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Non-Newtonian channel fow – exact solutions 

P. T. Griffths1 

paul.griffths@coventry.ac.uk 

1Centre for Fluid and Complex Systems, Coventry University, CV1 5FB 

Abstract 

In this short communication exact solutions are obtained for a range of non-Newtonian fows between 
stationary parallel plates. The pressure driven fow of fuids with a variational viscosity that adheres to the 
Carreau governing relationship are considered. Solutions are obtained for both shear-thinning (viscosity 
decreasing with increasing shear-rate) and shear-thickening (viscosity increasing with increasing shear-rate) 
fows. A discussion is presented regarding the requirements for such analytical solutions to exist. The 
dependence of the fow rate on the channel half width and the governing non-Newtonian parameters is also 
considered. Non-Newtonian; Exact Solutions; Plane Poiseuille Flow 

1 Introduction 

It is not unreasonable to assume that any introductory undergraduate course in fuid mechanics will consider 
the problem of plane Poiseuille fow. The steady, incompressible, two-dimensional, pressure driven, viscous 
fow between parallel plates is often the frst problem that students will encounter. The simplicity of the fow 
regime allows one to derive an analytical expression for the unidirectional fow using only a basic understand-
ing of integration techniques and the no-slip boundary condition. This simple problem can then be extended 
to consider a variety of more sophisticated fow confgurations. The problem can also be extended to consider 
non-normal fuids, those being fuids that are not necessarily incompressible or Newtonian in nature. However, 
in these cases, one often fnds that what was previously a very simple problem quickly becomes too complex to 
solve via analytical means and instead numerical solutions methods must be employed. There are, of course, 
exceptions to this rule. For instance, if one considers the fow of a non-Newtonian fuid with viscosity gov-
erned by the power-law relationship, in Cartesian coordinates x and y, it is not too onerous to show that the 
velocity distribution between two parallel plates located at y = −h, and y = h, is given by 

