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Abstract

This master thesis deals with the modeling and control of a small scale
birotor tiltrotor unmanned aerial vehicle (UAV). A tiltrotor is char-
acterized by a mechanism that tilts the aircraft’s rotors in order to
control the flight. An UAV with such characteristics is being devel-
oped by this author and other researchers in the scope of the project
named ProVANT. The developed UAV prototype is used in this work
to obtain experimental results.

This kind of system can be characterized by its underactuated, highly
nonlinear, and coupled dynamics. Instead of using a dynamic model
available in literature, this work proposes a more accurate model con-
sidering the UAV as a multibody system. By doing so the tilting angles
become generalized coordinates and the tilt mechanism dynamics are
naturally added to the model, as well as the coupling between the bod-
ies. The result is an eight degrees of freedom model obtained through
Euler-Lagrange formulation.

The path tracking problem is solved here with linear optimal controllers
for the full model, instead of the classical approach of cascade control
for the translation and rotation subsystems. The developed controllers
are linear quadratic regulators, a H∞ controller and a multiobjective
H2/H∞ controller, all with LMI formulation. A nonlinear backstep-
ping controller taken from the literature is implemented in order to be
compared with the designed controllers.

In addition, controllers for the hovering problem are also designed to
be used in experiments with ProVANT’s tiltrotor. They reduce the
complexity of the initial experimental flights, focusing not only in the
validation of the control system, but the complete project, including its
electronics, mechanical design, and additional software. Such experi-
ments are presented and discussed in details along this work.

The work also addresses how flight-related information are gathered
and processed. This includes the design of a nonlinear complementary
filter for the attitude estimation that works with data acquired from
the UAV sensors.

Keywords: UAV, tiltrotor, Euler-Lagrange, path tracking, LMI, ro-
bust control, LQR, H∞, H2, optimal control, attitude estimation.





Resumo

Esta dissertação de mestrado aborda a modelagem e o controle de um
veiculo aéreo não-tripulado (VANT) de pequena escala do tipo birotor
tiltrotor. Um tiltrotor é caracterizado por um mecanismo que possi-
bilita inclinar (do inglês “tilt”) seus rotores. Um VANT com esta con-
figuração está sendo desenvolvido como parte de um projeto chamado
ProVANT, o qual é usado neste trabalho para obter resultados experi-
mentais.

Este tipo de sistema é caracterizado por sua dinâmica subatuada, forte-
mente acoplada e não-linear. Ao invéns de usar um modelo dinâmico
dispońıvel na literatura, este trabalho propõe um modelo mais preciso
que considera o tiltrotor como um sistema multi-corpos. Com isto os
ângulos de inclinação dos rotores tornam-se coordenadas generalizadas
do sistema e a dinâmica do mecanismo que inclina os rotores é natural-
mente inclúıda no modelo, assim como o acoplamento entre os corpos.
O resultado é um modelo com oito graus de liberdade obtido com a
formulação Euler-Lagrange.

O problema de seguimento de trajetórias é resolvido com controladores
lineares ótimos para o modelo completo, ao invés da abordagem clássica
de controladores em cascata para os subsistemas de translação e rotação.
Os controladores desenvolvidos são reguladores lineares quadráticos,
um controlador H∞ e um controlador multiobjetivo H2/H∞, todos
com uma formulação LMI. Um controlador não-linear do tipo back-
stepping retirado da literatura foi implementado a fim de se comparar
com os controladores projetados.

Ademais, também foram projetados controladores mais simples para
o problema de voo pairado. Tais controladores foram desenvolvidos
com o intuito de utiliza-los nos testes iniciais com o tiltrotor do projeto
ProVANT. Eles reduzem a complexidade dos primeiros voos experimen-
tais, concentrando-se não apenas na validação do sistema de controle,
mas também do projeto como um todo, incluindo a eletrônica, o projeto
mecânico e software. Tais experimentos são apresentados e discutidos
em detalhes ao longo deste trabalho.

Este trabalho também aborda como as informações relativas ao voo são
adquiridas e processadas. Isto inclui o projeto de um filtro complemen-
tar não-linear para a estimação da atitude, o qual funciona com dados



obtidos de sensores presentes no VANT.

Palavras-chave: VANT, tiltrotor, Euler-Lagrange, seguimento de tra-
jetória, LMI, controle robusto, LQR, H∞, H2, controle ótimo, es-
timação de atitude.
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Chapter 1

Introduction

1.1 Motivation

Unmanned aerial vehicles (UAVs) are flying machines that
operate either autonomously or remotely. Until the 90’s the use of
UAVs has almost exclusively been military. The advance of new tech-
nologies brought forth miniaturization, price reduction, and enhanced
performance for electronic devices to a level that made the development
and commercialization of UAVs affordable for the civil sphere.

Teal Group’s 2014 market study estimates that UAV spend-
ing will nearly double over the next decade, from $6.4 billion annually
to $11.5 billion, totaling almost $91 billion in the next ten years. The
study calculates the UAV market at 89% military and 11% civil cumu-
lative for the decade, with the numbers shifting to 86% military and
14% civil by the end of the 10-year forecast 1. The Federal Aviation
Administration of the United States (FAA) estimates roughly 7,500
commercial small UAVs will be operating at the end of five years in the
United States alone (FAA, 2014) and shows that the UAV market still
has many years of growth to come.

Within this billionaire market, small scale civil UAVs are con-
sidered a established technology in some specific fields, with practical

1http://www.tealgroup.com/index.php/about-teal-group-corporation/press-
releases/118-2014-uav-press-release

1



2 Introduction

applications as pest detection and 3D mapping in precision agriculture,
police surveillance and pursuit, border control, cinematographic shoots,
and nuclear power plants monitoring. In this scope, helicopter-like,
fixed-wing, and quadrotors UAVs are by far the most commercialized
and researched. However, another model that is steadily gaining more
attention are tiltrotor aircrafts, specially the birotor configuration.

Birotor tiltrotor aircrafts are characterized by two rotors in-
dependently coupled with some type of revolute joint, typically servo-
motors in small scale UAVs, which can tilt the whole rotor to a specified
angular position. It has held great interest in the military sphere since
the 50’s (MARTIN et al., 2000) for its ability to perform vertical take-
off and landing (VTOL) like a helicopter and engage an airplane like
flight by tilting its rotors horizontally.

The prime example of military tiltrotor is the Bell Boeing
V-22 Osprey shown in figure 1.1. Its advantages are clear: the VTOL
enables tactical maneuvers in a battlefield as an helicopter while able
to fly as a fixed-wing aircraft to provide higher cruise speed and fuel
efficiency (DRWIEGA, 2013).

Figure 1.1 – Bell Boeing V-22 Osprey birotor tiltrotor2.

Such qualities can no doubt find its uses within the commer-
cial public, leading to the development of the first civil tiltrotors like
the AW609 from AugustaWestland, which is shown in figure 1.2. It

2Image taken from Boeing’s official website http://www.boeing.com/defense/v-
22-osprey
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is sold as a multi-role aircraft that can be configured for passenger
transport, search and rescue, law enforcement, maritime surveillance,
training, and other government applications.

Figure 1.2 – AugustaWestland AW609 civil tiltrotor3.

In respect to unmanned tiltrotors, military project examples
are the Bell Eagle Eye and the Lockheed Martin ARES project - figure
1.3 depicts the Eagle Eye. As for the civil market, a commercial UAV
modeled after the Boeing V-22 Osprey is being sold by Rotormast (fig-
ure 1.4), but its use is still for hobby and cannot perform autonomous
flight (an user piloting the UAV via a radio controller is required).

Figure 1.3 – Bell eagle eye UAV tiltrotor4.

3Image taken from http://www.agustawestland.com/products/aw609
4Image taken from http://www.naval-technology.com/projects/belleagleeyeuav
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Figure 1.4 – Rotormast UAV tiltrotor modeled after the Bell Boeing V-22
Osprey5

Nonetheless, tiltrotor UAVs potential is obvious and in the
future will substitute other types of UAV in applications that require
traveling considerable distances. A birotor tiltrotor when compared to
fixed-wing UAVs has the advantage of VTOL; compared to helicopter-
like UAVs, it achieves faster cruise speed and has better autonomy,
alongside dispensing the use of the complex swashplates; and compared
to quadrotors again the cruise speed and autonomy factors appear,
but the fact that it is more compact is also crucial for restrict space
applications.

A birotor tiltrotor however is not a trivial system and presents
control challenges which are not present in a quadrirotor system. It
constitutes an underactuated mechanical system and is highly nonlinear
and coupled.

Another challenge for the control design is that the tilting
actuators that control the rotor angular position have much slower dy-
namics than the rotors. Also the tilting of a rotor produces a significant
counter-torque in the rest of the body as the rotor mass is not negligible.

Besides the specific characteristics of the tiltrotor, a UAV is
a complex system that motivates researches not only on control sys-
tems, but on several fields, e.g., sensor fusion and state estimation,

5Image taken from http://www.rotormast.com
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computer vision, embedded systems performance and methodologies,
wireless communication, and so on.

1.2 Project ProVANT

ProVANT is a Brazilian project within the Automation and
Systems Department (DAS) of the Federal University of Santa Catarina
(UFSC) and the Electronic Engineering Department (DELT) of the
Federal University of Minas Gerais (UFMG).

Its goal is to develop from scratch a birotor tiltrotor UAV for
academic research purposes. In fact ProVANT targets creating a UAV
capable to perform autonomous flights according to a predefined tra-
jectory while being remotely monitored. Research targeting using the
UAV for load transportation is also being addressed. A computer aided
design computer-aided design (CAD) image of the designed prototype
is presented in figure 1.5 and a photo of the assembled prototype is
shown in figure 1.6.

Figure 1.5 – Project ProVANT tiltrotor first prototype CAD.

The reason for creating a UAV comes from the fact that when
purchasing ready-for-use aircrafts it is difficult to customize such de-
vices, since several features are not documented or available for the final
user to change. Therefore, ProVANT targets the complete aircraft de-
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sign, including its electronic components, control software (including
adopted algorithms), and most mechanical aspects.

The ProVANT project includes different fields of knowledge
and has several members working to build its first prototype. In its
context, three master degrees have already been concluded: two with
emphasis in the embedded system (GONCALVES, 2014; BODANESE,
2014) and one in control techniques for load transportation (ALMEIDA,
2014), aside from several conference papers published. The study pre-
sented in this work is within the project’s context and aims to develop
control algorithms to perform autonomous flight. It is also the first
work within the project’s scope to present experimental results using
the UAV under design. Nevertheless, such experiments are still pre-
liminary, given that the UAV’s Global Positioning System (GPS) is
still under development, precluding the path tracking controllers ex-
periments.

Figure 1.6 – Project ProVANT tiltrotor first assemble.

1.3 Objectives

The main objective of this work is to develop control laws that
solve the hovering and path tracking problems for a small scale birotor
tiltrotor UAV, with experimental flights applying the hovering controls.
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The hovering problem consists in stabilizing the UAV’s orientation and
height, while path tracking is the ability of the aircraft to follow a
predefined trajectory in the cartesian space.

This thesis’ first objective is to develop a dynamic model
for simulations and control design. In the literature, birotor tiltrotors
have been analyzed with six degrees of freedom (DOFs) models that do
not consider the tilting mechanism dynamics. As commented before,
its dynamics are much slower than the other actuators and have a
substantial influence on the system. In this work the model includes
these dynamics, augmenting the model to eight DOFs.

The control laws design aim is to achieve linear optimal con-
trollers that allows path tracking and hovering while presenting robust-
ness in the presence of parametric uncertainties, external disturbances
and unmodeled dynamics.

Finally the hovering control laws are implemented into the
real tiltrotor from project ProVANT to perform the experimental flights.
The path tracking controllers are not experimentally tested as the UAV
had no functional positioning system at the time this work was con-
cluded.

1.4 Outline

The structure of this Master thesis is organized as follows:

• Chapter 2 presents the dynamic modeling of a birotor tiltro-
tor UAV using the Euler-Lagrange formulation. The system’s
generalized coordinates are defined and an eight DOFs system
is obtained. The tiltrotor is considered as a multibody system
to include the tilting mechanism dynamics and the coupling be-
tween the rotors motion and UAV’s main body. Also consid-
ered is a displacement in the center of mass, a small fixed tilt in
the UAVs structural arms and the counter torque produced by
the propellers rotation. Lastly, a table with the parameters of
project ProVANT’s tiltrotor is given, which are the parameters
used throughout this work.

• Chapter 3 brings the control designs developed for this thesis.
First a state-space representation and linearization of the non-
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linear model presented in chapter 2 is performed. Then several
path tracking controls are derived with different linear techniques:
linear quadratic regulator (LQR), LQR for linear time varying
system (LTV), LQR with a linear matrix inequality (LMI) for-
mulation, H∞ control with a LMI formulation, H2/H∞ mixed
control with a LMI formulation. The backstepping design pro-
posed in (CHOWDHURY et al., 2012) is then briefly explained
followed by a comparison of the controllers. The last part of the
chapter develops a LQR for the hovering problem and compares
it to an equivalent backstepping controller.

• Chapter 4 explains how the system states are measured and es-
timated with the available sensors in project ProVANT’s proto-
type. Then the experimental results performed with the hovering
controllers, developed in chapter 3, are presented. The references
used in the experiments are recorded and used in simulation to
help in the results assessment.

• Chapter 5 summarizes the thesis contributions and highlights its
main conclusions. It also presents suggestions for future works.

1.5 List of Publications

During the course of the master’s degree five conference pa-
pers have been published:

1. GONCALVES, F.; DONADEL, R.; BECKER, L.; RAFFO, G.
Assessing the use of matlab simulink on the development process
of an unmanned aerial vehicle. In: Third Workshop on Design,
Modeling and Evaluation of Cyber Physical Systems. Philadel-
phia, USA: CyPhy, 2013.

2. GONCALVES, F.; BODANESE, J.; DONADEL, R.; RAFFO,
G.; NORMEY-RICO, J.; BECKER, L. Small scale uav with
birotor configuration. In: Unmanned Aircraft Systems (ICUAS),
2013 International Conference on. Atlanta, USA: ICUAS, 2013.
p. 761–768.

3. DONADEL, R.; RAFFO G.V. BECKER, L. Modeling and con-
trol of a tiltrotor uav for path tracking. In: Proceedings of the
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19th IFAC World Congress, 2014. Cape Town, South Africa:
IFAC, 2014. p. 3839–3844.

4. DONADEL, R.; ALMEIDA, M.; RAFFO G.V. BECKER, L.
Path tracking control of a small scale tiltrotor unmanned aerial
vehicle. In: Anais do XX Congresso Brasileiro de Automática.
CBA 2014. Belo Horizonte, Brasil: SBA, 2014. p. 1450–1457

5. ALMEIDA, M.; DONADEL, R.; RAFFO G.V. BECKER, L. Full
control of a tiltrotor uav for load transportation. In: Anais do XX
Congresso Brasileiro de Automática, CBA 2014. Belo Horizonte,
Brazil: SBA, 2014. p. 2097–2104
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Chapter 2

Tiltrotor UAV Modeling

This chapter presents the modeling of a birotor tiltrotor UAV.
It aims to create a dynamic model that mathematically describes the
relationship between the external forces applied to the UAV and the
motion of its center of mass. According to the related works, the mod-
eling of tiltrotors UAV’s is typically done either through the Newton-
Euler equations or through the Euler-Lagrange formulation.

The first small scale civil birotor tiltrotor is presented in
(GRESS, 2002, 2004). It has two tilting rotors and a mechanical struc-
ture with a tail, as shown in figure 2.1. This work takes advantage of
the gyroscopic effect of the tilting mechanism to help in the aircraft’s
torques, showing that the effect caused by the tilting of the rotors is
significant.

In (KENDOUL et al., 2005) the author expands Gress’ struc-
ture by deliberately displacing the center of mass in the z axis to achieve
a better pitch moment and a six degree of freedom model is found using
the Newton-Euler formulation. Here the existence of a multiplication
between control inputs is first acknowledged and the author makes some
simplifications to work around it.

The work of (SANCHEZ et al., 2008) brings a mechanical
structure without the tail from the two previous works. Nevertheless
the model obtained using Newton-Euler equations is similar, except for
its external force vector.

11
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Figure 2.1 – Gress mechanism as presented in US Patent 6,719,244.

Some other subsequent works are (PAPACHRISTOS et al.,
2011a, 2011b; JANSEN; RAMIREZ-SERRANO, 2011; CHOWDHURY
et al., 2012), which have models obtained by Newton-Euler and Euler-
Lagrange formulations. The models vary in structure depending on
the formulation used but, aside the external forces, the models found
in literature are basically the model of a single rigid body in space
and are actually similar to most quadrotors works (e.g., (RAFFO et
al., 2008),(CASTILLO et al., 2005)). The models differ with respect
to its external forces, but from a control design viewpoint they all
suffer from a fundamental drawback: a nonlinear coupling between the
control inputs.

The exception would be the work of (NOTARSTEFANO;
HAUSER, 2010) that has a mechanical structure composed by a sin-
gle rotor located in the middle of the aircraft’s body with three tilting
mechanisms. As the system is highly dependent on the performance of
the servomotors that tilt the rotor, its dynamics were included in the
model. However this system is quite different from the birotor tiltrotor
that we will model and its results cannot be directly used.

In the present work the tiltrotor is modeled as a multibody
system. The reasons for such are threefold:

• Includes the servomotors dynamics. This is important because
its dynamics is much slower than that of the brushless motors,
and slow enough to have a significant impact when controlling
the system.
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• Includes the coupling between the UAV’s main body and its tilt-
ing bodies, as well as the gyroscopic effect of the latter. These
bodies have around 15% of the mass of the central body, meaning
that its rotation has a substantial effect on the system.

• Solves the nonlinear coupling of the control inputs in the external
forces equations.

The rigid body kinematics and dynamics theory used through-
out this chapter is mainly based on (SPONG et al., 2005), while the
theory on multibody systems is based on (SHABANA, 2010).

2.1 Rigid body in R3 space

A rigid body is a body that does not suffer deformations.
Mathematically, it means that the distance between any two given
points rigidly attached to the body is constant. For this work the
position of rigid bodies, as well as its motion, is considered in the R3.

The position of a body can only be numerically described
when in relation to a reference. For this section a generic rigid body
is described by a Cartesian coordinate frame B = { ~XB, ~YB, ~ZB},
whilst its position is related to a fixed inertial reference frame I =
{ ~XI, ~YI, ~ZI}.

For a rigid body in R3 space, the position can be represented
with its linear and angular positions, each with three degrees of free-
dom. They are henceforth called position and orientation, respectively.

The position is expressed as the distance between the origin
of the frames, here defined as:

ξ(t) =
[
x(t) y(t) z(t)

]′
, (2.1)

where the superscript ′ denotes the transpose operation.

