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Networks: On the relation of bi- 
and multivariate measures
Wolfgang Mader1,2, Malenka Mader1,2,3, Jens Timmer1,2,4, Marco Thiel5 & BjÖrn Schelter1,5

A reliable inference of networks from observations of the nodes’ dynamics is a major challenge in 
physics. Interdependence measures such as a the correlation coefficient or more advanced methods 
based on, e.g., analytic phases of signals are employed. For several of these interdependence 
measures, multivariate counterparts exist that promise to enable distinguishing direct and indirect 
connections. Here, we demonstrate analytically how bivariate measures relate to the respective 
multivariate ones; this knowledge will in turn be used to demonstrate the implications of thresholded 
bivariate measures for network inference. Particularly, we show, that random networks are falsely 
identified as small-world networks if observations thereof are treated by bivariate methods. We will 
employ the correlation coefficient as an example for such an interdependence measure. The results 
can be readily transferred to all interdependence measures partializing for information of thirds in 
their multivariate counterparts.

Complex systems are ubiquitous. Typically they are represented by networks and also visualized as such. 
Modern societies rely on the understanding of the dynamics of these networks, for instance, to be able 
to interfere with them. Examples of complex systems modeled as networks include power grids, traffic 
systems, climate, or neuronal oscillators.

A network G(V,L) is defined as a set of nodes V =  {n1,n2,…,nN} with |V| =  N, and, in general, an 
ordered set of links L, L ⊂ {(ni,nj) ∈  V ×  V}, with |L| =  D, where |⋅ | denotes the number of elements in a 
set. The number of links di attached to ni is called the degree of the node. The links of an undirected net-
work can be represented in a symmetric adjacency matrix A with entries aij =  1 if lij ∈  L, and 0 otherwise. 
By collecting the nodes in rows and the links in columns, the N ×  D incidence matrix is constructed. It 
is bij =  1 if the j-th link is attached to i-th node, and zero otherwise.

Here, we are concerned with the typical scenario, that the network itself needs to be inferred from 
measurements; no prior knowledge of the network topology is available. The nodes are identified with 
the processes of interest; often but not necessarily the locations of their measurements. The links between 
them are determined using interdependence measures; the correlation coefficient is among the most 
frequently applied ones1,2.

Classifying interdependence measures into two classes, (i) bivariate and (ii) (truly) multivariate 
approaches, provides the basis for our investigations. Here, we use the notion “multivariate” for the 
simultaneous analysis of interdependences between three or more processes. We demonstrate that bivari-
ate network reconstruction techniques, if applied naively, fall short in reconstructing the network’s topol-
ogy as well as its classification, for example as a small world network. We note that, e.g., in directed 
acyclic graphs an apt combination of bivariate measures can also reveal the correct network topology.

Prior related work can be found in e.g.1,3–5 The findings presented in these publications are based on 
data obtained by simulating different models.

In this manuscript, we suggest a mathematical framework that independent of any specific nodal 
dynamics enables a deeper understanding of network inference. Our analytical results are illustrated and 
supported by simulations.
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Theory on data-based network inference
In this section, we outline the key differences of bi- and multivariate interdependence measures and 
the implications for network reconstruction. We also show how the topology resulting from a bivariate 
measure can be derived from the topology of the respective multivariate one, using the (partial) correc-
tion matrix as an example.

Bivariate and multivariate measures. The key challenge in network inference from measurements 
is to determine the direct links, i.e. those links that represent a true physical interaction between two 
nodes. A naive application of a bivariate approach would analyze all pairwise combinations and inves-
tigate whether or not there is an interaction. This is suboptimal as indirect links are falsely classified as 
links in a network. Multivariate interdependence measures, in contrast, exploit all (linear) information 
of the N observations simultaneously. For various bivariate techniques, multivariate counterparts have 
been suggested, enabling a direct comparison between the two. The results presented here hold for all 
multivariate measures whose estimation can be reduced to inverting the matrix of the corresponding 
bivariate measure6 such as the multivariate versions of correlation, cross-spectral analysis7, mean phase 
coherence8, and recurrence analysis9.

Taking the network in Fig. 1 (a) as an example, a multivariate measure detects only direct links (black 
lines). Applying the corresponding bivariate measure, the network in Fig. 1 (b) would result, where the 
dashed lines indicate indirect links, which are suggested from bivariate analysis.

Weights in Fig.  1  (a) are chosen arbitrarily but compatible with a multivariate correlation analysis. 
Therefore, the weights can be understood as partial correlation coefficients; those given in Fig. 1 (b) are 
the corresponding bivariate correlation coefficients. In the following we characterize the relation between 
the two.