n 
u(y) = 

n + 1 

���� G 
m 

���� 1/n 

[h(n+1)/n − |y|(n+1)/n], 

where u is the streamwise velocity, n is the power-law index, the pressure gradient is G = −dp/dx and m is 
the consistency coeffcient. The classical Newtonian solution u(y) = G(h2 − y2)/2µc, is returned in the case 
when n = 1 and m = µc = constant. As is always the case with problems involving the power-law viscosity 
relationship the model breaks down when the shear-rate is notionally equal to zero. In this example the 
breakdown occurs at the point when y = 0, at this point, according to this model, the fuid viscosity is either 
infnitely large (shear-thinning fows) or vanishingly small (shear-thickening fows). These results invalidate 
the use of the power-law model for generalised Newtonian channel fow. It is, however, worth noting that this 
solution can be used in scenarios when the shear-rate is regulated within the channel. A good example of this 
would be the plane Poiseuille fow of a visco-plastic Herschel-Bulkley fuid. In regions where the shear-rate 
is above some prescribed limit the power-law solution is valid and can be used to describe the shear-thinning 
(or shear-thickening) properties of the fuid alongside its yielding properties. 
The Carreau viscosity model (Carreau, 1972) does not suffer from the same shortcomings as the power-law 
model and is able to accurately describe the fow of both shear-thinning and shear-thickening fuids for all 
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shear rates (Lashgari et al., 2012). As noted by Nouar & Frigaard (2009), when considering this model, explicit 
solutions for the velocity profle within a channel formed by parallel plates exist only in a number of limited 
cases. The focus of this article will be on the instances when these analytical solutions do exist and the form 
that these solutions take. 
There are a limited number of instances when analytical solutions exist to non-Newtonian fow problems. 
Because of this, the literature concerning these types of problems is somewhat limited. Ferrás et al. (2012) 
obtain analytical solutions to Couette–Poiseuille fow problems for a range of generalised Newtonian fuids 
whilst considering the addition of wall slip. Solutions are obtained for fuids with viscosity adhering to the 
power-law, Sisko, Herschel-Bulkley and Robertson-Stiff models for a variety of different slip-laws. The authors 
fnd that analytic and semi-analytic solutions can be obtained for a variety of different slip models for both 
Newtonian and non-Newtonian fows. They also note that exact solutions to the Sisko fuid problem are only 
realisable for certain values of the fuid index. Oliveira & Pinho (1999) have demonstrated that analytical 
solutions are achievable for fully developed channel and pipe fows for visco-elastic fuids modelled by either 
the linear or exponential forms of the Phan-Thien–Tanner (PTT) constitutive viscosity law. Their solutions 
reveal that the wall shear stress of a PTT fuid is substantially smaller than the corresponding value for a 
Newtonian or upperconvected Maxwell fuid. Fetecau et al. (2009) utilise the concept of fractional calculus 
and Fourier and Laplace transforms in order to determine analytical solutions for the the fow of Oldroyd-B 
fuids induced by a constantly accelerating plate, providing a rare example of exact, unsteady solutions to a 
visco-elastic fow problem. A similar methodology is also presented by Jamil & Fetecau (2010) to obtain exact 
solutions to rotating generalised Burgers’ fow problems in cylindrical domains. It is interesting to note that 
the literature regarding exact solutions to non-Newtonian fow problems appears to be largely dominated by 
the fow of visco-elastic fuids. One study of note that considers the Carreau fuid model is that of Peralta 
et al. (2017). The authors consider analytical solutions to the problem of the free-draining fow of a Carreau 
fuid on a vertical plate. They obtain expressions for the volumetric fow rate, per unit width, in terms of 
Gauss’ hypergeometric function. As is highlighted in §3 of this study, volumetric fow rates, per unit depth, 
for specifc values of the fuid index, are also expressed in terms of this power series function. 
This article is organised as follows; in the next section the problem is formulated in a manner that makes it 
amenable to analytical study. In §3 results are presented for a range of shear-thinning and shear-thickening 
fuid indices. These results are obtained via a number of different hyperbolic transformations that serve to 
signifcantly simplify the process of integrating the shear-rate function. In the fnal section the results are 
briefy discussed as are extensions to the framework introduced here. 

2 Formulation 

Consider the incompressible, two-dimensional fow of a non-Newtonian fuid between two stationary parallel 
plates located at y = −h, and y = +h. The fow is driven by the pressure gradient G = −dp/dx. 
The velocity distribution between the plates is determined from the following governing equation 

∂τxx ∂τxy −G = + . (1)
∂x ∂y 

The stress tensor τ, is defned like so 

τ = µ(γ̇)γ̇, 

where γ̇ = ru + (ru)T is the rate of strain tensor. Its magnitude, the shear-rate, is determined from the p
second invariant of the rate of strain tensor, γ̇ = γ̇ : γ̇/2. The non-Newtonian viscosity function, µ(γ̇), that 
will be considered herein, is a function of the shear-rate only. 
Given the relative simplicity of this problem (1) can be reduced to the following ordinary differential equation � � 

d du −G = µ(γ̇) . (2)
dy dy 
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Figure 1: Plot of a against n for a range of shear-thinning indices. 

The above is solved subject to the following conditions 

γ̇(y = 0) = u(y = +h) = 0. (3) 

Given the symmetric nature of the problem, these conditions ensure that the criterion of no-slip at the lower 
boundary is satisfed; u(y = −h) = 0. For this problem the shear-rate, γ̇, is identically equal to the absolute 
value of the velocity gradient, γ̇ ≡ |du/dy|. 
The viscosity model that will be considered herein is the Carreau fuid model (Carreau, 1972). In this case the 
viscosity function takes the form 