There are different ways to represent the orientation of a rigid
body in space. In this work Euler angles are used. It defines three an-
gles, each one representing a rotation around an axis of a coordinate
frame, called elemental rotations. The three elemental rotations ex-
ecuted in sequence express the orientation of the body frame B in
relation to the reference frame I. Intrinsic rotations are used so the
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rotations take place about a rotating coordinate system, which is ini-
tially aligned with the inertial frame, and modifies its orientation after
each elemental rotation, i.e., each new rotation takes place around the
resulting frame of the last rotation.

Twelve distinct sequences of elemental rotations are possible.
In this work the adopted convention is that the first rotation is around
the ~Z axis (yaw), followed by a rotation around the ~Y axis (pitch), and

finally a rotation around ~X axis (roll). From here on the roll angle will
be represented by φ, the pitch by θ and the yaw by ψ. These rotations
lead frame I to B and are depicted in figure 2.2.
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Figure 2.2 – Sequence of rotations convention adopted.

It is important to note that only the first rotation (yaw) is
based on the inertial frame I. Since each new rotation is made consid-
ering the current frame, the pitch angle represents a rotation around
~Y axis of the intermediate frame T1, and roll a rotation of the ~X axis
of the intermediate frame T2.

The rigid body orientation is then defined as:

η(t) =
[
φ(t) θ(t) ψ(t)

]′
. (2.2)

A rotation in Euclidean space is a linear transformation and
can be represented with the so-called rotation matrix, which can be
used to describe an elemental rotation. Consider the roll rotation, i.e.,
rotation around the ~X axis by a φ angle. Adopting the right-hand rule,
the relation between the frames can be geometrically determined as in
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figure 2.3. The rotation matrix is then:

R( ~X, φ) =

1 0 0
0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)

 .

2Y


2Z


Y


1

Z


1

f 

f 

Sin(f)

Cos(f)-Sin(f)

Cos(f)

X


~~ 21 X
.

Figure 2.3 – Elemental matrix for a rotation around the ~X axis.

Likewise for the pitch and yaw rotation:

R(~Y , θ) =

cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)



R(~Z, ψ) =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

 .

The three elemental rotations can be combined into a single
transformation:

RB
I = R( ~XT2

, φ)R(~YT1
, θ)R(~ZI, ψ) = R(φ, θ, ψ) = CψCθ SψCθ −Sθ

CψSθSφ− SψCφ SψSθSφ+ CψCφ CθSφ
CψSθCφ+ SψSφ SψSθCφ− CψSφ CθCφ

 ,
(2.3)
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C(.) being the cosine and S(.) the sine.

Equation (2.3) can also be used as a transformation matrix
relating the coordinates of a point p between the two frames, as in

pB = RB
I p

I . (2.4)

Therefore, it is also important to find the inverse operation,
that is, the rotation matrix from the body frame B to the inertial
frame I. Rotation matrices belong to the special orthogonal group,
in our case of order 3, denoted by SO(3). Consequently, the following
property applies:

R−1 = R′ . (2.5)

Thus

RI
B = (RB

I )′ =

CψCθ CψSθSφ− SψCφ CψSθCφ+ SψSφ
SψCθ SψSθSφ+ CψCφ SψSθCφ− CψSφ
−Sθ CθSφ CθCφ

 .

(2.6)

Equation (2.4) represents a pure rotation between the inertial
and the body frame, depicted in figure 2.4a. The general case is a
combination of pure rotation and pure translation, also known as rigid
motion, as in figure 2.4b. Assume the values for point p are known in
relation to the body frame B. To express it in terms of the inertial
frame:

pI = RI
Bp

B + ξ . (2.7)

This kind of relation will be important later in this chapter,
when a particle of the body is considered as a point to determine the
system’s energy.

2.2 Rigid body Kinematics

Kinematics describes motions disregarding the forces causing
them. Nevertheless, its definition is essential for the dynamic modeling.

The velocity of a single particle undergoing rotation and trans-
lation can be found by differentiating equation (2.7) with respect to
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Figure 2.4 – Representation of a rigid body and its frames I and B in the
R3 space.

time:
vI = ṗI = ṘI

Bp
B +RI

Bṗ
B + ξ̇ . (2.8)

As the body is assumed rigid, all particles will have the same velocity
and equation (2.8) corresponds to the velocity of the rigid body.

Note however that equation (2.8) requires the time derivative
of the rotation matrix. A equivalent, simpler expression for Ṙ can be
found. Let us start with the matrix identity

(RI
B)−1RI

B = I .

Using equation (2.5) it becomes

(RI
B)′RI

B = I .

Differentiating this equation in relation to time:

(ṘI
B)′RI

B + (RI
B)′ṘI

B = 0 . (2.9)

Defining the matrix
S = (RI

B)′ṘI
B (2.10)

and substituting it in equation (2.9), one obtains:

S′ + S = 0 .

This relation is the definition of skew-symmetric matrices. Therefore,



18 Tiltrotor UAV Modeling

matrix S is skew-symmetric and, as S ∈ R3×3, has only three indepen-
dent elements, which is represented by a three dimensional vector (see
Appendix A.1).

Defining wB
BI =

[
p q r

]′
as the angular velocity of the

body frame in relation to the inertial frame represented in the body
frame, S can be defined as (SPONG et al., 2005)

S(wB
BI) =

 0 −r q
r 0 −p
−q p 0

 . (2.11)

From equations (2.10) and (2.11):

ṘI
B = RI

BS(wB
BI) . (2.12)

Considering the angular velocity of a single particle of the
body, represented by a point p rigidly attached to the body, and a
situation as in figure 2.4a (pure rotation), its position in the inertial
frame is:

pI = RI
Bp

B .

Differentiating in relation to time:

ṗI = ṘI
Bp

B +RI
Bṗ

B .

As point p is rigidly attached to the body frame, ṗB = 0. Using
equation (2.12) yields:

ṗI = RI
BS(wB

BI)pB .

The rotation matrix can again be used to transform the angular velocity
between frames:

wI
BI = RI

Bw
B
BI .

It is important to note that the angular velocity wB
BI does

not have the same meaning of the Euler angles rate (η̇ =
[
φ̇ θ̇ ψ̇

]
).

As represented in figure 2.2, the Euler angles are defined in relation
not only to the inertial and body frames, but also to the intermediary
frames T1 and T2. Therefore the angular velocity is related to the Euler
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angular rates as:pq
r

 =

φ̇0
0

+RT2

B ( ~X, φ)

0

θ̇
0

+RT1

T2
(~Y , θ)RT2

B ( ~X, φ)

0
0

ψ̇

 . (2.13)

Denominating Wη as the transformation matrix between the
angular velocity and the Euler angular rates as in

wB
BI = Wηη̇ , (2.14)

then by developing equation (2.13) results that

Wη =

1 0 −sin(θ)
0 cos(φ) sin(φ)cos(θ)
0 −sin(φ) cos(φ)cos(θ) .

 (2.15)

The Euler angular rates can be obtained with η̇ = W−1
η wB

BI, where:

W−1
η =

1 sin(φ)tan(θ) cos(φ)tan(θ)
0 cos(φ) −sin(φ)
0 sin(φ)sec(θ) cos(φ)sec(θ)

 . (2.16)

This matrix presents a singularity at θ = 90◦ and θ = 270◦,
which is a limitation of our approach. This could be avoided by using
other representation for the rigid body orientation such as quaternions.
However, in this work Euler angles are chosen in order to avoid the
increase in complexity, as quaternions add one more variable to the
system.

Finally, equation (2.8) can be used with equation (2.12) and
yield the rigid body velocity:

vI = RI
BS(wB

BI)pB + ξ̇ . (2.17)
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2.3 Tiltrotor UAV Structure and General-
ized Coordinates

The UAV modeled in this work is a birotor with a tiltro-
tor configuration, like the models discussed in the introduction of this
chapter. As the prototype for experimental flights is being built as part
of the project, some additions to the aircraft’s physical structure could
be done in order to enhance the controllability of the model.

The first addition to the UAV’s structure, and therefore to
the model, is the inclusion of a fixed lateral tilt. By doing so, even if
there is no actuator to alter the lateral tilt of the rotors, controllability
of the lateral axis is still achieved (RAFFO et al., 2011).

The inclusion of this fixed angle has the counter-effect of de-
creasing the maximum vertical thrust the UAV can perform, which in
turn decreases the total lift force of the aircraft. Even so, it was judged
that by using a small angle the gain in controllability is worth the loss.

Also, a displacement of the UAV’s center of mass in relation
to its center of rotation was intentionally sought during the mechanical
assembly. Apart from adding to the composition of a more complete
simulation environment, it is actually vital for a tiltrotor to have a
displacement of its center of mass along the ZB axis to improve the
pitch torque (τθ). Furthermore, a displacement in XB is important for
controllability along this axis. The reasons for such are shown later
during the derivation of the external forces equations.

In order to include the servomotors dynamics in the model,
the UAV is considered as a multibody system composed of three rigid
bodies: the two rotors and the main body, the former composed of the
brushless motors and the propellers while the latter encompasses the
carbon-fiber structure, the landing gear, the servomotors, the batter-
ies, and all other electronic devices. Thus, each of the two rotors is
interconnected to the main body by a revolute joint.

Figure 2.5 shows the frames and variables definitions. Frame
I is the inertial frame; C1, C2 and C3 are frames rigidly attached to the
center of mass of each body; and B is the moving body frame rigidly
attached to the main body center of rotation. Note that it is assumed
that the rotors’ center of rotation coincides with the center of mass.
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Figure 2.5 – Tiltrotor UAV frames and variables definitions.

Variables fR and fL represents the thrust forces and β the
fixed lateral tilt angle of the rotors. Vector d1 =

[
d1x d1y d1z

]′
is

the distance from frame B to frame C1 and represents the center of
mass displacement of the main body, while d2 =

[
d2x d2y d2z

]′
and

d3 =
[
d3x d3y d3z

]′
are the distances between frame B and frames

C2 and C3, respectively.

The translation of the body frame in relation to the iner-
tial frame is represented by ξ =

[
x y z

]′
and the attitude by η =[

φ θ ψ
]′

, as defined in section 2.1.

Even though the main body has six degrees of freedom, each
of the rotors have only one. That is because the mechanical assembly
(revolute joint) imposes five constraint equations to each of the rotors.
The rotation of frame C2 in relation to frame B is depicted by variable
αR and describes the rotation of the right rotor. Likewise, αL describes
the rotation of the left rotor in relation to the main body.

To find the system’s degrees of freedom, we can use the
Kutzbach criterion (SHABANA, 2010):

DOF = 6.nb− nc = 6.3− 10 = 8 , (2.18)
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where nb is the number of bodies and nc is the number of independent
constraint equations. A revolute joint, by definition, have a single-axis
rotation. Therefore each of them have five constraint equations each as
it cannot move in x, y or z and can only rotate around one axis. As we
have three bodies and five constraint equations for each revolute joint,
the number of degrees of freedom for our multibody system is eight.

Also each brushless motor could be considered as another
body with a revolute joint, adding two more degrees of freedom to the
system. However, as its dynamics are much faster than the system’s, it
was decided to discard such assumption and only include the counter
torque it produces in the external force equations, avoiding an increase
in complexity.

An important definition in mechanical systems modeling is
the concept of generalized coordinates. It is a set of variables that
can unambiguously specify the position of the system, the minimum
number of variables for such being the degrees of freedom of the system
(GINSBERG, 2008).

Thereby, the tiltrotor’s generalized coordinates are

q =
[
x(t) y(t) z(t) φ(t) θ(t) ψ(t) αR(t) αL(t)

]′
=
[
ξ′(t) η′(t) αR(t) αL(t)

]′
.

(2.19)

2.4 Euler-Lagrange Formulation

In this section the UAV’s equations of motion are derived us-
ing the Euler-Lagrange formulation. Classic mechanical systems, such
a rigid body system, can be described by the Euler-Lagrange equation

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
= F (q) , (2.20)

where F (q) is the external force vector and

L(q, q̇) = K(q, q̇)− P (q, q̇) (2.21)

is the Lagrangian of the system, K being the kinetic energy and P the
potential energy, all in relation to the generalized coordinates.



Tiltrotor UAV Modeling 23

To find equation (2.20) the following sections derive the sys-
tem’s kinetic and potential energy as well as the external force vector.

For mathematical purposes, the index i = {1, 2, 3} is used to
refer to different bodies: 1 for the main central body, 2 the left rotor,
and the 3 for right rotor.

Also a point p1 rigidly attached to frame C1 is defined to rep-
resent a particle of body 1; p2 rigidly attached to frame C2 to represent
a particle of body 2; and p3 rigidly attached to frame C3 to represent
a particle of body 3.

Lastly, from the frames definitions in figure 2.5, the rotation
matrices are:

RB
C2

=

 CαR 0 SαR
−SαRSβ Cβ CαRSβ
−SαRCβ −Sβ CαRCβ

 (2.22)

RB
C3

=

 CαL 0 SαL
SαLSβ Cβ −CαLSβ
−SαLCβ Sβ CαLCβ

 , (2.23)

and RB
C1

= I3X3 because both the body frame and C1 are rigidly at-
tached to body 1.

2.4.1 Potential energy

The potential energy of the system can be found as (SHA-
BANA, 2010):

P =

3∑
i=1

Pi , (2.24)

where

Pi = −
∫
Vi

ρig
′pIi dVi (2.25)

is the volume integral with ρi as the mass density of body i, Vi the
volume of body i and g =

[
0 0 −g

]′
. In equation (2.25), the negative

sign is a consequence of the explicit negative gravity acceleration in
vector g, as in (LEWIS et al., 2003, p. 123).

Equation (2.7) links pIi to pBi . Using the same logic to relate
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pBi and pCii :

pBi = RB
Ci
pCii + di . (2.26)

Substituting equation (2.26) into (2.7):

pIi = RI
B(RB

Ci
pCii + di) + ξ . (2.27)

It relates each of the bodies center of mass frame with the inertial
frame.

Using equation (2.27) in equation (2.25):

Pi = −g′
∫
Vi

ρi[R
I
Cip

Ci
i +RI

Bdi + ξ]dxCidyCidzCi . (2.28)

The mass of the body is given by

mi =

∫
Vi

ρidxCidyCidzCi , (2.29)

and assuming that all bodies are symmetric:∫
Vi

ρip
Ci
i dxCidyCidzCi = 0 . (2.30)

Developing equation (2.28) with equations (2.29) and (2.30):

Pi = −g′(miR
I
Bdi +miξ) . (2.31)

Thus, using equation (2.24), the potential energy of the sys-
tem is

P = −g′RI
B(m1d1 +m2d2 +m3d3)− g′mξ , (2.32)

where m is the total mass of the system and is given by

m = m1 +m2 +m3 . (2.33)

2.4.2 Kinetic energy

The kinetic energy of the whole system can be found with
equation (SHABANA, 2010):
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K =

n∑
i=0

Ki , (2.34)

where

Ki =
1

2

∫
Vi

ρi(v
I
i )′(vIi )dVi , (2.35)

and vIi is the velocity of a single particle of the body in relation to the
inertial frame. These velocities are given by the time derivation of the
position equations (2.27):

ṗIi = ξ̇ + ṘI
B(RB

Cip
Ci
i + di) +RI

B(ṘB
Cip

Ci
i +RB

Ci ṗ
Ci
i + ḋi) . (2.36)

As point p1 is rigidly attached to frame C1, there is no relative
motion between them and ṗC1

1 = 0. The same can be deduced for the
other two points and we have that ṗCii = 0. Furthermore, the distances

di are also constant and ḋi = 0. With these definitions and using the
properties of skew-symmetric matrices, the velocities became:

ṗi
I = ξ̇+RI

Bw
B
BI×RB

Cip
Ci
i +RI

Bw
B
BI×di+RI

Ciw
Ci
CiB
×pCii . (2.37)

Substituting equation (2.37) into (2.35), using equations (2.29),
(2.30) and skew-symmetric matrix properties (appendix A.1), the ki-
netic energy for body i becomes:

Ki = −miξ̇
′RI

BS(di)w
B
BI +

1

2
(wCi

CiB
)′Iiw

Ci
CiB

+ (wCi
CiB

)′Iiw
B
BI +

1

2
(wB

BI)′Jiw
B
BI +

1

2
miξ̇

′ξ̇ ,

(2.38)

where

Ii =

∫
S(pi)

′S(pi)dm =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 (2.39)

is the inertia tensor and

Ji = (RB
Ci)
′IiR

B
Ci +miS(di)

′S(di) (2.40)

is the displaced inertia tensor, i.e., the inertia tensor for a rotation
around an axis displaced by a distance di (Steiner’s theorem).

Taking into account that there is no relative movement be-
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tween frame B and frame C1, then wC1

C1B
= 0. At last the total kinetic

energy is obtained:

K =
1

2
mξ̇′ξ̇ − ξ̇′RI

BHw
B
BI +

1

2
(wB

BI)′JwB
BI

+ (wC2

C2B
)′I2w

B
BI + (wC2

C2B
)′I2w

C2

C2B

+ (wC3

C3B
)′I3w

B
BI + (wC3

C3B
)′I3w

C3

C3B
,

(2.41)

where
J = J1 + J2 + J3 (2.42)

H = S(m1d1 +m2d2 +m3d3) . (2.43)

To write the kinetic energy in terms of the generalized coor-
dinates we have to express the angular velocities in terms of such. It
follows that:

wC2

C2B
=
[
0 α̇R 0

]′
(2.44)

wC3

C3B
=
[
0 α̇L 0

]′
. (2.45)

Substituting equations (2.44), (2.45) and (2.14) in equation
(2.41) and putting it in matrix form:

K =

1

2


ξ̇
η̇
α̇R
α̇L


′

mI3X3 −RI
BHWη 0 0

−W ′
ηHR

B
I W ′

ηJWη W ′
ηR

B
C2
I2a W ′

ηR
B
C3
I3a

0 a′I2R
C2
B Wη a′I2a 0

0 a′I3R
C3
B Wη 0 a′I3a


︸ ︷︷ ︸

M(q)


ξ̇
η̇
α̇R
α̇L

 ,

(2.46)

where a =
[
0 1 0

]′
and M(q) is the so-called the inertia matrix of

the system.

2.4.3 External Force Vector

The external force vector is composed of the generalized forces
of the system, i.e, the external forces in relation to the generalized
coordinates. It is composed of the translational forces acting on the
main body expressed in the inertial frame (T =

[
T I
x T I

y T I
z

]
), the

rotational torques on the main body expressed on the inertial frame
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(τ =
[
τIx τIy τIz

]
), the rotational torques on the servomotors of the

right rotor (τsR) and of the left rotor (τsL):

F (q) =


RI

BT
B

W−1
η τB

τsR
τsL

 , (2.47)

with
τB = τB

a + τB
drag ,

where τB
a is the torque due to the actuators and τB

drag due to the the air
drag in the propellers. The gyroscopic effects are ignored and treated
as disturbances.