Bivariate and partial correlation. Let Z be an (s +  t)-, X an s-, and Y a t-vector valued stationary 
process with covariance matrix

Σ =




Σ Σ
Σ Σ




 ( )1ZZ

XX XY

YX YY

such that X and Y are a partition of Z.
The partial covariance matrix6,10

ε Σ Σ Σ Σ= − ( )− 2YY YY YX XX XY
1

measures the covariance within Y after removing the linear effects of X. By normalizing εYY, the partial 
correlation matrix of Y6.

π ε= ⋅ ⋅ ( )h h 3YY YY

is obtained. The matrix h consists purely of the diagonal entries ε − /
YY

1 2
ii

, i =  1,…, t of the t-dimensional 
process Y. Partial correlation is a linear multivariate symmetric measure, π π=YY YYij ji

, quantifying the 

Figure 1. (a) Network with only direct links and arbitrarily chosen weights compatible with partial 
correlation coefficients. (b) Fully connected network including indirect links and weights of the 
corresponding rounded bivariate correlation coefficients.
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strength of the direct connection between Yi and Yj conditioned on the linear information of X. Often Y 
is chosen to be two dimensional, investigating whether or not there is a link between two processes.

Correlation is normalized covariance, the following line of argument applies to both quantities. It is 
convenient to start with the covariance matrix ϱ. Given ϱ for the full s +  t-dimensional system, the partial 
correlation matrix can be obtained by the following steps: (i) matrix inversion6

= ( )−g 41

and (ii) a subsequent normalization π = ⋅ ⋅ 


h g h, with h a diagonal matrix and = − /

h gii ii
1 2, i =  1,…, 

s +  t. To arrive at the partial correlation matrix π , (iii) the off-diagonal elements of π  have to be multi-
plied by − 16,11,

π π= − , ≠ . ( )
i jfor 5ij ij

The algorithm given in Eqs. (4)–(5) relates correlation and partial correlation coefficients. It is inter-
esting to note that given this procedure all partial correlation coefficients are obtained in one step; further 
calculations that would result when applying Eq. (2) are not needed.

Theoretical results
Reversing the argument given above, we can derive the correlation matrix from the partial correlation 
matrix. This is exploited in the following to investigate how indirect links emerge when applying bivariate 
techniques naively.

Any partial correlation matrix can be separated into

π = + , ( )R1 6

where the off-diagonal entries of R are populated with the partial correlation coefficients while its diag-
onal is zero. Multiplying the off-diagonals by −  1 [cf. Eq.(5)] leads to

π = − . ( )̆ R1 7

Expanding the matrix inversion

π = = ( ) = ( − ) ( )− −̆ ̆ f R R1 81 1

in a Taylor series about R =  0 results in

 ∑= ( ) = + .
( )=

∞

̆ f R R1
9m

m

1

The matrix ̆ is up to normalization the bivariate correlation matrix. In the first order approximation

= + , ( ) R1 101st

the correlation matrix equals the partial correlation matrix [Eq. (6)]. This shows that all indirect 
links are encoded in second and higher order terms of the matrix expansion [Eq. (9)]. This fact has key 
consequences for the nature of indirect links:

(I) Typically, powers of R lead to non-zero values for all entries of ϱ leading to a fully connected network.
(II) The bivariate correlation coefficients typically differ from the multivariate ones also for the direct 

interactions.
(III) If R is a nilpotent matrix of degree z, the sum in Eq. (9) has only m =  z −  1 terms. Network topol-

ogies with a nilpotent matrix R of degree 2 yield the same result for the correlation and partial 
correlation matrix.

(IV) For a directed chain n1 → n2 → … → nN the link between bivariate and multivariate measure can be 
understood intuitively. For N =  4, for instance,
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it becomes obvious, that the indirect links resulting from R2 are passing one node and R3 are passing two 
nodes. Note, that the strengths of the indirect links (|c| <  1) scale as ci where i is the order of the link; 
intuitively it is the shortest path using direct links that manifests this indirect link.
(V) For an undirected chain, R is no longer nilpotent. Still, the lengths of paths inducing indirect links 

scale with the powers of R. Of special interest is the situation of a three node undirected chain
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since such open triangles are closed when treated by a bivariate measure. In a local second order 
approximation, the weight of the indirect link emerging from an open triangle is proportional to the 
product of the two direct links involved.