γ)2](n−1)/2µ(γ̇) = µ∞ + (µ0 − µ∞)[1 + (λ ˙ , (4) 

where µ∞ is the infnite shear-rate viscosity, µ0 is the zero shear-rate viscosity, λ is the characteristic time 
constant and n is the fuid index. A Newtonian viscosity is recovered when either n = 1, λ = 0, or µ∞ = µ0. 
The fuid is said to be shear-thinning when n < 1, and is shear-thickening when n > 1. Irrespective of 
the values of n or λ, a Newtonian viscosity is always recovered at zero shear-rate. It will be instructive, in 
what follows, to consider the behaviour of this model for both shear-thinning (n < 1) and shear-thickening 
(n > 1) fows in the limit as γ̇ → ∞. In shear-thinning cases a constant viscosity (µ∞) is recovered in the 
limit of large shear-rate. However, the behaviour at infnity is altered for shear-thickening fows, one fnds 
that µ(γ̇ → ∞) → (µ0 − µ∞)(λγ̇)n−1. Therefore, in order to be able to predict a viscosity increase with 
increasing shear-rate it is a necessary requirement of the Carreau fuid model, even for shear-thickening fows, 
that µ0 > µ∞. 
It should be noted that the benchmark Newtonian solution is u(y) = G(h2 − y2)/2µc. It is also worth noting, 
given the analysis in the forthcoming section, that the volumetric fow rate, per unit depth, for fows of this 
nature, is defned in the following manner Z +h 

Q = u(y) dy. 
−h 

Given the above, then Q = 2h3G/3µc, in the Newtonian limit. This result will prove useful as a point of 
reference in §3. 

3 Results 

In the following section solutions of (2) subject to (3) are obtained for a range of both shear-thinning and 
shear-thickening values of the fuid index. These two cases are considered in turn. In both cases it transpires 
that hyperbolic transformations prove useful when integrating the shear-rate function to arrive at closed-form 
solutions for the variation of fuid velocity within the channel. 
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3.1 Shear-thinning fows 

In reality, for many shear-thinning fuids, the infnite shear-rate viscosity is much smaller than the zero shear-
rate viscosity (Bird et al., 1977). Given that µ∞ � µ0, the variation of viscosity across the channel can be 
approximated like so 

γ)2](n−3)/2µ̂(γ̇) = µ0[1 + n(λγ̇)2][1 + (λ ˙ . (5) 

This expression can be used to simplify (2) in the following manner 

d2u G 
. (6)

dy2 = 
µ̂

Integrating (6) and applying the shear-rate condition one then has that 

γ)2](n−1)/2 du G|y|−Gy = µ0[1 + (λ ˙ ⇐⇒ γ̇ = . 
γ)2](n−1)/2dy µ0[1 + (λ ˙

Given that the fuid index will always be less than unity, the right-hand side of the above can be rewritten in 
the following manner 

(µ0γ̇)a/3 = (G|y|)a/3[1 + (λγ̇)2], 

where a = 6/(1− n). It is therefore possible to determine polynomial expressions for the shear-rate in the 
cases when a ∈ N. Analytical expressions for the streamwise velocity can only exist in the cases when this 
condition holds. There are a range of shear-thinning fuid indices that ensure that the constant a is indeed a 
positive integer, a selection of these are highlighted graphically in Figure 1. In addition to this condition, a 
full parameter search reveals that for shear-thinning fows analytical solutions for the shear-rate function are 
obtainable for the six cases highlighted in Figure 1, those being a = 6, 8, 9, 12, 18, and 24. 
Although it is non-physical in nature, the simplest case to consider is the case when a = 6, which is equivalent 
to a fow with zero fuid index. In this case it is trivial to show that the shear-rate is given by 

G|y|
γ̇(y) = 

[µ2
0 − (λGy)2]1/2

. 