As frames C2 and C3 are rigidly attached to its respective
bodies then the thrust forces fR and fL generated by the rotors will
always be the component in the ~Z axis of these frames:

F C2

R =

 0
0
fR

 , F C3

L =

 0
0
fL

 . (2.48)

Mapping this forces into the body frame:

FB
R = RB

C2
F C2

R =

fBRxfBRy
fBRz

 =

 S(αR)
C(αR)S(β)
C(αR)C(β)

 fR (2.49)

FB
L = RB

C3
F C3

L =

fBLxfBLy
fBLz

 =

 S(αL)
−C(αL)S(β)
C(αL)C(β)

 fL . (2.50)

Note that if the inclination β of the rotors is zero, the YB
thrust component is also zero.

The translation forces expressed in the body frame are the
sum of thrust forces:

TB = FB
R + FB

L . (2.51)

The torque due to the actuators around the ZB axis (τaψ)
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generates yaw motion and is caused by a difference between the magni-
tudes of fBRx and fBLx, as illustrated in figure 2.6. The resulting torque
is:

τBaψ = fBRxl − fBLxl
= [sin(αR)fR − sin(αL)fL]l .

(2.52)

.

Lx
f f

Rxll t 

X

B

Y

B Z


B

Figure 2.6 – Torque around Z axis.

A pitch rotation is caused by the torque around the Y B axis
(τaθ) and it appears if there is a projection of the thrust force in the
XB axis, as can be seen in figure 2.7. The resulting equation for the
torque is:

τBaθ = fBRxdz + fBLxdz

= [sin(αR)fR − sin(αL)fL]dz .
(2.53)

The torque around the XB axis (τaφ) causes a roll motion
and it appears when there is a difference between the magnitudes of
fBRz and fBLz, as shown in figure 2.8. Because of the fixed lateral angle
β added to the model, the forces fBRz and fBLz are not perpendicular to

the lever arm l
′
, with λ as the angle between fBz and l

′
. The equation

for the torque is:

τBaφ = (fBLz − fBRz)sin(λ)l
′

= [cos(αL)fL − cos(αR)fR]cos(β)sin(λ)l
′
,

(2.54)

with
l
′

=
√
d2
z + l2 (2.55)
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λ = arcsin(
l

l′
) . (2.56)

.

+Lx
f f

Rx

dz

X

B Y


B

Z

B

t 

Figure 2.7 – Torque around Y axis.

Besides the torque τa, the UAV is also affected by the counter
torques τM due each brushless motor rotation. Using Newton’s sec-
ond law and neglecting shaft friction, the torque of each motor is
(CASTILLO et al., 2005):

JMiΩ̇i = −τdragi + τMi , i = R,L ,

where JMi is the motor angular momentum, Ω is the motor angular
velocity and τdrag is the torque due to each propeller’s air drag and i =
R,L refers to the right and left motors, respectively. As the dynamics
of the motors are fast when compared to the dynamics of the system, it
is assumed that the propellers rotation are always in steady-state and
Ω̇ = 0, yielding:

τMi = τdragi = kτΩ
2
i ,

where kτ > 0 is a constant. Having that the force produced by each
motor is (CASTILLO et al., 2005):

fi = bΩ2
i ,

with b as the rotor’s thrust coefficient, then the drag torque can be
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expressed as:

τdragi =
kτ
b
fi .

Rf f
L

γ

l lX

B

.

Z

B

Y

B

t 
dzdz

l l 

. .
l
,

l
,

Figure 2.8 – Torque around X axis.

The rotors are set to rotate in opposite directions, the right
one clockwise and the left one counter-clockwise, so that the drag
torques produced by the propellers rotation cancel each other. How-
ever, when the angular velocity of the propellers or the αR and αL
are not the same, a contribution to the UAV’s rotation from the drag
torques appears, as the drag torque produced in each axis by the right
propeller’s rotation will not be the same as its counterpart.

The drag torque equations are:

τB
drag =

τB
φdrag

τB
θdrag

τB
ψdrag

 =

kτb (fBRx − fBLx)
kτ
b (fBRy − fBLy)
kτ
b (fBRz − fBLz)

 . (2.57)

The control inputs in this model are the thrust forces (fR
and fL) and the servo motors torques (τsR ans τsL). Defining a control
input vector

Γ =


fR
fL
τsR
τsL

 , (2.58)

then equation (2.47) can be written as follows:

F (q) = B(q)Γ , (2.59)



Tiltrotor UAV Modeling 31

where B(q) is the decoupled external force matrix

B(q) =

RI
B 0 0

0 W−1
η 0

0 0 I2X2

 B̃ (2.60)

and

B̃ =

S(αR) S(αL) 0 0
C(αR)S(β) −C(αL)S(β) 0 0
C(αR)C(β) C(αL)C(β) 0 0

−C(αR)C(β)S(λ)l
′
− kτ

b
S(αR) C(αL)C(β)S(λ)l

′
+ kτ

b
S(αL) 0 0

S(αR)dz + kτ
b
S(β)C(αR) S(αL)dz − kτ

b
S(β)C(αL) 0 0

S(αR)l + kτ
b
C(β)C(αR) −S(αL)l − kτ

b
C(β)C(αL) 0 0

0 0 1 0
0 0 0 1


.

(2.61)

This equation is one of the advantages of this model over the
others in literature. Note that there still are products between the
servo angles and the thrust forces but, due to the fact that αR and αL
are now a generalized coordinate, the force vector is affine in relation
to the control inputs.

2.5 Equations of Motion

Finally the UAV’s equations of motion can be derived. De-
veloping equation (2.20) to its matrix form (SPONG et al., 2005):

M(q)q̈ +C(q, q̇)q̇ +G(q) = F (q) , (2.62)

where M(q) is the inertia matrix (2.46), C(q, q̇) is the the Coriolis and
centrifugal force matrix, G(q) the gravitational force vector, and F (q)
the external force vector of equation (2.47).

The Coriolis and centrifugal force matrix can be calculated
with Christoffel symbols of the first kind. Defining ckj as the (k, j)th
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element of matrix C(q, q̇):

ckj =

8∑
i=1

1

2

{
∂mkj

∂qj
+
∂mki

∂qj
− ∂mij

∂qk

}
q̇i , (2.63)

where mij the (i, j)th element of matrix M(q), j = 1, ..., 8 and k =
1, ..., 8.

The gravitational force vector G(q) is calculated with the
system’s potential energy:

G(q) =
∂P

∂q
. (2.64)

From equation (2.32):

G(q) =



0
0
gm

g(myCθCφ−mzCθSφ)
g(mxCθ −mySθSφ−mzSθCφ)

0
0
0


, (2.65)

where mx =
∑3
i=1midix, my =

∑3
i=1midiy and mz =

∑3
i=1midiz.

Table 2.1 shows the parameters of the tiltrotor UAV con-
structed for the Project ProVANT. A computer aided design of the
real mechanical assemble was made in the software SolidWorks R© (fig-
ure 1.5), from which the system’s moments of inertia were calculated.
These parameters are used for all control design and simulations.

Table 2.1 shows the parameters of the system, which are taken
from the tiltrotor UAV constructed for the Project ProVANT. A com-
puter aided design of the real mechanical assemble was made in the
software SolidWorks R© (figure 1.5). The software is able to calculate
all the system’s moments of inertia, which are used for all control design
and simulations.



Tiltrotor UAV Modeling 33

Parameter Value
β 5◦

l 0.247m
g 9.81ms2
m1 1.402 Kg

m2,m3 0.1566 Kg
d1 (0.00672, 0.000342, -0.0789)m
d2 (0, -0.247, 0.0123)m
d3 (0, 0.247, 0.0123)m
dz 0.0123m
kτ 1.7e-7 N.m.s2

b 9.5e-6 N.s2

I1xx 0.01902947 Kg.m2

I1yy 0.00881577 Kg.m2

I1zz 0.01747731 Kg.m2

I1xy 0.00002074 Kg.m2

I1xz -0.00087669 Kg.m2

I1yz 0.00000808 Kg.m2

I2xx, I3xx 0.00004223 Kg.m2

I2yy, I3yy 0.00004096 Kg.m2

I2zz, I3zz 0.00002658 Kg.m2

Table 2.1 – System Parameters
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2.6 Summary

This chapter presented the dynamical model for a birotor
tiltrotor UAV. Such model was obtained using the Euler-Lagrange for-
mulation in its matrix form. It considers a displacement of mass, which
causes a coupling between the translation and rotation; a lateral fixed
tilt angle (aside from the longitudinal active tilt); and considered the
UAV as a multibody system of three bodies. The latter constitutes the
genuine aspect of this proposal, and allowed the inclusion of the tilting
mechanism dynamics.

The obtained model is highly nonlinear and coupled. It is
used to create a more accurate simulation environment, whereas a lin-
earized model is used for control purposes, as presented in the next
chapter.



Chapter 3

Linear Control for Path
Tracking

This chapter presents the design of control strategies that
solve the hovering and path tracking problems for the birotor tiltrotor
UAV. Several controllers are developed and submitted to simulation
analysis built with the dynamic model (2.62), external disturbances
and parameters uncertainties. The controllers are then compared and
assessed.

Observing related works, it is noticed that nonlinear back-
stepping control strategies are prevailing. They appear in the works
of (KENDOUL et al., 2005), (SANCHEZ et al., 2008), and (CHOWD-
HURY et al., 2012). Tiltrotor UAVs have also been controlled by linear
techniques, mostly linear model predictive controllers (PAPACHRIS-
TOS et al., 2011a; JANSEN; RAMIREZ-SERRANO, 2011) and PIDs
(PAPACHRISTOS et al., 2011b).

The present work aims to develop linear optimal controllers
with LQR, H∞ and H2 techniques. LMI formulations are used in some
control designs to account for parameters uncertainties, improving its
robustness. Even though different objectives and techniques are used,
all controllers are designed assuming all states available.

For comparison purposes, the work in (CHOWDHURY et al.,
2012) was also implemented within this thesis. It proposes a nonlinear

35
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backstepping controller for the tiltrotor. Besides, an extension of this
work is proposed, as detailed in the upcoming sections.

3.1 Linear State feedback Path Tracking
Control

This section presents four different linear optimal full state
feedback controllers, each aiming to minimize a different cost function.

The control objective is to track a predefined trajectory T.
Initially, the external disturbances variables δ(t) are included into the
nonlinear model (2.62), leading to:

M(q)q̈ +C(q, q̇)q̇ +G(q) = B(q)Γ + δ(t) , (3.1)

with q =
[
x(t) y(t) z(t) φ(t) θ(t) ψ(t) αR(t) αL(t)

]′
as in

equation (2.19) and Γ =
[
fR fL τsR τsL

]′
as in equation (2.58).

The disturbed nonlinear model (3.1) is then represented in
state space and linearized around an operating point. Considering the
control input vector u(t) = Γ from (2.58), the disturbance w(t) = δ(t)
and defining the state space variables as:

x(t) =


x1

x2

.

.

.
x16

 =

[
q
q̇

]
(3.2)

results in the nonlinear system:

ẋ =

[
q̇
q̈

]
= f(x(t),u(t),w(t))

=

[
q̇

M−1(B(q)u(t)−C(q, q̇)q̇ −G(q) +w(t))

]
.

(3.3)

The equilibrium points q̄ for model (3.3) are the states vari-
able values when f(x(t),u(t),w(t)) = 0 while considering that no dis-
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turbances are being applied to the system (w(t) = 0), which leads to:[
˙̄q

B(q̄)u(t)−G(q̄)

]
= 0 . (3.4)

The equations in (3.4) are detailed on appendix B.6.

The tiltrotor UAV has four independent control inputs, there-
fore only four states can be chosen to follow arbitrary trajectories. The
rest of the system states are not free to assume any value, but can be
stabilized.

The chosen trajectory is composed of the UAV’s linear posi-
tion and heading, defined as T = (xr(t), yr(t), zr(t), ψr(t)). To simplify
the control design, the trajectory in yaw will always track zero (ψr = 0).
Analyzing (3.4) (its expansion can be seen on appendix B.6) we can
note that the states x(t), y(t) and z(t) are not present in the equilib-
rium equations and therefore do not have any influence in the stability
of the system. So, as these states are independent from the equilibrium
points, the UAV’s trajectory in space can assume any form.

A reference state vector xr, which contains the set points for
all system states, is defined as a composition of the trajectory and the
equilibrium points:

xr(t) = (xr, yr, zr, φ̄, θ̄, 0, ᾱR, ᾱL, ẋr, ẏr, żr, 0, 0, 0, 0, 0)

= (qr, q̇r) .
(3.5)

Substituting the parameters from table 2.1 into equation (3.4)
and using the software Mathematica 9.0, we find the following the equi-
librium points:

φ̄ = −0.0000969 rad , θ̄ = −0.0736 rad
ᾱR = 0.0733 rad , ᾱL = 0.0733 rad

, (3.6)

and the equilibrium control:

f̄R = 8.455 N , f̄L = 8.436 N
τ̄RS = 0 N.m , τ̄LS = 0 N.m

. (3.7)

Note that when in operation the UAV may assume different equilibrium
depending on external disturbances or unmodeled dynamics.

Knowing the trajectory beforehand makes it possible to cal-
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culate the control reference input ur(t) by running the trajectory in
model (3.1) with no disturbances (δ(t) = 0). This defines the reference
control as:

ur(t) = Γr = B+(qr)(M(qr)q̈r +C(qr, q̇r)q̇r +G(qr)) . (3.8)

Matrix B(q) is rectangular and has full column rank, there-
fore B+(qr) = (B′(qr)B(qr))−1B′(qr) is its left pseudoinverse ma-
trix. However, when ur(t) is applied in equation (3.1) it is used as a
right side product in B(q)B+(qr), a product which does not yield the
identity matrix (B(qr)B+(qr) 6= I).

The result is a projection into the column space, which is
as close as we can get to the identity matrix (STRANG, 2009). This
problem stems directly from the fact that the system is underactuated,
which in our specific case means that eight equations must be solved
with four variables.

Matrix B+(qr) is in fact the Moore-Penrose pseudoinverse of
the control matrix B(qr) and its use means that the reference control
ur(t), because B(qr)B+(qr) 6= I, makes the system follow a slightly
different trajectory than desired. This error however is considered as
unmodeled system dynamics, which the controllers developed in this
chapter have enough robustness to cope with.

Linearizing the model in equation (3.3) around xr(t) and
ur(t) yields to:

∆ẋ(t) = A(ẍr(t), ÿr(t), z̈r(t))∆x(t) +Bu∆u(t) +Bww(t) , (3.9)

with

A = ∂f(x,u)
∂x |x=xr

u=ur
, Bu = ∂f(x,u)

∂u |x=xr
u=ur

, Bw = ∂f(x,u)
∂w |x=xr

u=ur
.

From now on (3.9) is called the error model, as ∆x(t) = x(t) − xr(t)
and ∆u(t) = u(t) − ur(t) can be seen as the error of the system in
relation to the desired trajectory.

Note that matrix A in the linearized system is time variant
according to the desired trajectory acceleration.

The linearization was determined using the software Mathe-
matica 9.0 and the resulting matrices can be seen in appendix B.1.
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The state-space error model is augmented with an integral
action for each element of the trajectory, which improves the closed loop
system performance and allows the rejection of constant disturbances.
The new state space vector is

∆x(t) =


∆x1

∆x2

.

.

.
∆x20

 =


∆q
∆q̇
∫ ∆x
∫ ∆y
∫ ∆z
∫ ∆ψ

 . (3.10)

Considering the nominal system where ẍr(t) = 0, ÿr(t) =
0, z̈r(t) = 0, we determine if the system is controllable by computing
the rank of the controllability matrix (CHEN, 1998):[

B AB A2B A3B ... A19B
]

. (3.11)

Using the software Mathematica 9.0 we find that matrix (3.11) has full
rank and consequently the system is controllable, allowing us to design
the state feedback controllers in the following sections.

3.1.1 Linear Quadratic Regulator (LQR) for linear
time invariant systems

This section is mainly based on (MACKENROTH, 2010) and
(NAIDU, 2002).

For such a complex model, classical control techniques may
not work as expected. The presence of system zeros and the high
coupling between the states makes the system much less intuitive to
control with, for example, pole placement techniques.

As a better approach, the aim is to minimize a cost func-
tion that represents the closed loop system’s energy with the linear-
quadratic regulator (LQR), where

J = min

∫ ∞
0

[
∆x(t)
∆u(t)

]′ [
Q 0
0 R

] [
∆x(t)
∆u(t)

]
dt (3.12)

is the cost function and Q and R are matrices that weight the states
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energy and the control inputs energy, respectively. The higher the gains
in matrix Q are for a certain state, the higher will be the energy to
minimize and, consequently, the slower the state will be. As for matrix
R, higher gains yields less control effort is used to control the system.

The LQR is chosen for its robustness properties, presenting
an infinite gain margin and a phase margin of at least sixty degrees
(OGATA, 1997).

Assuming that the trajectory’s accelerations are zero (ẍ(t) =
0, ÿ(t) = 0, z̈(t) = 0) and no disturbances (w(t) = 0) then system (3.10)
becomes a linear time invariant (LTI) system with A = A0. The system
to be controlled is then:

∆ẋ(t) = A∆x(t) +B∆u(t)
∆u(t) = −K∆x(t)

.

The time derivative of the Lyapunov function V (∆x(t)) =
∆x′(t)P (t)∆x(t) gives:

V̇ (t) = ∆ẋ′(t)P (t)∆x(t) +∆x′(t)P (t)∆ẋ+∆x′(t)Ṗ (t)∆x(t)

= ∆x′(t)(A′P (t) + P (t)A+ Ṗ (t))∆x(t)

+∆u′(t)B′P (t)∆x(t) +∆x(t)′P (t)B∆u(t) .

(3.13)

As the system is time invariant, then matrix P (t) does not
vary in time, leading to P (t) = P and Ṗ (t) = 0. Now assuming that
controller ∆u(t) = K∆x(t) stabilizes the closed loop system, then
limt→∞∆x(t) = 0. This means that∫ ∞

0

V̇ dt = V (∆xt→∞)− V (∆x(0)) = V (0)− V (∆x(0))

= −∆x′(0)P∆x(0) ,

(3.14)

with ∆x(0) as the initial condition of the system. Now developing
equation (3.13):

V̇ = ∆x′(t)(A′P + PA)∆x(t) + (−K∆x(t))′B′P∆x(t)

+∆x(t)′PB(−K∆x(t))

= ∆x′(t)(A′P + PA−K ′B′P − PBK)∆x(t)

(3.15)
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Integrating equation (3.15) with respect to time:∫ ∞
0

V̇ dt =

∫ ∞
0

[∆x′(t)(A′P + PA−K ′B′P − PBK)∆x(t)]dt ,

and substituting equation (3.14) results in

∆x′(0)P∆x(0)+

∫ ∞
0

[∆x′(t)(A′P+PA−K ′B′P−PBK)∆x(t)]dt = 0.