In case c and d are strong direct connections, they have large partial correlation coefficients compared 
to the average partial correlation coefficient appearing in the network. The corresponding indirect con-
nection is then likely to have a large correlation coefficient, compared to the average correlation coeffi-
cient. If a threshold is used to select relevant links, a strong but indirect link might be selected, while a 
weak direct link which would represent a true physical connection in the network is missed. The reason 
for the so called transitivity property of bivariate measures1,4 is therefore founded in the fact, that indirect 
links constituted by only two direct ones are introduced already in the second order Taylor approxima-
tion; making their magnitude comparable to correlation coefficients of direct links.

In the following paragraphs, the effects of these properties are illustrated in a simulation study. The 
focus is on the effect of naive bivariate analysis onto the network topology and network classification. We 
emphasis again that our simulations are free of any assumptions about nodal dynamics, which demon-
strates the universality of our framework.

Simulation setup and results
Using the framework introduced in the last section, a simulation study is conducted. We compare the 
outcome of correlation coefficient and partial correlation coefficient when used to infer links in different 
network topologies. To this end, a regular network and two versions of random networks are investi-
gated. In the first version, all partial correlation coefficient have the same value, in the second version, 
those values vary. The section is completed by a result showing that random networks are falsely classi-
fied as small world networks in the frame of bivariate interdependence measures.

Estimating links in regular networks. The first system investigated is a regular network with N =  80 
nodes. In this network, each node is connected to its nearest neighbors only, resulting in a ring with 
D =  80 direct links. To demonstrate that indirect links of increasing length correspond to increasing 
orders of the Taylor series [Eq. (9)], all nodes must be identical. Hence, all links have to share the same 
strength. A correlation matrix must be positive semidefinite. Derived from Sylvester’s criterion, such a 
matrix can be obtained by ensuring, that the matrix is Hermitian, has real and non-negative diagonal 
elements, and is diagonal dominant. The first two criteria are naturally meet by correlation matrices, 
while the last one must be cared for. Since in the regular network considered here, each node has degree 
2, the value of the partial correlation coefficient was chosen to 0.49, which is near the largest possible 
value (2⋅ 0.49 <  1).

The corresponding bivariate correlation coefficients, indicating direct and indirect links, are obtained 
from the partial correlation matrix using the framework introduced above[Eqs. (6) –(9)]. The expected 
clustering of the correlation coefficients with respect to the length of their constituting path is visible 
from their histogram [Fig.  2 , left]. The 80 “truly” direct links are shown in dark gray; these are the 
strongest links as expected from our framework. In light gray, the correlation coefficients of indirect links 
are presented. The right most (light gray) cluster refers to first order indirect links ni—ni+2, and so on. 
In this scenario, thresholding the correlation coefficients would provide the correct network topology if 
the threshold were chosen “correctly” between 0.67 and 0.8.

Estimating links in random networks. The second system investigated assumes an Erdös-Rényi 
network with N =  80 nodes, and D =  ( )⌈ ⌉N Nlog  =  351 links. Using about Nlog(N) links guarantees no 
unconnected node in the network12,13. As in the last simulation, all links share the same partial correla-
tion value in the partial correlation matrix describing the network. For the matrix to be diagonal domi-
nant, and hence positive definite, this value must be chosen smaller than 1/dMax, where dMax is the 
maximum node degree in the network. As predicted by our framework, the orders of the Taylor expan-
sion are no longer preserved in the histogram of correlation coefficients [Fig. 2 , right]; but still all cor-
relation coefficients representing indirect links (light gray) are smaller than the ones representing direct 
ones (dark gray). Again a threshold can be found which separates direct and indirect links; this allows 
for the correct inference of the true network topology.

Connections of varying strength. When dealing with random networks and varying strengths of 
links, a more complicated scenario emerges. To obtain the partial correlation matrix, we start with the 
incidence matrix of an Erdös-Rényi network of N =  80 nodes and D =  351 links. The strengths of links 
are drawn from the uniform distribution over the interval [0,1]. The partial correlation matrix is obtained 
as the normalized matrix square of this weighted incidence matrix. According to Eq. (12), a weak direct 
link can have a smaller correlation coefficient than an indirect link resulting from two strong direct links. 
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The situation is visualized in Fig. 3 on the left. Again, correlation coefficients of direct links are shown 
in dark gray, correlation coefficients of indirect ones in light gray. Since their distributions overlap, they 
are not separable by a threshold.

