of this pathway is controlled by several feedback pathways: negative feedback 1 is at present hypothetical and

is included to account for the reversible silencing of the primary ending by PCCG-13 inhibition of the PLD-linked mGluR; the positive feedback

pathway is the well-established SLV/glutamatergic loop; negative feedbacks 2 and 3 involve different kinds of K[Ca], one located in the terminal,

the other in the heminode and both perhaps triggered by APs opening voltage-gated Ca channels. Green lines and arrowheads indicate enhanc-

ing/excitatory actions; red lines and circles indicate reducing/inhibitory actions. From Bewick & Banks (2015), with permission.

© 2015 The Author. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

SLVs and MS channels in mechanosensory terminals, G. S. Bewick210



ticity in a variety of conditions, including spinal cord injury

(Fukuhara et al. 2010; Rosales & Dressler, 2010; Phadke

et al. 2013). Moreover, that as well as the chemodenerva-

tion of the extrafusal muscle fibres, locally applied botu-

linum toxin also blocks activation of the intrafusal muscle

fibres, which makes a significant contribution to the anti-

spastic effect. Thus, reducing spindle activity in spasticity is

a potentially useful new therapeutic target, and inhibiting

this highly unusual PLD-mGluR may be a suitable way to

achieve the similar effects without resorting to injections

of toxins. Finally, following the findings in the working

heart brainstem preparation described above, we,

together with Julian Paton, will now work to determine if

the baroreceptor SLV/PLD-mGluR system might prove a

useful new drug target for treating hypertension. High

blood pressure is the world’s leading cause of mortality

due to the increased risk of stroke, cardiovascular disease

and kidney disease (WHO and www.hearstats.org).

Chronic baroreceptor stimulation of the carotid sinus

directly via implanted electrical devices causes reflex sym-

pathoinhibition, producing substantial (~30 mmHg) long-

term reduction in blood pressure in animal models and even

in patients resistant to currently used drugs (Filippone & Bi-

sognano, 2007; Heusser et al. 2010). Unfortunately, implant-

ing electrical stimulators in humans has the considerable

disadvantages of the risk, time and expense of invasive sur-

gery, the potential discomfort of gagging reflexes from elec-

trical stimulation in the neck, and the complexity of long-

term maintenance and battery replacement (Young et al.

2009). We therefore propose to test the best ligands to tar-

get the SLV/PLD-mGluR system of baroreceptors as a poten-

tial alternative to electrical stimulation, and we have

reported preliminary work in this direction (Paton et al.

2010).

In conclusion, it has been a delight to work on these

projects with Bob over the last 15 years: and they all

spring from the very simple and unexpected observation

of beautiful fluorescent labelling in muscle spindle an-

nulospiral endings. It might be of interest, especially to

the younger scientists, that the first 7 years (including

most of the observations establishing the principles of the

SLV/PLD-mGluR system) received no external funding.

Indeed, we were unable to get funding until we had

made these observations. We ran our studies purely on

our own curiosity and enthusiasm. So, even in the current

era, some very interesting science is still possible without

funding – although there is no doubt that external grants

certainly make it somewhat easier and quicker! Thank-

fully, our collaboration is set to continue for a number of

years yet, and will be dedicated to pursuing the questions

set out above. I am very much looking forward to what

these studies will uncover and the undoubtedly very

enjoyable discussions they will provoke with Bob as he

continues his quest to educate this humble synaptic physi-

ologist in the mysteries and complexities of mechanosen-

sory terminals.
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