(3.16)

Adding (3.16) into (3.12):

J = min

∫ ∞
0

[∆x′(t)(A′P + PA−K ′B′P

− PBK +Q+K ′RK)∆x(t)]dt+∆x′(0)P∆x(0) .

(3.17)

From (3.17) comes that the minimum possible value for the
cost function is J = ∆x′(0)P∆x(0) when

A′P + PA−K ′B′P − PBK +K ′RK +Q = 0 . (3.18)

Defining
K = R−1B′P (3.19)

transforms equation (3.18) into the algebraic Riccati equation (ARE):

A′P + PA− PBR−1B′P +Q = 0 , (3.20)

where P > 0 is the solution for matrices Q and R chosen positive defi-
nite, which in turn assure V̇ < 0 and that the system is asymptotically
stable.

The controller design of the LQR boils down to defining ma-
trices Q and R. To assign values to matrix Q, it is important to
consider that, even though the tiltrotor system is represented through
a single matrix, the tiltrotor has different time scales. The servomo-
tors states have the fastest dynamics, followed by the attitude and the
position being the slower ones.

As each dynamic has different units and ranges, its values are
scaled using Bryson’s law (JOHNSON; GRIMBLE, 1987). The results
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are:

R =


0.1

(15−f̄R)2
0 0 0

0 0.1
(15−f̄L)2

0 0

0 0 1
(2−τ̄sR)2 0

0 0 0 1
(2−τ̄sL)2

 (3.21)

and

Q = diag[1 1 1 1
(π2 )2

1
(π2 )2

1
π2

0.1
(π2 )2

0.1
(π2 )2

1
22

1
22

1
22

1
(3∗π)2

1
(3∗π)2

1
(3∗π)2

1
(10∗π)2

1
(10∗π)2

5 5 5 3]

(3.22)

where Q is a 20x20 diagonal matrix.

In Matrix R the quotient (15− f̄R)2 comes from the fact that
15 Newtons is the saturation of the brushless motor and the reason for
deducting the equilibrium control is because we are computing ∆u(t).
The same reasoning is used to design the rest of matrix R. Also note
that the elements in matrixR are designed to avoid an excessive energy
in the servomotors control inputs.

The control gain matrix (3.19) is then obtained by solving
Riccati’s equation (3.20). The computed gain matrix KlqrLTI is pre-
sented in appendix B.3, equation (B.9).

Simulation results for this controller are depicted in figures
3.2-3.5. The computer software used for the simulations is Simulink
2013a. The controllers are tested using the tiltrotor nonlinear model
(3.1) with the parameters presented in Table 2.1. The simulation sce-
nario has a total of sixty seconds and several aspects are included in
the simulation to test the controller robustness:

1. a trajectory that has abrupt changes in its direction every ten
seconds. The chosen trajectory is depicted in the appendix B.5.

2. Persistent external disturbances: δx = 0.5N at 5s; δy = 0.5N at
15s; δz = −1N at 25s; δφ = 0.5N.m at 35s; δθ = 0.5N.m at 45s;
and δψ = 0.5N.m at 55s, as shown in figure 3.1;

3. An uncertainty of 30% to the inertia moments was added in the
simulation model.
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4. Saturation on control signals , being the thrust forces constrained
in [0, 15]N and the servo torques in [−2, 2]N.m, in accordance
with the corresponding actuators specifications for Project ProVANT.

The initial condition is zero (x(0) = 0), which can easily be achieved
in real life experiments.

To help analyze the performance of this and subsequent con-
trollers, the Integral Squared Error (ISE) and Integrated Absolute Vari-
ation of the Control signal (IAVU) performance indexes are used. The
ISE index is relative to the tracking error of the control, a higher ISE
meaning that the control performed a worse path tracking when com-
pared to a lower value. The IAVU index is relative to the control signals
with a lower index suggesting a smoother control.

Table 3.1 brings the ISE for the LQR LTI controller and table
3.2 the IAVU. They will be useful for comparison with the controllers
developed in the following sections.

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time(s)

E
x
te
rn
a
l
D
is
tu
rb
a
n
ce
s

δx(N)
δy(N)
δz(N)
δφ(N.m)
δθ(N.m)
δψ(N.m)

Figure 3.1 – External disturbances applied to the simulations.
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Figure 3.2 – Tiltrotor trajectory in space for the LQR LTI controller.

LQR LTI
ISEx 0.0571
ISEy 0.0656
ISEz 0.0012
ISEψ 0.0250

Table 3.1 – Integral Squared Error for the LQR LTI controller.

LQR LTI
IAV U fR 542.647
IAV U fL 506.637
IAV U τSR 0.0136
IAV U τSL 0.0148

Table 3.2 – Integrated Absolute Variation of the Control signal for the LQR
LTI controller.
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Figure 3.5 – Tiltrotor tracking error and control inputs for the LQR LTI
controller.
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From the ISE we can see that the tracking error for the z(t)
and ψ(t) are significant lower when compared to x(t) and y(t). This
falls in place with our understanding of the tiltrotor system, as the
former states are less coupled than the latter, meaning they are easier to
control. From the IAVU is interesting to note that the fR control signal
is significantly higher then fL. This is directly related to the center of
mass position, which is slightly tilted to the right side, requiring more
thrust force from the right rotor.

The LQR LTI controller has a good performance with a low
tracking error. The control signal has high peaks at 20 seconds and
30 seconds of the simulation and are due to the abrupt change in the
trajectory. These two moments aside, the control is smooth, even when
the disturbances are applied. This is a good result as the disturbances
values are relatively high.

The drawback to this controller is that it considers only the
nominal system, ignoring its time varying nature (ẍr(t) = ÿr(t) =
z̈r(t) = 0), which can be a factor to destabilize the system. The con-
troller treated in the next section aims to increase robustness related
to this aspect, as well as to actuators saturations.

3.1.2 LMI formulation for the LQR control

This section is mainly based on (TROFINO et al., 2003) and
(BOYD et al., 1994).

Aiming for a robust control of the system, the time varying
parameters of the error model (3.9) are considered as uncertainties and
the system is rewritten as follows:

∆ẋ(t) = A(α)∆x(t) +Bu∆u(t) +Bww(t) , (3.23)

where α represents uncertainties in the system. In this controller, and
the others which use a LMI formulation, ẍr(t), ÿr(t) and z̈r(t) are con-
sidered as uncertainties. Then by using linear matrices inequalities
(LMIs) and considering boundaries for the minimum and maximum
values of the trajectory accelerations, linear control techniques can be
used while still guaranteeing the stability of the system throughout any
given trajectory within the boundaries.

In summary, this controller’s purpose is to design a control
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law based on a similar cost function to the ideal LQR from last section
but taking into consideration the boundaries of time varying parameters
for the control design, alongside the uncertainty in the system’s mass
and inertia moments. These considerations yields more conservative
controllers in exchange for robustness.

Considering no disturbances (w(t) = 0), a state feedback con-
trol and the cost function J associated with the performance output
vector z ∈ R20,

J = min

∫ ∞
0

z(t)′z(t)dt , (3.24)

then from (3.23):
∆ẋ(t) = A(α)∆x(t) +Bu∆u(t)

z(t) = Cz∆x(t) +Duz∆u(t)

∆u(t) = K∆x(t) α ∈ ν
, (3.25)

where ν is a convex polytope with known vertices vi.

Using the Lyapunov function V (∆x(t)) = ∆x′(t)P∆x(t), for
the system to be asymptotically stable then it must obey V̇ (t) < 0. As
the expression z′(t)z(t) will always be positive for any z 6= 0, then the
Lyapunov inequality can expanded to (BOYD et al., 1994):

V̇ (t) < −z′(t)z(t) < 0 . (3.26)

Integrating equation (3.26) with respect to time and using
equation (3.14), yields to:∫ ∞

0

z(t)′z(t)dt < ∆x′(0)P∆x(0) . (3.27)

By minimizing ∆x′(0)P∆x(0) we are minimizing an upper bound of
the cost function J in equation (3.24), which can be done by minimizing
a scalar λ where (TROFINO et al., 2003):

λ−∆x′(0)P∆x(0) > 0 . (3.28)

Now substituting equation (3.15) in equation (3.26) develops
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to:

V̇ (t) + z′(t)z(t) =∆x′[(A(α) +BuK)′P + P (A(α) +BuK)

+ (Cz +DuzK)′(Cz +DuzK)]∆x < 0 .
(3.29)

Defining the transformations

W = P−1 > 0 , Y = KW , (3.30)

and multiplying the left-hand side of equation (3.29) by W ′∆x′−1(t)
and the right side by ∆x−1(t)W :

(A(α)W +BuY )′ + (A(α)W +BuY )

+ (CzQ+DuzY )′(CzW +DuzY ) < 0 .
(3.31)

Finally, applying the Schur complement (see appendix A) in
equations (3.31) and (3.28) , the cost function J is subject to the fol-
lowing LMIs: [

λ ∆x′(0)
∆x′(0) W

]
> 0 (3.32)[

(A(α)W +BuY )′ + (A(α)W +BuY ) (CzW +DuzY )′

(CzW +DuzY ) −Inz

]
< 0,

(3.33)
with K = YW−1.

Given the convexity of the LMIs, we can solve (3.33) only for
the vertices vi of the uncertainty α, where i ranges from 1 to the total
number of vertices. The LMIs are then:[

(A(vi)W +BuY )′ + (A(vi)W +BuY ) (CzW +DuzY )′

(CzW +DuzY ) −Inz

]
< 0.

(3.34)

In our case the vertices are a combination of ẍ(t) ∈ [−0.5 0.5],
ÿ(t) ∈ [−0.5 0.5] and z̈(t) ∈ [−0.5 0.5], comprising 23 = 8 vertices.

To obtain a similar controller as the LQR in section 3.1.1, let
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us first expand the cost function (3.24):

J = min

∫ ∞
0

[∆x′(t)C ′zCz∆x(t) +∆u(t)′D′uzDuz∆u(t)

+∆x′(t)C ′zDuz∆u(t) +∆u(t)′D′uzCz∆x(t)]dt .

(3.35)

For the cost function (3.35) to be the same as (3.12), the design of
matrices Cz and Duz will aim to make Cz′Duz = 0 and C ′zCz = Q,
D′uzDuz = R, leading to:

Duz =



√
0.1

(15−f̄R)2
0 0 0

0
√

0.1
(15−f̄L)2

0 0

0 0
√

1
22 0

0 0 0 0
0 0 0 0

0 0 0
√

1
22

012,1 012,1 012,1 012,1


(3.36)

Czdiag = diag[1 1 1
√

1
(π2 )2

√
1

(π2 )2

√
1
π2

√
0.1

(π2 )2

√
0.1

(π2 )2√
1
22

√
1
22

√
1
22

√
1

(3∗π)2

√
1

(3∗π)2

√
1

(3∗π)2√
1

(10∗π)2

√
1

(10∗π)2

√
5
√

5
√

5
√

3] .

(3.37)

Note that a compromise had to be made to have C ′zCz = Q and
D′uzDuz = R, resulting in the expression Cz′Duz not being zero.
The values however are small and sparse and have little influence over
the results.

Finally, to avoid saturations in the control signals, we include
a constraint in the control action, formulated with LMIs developed in
(ALAMO et al., 2006). They are:[

1 ∆x(0)
∆x(0)′ P−1

]
> 0 (3.38)

[
U2
max K
K ′ P

]
> 0 , (3.39)
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where Umax = diag([15, 15, 2, 2]−ur) is the desired maximum control
effort and x(0) is the initial condition. The transformations (3.30) are
once applied in order to maintain the same variables, resulting in:[

1 ∆x(0)
∆x(0)′ W

]
> 0 , (3.40)

and [
I 0
0 P−1

] [
U2
max K
K ′ P

] [
I 0
0 P−1

]
> 0

[
U2
max Y
Y ′ Q

]
> 0 .

(3.41)

Equation (3.40) is already represented by equation (3.32) and is not
used for the design of this controller.

Finally, minimizing λ subject to equations (3.32), (3.34) and
(3.41) solves for the desired controller. Using MATLAB’s Robust Con-
trol Toolbox version 4.3 alongside an initial condition ∆x(0) = 0, the
gain matrix is obtained with λ ≈ 0 (see appendix B, equation (B.10) ).
Simulations for this controller were made under the same conditions as
used in section 3.1.1, the results being depicted in figures 3.6-3.9 and
tables 3.3 for the ISE index and 3.4 for the IAVU.

−5

0

5

10

−20246810
0

5

10

15

X(m)

Y(m)

Z
(m

)

Reference
LQR LMI

Figure 3.6 – Tiltrotor trajectory in space for the LQR LMI controller.
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Figure 3.7 – Tiltrotor regulated states for the LQR LMI controller.
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Linear Control for Path Tracking 55

0 10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
T
ra
ck
in
g
E
rr
o
r

εx
εy
εz
εψ

0 10 20 30 40 50 60
6

7

8

9

10

11

12

T
h
ru
st
(N

)

fR
fL

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

1.5

time(s)

S
er
vo

T
o
rq
u
es
(N

.m
)

τSR
τSL

Figure 3.9 – Tiltrotor tracking error and control inputs for the LQR LMI
controller.
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LQR LMI
ISEx 0.0412
ISEy 0.1163
ISEz 0.0219
ISEψ 0.0163

Table 3.3 – Integral Squared Error for the LQR LMI controller.

LQR LMI
IAV U fR 543.238
IAV U fL 507.171
IAV U τSR 0.0342
IAV U τSL 0.0317

Table 3.4 – Integrated Absolute Variation of the Control signal for the LQR
LMI controller.

Comparing the ISE index in table 3.3 for this controller to
the index from LQR LTI in table 3.2, we can note that this controller
has a slightly better performance for the x(t) and ψ(t) states. However
the tracking performance in the other two states is significantly worse
and the IAVU index shows an overall more aggressive control signal,
suggesting that this controller is marginally worse than the previous
one.

Note however that this controller uses the same LQR tech-
nique with the inclusion of the system’s time varying aspects and con-
trol saturations into its design, resulting in a more robust controller.

3.1.3 H∞ control

This section is mainly based on (DULLERUD; PAGANINI,
2005) and (BOYD et al., 1994).

In this section a linear H∞ control is designed with a LMI
formulation. This controller was chosen for its properties of disturbance
rejection.
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Consider the linear system:
∆ẋ(t) = A(α)∆x(t) +Bu∆u(t) +Bww(t)

z(t) = Cz∆x(t) +Duz∆u(t) +Dwzw(t)

∆u(t) = K∆x(t) α ∈ ν
, (3.42)

where w(t) is the disturbance vector, z(t) is the signal that will have
its H∞ norm minimized, Cz, Dwz, Duz are constant matrices to be
determined and ν is a polytope with known vertices vi.

The H∞ feedback controller is an optimal control that expo-
nentially stabilizes the system and minimizes its H∞ norm

||Hwz(s)||∞ = sup σ̄{Hwz(jw)} , (3.43)

whereHwz(s) is the transfer function between the external disturbance
w(t) and z(t).

The H∞ norm represents the system’s highest frequency re-
sponse gain. It can also be interpreted as the system’s highest energy
gain due to an input signal. Applying Parseval’s theorem in equation
(3.43) results:

||z(t)||2 ≤ ||Hwz(s)||∞||w(t)||2
or

||Hwz(s)||∞ = sup
||z(t)||2
||w(t)||2

.

This definition makes it clear that minimizing the H∞ norm minimizes
the effect of external disturbances on the system.

In this work a relaxation of the optimization is made, where
the aim is to find an upper bound γ of the norm, thus:

||Hwz(s)||∞ < γ . (3.44)

Considering a Lyapunov function V (x(t)) = ∆x′(t)P∆x(t)
and initial conditions ∆x(0) = 0, the following inequation can be used
to find the control that minimizes γ (BOYD, 1994):

V̇ (∆x(t)) + z′(t)z(t)− γ2w′(t)w(t) < 0 . (3.45)

To verify that by minimizing equation (3.45) we are indeed
minimizing the H∞ norm, first we integrate it with respect to relation
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to time and, using (3.14):∫ ∞
0

z′(t)z(t)dt < γ2

∫ ∞
0

w′(t)w(t)dt , (3.46)

which leads to

sup

√∫∞
0
z′(t)z(t)dt√∫∞

0
w′(t)w(t)dt

= sup
||z(t)||2
||w(t)||2

< γ . (3.47)

Developing equation (3.45) with the transformations

Q = γP−1 , Y = KQ (3.48)

leads to the LMIs (DULLERUD; PAGANINI, 2005):

Q > 0 (3.49)A(vi)Q+QA′(vi) +B(vi)Y + Y ′B′(vi) Bw(vi) QC′z + Y ′D′uz
B′w(vi) −γ̃Inz D′wz

CzQ+DuzY Dwz −γ̃Inz

<0,

where γ̃ = γ2 and vi refers to the vertices of polytope ν. In our case
the vertices are a combination of ẍ(t) ∈ [−0.5 0.5], ÿ(t) ∈ [−0.5 0.5]
and z̈(t) ∈ [−0.5 0.5], totaling 23 = 8 vertices.

Solving this optimization problem for Q = Q′ and Y makes
system (3.42) with K = Y Q−1 asymptotic stable and ||Hwz(s)||∞ <
γ.

The controller design follows the same logic as in section 3.1.2
and reuses matrices Cz and Dz depicted in (3.37) and (3.36). This
leaves only matrix Dw to be designed which, after some iterations,
became:

Dwz =



√
0.1 0 0 0 0 0 0 0

0
√

0.1 0 0 0 0 0 0

0 0
√

0.1 0 0 0 0 0

0 0 0
√

0.1 0 0 0 0

0 0 0 0
√

0.1 0 0 0

0 0 0 0 0
√

0.1 0 0
014,1 014,1 014,1 014,1 014,1 014,1 014,1 014,1


.