Figure 2. To all links in a regular (left) and a random (right) network of 80 nodes each, the same weight 
representing a partial correlation coefficient was attached. The corresponding correlation coefficients are 
calculated and summarized in these histogram. (left) Due to the regularity of the network, the correlation 
coefficients cluster, where the 160 largest represent the direct (dark gray) the other the indirect links (light 
gray). (right) Because the network topology is random, nodes differ in the number of links attached to them. 
This influences the values of the correlation coefficients and destroys the strict clustering with respect to 
path length. Direct links (dark gray) exhibit larger correlation coefficients than indirect ones (light gray). In 
both networks a threshold allows to separate direct and indirect links.

Figure 3. (left) In an 80 nodes random network, different weights representing partial correlation 
coefficients are attached to its links. The histogram summarizes the corresponding correlation coefficients. 
In dark gray, the correlation coefficients of direct links, in light gray the ones of indirect links are presented. 
Because their values overlap, applying a threshold to correlation coefficients will report a mixture of 
direct and indirect links and hence a wrong network topology; wrong conclusion about e.g. the small 
world property of a network are drawn. (right) This is demonstrated by the histograms of the small world 
indicators γ  and λ  which are calculated from 100 realizations of a random network in which the largest 
351 correlation coefficients were used to establish its links. Since γ  >  1 and λ  ~ 1 in all cases, every random 
network observed through correlation coefficients was falsely classified as small world.
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When estimating links from measurements, the underlying network is unknown. Typically, the net-
work exhibits non-regular topology and varying link strengths. As demonstrated, thresholding bivariate 
interdependence measures fails in these typical cases to reveal the correct network topology.

To demonstrate that this has broad implications for network inference, the consequences of using 
bivariate interdependence measures for inferring the small world property is investigated as an example.

Small-world network. The local clustering coefficient
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characterize the network topology on the local and global scale. In a network exhibiting the small 
world property, the mean clustering coefficient = ∑C c

N i
1

 is high while the average shortest path length 
L scales with the number of nodes N as L(N) ≤  log N12,14,15. According to Eq. (14), the average shortest 
path lengths would be infinity in networks possessing at least one unconnected node. Similar to15 the 
path lengths of pairs of nodes involving an isolated node are excluded when evaluating Eq. (14).

Since in applications the scaling of L(N) is often not accessible, two proxy indicators γ = /C Cr and 
λ = /L Lr are employed. The mean values Cr and Lr are obtained from an ensemble of random networks. 
A network is said to be small world if λ  ≈  1 and γ  >  1 holds1,15.

From the partial correlation matrix of a random network (N =  80), generated in the same way as 
described in the last section, the corresponding correlation matrix is calculated. A threshold is applied 
to the correlation coefficients to obtain the D =  ( )⌈ ⌉N Nlog  =  351 strongest links. This network is tested 
for small worldness. In order to get a statistically meaningful result, a Monte Carlo simulation of 100 
different realizations of the partial correlation matrix is carried out.

The histograms of the resulting λ  and γ  are presented in Fig. 3 on the right. For all realizations, γ  >  1 
[Fig. 3, top] while λ  ≈  1 [Fig. 3, bottom]. Therefore, all random networks are falsely classified to be small 
world. The classification is based on the bivariate networks alone. The explanation of the result is the 
transitive property for which the mathematical foundation was presented in our framework in Eqs. (9) 
and (12) . Hence, this result applies for all networks in which links are estimated by a naive application of 
a bivariate interdependence measure irrespective of the dynamics observed, the measurement technique 
used, or the specific bivariate measure employed.

Conclusion
In this manuscript, we inferred the nature of indirect links introduced by bivariate interdependence 
measures. We developed a mathematical framework that we motivated for correlation analysis. To this 
end, the inverse partial correlation matrix was expanded into a Taylor series. We demonstrated that, in 
general, bivariate measures are not able to reveal the true network topology from measurements; indirect 
links which have no underlying physical connection in the observed system are incorrectly inferred, 
altering the network topology.

The clustering coefficient is strongly affected by investigating networks based on the naive application 
of bivariate approaches. It influences high-level characterizations; a random network is e.g. falsely clas-
sified as small world in this context. The reason for this is the tendency of bivariate measures to close 
open triangles, i.e., the transitivity property.

Multivariate measures promise to overcome this limitation. Only links which are direct given the 
information of all measurements give rise to values of the interdependence measure which are not com-
patible with zero. Accordingly, a statistically meaningful critical value for a given level of significance 
can be obtained, rendering the choice of an arbitrary threshold unnecessary. Surrogate or bootstrapping 
approaches present alternatives to analytically derived critical values. Therefore, links reported by a mul-
tivariate measure assuming observation of all relevant processes are supposed to represent true connec-
tions, constituting the correct network topology. Since such reconstructed networks do not suffer from 
an increased clustering coefficient network classification can be done successfully.
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