(3.50)
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The saturation in the control action is also considered. Using
the LMIs (3.38) and (3.39) with the transformations (3.48) we obtain:[

1 0

0 γ
1
2

] [
1 x(0)

x(0)′ P−1

] [
1 0

0 γ
1
2

]
> 0

[
1 x(0)

x(0)′ Q

]
> 0

, (3.51)

and [
γ

1
2 0

0 γ
1
2P−1

] [
U2
max K
K P

] [
γ

1
2 0

0 γ
1
2P−1

]
>0

[
γU2

max Y
Y ′ Q

]
> 0

. (3.52)

The gain matrix is found by minimizing γ subject to the LMIs
(3.49), (3.51) and (3.52) using MATLAB’s Robust Control Toolbox
version 4.3 (see appendix B, equation (B.11)). As a result we have that
γ̃ = 1.8365, and ||Hwz(s)||∞ < 1.3552. Simulations for this controller
were made under the same conditions as used in section 3.1.1, the
results being depicted in figures 3.10-3.13 and tables 3.5 for the ISE
index and 3.6 for the IAVU.
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Figure 3.10 – Tiltrotor trajectory in space for the H∞ controller.
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Figure 3.11 – Tiltrotor regulated states for the H∞ controller.
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Figure 3.12 – Tiltrotor stabilized states for the H∞ controller.
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Figure 3.13 – Tiltrotor tracking error and control inputs for the H∞ con-
troller.
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H∞
ISEx 0.4305
ISEy 0.1790
ISEz 0.0212
ISEψ 0.0072

Table 3.5 – Integral Squared Error for the H∞ controller.

H∞
IAV U fR 542.248
IAV U fL 505.951
IAV U τSR 0.0257
IAV U τSL 0.0250

Table 3.6 – Integrated Absolute Variation of the Control signal for the H∞
controller.

Despite minimizing the disturbances influence over the sys-
tem, analyzing the ISE index shows that the H∞ controller has a worse
performance than the previous controllers. A more exhaustive tuning
process of the controller can improve its performance, however the H∞
does not present an intuitive adjustment of the parameters. The next
controller seeks to maintain its property of disturbance minimization
of the H∞ and improve its performance by minimizing the system’s H2

norm.

3.1.4 Mixed H2/H∞ control

This section is mainly based on (TROFINO et al., 2003).

Consider the linear system (3.42) with Dwz = 0. The H2

feedback controller is an optimal control that exponentially stabilizes
the system and minimizes its H2 norm:

||hwz(t)||22 =
∑
i,j

∫ ∞
0

hwzij (t)
2dt =

∫ ∞
0

tr{hwz(t)h′wz(t)}dt , (3.53)

where hwz(t) = L−1[Hwz(s)], Hwz(s) being the transfer function be-
tween w(t) and z(t), and tr{.} is the trace operator. The H2 norm
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can be seen as the energy of the output signal of the system when the
system is excited with Dirac delta functions.

The transfer function for the system in (3.42) is:

Hwz(s) = Cz(sIn − (A(α) +B(α)K))−1Bw , (3.54)

and applying the inverse Laplace transformation:

hwz(t) = L−1[Hwz(s)] = (Cz +DuzK)e(A(α)+B(α)K)tBw . (3.55)

Using equation (3.55) with (3.53):

||hwz(t)||22 =

∫ ∞
0

tr{(Cz +DuzK)e(A(α)+B(α)K)tBwB
′
w

e(A(α)+BK)′t(Cz +DuzK)′}dt

= tr{(Cz +DuzK)(

∫ ∞
0

e(A(α)+BK)tBwB
′
w

e(A(α)+BK)′tdt)(Cz +DuzK)′}
= tr{(Cz +DuzK)Pc(Cz +DuzK)′} ,

(3.56)

where Pc is the controllability Gramian

Pc =

∫ ∞
0

e(A(α)+BK)tBwB
′
we

(A(α)+BK)′tdt (3.57)

and, as all the eigenvalues of (A(α) + BK) are negative (we assume
the state feedback control stabilizes the system), is the unique solution
to (CHEN, 1998)

APc + PcA
′ +BwB

′
w = 0 . (3.58)

To work with LMIs and allow uncertainties in the system to
be easily incorporated, instead of finding matrix Pc that solves (3.58)
we will search for a matrix Q, where Q > Pc, that solves:

A(α)Q+QA′(α) +BwB
′
w < 0 . (3.59)

Finding Q in the above equation gives the upper bound of the H2 norm

tr{(Cz +DuzK)Q(Cz +DuzK)′} > tr{(Cz +DuzK)Pc(Cz +DuzK)′}.
(3.60)



Linear Control for Path Tracking 65

To make the problem convex, an auxiliary matrix N is used,
where (TROFINO et al., 2003):

N − tr{(Cz +DuzK)QQ−1Q(Cz +DuzK)′} > 0 , (3.61)

and the original problem of minimizing tr{(Cz+DuzK)Q(Cz+DuzK)′}
is now transformed to minimize matrix N . Applying the Schur com-
plement to equation (3.61) yields:[

N Cz +DuzKQ
Q(C ′z +K ′D′uz) Q

]
> 0 . (3.62)

Finally, employing the transformation Y = KQ to equations
(3.62) and (3.59) gives the LMIs to find a gain matrix K = Y Q−1 that
minimizes the H2 norm by minimizing tr{N} subject to:[

N CzQ+DuzY
QC ′z + Y ′D′uz Q

]
> 0 (3.63)

QA′(α) +A(α)Q+ Y ′B′ +BY +BwB
′
w < 0 . (3.64)

Minimizing the H2 norm brings a better transient response
for the system. This is used to improve the controller presented in
section 3.1.3 by creating a multi-objective controller that minimizes the
H2 norm while using a fixed value for γ̃ that is close to the previously
found for the pure H∞ control. The multi-objective H2/H∞ controller
can be synthesized using (TROFINO et al., 2003):

minimize trace(N) subject to (3.63) and (3.49).

Note that the LMI (3.64) is already included in (3.49).

The control matrices are designed as it would be for a pure
H2 controller and follows the same logic as in section 3.1.2, reusing
matrices Cz and Dz depicted in (3.37) and (3.36).

After some iterations the fixed value γ̃ = 4 was chosen ,
which means that the H∞ norm for this controller is slightly worse
(||Hwz(s)||∞ < 2).

Once again the constraint in control action LMIs are used,
employing (3.51) and (3.52).
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The gain matrix is found by minimizing tr{N} subject to
(3.63), (3.49), (3.51) and (3.52) using MATLAB’s Robust Control Tool-
box version 4.3 (see appendix B, equation (B.12)). The result is tr{Z} =
4.0738 and ||Hwz(s)||2 < 2.0184.

Simulations for this controller were made under the same con-
ditions as used in section 3.1.1, the results being depicted in figures
3.14-3.17 and tables 3.7 for the ISE index and 3.8 for the IAVU.
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Figure 3.14 – Tiltrotor trajectory in space for the H2/H∞ controller.

H2/H∞
ISEx 0.0637
ISEy 0.0664
ISEz 0.0021
ISEψ 0.0198

Table 3.7 – Integral Squared Error for the H2/H∞ controller.

The H2/H∞ controller results show an improvement in per-
formance over the H∞ controller while maintain a similar H∞ norm,
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Figure 3.15 – Tiltrotor regulated states for the H2/H∞ controller.
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Figure 3.16 – Tiltrotor stabilized states for the H2/H∞ controller.
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Figure 3.17 – Tiltrotor tracking error and control inputs for the H2/H∞
controller.
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H2/H∞
IAV U fR 542.660
IAV U fL 506.596
IAV U τSR 0.0137
IAV U τSL 0.0147

Table 3.8 – Integrated Absolute Variation of the Control signal for the
H2/H∞ controller.

which was the objective of this controller.

Considering that the controller has an increased robustness
than the LQR LTI controller because it includes the time varying nature
of the system as well as its control signals saturation into the control
design, and that the ISE and IAVU indices for the H2/H∞ controller
are close to the ones found for the LQR LTI controller, we can then
conclude that the H2/H∞ also presents an improvement over the LQR
LTI controller.

3.1.5 LQR control for linear time varying systems

The LQR considering the time varying system (3.9) with a
state feedback controller can be calculated in different ways, the most
common being: (i) through the Ricatti Differential Equation (RDE);
(ii) through calculation of the corresponding ARE for each time instant.

The first method can be deduced from realizing that in equa-
tion (3.13), Ṗ (t) is not equal to zero in the LTV case. Using simi-
lar manipulations, it is trivial to arrive at the RDE. The use of such
method should be made with care as to respect its existence conditions
(LEDYAEV, 2011).

For this work the second method is used, which can only be
applied because all time variant variables of the system are known at
any instant of time, allowing to compute matrix A(t) online. This way,
a different set of LTI matrices for each time instant and the instant
gain matrix K for each particular set can be computed with its ARE,
in the the same manner as in section 3.1.1.

If the computational cost of the ARE is too high for the em-
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bedded system used, one can consider to calculate all the gain matrices
beforehand. This is possible if all the trajectories are known before the
aircraft takes flight, since the trajectory’s accelerations are the unique
requirement to compute matrix A(t) at a given time. Therefore, the
gain matrices can be computed offline for each time interval of the tra-
jectory, transforming the controller into a gain-scheduling controller.

Simulations for this controller were made under the same con-
ditions as used in section 3.1.1, the results being depicted in figures
3.18-3.21 and tables 3.9 for the ISE index and 3.10 for the IAVU.
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Figure 3.18 – Tiltrotor trajectory in space for the LQR LTV controller.

LQR LTV
ISEx 0.0564
ISEy 0.0651
ISEz 0.0012
ISEψ 0.0226

Table 3.9 – Integral Squared Error for the LQR LTV controller.
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Figure 3.19 – Tiltrotor regulated states for the LQR LTV controller.
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Figure 3.20 – Tiltrotor stabilized states for the LQR LTV controller.
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Figure 3.21 – Tiltrotor tracking error and control inputs for the LQR LTV
controller.
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LQR LTV
IAV U fR 542.667
IAV U fL 506.615
IAV U τSR 0.0136
IAV U τSL 0.0147

Table 3.10 – Integrated Absolute Variation of the Control signal for the
LQR LTV controller.

While the LMI controllers use the time varying nature of the
system to improve the controllers robustness, the LQR LTV controller
uses the data in real time to improve its performance. The main idea for
the simulation of the LQR LTV controller was to compare and evaluate
how much the performance would improve by using the time varying
data.

Analyzing the indices shows that the performance are indeed
better and that the control is smoother when compared to the other
developed controllers, but only by a small margin. This means that,
even in a trajectory with so many abrupt changes, the time varying
parameters have little influence in the controlled system.

3.2 Backstepping nonlinear control

In order to compare the developed controllers to the litera-
ture, an adaptation of the controller published in (CHOWDHURY et
al., 2012) is used. This work is chosen because the controller structure
is one of the most established for UAVs in general and its definitions
are close to the the ones performed in this work, simplifying its study
and analysis.

It implements a feedback linearization for a simplified ver-
sion of the nonlinear model (2.62) with q =

[
x y z φ θ ψ

]′
as

generalized coordinates. The equations of motion for the translational
motion are:

mẍ = (cψcθ)Fxb + (cψsθcφ+ sψsφ)Fzb (3.65)

mÿ = (sψcθ)Fxb + (sψsθcφ− cψsφ)Fzb (3.66)
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mz̈ = −sθFxb + cθcφFzb −mg , (3.67)

and the rotational equations of motion:

M(Θ)Θ̈ + C(Θ, Θ̇)Θ̇ = τ , Θ =
[
φ θ ψ

]
, (3.68)

with the rotational inertia matrix M(Θ) given by:

M(Θ) = Ixx 0 −IxxSθ
0 IyyC

2φ+ IzzS
2φ (Iyy − Izz)CφSφCθ

−IxxSθ (Iyy − Izz)CφSφCθ IxxS
2θ + IyyC

2θS2φ+ IzzC
2θC2φ


(3.69)

and the Coriolis and centrifugal forces matrix C(Θ, Θ̇) found with
equation (2.63); This model can be derived from the model found in
section 2 from several simplifications:

• consider the system as only one rigid body, that is, omitting the
generalized coordinates αR and αL.

• Consider the center of mass coincident with the geometrical cen-
ter, i.e, frame C1 is coincident with frame B.

• Lateral fixed tilt angle β equals zero.

The body forces are:

FB(q) =



FB
x

FB
y

FB
z

τBφ
τBθ
τBψ

 =


fRsin(αR) + fLsin(αL)

0
fRcos(αR) + fLcos(αL)

[fLcos(αL)− fRcos(αR)]l
[fLsin(αL) + fRsin(αR)]h
[fRsin(αR)− fLsin(αL)]l

 . (3.70)

The inverse dynamics control objective is to find a nonlinear
feedback control law that, when substituted into the model equations
(3.65) to (3.68), results in the linear closed-loop system:

ẍ = ζ1 = −Kpx(x− xr)−Kvx(ẋ− ẋr) + ẍr (3.71)

ÿ = ζ2 = −Kpy(y − yr)−Kvy(ẏ − ẏr) + ÿr (3.72)
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z̈ = ζ3 = −Kpz(z − zr)−Kvz(ż − żr) + z̈r (3.73)

φ̈ = γ1 = −Kpφ(φ− φr)−Kvφ(φ̇− φ̇r) + φ̈r (3.74)

θ̈ = γ2 = −Kpθ(θ − θr)−Kvθ(θ̇ − θ̇r) + θ̈r (3.75)

ψ̈ = γ3 = −Kpφ(ψ − ψr)−Kvψ(ψ̇ − ψ̇r) + ψ̈r , (3.76)

where ζ1, ζ2, ζ3, γ1, γ2 and γ3 are the new dynamics chosen for the
resulting linear system and Kpx, Kvx, Kpy, Kvy, Kpz, Kvz, Kpφ, Kvφ,
Kpθ, Kvθ, Kpψ, Kvψ are gains to be designed.

The forces and torques expressions chosen to transform the
system dynamics into equations (3.71) to (3.76) are:

Fzb =
mg +mζ3 + SθFxb

CφCθ
(3.77)

Fxb =
mζ1
CψCθ

(3.78)

τ =

τφτθ
τψ

 = M(Θ)

γ1

γ2

γ3

+C(Θ, Θ̇)

φ̇θ̇
ψ̇

 , (3.79)

with the intermediate references φd and θd:

φd = arcsin

(
mζ1Sψ −mζ2Cψ

Fzb

)
(3.80)

θd = arcsin

(
− SφSψ
CφCψ

)
. (3.81)

The final step transform the computed forces and torques to
the applied control signals:

fR = 1
2

√
(Fxb +

τψ
l )2 + (−Fzb +

τφ
l )2

fL = 1
2

√
(−Fxb +

τψ
l )2 + (Fzb +

τφ
l )2

αR = arctan

(
Fxb+

τψ
l

Fzb−
τφ
l

)
αL = arctan

(
Fxb−

τψ
l

Fzb+
τφ
l

) . (3.82)
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Analyzing equation (3.82) it can be noted that τθ, calculated
in (3.79), does not appear anywhere in the equations. This means
that the variable θ is not actually being controlled, which is highly
detrimental.

For our work we decided to make changes to the original
controller in order to include τθ into (3.82). First from (3.70) we have
that Fxb = τθ/h. Substituting in (3.82):

fR = 1
2

√
( τθh +

τψ
l )2 + (−Fzb +

τφ
l )2

fL = 1
2

√
(− τθh +

τψ
l )2 + (Fzb +

τφ
l )2

αR = arctan

(
τθ
h +

τψ
l

Fzb−
τφ
l

)
αL = arctan

(
τθ
h −

τψ
l

Fzb+
τφ
l

) . (3.83)

Now we included the control τθ, namely γ2, into the equation
but removing Fxb also excluded the x control ζ1. To rectify this we
take the control out of Fxb in equation (3.78) and include it into θd in
equation (3.81). The result is:

Fxb =
1

CψCθ
(3.84)

θd =
mζ1 − 1

FzbCψCφ
− SψSφ

CψCφ
. (3.85)

Note that the new equations still obey the feedback linearization and
equations (3.71) to (3.76) remain unchanged. Regarding these equa-
tions, we decided that the addition of an integral action is important
to obtain a satisfactory path tracking. The resulting system dynamics
are redefined to:

ẍ = ζ̄1 = −Kpx(x− xr)−Kvx(ẋ− ẋr)−Kix

∫
(x− xr) + ẍr (3.86)

ÿ = ζ̄2 = −Kpy(y − yr)−Kvy(ẏ − ẏr)−Kiy

∫
(y − yr) + ÿr (3.87)

z̈ = ζ̄3 = −Kpz(z − zr)−Kvz(ż − żr)−Kiz

∫
(z − zr) + z̈r (3.88)
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ψ̈ = γ̄3 = −Kpφ(ψ−ψr)−Kvψ(ψ̇−ψ̇r)−Kiψ

∫
(ψ−ψr)+ψ̈r . (3.89)

The original article does not include the gains values used. Its
results are only shown in figures but it can be observed that its vari-
ables settling time is around six seconds. Unfortunately the rotational
system’s settling time is too high for it too work in practice.

Albeit the results not being satisfactory, the control strat-
egy was considered suited for our problem. Therefore new gains were
designed to comply with the following new system requirements:

• settling time (5%) of 0.3 seconds for the roll and pitch angles
(φ,θ) and 1.5 seconds for the yaw angle (ψ);

• settling time (5%) of 2.5 seconds for the translational system
(x,y,z);

• no overshoot for the rotational system and maximum 5% over-
shoot for the translational system.

Defining the error in x to be ex = x − xr, equation (3.86)
becomes:

ëx +Kvxėx +Kpxex +Kix

∫
ex = 0 . (3.90)

Applying the Laplace transform, the above equation in the frequency
domain is:

s2 +Kvxs+Kpx +
Kix

s
= 0 . (3.91)

The control gains are designed to fulfill the system require-
ments according to the classical equation of a second order closed-loop
system with the (ξ, wn) parametrization (OGATA, 1997)

s2 + 2ζwns+ w2
n , (3.92)

where ζ is the damping ratio and wn is the natural frequency. Then,
the third pole is chosen to be three times faster in order to have a
negligible influence in the closed-loop system’s response.

From the system requirements for x(t) and (3.92) we have
that ζ = 0.69 and wn = 1.74, resulting in the second degree system
(s + (1.2 ± 1.26i))2. Choosing the third pole as s = 3.6, we have that
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the desired dynamics is:

(s+ (1.2± 1.26i))2(s+ 3.6) = s3 + 6s2 + 11.67s+ 10.90 . (3.93)

Comparing (3.93) with (3.91) yields Kvx = 6, Kpx = 11.67
and Kix = 10.9. As y(t) and z(t) have the same resulting dynamics
and requirements as x(t), then their gains are the same. Therefore
Kvz = Kvy = Kvx and Kpz = Kpy = Kpx.

For the yaw angle system requirements, a double pole sd is
selected to give a 5% settling time of 1.5s, resulting in sd = 3.2. Ap-
plying the same method as with the translation system, the desired
dynamics is (s + 3.2)2(s + 9.6), yielding Kvψ = 16, Kpψ = 71.68 and
Kiψ = 98.3.

The roll and pitch angles desired dynamics do not include an
integral action, with resulting second degree systems. According to its
requirements, the dynamics (s + 16)2 is desired. Comparing to (3.74)
gives us that Kvφ = Kvθ = 32 and Kpφ = Kpθ = 256.

Simulations for this controller were made under the same con-
ditions as used in section 3.1.1, the results being depicted in figures
3.22-3.25 and tables 3.11 for the ISE index and 3.12 for the IAVU.
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Figure 3.22 – Tiltrotor trajectory in space for the backstepping controller.
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Figure 3.23 – Tiltrotor regulated states for the backstepping controller.
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Backstepping
ISEx 0.1838
ISEy 0.0821
ISEz 0.1056
ISEψ 0.0205

Table 3.11 – Integral Squared Error for the backstepping controller.

Backstepping
IAV U fR 542.626
IAV U fL 506.507
IAV U αR 7.603
IAV U αL 7.688

Table 3.12 – Integrated Absolute Variation of the Control signal for the
backstepping controller.

The backstepping has worse ISE indices than the previous
controllers, with the exception of the H∞ controller. Also, the other
controllers had little to none oscillations, while the backstepping presents
a relatively large oscillation when a disturbance in the θ(t) state occurs.

The θ(t) is indeed the most difficult state to control for the
tiltrotor system, but it becomes more evident when the simplified model
is used for the control design. This controller ignores the servomotor
dynamics but cannot deny its effects in θ(t), causing it to oscillate.
This effect will amplify for faster controllers.

As the servomotors dynamics are not included in this control,
it assumes that the servomotor is fast enough to be neglected real life
experiments. Considering the servomotor (inner loop) settling time
should ideally be at least five times faster than the rotational system
(outer loop), then the servos should settle in about 0.1 seconds. The
servomotor used for Project ProVANT can control its speed until a
maximum of 100 rpm, that is, 600 degrees per second. This means that
in 0.1 seconds it can go through 60 degrees, which may not be enough
depending on the trajectory to be followed and can have detrimental
effects.
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3.3 Comparative Simulation Results

This section aims to bring a side by side comparison for the
controllers presented in sections 3.1 and 3.2. Whereas each controller
section had simulation results for a abrupt and complex trajectory in
order to test its stability and convergence, in this section a circular
trajectory was chosen.

It is interesting to simulate the same controllers for a different
trajectory, as one controller can be optimal to one trajectory and bad
for others. This trajectory is also more adequate to visually compare
the different results.

The simulations are executed for the system to track the tra-
jectory xr = 1− cos( π20 t), yr = sin( π20 t), zr = 1− cos( π20 t) and ψ = 0.
Several aspects are included in the simulation to test the controller
robustness:

1. constant disturbances: δx = 0.5N at 10s; δy = 0.5N at 15s;
δz = −1N at 20s; δφ = 0.5N.m at 25s; δθ = 0.5N.m at 30s; and
δψ = 0.5N.m at 35s. The disturbances are depicted in figure 3.26.

2. An uncertainty of 30% to the inertia moments was added.

3. Saturation on control signals were also considered, being the
thrust forces constrained in the interval [0, 15]N and the servo
torques in [−2, 2]N.m, in accordance with the corresponding ac-
tuators specifications for Project ProVANT.

The initial condition x(0) = 0 is used, as this condition can be easily
achieved for real life experiments.

The simulations are once again made in Simulink 2013a, using
the tiltrotor nonlinear model (3.1) with the parameters presented in
Table 2.1. The same gains previously designed and calculated in each
controller section are used.

Initially a comparison of the four linear time invariant con-
trollers is carried out. Figures 3.27-3.32 show the system response.
Next a comparison between the H2/H∞ control, the LQR LTV ex-
plained in section 3.1.5 and the nonlinear backstepping controller in
section 3.2 is made with the same simulation scenario. Figures 3.33-
3.37 displays the results.
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Figure 3.26 – Disturbances applied to the circular trajectory simulation.

In order to facilitate the controllers comparison, table 3.13
has the ISE for every controller and table 3.14 each controller’s IAVU.
Note however that the IAVU for the backstepping controller is given
apart in table 3.15, as it uses different control variables.

LQR LQR LMI H∞ H2/H∞ LQR LTV BS

ISEx 0.0023 0.0053 0.0412 0.0028 0.0023 0.0618

ISEy 0.0021 0.0182 0.0662 0.0022 0.0020 0.0053

ISEz 0.0001 0.0022 0.0085 0.0003 0.0001 0.0764

ISEψ 0.0121 0.0047 0.0058 0.0110 0.0121 0.0196

Table 3.13 – Integral Squared Error comparison for the circular trajectory.

All controllers were able to track the trajectory correctly and
show similar response patterns as the simulations with the more abrupt
trajectory. The controllers behaved well when taken in account all
uncertainties, unmodeled dynamics and disturbances in the system.
All three LQR controllers and the H2/H∞ have a good response with
low error and smooth control, which corroborates with the ISE and
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Figure 3.27 – Tiltrotor trajectory in space for the LTI controllers.

LQR LQR LMI H∞ H2/H∞ LQR LTV

IAV U fR 360.002 360.034 360.060 360.005 360.002

IAV U fL 337.581 337.630 337.645 337.583 337.581

IAV U τSR 0.0009 0.0012 0.0013 0.0009 0.0008

IAV U τSL 0.0007 0.0014 0.0012 0.0007 0.0007

Table 3.14 – Integrated Absolute Variation of the Control signal comparison
for the circular trajectory.

Backstepping
IAV U fR 360.0318
IAV U fL 360.0318
IAV U αR 5.3114
IAV U αL 4.9598

Table 3.15 – Integrated Absolute Variation of the Control signal for the
backstepping controller tracking the circular trajectory.
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Figure 3.28 – Tiltrotor regulated degrees of freedom for the LTI controllers.
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Figure 3.29 – Tiltrotor stabilized body angles and velocities for the LTI
controllers.
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Figure 3.30 – Tiltrotor stabilized servos angles and velocities for the LTI
controllers.
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Figure 3.31 – Tiltrotor control inputs for the LTI controllers.
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Figure 3.33 – Tiltrotor trajectory in space.

IAVU indices values. The H∞ has a higher error, but is still has an
overall good response.

The backstepping control presents oscillations in respect to
disturbances in the θ(t) state, which happens at 30 seconds into the
simulation. As discussed before, the cause for this are the simplifica-
tions assumed in the model used for control design.

The LQR LTV results are once again similar to the LQR
LTI and H∞/H2 controllers, meaning that the time varying param-
eters have only small effects to the system. The conclusion is that,
unless the desired trajectory is very aggressive, the use of the LQR LTI
and H∞/H2 controllers for path tracking is justified, as the computa-
tional cost of time varying controllers is higher and more complex to
implement.

It is also worth noting that the linear controllers have the
limitation of always having to operate nearby the operating point, at
risk of destabilizing the system in case of large deviations. However
from figures 3.29 and 3.35 we can note that the angles deviate more
than forty degrees from their equilibrium point, showing a large region



94 Linear Control for Path Tracking

0 10 20 30 40
−0.5

0

0.5

1

1.5

2

2.5

time(s)

X
(m

)

0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

1.5

time(s)

Y
(m

)

0 10 20 30 40
−0.5

0

0.5

1

1.5

2

2.5

time(s)

Z
(m

)

0 10 20 30 40
−0.1

−0.05

0

0.05

0.1

0.15

time(s)

ψ
(r
ad
)

Reference
LQR LTV
Backstepping
H∞/H2

Figure 3.34 – Tiltrotor regulated degrees of freedom.
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Figure 3.35 – Tiltrotor stabilized body angles and velocities.
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Figure 3.36 – Tiltrotor servos angles and thrust forces.
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of attraction.

The backstepping control presented the worse performance,
but it is a nonlinear control and does not suffer the limitation of oper-
ating near the equilibrium points like the linear controllers and thus is
still an interesting controller to test in experimental flights.

3.4 Hovering Control

Anticipating the difficulty of implementing the path tracking
controllers in the real UAV, an intermediary control objective which
solves the hovering problem is proposed. Hovering is the ability of the
aircraft to maintain flight with an stable attitude and height. So, in
other words, the hovering control aims stabilize rotational system and
the height of the aircraft.

Therefore, the LQR LTI controller developed in section 3.1
and the backstepping controller from section 3.2 are redesigned for
a simplified version of their respective models, with the objective of
performing hovering, rather than following a trajectory.

Both controllers are aimed to be the first to be implemented
and tested in ProVANT’s prototype, so a slightly slower dynamic was
designed. Also, as the first prototype does not possess a servomotor
that is controlled by torque, the servo angle state is dropped and used
as a control input. Therefore the simplified generalized coordinates are:

q =
[
z(t) φ(t) θ(t) ψ(t)

]′
.

Like so, the nonlinear model considered for the hovering con-
trol design is a simplification of model (2.62), defined as

Mh(q)q̈ +Ch(q, q̇)q̇ +Gh(q) = Fh(q) . (3.94)

First the inertia matrix depicted in equation (2.46) is simpli-
fied. It is done by eliminating the rows and columns relative to x(t),
y(t), αR(t) and αL(t), leaving only the elements related to the states
to be controlled. It becomes:

Mh(q) =

[
m L
L′ W ′

ηJWη

]
, (3.95)
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where L is a 1×3 matrix correspondent to the third row of −RI
BHWη.

The Coriolis and centrifugal force matrix Ch(q, q̇) is again
calculated with Christoffel symbols of the first kind in equation (2.63).
The gravitational force vector comes from the simplification of (2.65):

Gh(q) =


gm

g(myCθCφ−mzCθSφ)
g(mxCθ −mySθSφ−mzSθCφ)

0

 , (3.96)

where mx =
∑3
i=1midix, my =

∑3
i=1midiy and mz =

∑3
i=1midiz.

Finally the external force vector comes from expanding equa-
tion (2.59) and selecting only the rows related to states to be controlled:

Fh(q) =

[
Fz
Fη

]
(3.97)

with

Fz = (Cψ̄Sθ̄Cφ̄+ Sψ̄Sφ̄)(S(ᾱR)f̄R + S(ᾱL)f̄L) + (Sψ̄Sθ̄Cφ̄− Cψ̄Sφ̄)(C(ᾱR)

S(β)f̄R − C(ᾱL)S(β)f̄L) + Cθ̄Cφ̄(C(ᾱR)C(β)f̄R + C(ᾱL)C(β)f̄L) = 0

(3.98)

and

Fη = W−1
η(−C(αR)C(β)S(λ)l

′
− kτ

b
S(αR))fR + (C(αL)C(β)S(λ)l

′
+ kτ

b
S(αL)fL

(S(αR)dz + kτ
b
S(β)C(αR))fR + (S(αL)dz − kτ

b
S(β)C(αL))fL

(S(αR)l + kτ
b
C(β)C(αR))fR − (S(αL)l + kτ

b
C(β)C(αL))fL


(3.99)

Note that the simplified model in equation (3.94) is used only
for the control design, the simulations still use the model depicted by
equation (3.1).

3.4.1 LQR State feedback Control

In this section a LQR, as presented in section 3.1.1, is devel-
oped for the simplified height and rotational system. The new system
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states are:

x(t) =



x1

x2

x3

x4

x5

x6

x7

x8


=



z
φ
θ
ψ
ż

φ̇

θ̇

ψ̇


, (3.100)

with the control inputs

Γ =


u1

u2

u3

u4

 =


fR
fL
αR
αL

 . (3.101)

Since x and y are not controlled, roll and pitch angles have
multiple equilibrium points. However, as we want to minimize the
aircraft’s displacement in the XY plane, the equilibrium point for the
orientation is the same as in (3.6). Once again using equation (3.4) and
the parameters in table 2.1, with β = 0◦, gives:

f̄R = 8.31302 N , f̄L = 8.57765 N
ᾱR = 0◦ , ᾱL = 0◦

. (3.102)

The linearized system results in the LTI system:

∆ẋ = A∆x(t) +B∆u , (3.103)

with matrices A and B depicted in the appendix section B.2.

The controller does not follow a trajectory and is stabilized
around the equilibrium point, so ∆x = x− x̄. Finally matrices Q and
R are designed as:

R =


1

(15−f̄R)2
0 0 0

0 1
(15−f̄L)2

0 0

0 0 1
(π2 )2 0

0 0 0 1
(π2 )2

 , (3.104)
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and

Q = diag(
[
5 5

(π3 )2
15

(π3 )2
5
π3

1
22

1
(2∗π)2

1
(2∗π)2

1
(π)2

]
) .

(3.105)

The control gain matrix is found by solving the algebraic Ri-
catti equation (3.20) and the result is presented in appendix B, matrix
(B.13).

3.4.2 Backstepping Nonlinear Control

The backstepping control became simpler now, since the roll
and pitch angles have their own direct references. The rest of the
control steps remain the same, with equations (3.73) to (3.76) being
used to design the system dynamics.

Using the same steps as in section 3.2 gives the gains:

Kvz = 2.4 , Kpz = 3
Kvφ = 19.2 , Kpφ = 92.16
Kvθ = 19.2 , Kpθ = 92.16
Kvψ = 19.2 , Kpψ = 92.16

. (3.106)

3.4.3 Comparative Simulation Results

The simulation of both controllers are done with the same
full model (3.1) used for the simulations in section 3.3. It also uses the
same scenario with perturbations and saturation, the difference being
that these are stabilization controllers and no path tracking is required
from them. Its references now are {zr, φr, θr, ψr} = {1, φ̄, θ̄, 0}. The
new initial condition is x(0) = {0, 0.1, 0.1, 0.1, 0, 0, 0, 0}.

The simulation results are depicted in figure 3.38 and figure
3.39. Table 3.16 shows the controllers ISE index and table 3.17 the
IAVU index.

Both controllers were able to solve the hovering problem with
good results. The LQR controller behaved strictly better than the back-
stepping as it shows less overshoots, less variation amidst disturbances
and a smoother control signal. Note that, for not employing integral ac-



102 Linear Control for Path Tracking

0 10 20 30 40
0

1

2

3

4

5

6

7

time(s)

Z
(m

)

LQR LTI
Backstepping

0 10 20 30 40
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

time(s)

φ
(r
a
d
)

0 10 20 30 40
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time(s)

θ
(r
a
d
)

0 10 20 30 40
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

time(s)

ψ
(r
a
d
)

Figure 3.38 – Tiltrotor height and rotational system regulated states sta-
bilization.
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Figure 3.39 – Tiltrotor height and rotational system control inputs.
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LQR LTI Backstepping
ISEz 0.218 1.403
ISEφ 0.0185 0.0166
ISEθ 0.645 0.0693
ISEψ 0.0086 0.0174

Table 3.16 – Integral Squared Error comparison for the hovering controllers.

LQR LTI Backstepping
IAV U fR 350.2976 351.0797
IAV U fL 346.1507 346.9324
IAV U αR 2.5145 2.6436
IAV U αL 2.1221 2.2730

Table 3.17 – Integrated Absolute Variation of the Control signal comparison
for the hovering controllers.

tion, the variables stabilize at different values depending on the applied
disturbance.

The backstepping controller, even if worse than the LQR con-
troller, performed better than its path tracking counterpart, presenting
no oscillations. This is due to the system being simpler, with far less
coupling between states and the system is no longer underactuated.

3.5 Summary

This chapter presented the control design to solve the prob-
lems of hovering and path tracking for a tiltrotor UAV. Five linear
optimal controllers were developed for the path tracking problem, be-
ing the robustness and performance the determining factors behind
most decisions. A recent work found in literature in (CHOWDHURY
et al., 2012) was also implemented for comparison with the developed
controllers, with changes in its structure and design being made for the
sake of a better response.

Simulations were made with the nonlinear system without
any simplifications and in addition to external disturbances and para-
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metric uncertainties in order to test the robustness of the controllers.

All controllers managed to follow the predefined trajectory
proposed, being the best performances achieved with the LQR LTI,
H2/H∞ and LQR LTV controllers. Taking into account the enhanced
robustness of the H2/H∞ in comparison to the LQR LTI, and that it
is a controller which consumes much less computational resources than
the LQR LTV, then the conclusion is that the LQR LTI and H2/H∞
controllers produced the best results.

Two additional controllers were developed for controlling sta-
bility of the tiltrotor. The idea was to design simpler controllers as
they will be the first to be implemented and tested with the tiltrotor
assembled by project ProVANT. It is important to make a smaller step
because in the first experiments not only the controllers but also the
system as a whole (electronics, software, etc.) needs to be validated.
As a result a LQR LTI and a nonlinear backstepping controller were
designed, the former being an adaptation from (CHOWDHURY et al.,
2012). Both controllers behaved well and were implemented and tested
in the UAV, as presented in the following chapter.
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Chapter 4

Experimental Results

This chapter starts with a brief description of the tiltrotor
UAV assembled within project ProVANT, including the navigation sys-
tem used. Next it presents and discusses the results obtained by means
of the experimental flights performed with the hovering controllers pre-
sented in section 3.4.

4.1 Tiltrotor UAV assembly

The birotor tiltrotor UAV designed within ProVANT is as-
sembled with the following electronic components:

• 2x brushless motors AXI 2814/20 GOLD LINE

• 2x servomotors Dynamixel RX-24F

• 1x development board STM32F4DISCOVERY ARM Cortex-M4
32-bit MCU with FPU

• 1x 9-DOF inertial measurement system (IMU) GY-85

• 2x electronic speed controller (ESC) Mikrokopter BL-Ctrl 2.0

• 1x Ultrasonic ranging module HC-SR04

• 1x 2.4 GHz 6 channels radio receiver hobbyking HK-TR6A
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• 1x 4-cell LIPO battery (16.8V) Turnigy nanotech 3000mah

• 1x voltage regulator 16.8V/5V

• 1x voltage regulator 16.8V/12V

For the mechanical assembly, carbon fiber is used in the arm
that connects the rotors, and glass fiber is used in the body structure
that supports the embedded system and the electronic devices. It also
contains a protection structure made with glass fiber rods. Smaller
parts designed in the software SolidWorks R© and printed using 3D
printers available at the Automation and Systems Department (DAS)
at UFSC and at the Electronic Engineering Department (DELT) at
UFMG. Figure 4.1 depicts the UAV assembled.

Figure 4.1 – Project ProVANT’s first UAV prototype assembly.

4.2 Tiltrotor Navigation System

The role of the navigation system is to estimate the tiltrotor
states needed to implement the controllers presented in Chapter 3. Such
states are the angular position and velocity φ, θ, ψ, φ̇, θ̇, ψ̇; the linear
position and velocity x, y, z, ẋ, ẏ, ż; and the rotor angles characterized
by the servomotor angles αR and αL, and its velocities α̇R and α̇L .
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ProVANT’s tiltrotor prototype has sensors that provide mea-
surements of the linear acceleration, angular velocity, orientation of the
magnetic field, and the relative altitude, allowing the estimation of z,
ż, φ, φ̇, θ, θ̇, ψ, and ψ̇. However, the estimation of x and y using
only the linear acceleration measurement is not satisfactory, requiring
additional sensing to produce a reliable estimation like, for example,
the use of a global positioning system (GPS).

4.2.1 Angular position and velocity

To determine the UAV’s attitude and angular velocity the
following sensors are available in the prototype:

• 3 gyroscopes, which measure the angular velocity for each axis of
the body frame;

• 3 accelerometers, that measure the total instantaneous force in
each of the three axis of the body frame;

• and 3 magnetometers that measure the local magnetic field com-
ponents for each axis of the body frame.

All sensors are encapsulated within the 9-DOF IMU and it
is assumed that there is no alignment error in the mounting of the
sensors. As they are all calibrated, the only errors considered in this
analysis are the noises and the gyroscopes bias, which drifts due to the
low cost IMU. This sensors typically have a slow drifting bias, which
can be significant.

Note that none of these sensors directly measures the sys-
tem’s attitude, however it can be estimated. Two different estimations
of the attitude were developed along this work: one makes use of the gy-
roscopes data and the other of the accelerometers and magnetometers
data. Next, a fusion filter that combines both estimations is detailed.
Finally, the quaternion equivalent of the filter, which is the one cur-
rently implemented in the UAV, is briefly explained.

Firstly, let us define the gyroscopes measurements as:

ωB
m = wB

BI + bω + µω , (4.1)
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where wB
BI is the true value of the body frame angular velocity in

relation to the inertial frame expressed in the body frame, bω is the
gyro bias and µω is the measurement noise.

To perform the attitude estimation with the angular veloci-
ties, it is possible to use the rotation kinematics presented in equation
(2.12). Using ωB

m and defining R̂ as the estimation of the rotation
matrix:

˙̂
R

I

B = R̂I
BS(ωB

m − bω) . (4.2)

From the estimation of the rotation matrix it is trivial to extract the
roll, pitch and yaw angles. Defining R̂I

B(i,j) the element from line i,

column j of matrix R̂I
B and analyzing equation (2.6) yields to:

φ = arctan(R̂I
B(2,3)/R̂

I
B(3,3))

θ = arcsin(−R̂I
B(1,3))

ψ = arctan(R̂I
B(1,2)/R̂

I
B(1,1))

. (4.3)

Accelerometers measure the instantaneous acceleration, i.e.,
the difference between the acceleration of the vehicle and the grav-
itational acceleration. Considering a measurement noise µa, the ac-
celerometers measures are:

aB
m = RB

I (v̇ − g) + µa . (4.4)

Usually the gravitational acceleration dominates the measurement, par-
ticularly in our case in which the trajectories accelerations are bounded
to ‖0.5‖m/s2 as stated in chapter 3. Therefore, a common practice is
to disregard v̇ in equation (4.4) (LEISHMAN et al., 2014), which in
practice means we are determining the direction of the gravity vector.
This results in:axay

az

 = RB
I

 0
0
−g

 =

 S(θ)g
−S(φ)C(θ)g
−C(φ)C(θ)g

 . (4.5)

Then, the roll and pitch angles can be estimated using the
linear acceleration measurements as follows:

φ̂a = arctan(
ay
az

) (4.6)
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θ̂a = arcsin(
ax
g

) . (4.7)

The drawback of this estimation lies in its reliability, being only appro-
priate for slow dynamics. Note that the yaw angle ψ does not appear
in equation (4.5). To estimate yaw the magnetometers are used.

Defining the magnetometer measurement as

mB
m = RB

I m
I
e + µm , (4.8)

where mI
e is Earth’s magnetic field and µm the measurement noise.

The magnetometers measurements refer to the body frame
B. These measurements can be rotated backwards with the estimated
roll and pitch angles obtained from accelerometer measures, leaving the
measurements with respect to a frame that is parallel to the inertial
frame except for the yaw angle, as frame T1 in figure 2.2:

mT1
e =

mx

my

mz

 = R(~YT2
,−θ)R( ~XB,−φ)

mmx

mmy

mmz


=

mmxCθ +mmySφSθ −mmzCφSθ
mmyCφ+mmzSφ

mmxSθ −mmySφCθ +mmzCφCθ

 .

(4.9)

From figure 2.2 it can be deduced that:

ψ = arctan(
my

mx
) . (4.10)

Now we have two estimations: one based on the gyroscopes
data, which is suitable for fast movements from the UAV, but based on
an integration, which accumulates error; and one from the accelerome-
ters and magnetometers, which makes use of the assumption that v̇ = 0,
being suitable only for slow dynamics. This is based on absolute mea-
surements, avoiding build up error.
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To combine the two estimation data, the following comple-
mentary filter, developed in (MAHONY et al., 2008), is used:

˙̂
R

I

B = R̂I
BS(ωB

m − b̂Bω +KpΩ(R̃I
B))

˙̂
b = −KIΩ(R̃I

B)

R̃ = R̂B
I R̄

I
Bam

, (4.11)

where b̂ω is the estimation of the gyroscope bias, R̃ is the estimation
error based on the accelerometer and magnetometer estimation, Ω(R̃I

B)
the correction term of the filter, R̄I

Bam is the rotation matrix from
frame B to I that uses the angles found with the estimation of the
accelerometers and magnetometers, and KI , Kp are the filter’s feedback
gains for the closed loop system in figure 4.2.

S(u) 

+
+

-
Kpvex(P (R  u))a

B
I

^

∫

∫-K i

ωB
m

R
B
I

^

b
^

R
_

B
I

Figure 4.2 – Fusion filter structure.

The filter has an internal loop for the estimation of the gy-
roscopes bias. For the correction term, in (MAHONY et al., 2008) an
expression is chosen based on the filter’s Lyapunov stability, in order
to guarantee an exponential stability. The chosen expression is:

vex(Pa(R̃)) , (4.12)



Experimental Results 113

where operator Pa(.) refers to the skew-symmetric projection

Pa(H) =
1

2
(H −H ′)

and vex(.) is the inverse operation of S(.), e.g., vex(S(w)) = w.

As the fusion filter runs in the embedded system, compu-
tational cost is an important factor. Since the estimation algorithm
has several matrix operations and a matrix integration - it has a high
computational cost - its quaternion equivalent form is much more com-
putational efficient. Its development is also based on (MAHONY et al.,
2008).

Defining the set of unit quaternions as Q = {q = (s,v) ∈
R×R3 : ‖q‖ = 1} with the operation

qa ⊗ qb =

[
sasb − v′avb

savb + sbva + va × vb

]
. (4.13)

The rotation kinematics from (2.12) has its quaternion equiv-
alent form as:

q̇ =
1

2
q ⊗ p(w) . (4.14)

The fusion filter (4.11) becomes:

q̇ = 1
2q ⊗ p(ω − b̂+ 2Kps̃ṽ)

b̂ = −2KI s̃ṽ

2s̃ṽ = vex(Pa(R̃))

. (4.15)

The quaternion fusion filter (4.15) has less matrix operations
and only one vector integration, making it more computationally ef-
ficient than (4.11). Therefore, this is the estimation algorithm to be
implemented into the embedded system.

As the controllers use Euler angles parametrization, a trans-
formation from quaternions is required. The transformation also uses
only simple multiplications and still justifies the use of quaternions for
the estimation algorithm. Considering v =

[
v1 v2 v3

]
, the transfor-

mation is:

φ = arctan

(
v2v3 + sv1
1
2 − v

2
1 − v2

2

)
(4.16)



114 Experimental Results

θ = arcsin(−2v1v3 − sv2) (4.17)

ψ = arctan

(
v1v2 + sv3
1
2 − v

2
2 − v2

3

)
. (4.18)

This concludes the estimation of the attitude. Now from
equation (2.16) and the gyroscopes measurements in equation (4.1) the
angular velocity of the UAV is obtained as follows:

˙̂η =


˙̂
φ
˙̂
θ
˙̂
ψ

 = W−1
η ωB

m . (4.19)

4.2.2 Linear position and velocity

The sensors used to estimate the x and y states are the ac-
celerometers. However, the IMU used is of low cost (and quality) and
has a considerable noise that is propagated throughout the estimation.
Also, the estimated attitude developed in section 4.2.1, which would
be used in the position estimation, already has a significant noise on
its own. To estimate the linear position, a double integration of the
acceleration is required, in which the estimation error builds up, pro-
viding an unreliable estimation. Therefore, no estimation of the x and
y states will be made until the localization system is implemented, e.g.,
a GPS or a camera vision system.

On the other hand, the sonar provides an estimation of its
distance to an obstacle and can be used to estimate the aircraft’s height
(z) with respect to the ground. The sonar is fixed to the the UAV’s
structure facing down. In order to obtain an reliable estimation, flight
tests are performed in an open area and constraining the maximum
altitude to two meters.

The sonar’s mounting point in the UAV is at the origin of
the sonar frame S, where the measurements are taken. Note that this
measurement does not give the desired height if the UAV has a roll or
pitch rotation. The desired value is the distance from the body frame
to the ground.

It is assumed that frame S is centered in relation to the ori-
gin of the body frame and that both posses the same frame alignment,
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having only a displacement in the ZB axis of dSB . Therefore a mea-
surement hS =

[
0 0 sm

]′
taken at the sonar frame can be translated

to the body frame with:

hB = hS +

 0
0
dSB

 =

 0
0

sm + dSB

 .

Now expressing hB we obtain:

hI = RI
Bh

B =

(CψSθCφ+ SψSφ)(sm + dSB)
(SψSθCφ− CψSφ)(sm + dSB)

CφCθ(sm + dSB)

 . (4.20)

Only the third element is valid, yielding:

z = CφCθ(sm + dSB) . (4.21)

There is no direct measurement of the vertical linear velocity,
thus an estimation of ż is made by differentiating z with respect to time.

4.2.3 Rotor Angles

The servomotors used can provide a measurement of their
angles. However, they do not have torque control. It is only possible
to control their angular position and speed. Hence, states αR and αL,
even though they are measured, are used as control inputs.

4.3 Tiltrotor Flight Tests

From section 4.2, the available estimated states are:[
z φ θ ψ ż φ̇ θ̇ ψ̇

]′
and the control inputs: [

fR fL αR αL
]′

.
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These are all the variables needed for the controllers developed in sec-
tion 3.4.

For security during experiments, a radio receiver is incorpo-
rated to the aircraft, enabling a human operator to:

• change the φ reference;

• change the θ reference;

• change the z reference;

• enable/disable height control;

• trigger an emergency shutdown (shutdown all actuators).

Since there is no control of the x and y linear positions, the
UAV will drift through out the XY plane. To keep these variables under
a limited space, the human operator uses the φ and θ reference angles.

4.3.1 Backstepping Nonlinear Control for the Height
and Rotational System

The controller from section 3.4.2 was implemented in the de-
velopment board using the C programming language. After some ex-
periments, the controllers gains were iteratively changed to adapt to
the unmodeled dynamics and parametric errors, which became:

Kvz = 3 , Kpz = 4.5
Kvφ = 8 , Kpφ = 80
Kvθ = 5 , Kpθ = 40
Kvψ = 6 , Kpψ = 18

. (4.22)

4.3.2 LQR Control for the Height and Rotational
System

The control developed in section 3.4.1 was also implemented
using the C programming language. The gain matrices Q and R were
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iteratively changed during the flight tests to find a better system re-
sponse, which were set as follows:

R =


1/(3.692) 0 0 0

0 1/(3.692) 0 0
0 0 5/(π2 )2 0
0 0 0 5/(π2 )2

 , (4.23)

and

Q = diag([30/12 30/(π3 )2 30/(π3 )2 8/(π)2

1/12 1/(π2 )2 1/(4π)2 1/(π2 )2]) .
(4.24)

4.3.3 Comparative Experiment Results

The flight tests were performed in a wide area with no obsta-
cles, as shown in figure 4.3. It is important to notice that the protective
dome was not modeled in CAD, which is not incorporated in the pa-
rameters from table 2.1. The only parameter that considers the dome
is the total mass, while the rest are parametric uncertainties.

Figure 4.3 – Tiltrotor during experimental flight test.

As discussed in section 4.3, a human operator can control the
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UAV via a radio controller by changing the roll and pitch reference
angles with the intention to limit the aircraft’s displacement in the XY
plane. The drawback of this procedure is that the human operator acts
as an outer loop controller for the x and y motion. Therefore, a direct
comparison between the controllers cannot be made.

Figures 4.4 to 4.7 present the experimental flight results ob-
tained for the LQR controller. While in flight, the references used were
also recorded and a simulation using them (assuming no disturbances)
was carried out for comparison with the experimental results. Note
that the states do not track the reference, given that there is no inte-
gral action.

Also important to be noticed are the oscillations in the sig-
nals. These come from several different reasons that add up to this
result: mechanical oscillations in the structure caused by the motors;
estimation errors and phase shift caused by the complementary filter
in section 4.2.1; unmodeled dynamics; parameters estimation errors;
and external disturbances. The oscillations however are small in mag-
nitude, except for the pitch angle during takeoff and it shows that the
pitch angle is indeed the most difficult state to control, as it is directly
associated with the servomotors that have a much slower dynamic than
the brushless motors. However, after the initial stabilization, which re-
quires bigger steps from the servomotors and therefore a bigger delay,
the pitch angle behavior is sufficient to achieve a stable flight.

The experiments results while using backstepping control are
illustrated in figures 4.8 to 4.11, where the same effects can be noticed.

Table 4.1 gives the ISE of the flight test performed with the
LQR controller and table 4.2 for the experiments with the backstepping
controller. The height and roll control presented considerable small er-
rors, which was somehow expected due to the fact that they do not
depend heavily on the servomotor response. The yaw angle has a con-
siderate error, which is due to its slower dynamics and because the yaw
has a slightly worse estimation than the roll and pitch angles, due to
magnetic interferences.

As expected, the pitch has the worst performance. Note that
it is the only variable that the LQR has a better response than the
backstepping. Given the sensitivity of the system in the pitch angle,
the fact that the LQR model considers the displacement in the center of
mass was enough to present a superior performance than the nonlinear
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control in this variable.

Simulation Experimental
ISEz 0.0199 0.0480
ISEφ 0.0001 7.6204
ISEθ 0.0003 49.7579
ISEψ 0.0001 14.2409

Table 4.1 – Integral Squared Error for the experimental LQR controller.

Simulation Experimental
ISEz 0.0085 0.0042
ISEφ 0.0001 0.8245
ISEθ 0.0194 81.4082
ISEψ 0.0001 10.2817

Table 4.2 – Integral Squared Error for the experimental nonlinear backstep-
ping controller.
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Figure 4.4 – Tiltrotor flight test height with the LQR control.
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Figure 4.5 – Tiltrotor flight test roll angle with the LQR control.
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Figure 4.6 – Tiltrotor flight test pitch angle with the LQR control.
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Figure 4.7 – Tiltrotor flight test yaw angle with the LQR control.
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Figure 4.8 – Flight test height with the nonlinear backstepping control.
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Figure 4.9 – Flight test roll angle with the nonlinear backstepping control.
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Figure 4.10 – Flight test pitch angle with the nonlinear backstepping con-
trol.
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Figure 4.11 – Flight test yaw with the nonlinear backstepping control.

4.4 Summary

This chapter presented the experimental results obtained in
this work with the ProVANT tiltrotor and the controllers designed
in section 3.4. The states required by the controllers were estimated
through a complementary filter making use of a sonar, gyroscopes, ac-
celerometers, and magnetometers measurements. Both control laws
were able to stabilize the UAV with satisfactory performances.
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Chapter 5

Conclusions

This master thesis tackled the modeling and control of a biro-
tor tiltrotor UAV, aiming at solving the path tracking and hovering
problems. The results presented along the thesis were obtained by
means of simulations and experimental flights.

The initial step addressed the UAV dynamic modeling. Lit-
erature models were expanded in order to consider the tiltrotor as a
multibody system. It results in an eight DOF model, opposed to the lit-
erature’s six DOF model, highly nonlinear and coupled. Furthermore,
the developed model considered several other peculiarities: displace-
ment in the UAV’s center of mass, a fixed tilt angle in the lateral axis,
and the propeller’s air drag effect. Therefore, a complex simulation
environment closer to the real system could be created.

To solve the path tracking problem, five linear optimal con-
trollers were designed:

• A LQR LTI control was chosen for its properties of infinite gain
margin and at least sixty degrees phase margin. The controller
matrices were designed according to Bryson’s law.

• A new LQR control using LMI formulation was later designed to
make the previous controller more robust by including the time
varying elements from the linearized system into its formulation,
as well as an uncertainty to the mass. Lastly the control inputs
saturations were also included into the system in the form of
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LMIs, composing a more robust controller than the LQR LTI.
The controller matrices were arranged so that the cost function
became similar to the one used in the LQR LTI.

• A control that minimizes the H∞ norm was designed in order
to minimize the disturbance effects in the system. It was also
implemented using LMIs considering parametric uncertainties.

• A multi-objectiveH2/H∞ control was developed in order to guar-
antee aH∞ norm lesser than a fixed value, which was chosen close
to the norm value minimized in the pure H∞ controller, while
minimizing the H2 norm. This structure maintains the property
of disturbance attenuation of the H∞ control and improves the
control system performance through the H2 norm minimization.
It was also implemented using LMI formulation.

• Finally, a LQR control for the LTV system was designed . This
control has a high computational cost but it was mainly designed
to be compared with the other designed controllers. Performed
simulation analysis allowed evaluating how much it is lost by ig-
noring the time varying components of the linear model.

Additionally, a well-known backstepping nonlinear controller
(CHOWDHURY et al., 2012) was also implemented for comparison
matters. Some adaptations to the controller equations were made in
order to improve it, as well as a new gain design.

All developed controllers were simulated with the nonlinear
model in the presence of external disturbances and parametric uncer-
tainties, namely a 30% increase in the inertia moments. All controllers
were able to track two proposed trajectories: a circular trajectory and
a trajectory with abrupt changes. LQR LTI and LQR LTV controllers
presented the best performances, but they do not provide the same
robustness of the LMI controllers. The inclusion of uncertainties and
saturations into the LMI controllers design restricts the solution, mean-
ing a trade-off between robustness and performance had to be made.
However, even with such restrictions, the H2/H∞ control showed a
performance close to the LQRs and consequently was considered as the
most suitable controller to be adopted in the UAV.

The nonlinear backstepping control presented a worse per-
formance when compared to the aforementioned designs, specially in



Conclusions 127

relation to the θ(t) state. This is due to the several simplifications
assumed in the controller design.

The thesis also addressed the design of controllers that only
stabilize the height and the rotational system - a simpler problem when
compared to the path track controllers. They were designed to serve as
intermediate solutions, allowing the team to make the first experimental
flights. Such controllers consist of a LQR LTI and an adaptation of the
backstepping nonlinear control. Simulations analysis show a better
response from the LQR control.

The UAV’s attitude was estimated using a complementary
filter to fuse the data from gyroscopes, accelerometers, and magne-
tometers sensors. The filter was based on the work of (MAHONY et
al., 2008) and its quaternion equivalent was implemented in the UAV
embedded system. The quaternion formulation was chosen for its well-
known computational efficiency. In addition, a sonar is also used to
measure the UAV height, so that all information required by the sta-
bilization controllers are available.

Experimental flights performed with ProVANT’s first proto-
type showed that the designed controllers can stabilize the tiltrotor in a
real scenario, which has unmodeled dynamics, mechanical oscillations,
estimation errors, wind gusts, and other disturbances.

The experimental results show a better response from the
backstepping control in relation to the height, roll, and yaw, although
the LQR still has a satisfactory response. The pitch angle however
shows a better performance from the LQR controller. This highlights
how sensitive the pitch angle is in this system, as the simplifications
made for the design of the backstepping controller appear with higher
intensity for this variable.

A drawback from the current UAV prototype comes from the
lack of a positioning system and a servomotor controlled by torque.
These components are required by the tracking controllers developed
in this thesis, making it not possible to make experimental evaluations
of them. However, both a GPS and an adequate servomotor should be
available in a new UAV prototype in the near future.
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5.1 Future Works

This section brings suggestions for future works related to
this thesis. They are:

• Experimental flight tests with the developed path tracking con-
trollers, which will be possible in the near future with ProVANT’s
tiltrotor, after the implementation of the GPS and servomotors
with torque input.

• Design and implement other LTV control strategies like Gain-
schedule controllers for the time-varying linear model developed
in this thesis.

• Include a generic trajectory for the yaw angle instead of a con-
stant value. This includes more time varying parameters in the
linearized system.

• Design nonlinear H2 and H∞ control strategies that take advan-
tage of the decoupling in control inputs.

• Development and implementation of a Kalman filter estimator.
A comparison with the implemented complementary filter can be
made in order to evaluate if the performance gain is worth the
additional complexity.

• The use of a fixed camera system, exterior to the UAV, to perform
an attitude estimation. A better estimation can be achieved with
this system, which can be used as a reference to evaluate and
improve the complementary and Kalman filters.
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gresso Brasileiro de Automática, CBA 2014. Belo Horizonte, Brazil:
SBA, 2014. p. 2097–2104.

BODANESE, J. Infraestrutura de comunicação sem fio para um véıculo
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Appendix A

Mathematical
Definitions

A.1 Skew-Symmetric Matrix

A square matrix S is skew-symmetric (also known as anti-
symmetric matrix) if and only if

S + S′ = 0 (A.1)

A 3-square skew-symmetric matrix S, as a consequence of
A.1, only has three independent elements. Therefore, a skew-symmetric
matrix on R3 can be associated with a vector in R3. Consider the vector
a = (ax, ay, az). The matrix S(a) is then defined as

S(a) =

 0 −az ay
az 0 −ax
−ay ax 0

 , (A.2)

where S(.) is the skew-symmetric matrix operator.

Some useful skew-symmetric matrices properties are (SPONG
et al., 2005):
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1.The operator S(.) is linear, i.e.,

S(αa+ βb) = αS(a) + βS(b) (A.3)

for any vectors a and b belonging to R3 and scalars α and β.

2.For any vector a and p belonging to R3,

S(a)p = a× p (A.4)

3.For R ∈ SO(3) and a ∈ R3

RS(a)R′ = S(Ra) (A.5)

4.For an n× n skew-symmetric matrix S and any vector X ∈ Rn

X ′SX = 0 (A.6)

A.2 Schur’s Complement

Defining x a vector with the system variables,A(x) andC(x)
symmetric matrices, B(x) a matrix that is affine on x, then the Schur
complement of the expression:

A(x)−B(x)C(x)−1B(x)′ > 0 , C(x) > 0 (A.7)

is (BOYD et al., 1994): [
A(x) B(x)′

B(x) C(x)

]
> 0 (A.8)

Equations A.7 and A.8 are equivalent, although only the latter is a
LMI.



Appendix B

Control Design Matrices

B.1 Full Model Linearization Matrices

Matrices originated from the full model linearization in equa-
tion 3.9:

A =

[
08,8 I8

Ã0 + Ã1ẍr(t) + Ã2ÿr(t) + Ã3z̈r(t) 08,8

]
(B.1)

where ẍr(t), ÿr(t) and z̈r(t) are accelerations from the desired system’s
trajectory and

Ã0 =

0 0 0 −1.10E−6 9.81 0.0186 8.398 8.643
0 0 0 −9.782 9.43E−7 0.0236 0.403 −0.416
0 0 0 5.40E−6 3.29E−9 −0.0001.96 −0.0527 −0.0460
0 0 0 −0.0278 −1.16E−5 −0.378 −6.175 6.336
0 0 0 −1.59E−5 −1.15E−6 0.298 56.695 58.505
0 0 0 0.00147 0.000243 0.0196 56.222 −58.105
0 0 0 0.000146 2.26E−5 −0.295 −51.508 −63.405
0 0 0 −0.000110 −1.96E−5 −0.299 −61.295 −53.318


(B.2)
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Ã1 =

0 0 0 −0.00129 −4.40E−5 −0.0374 0.119 −0.119
0 0 0 5.81E−5 −0.00630 0.000302 0.00570 0.00570
0 0 0 0.0192 −0.000314 0.000262 −0.000745 0.000631
0 0 0 −0.000161 0.218 −9.94E−5 −0.0873 −0.0868
0 0 0 −0.115 −0.000117 −0.290 0.802 −0.802
0 0 0 0.00196 −0.0223 0.000425 0.795 0.797
0 0 0 −0.00204 −0.00109 0.289 −0.728 0.870
0 0 0 −0.00204 0.00129 0.289 −0.867 0.731


(B.3)

Ã2 =

0 0 0 −0.101 0.000992 −2.920 9.28419 −9.258
0 0 0 0.000126 −0.490 0.0236 0.445478 0.445
0 0 0 1.499 −0.0246 0.0205 −0.0583 0.0493
0 0 0 −0.0126 17.0315 −0.00794 −6.823 −6.784
0 0 0 −8.962 −0.00912 −22.673 62.676 −62.666
0 0 0 0.1532 −1.744 0.0332 62.151 62.235
0 0 0 −0.160 −0.0854 22.587 −56.943 67.915
0 0 0 −0.160 0.101 22.587 −67.762 57.111


(B.4)

Ã3 =

0 0 0 −1.13E−7 1. 0.00190 0.856 0.881
0 0 0 −0.997 9.62E−8 0.00240 0.0411 −0.0424
0 0 0 5.506E−7 3.36E−10 −2.00E−5 −0.00537 −0.00469
0 0 0 −0.00284 −1.19E−6 −0.0386 −0.629462 0.646
0 0 0 −1.62E−6 −1.17E−7 0.0304 5.77927 5.964
0 0 0 0.000150 2.48E−5 0.00200 5.73109 −5.923
0 0 0 1.49E−5 2.30E−6 −0.0301 −5.25059 −6.463
0 0 0 −1.12E−5 −2.00E−6 −0.0304 −6.248 −5.435


(B.5)

and
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Bu =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0.00127429 −0.00123498 −5.6786 −5.67949
0.0830988 −0.0805351 0.00713195 −0.0114203
0.580813 0.580776 0.082228 0.0821831
−0.501012 0.485556 −0.0774871 0.151265
0.008452 −0.00819125 −90.9316 −90.931
0.505526 −0.48993 2.55582 −2.22173
0.0362134 −0.0350962 24504.9 90.3778
−0.0516691 0.0500751 90.3778 24504.8


(B.6)
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B.2 Height and Rotational System Model
Linearization Matrices

Matrices originated from the height and rotational system
linearization in equation 3.103:

Ã =

0 0 0 −1.10E−6 9.81 0.0186 8.398 8.643
0 0 0 −9.782 9.43E−7 0.0236 0.403 −0.416
0 0 0 5.40E−6 3.29E−9 −0.0001.96 −0.0527 −0.0460
0 0 0 −0.0278 −1.16E−5 −0.378 −6.175 6.336
0 0 0 −1.59E−5 −1.15E−6 0.298 56.695 58.505
0 0 0 0.00147 0.000243 0.0196 56.222 −58.105
0 0 0 0.000146 2.26E−5 −0.295 −51.508 −63.405
0 0 0 −0.000110 −1.96E−5 −0.299 −61.295 −53.318


(B.7)

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0.00127429 −0.00123498 −5.6786 −5.67949
0.0830988 −0.0805351 0.00713195 −0.0114203
0.580813 0.580776 0.082228 0.0821831
−0.501012 0.485556 −0.0774871 0.151265
0.008452 −0.00819125 −90.9316 −90.931
0.505526 −0.48993 2.55582 −2.22173
0.0362134 −0.0350962 24504.9 90.3778
−0.0516691 0.0500751 90.3778 24504.8



(B.8)

.
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B.3 Full Model Gain Matrices

The gain matrices are all size 4 × 20, but their transpose is
used here to better fit the pages.

K′
lqrLTI =



0.0718 −0.0139 3.3470 3.3743
34.4361 −34.2234 −0.0538 0.0446
29.7587 29.7846 −0.0020 −0.0018
−24.7622 24.6379 0.0673 −0.0596

0.0601 0.0121 2.5699 2.5877
0.1271 −0.1259 1.1877 −1.1816
0.1219 −0.1257 2.1931 0.2497
−0.1182 0.1129 0.2496 2.1982
0.0321 −0.0026 1.4634 1.4757
14.7479 −14.6611 −0.0277 0.0235
10.2394 10.2510 −0.0005 −0.0005
−1.6177 1.6149 0.0088 −0.0083
0.0051 0.0047 0.1666 0.1662
0.0092 −0.0089 0.2449 −0.2453
0.0001 −0.0001 0.0660 0.0011
−0.0001 0.0000 0.0011 0.0660
0.0668 −0.0177 3.1504 3.1741
32.8750 −32.6662 −0.0448 0.0364
32.7622 32.7841 −0.0025 −0.0023
0.3279 −0.3240 2.4584 −2.4401



(B.9)

K′
lqrLMI =



0.0004 −0.0016 −1.8218 −1.8374
−6.3183 6.2684 −0.1988 0.1967
−8.1806 −8.1998 −0.0002 −0.0004
6.7552 −6.7126 0.1310 −0.1296
−0.0074 −0.0104 −0.9705 −0.9770
0.1744 −0.1733 −0.5441 0.5435
−0.0071 0.0071 −0.5877 −0.0629
0.0070 −0.0069 −0.0629 −0.5888
−0.0008 −0.0017 −0.6499 −0.6556
−2.9325 2.9106 −0.0784 0.0776
−3.8020 −3.8110 −0.0001 −0.0002
0.8150 −0.8130 0.0072 −0.0071
−0.0028 −0.0034 −0.0292 −0.0288
0.0407 −0.0405 −0.0807 0.0809
−0.0000 0.0000 −0.0105 −0.0004
0.0000 −0.0000 −0.0004 −0.0105
0.0013 −0.0008 −2.0815 −2.0985
−6.0685 6.0197 −0.2127 0.2103
−7.6443 −7.6620 −0.0001 −0.0003
0.3876 −0.3853 −1.2616 1.2517



(B.10)
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K′
H∞ =



0.1434 0.1412 −2.3532 −2.3972
−3.6315 3.5925 −0.2632 0.2648
−7.6052 −7.6679 −0.0463 −0.0681
5.7293 −5.6698 0.2223 −0.2315
−0.1215 −0.1289 −1.8360 −1.8632
0.1786 −0.1677 −0.4719 0.4716
−0.0002 0.0010 −0.7521 −0.3173
0.0006 −0.0005 −0.3171 −0.7575
0.0921 0.0910 −1.0007 −1.0188
−2.0553 2.0343 −0.1290 0.1308
−3.7489 −3.7816 −0.0109 −0.0206
0.8551 −0.8456 0.0874 −0.0886
−0.0207 −0.0214 −0.0767 −0.0762
0.0469 −0.0458 −0.0635 0.0644
−0.0001 −0.0001 −0.0109 −0.0029
−0.0001 −0.0001 −0.0029 −0.0110
0.0677 0.0653 −2.4055 −2.4522
−3.1859 3.1591 −0.1925 0.1932
−6.9750 −7.0328 −0.0610 −0.0824
0.3820 −0.4301 −0.9848 0.9637



(B.11)

K′
H2/H∞ =



−0.0489 0.0240 −2.7941 −2.8124
−28.3236 28.1778 0.0447 −0.0363
−20.6820 −20.7241 0.0039 0.0038
20.8514 −20.7580 −0.0606 0.0539
−0.0456 −0.0047 −2.2092 −2.2216
−0.1493 0.1483 −1.1367 1.1282
−0.1252 0.1317 −2.1188 −0.2613
0.1242 −0.1161 −0.2611 −2.1229
−0.0238 0.0073 −1.2816 −1.2895
−12.7384 12.6689 0.0234 −0.0196
−8.9009 −8.9148 0.0009 0.0008
1.6151 −1.6111 −0.0085 0.0081
−0.0045 −0.0038 −0.1711 −0.1710
−0.0150 0.0148 −0.2360 0.2362
−0.0000 0.0000 −0.0639 −0.0027
0.0000 0.0000 −0.0027 −0.0640
−0.0657 0.0197 −3.0640 −3.0837
−31.6306 31.4571 0.0421 −0.0328
−26.5708 −26.6168 0.0076 0.0074
−0.3367 0.3326 −2.3283 2.3125



(B.12)
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B.4 Height and Rotational Model Gain Ma-
trices

The gain matrices are all size 4 × 8, but their transpose is
used here to better fit the pages.

K′
lqrHR =



10.4152 10.4135 −0.0011 −0.0011
−8.0797 8.0197 −0.0145 0.0207
0.0487 −0.0242 1.4149 1.4861
−0.0339 0.0337 1.5933 −1.5692
4.8247 4.8265 −0.0003 −0.0002
−1.4454 1.4396 0.0014 −0.0002
0.0049 0.0029 0.5311 0.5279
−0.0258 0.0257 0.3921 −0.3897


(B.13)

B.5 Simulation Trajectory

The trajectory T = (xR(t), yR(t), zR(t), ψR(t)) chosen for the
simulations of the controllers in chapter 3 is:

•t < 10s

? xr(t) = 0.8t

? yr(t) = 0.4 ∗ (cos(π6 t)− 1)

? zr(t) = 0.6 ∗ t

•10s < t < 20s

? xr(t) = 8− 0.3(t− 10)

? yr(t) = 0.4 ∗ (cos(π6 t)− 1)

? zr(t) = 0.6 ∗ t

•20s < t < 30s

? xr(t) = 5 + 0.7(t− 20)− 0.09(t− 20)2

? yr(t) = 0.4 ∗ cos(π6 t)
? zr(t) = 12 + sin(0.2π(t− 20))
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•30s < t < 40s

? xr(t) = 11.19 + 0.5sin(0.2π(t− 30))

? yr(t) = −0.4 + 0.5 ∗ (t− 30)

? zr(t) = 12 + sin(0.2π(t− 20))

•40s < t < 50s

? xr(t) = 11.19 + 0.5sin(0.2π(t− 30))

? yr(t) = 4.6 + 0.7 ∗ (t− 40)− 0.035(t− 40)2

? zr(t) = 12 + sin(0.2 ∗ pi(t− 20))

•t > 50s

? xr(t) = 11.19 + 0.5sin(0.2π(t− 30))

? yr(t) = 4.6 + 0.7 ∗ (t− 40)− 0.035(t− 40)2

? zr(t) = 12− 0.85 ∗ (t− 50)− 0.2 ∗ (t− 50)2

B.6 Equilibrium Point Equations

This section expands the expression B(q̄)u(t) − G(q̄) = 0
found in equation (3.4), with ū(t) =

[
f̄R f̄L τ̄sR τ̄sL

]
, using equa-

tions (2.6), (2.16), (3.97), (2.61) and (2.65). It yields the following eight
independent equations:

Cψ̄Cθ̄(S(ᾱR)f̄R + S(ᾱL)f̄L) + Sψ̄Cθ̄(C(ᾱR)S(β)f̄R − C(ᾱL)S(β)f̄L)

− Sθ̄(C(ᾱR)C(β)f̄R + C(ᾱL)C(β)f̄L) = 0

(B.14)

(Cψ̄Sθ̄Sφ̄− Sψ̄Cφ̄)(S(ᾱR)f̄R + S(ᾱL)f̄L) + (Sψ̄Sθ̄Sφ̄+ Cψ̄Cφ̄)(C(ᾱR)

S(β)f̄R − C(ᾱL)S(β)f̄L) + Cθ̄Sφ̄(C(ᾱR)C(β)f̄R + C(ᾱL)C(β)f̄L) = 0

(B.15)

(Cψ̄Sθ̄Cφ̄+ Sψ̄Sφ̄)(S(ᾱR)f̄R + S(ᾱL)f̄L) + (Sψ̄Sθ̄Cφ̄− Cψ̄Sφ̄)(C(ᾱR)

S(β)f̄R − C(ᾱL)S(β)f̄L) + Cθ̄Cφ̄(C(ᾱR)C(β)f̄R + C(ᾱL)C(β)f̄L) = 0

(B.16)
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− C(ᾱR)C(β)S(λ)l
′
− kτ

b
S(ᾱR)f̄R + C(ᾱL)C(β)S(λ)l

′
+
kτ
b
S(ᾱL)f̄L

+ S(φ̄)T (θ̄)(S(ᾱR)dz +
kτ
b
S(β)C(ᾱR)f̄R + S(ᾱL)dz −

kτ
b
S(β)

C(ᾱL)f̄L) + C(φ̄)T (θ̄)(S(ᾱR)l +
kτ
b
C(β)C(ᾱR)f̄R − S(ᾱL)l

− kτ
b
C(β)C(ᾱL)f̄L) = 0

(B.17)

C(φ̄)(S(ᾱR)dz +
kτ
b
S(β)C(ᾱR)f̄R + S(ᾱL)dz −

kτ
b
S(β)C(ᾱL)f̄L)

− S(φ̄)(S(ᾱR)l +
kτ
b
C(β)C(ᾱR)f̄R − S(ᾱL)l − kτ

b
C(β)C(ᾱL)f̄L) = 0

(B.18)

S(φ̄)

C(θ̄)
(S(ᾱR)dz +

kτ
b
S(β)C(ᾱR)f̄R + S(ᾱL)dz −

kτ
b
S(β)C(ᾱL)f̄L)

C(φ̄)

C(θ̄)
(S(ᾱR)l +

kτ
b
C(β)C(ᾱR)f̄R − S(ᾱL)l − kτ

b
C(β)C(ᾱL)f̄L) = 0

(B.19)

τ̄sR = 0 (B.20)

τ̄sL = 0 (B.21)