Therefore the solution for u that satisfes the no-slip condition is determined to be 

2
0 − (λGy)2]1/2 − [µ2

0 − (λGh)2]1/2 [µ
u(y) = . (7)

λ2G 

In the case when n = 0, the expression for the variation of the viscosity across the channel has a simple form, 
−2 2µ̂(y) = µ0 [µ0 − (λGy)2]3/2. A zero wall viscosity is predicted in the case when µ0 = λGh, therefore, for this 

case only, real solutions are obtained only in the instances when 0 < λ < µ0/(Gh). One also fnds that a 
simple expression for the volumetric fow rate can be inferred from the above 

Z 2 2
0 − (λGh)2]1/2 +h µ0 arcsin(λGh/µ0) − (λGh)[µ

Q = u(y) dy = . 
λ3G2−h 

As is to be expected in the limit as λ → 0, the Newtonian solution for Q is recovered. 
The cases when a = 8 and a = 24, which are equivalent to fows with fuid index equal to one-quarter and 
three-quarters, respectively, will be considered together towards the end of this subsection. In both instances 
an expression for the shear-rate can be obtained from the a modifed quartic equation. Because of the similarity 
between the two cases it is logical to address them in a generic fashion. The next case to consider is then the 
case when a = 9, which is equivalent to a fow with fuid index equal to one-third. A real solution for the 
shear-rate is obtained from a cubic equation, giving � � 

G|y| (λGy)4 
+γ̇(y) = (λGy)2 + (p )2 + ,y +3µ3 (py )2 

0 
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where 
√� ±3 3µ3

0 + [27µ6
0 + 4(λGk)6]1/2 �1/3 

p± = .k 2 

An expression for the variation of viscosity across the channel can then be directly inferred from (5). The 
solution for u is obtained from the sum of the following integrals 

Z 4 
I1 = − y3 dy = − + c1, 

λ2G3 λ2G3y
3µ3 12µ3 

0 0 
G 

Z 
+I2 = − 3 y(py )

2 dy,
3µ0 

λ4G5 Z 5yI3 = − 3 + dy. 
3µ (py )2 

0 

The integrals I2 and I3 can be computed via the following hyperbolic transformation � √ �1/3 
µ0 3 3 sinh(z)

y = . 
λG 2 

Resulting in the following 

Z 
I2 = − √µ0 

[sinh(z)]−1/3 cosh(z)[1 + cosh(z)]2/3 dz 
2 3 2λ2G 

3µ0[sinh(z)]2/3[3 + cosh(z)][1 + cosh(z)]−1/3 
= − √

3
+ c2,

8 2λ2GZ 
µ0√I3 = − 

3
sinh(z) cosh(z)[1 + cosh(z)]−2/3 dz 

2 2λ2G 

3µ0[3− cosh(z)][1 + cosh(z)]1/3 
= + √ + c3. 

8 3 2λ2G 

Inverting the transformation gives 

Gφ+ 2 Gφ− p+yy y yI2 = − + c2, I3 = + + c3,3 + 324µ0py 24µ0λ2 

√ 
3 6

0 + 4(λGk)6]1/2where φ± = 9 3µ0 ± [27µ . The constants ci, are determined such that the solution for uk 
satisfes the condition of no-slip at the walls. The solution for u is then determined to be � � 

φ+ 2 p+ − φ− +G φ+h2 
y y (φy 

− 
y h ph )hu(y) = 2(λG)2(h4 − y4) + − + . (8)+ +24µ3 p p (λG)2 

0 h y 

Solutions for a range of non-zero λ values are overleaf in Figure 2. There is a special case to consider when √ √ √ 
λ = 6 2 3µ0/(Gh). In this case φ− = 0, and φ+ = 18 3, resulting in a considerably simplifed expression for h h 
the fuid velocity 

√ √ √ √ 
3 � � 

2Gh2 3 (3− 1 + 8Y6)(1 + 1 + 8Y6)2/3 − 2Y2(3 + 1 + 8Y6)
u(Y) = √ + 1− Y4 + √ ,

1 + 8Y6)1/3 4µ0
3 4 4(1 + 

where Y = y/h. 
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Figure 2: Plots of the analytical solutions for the variation of velocity (a) and viscosity (b) across the channel for 
fows with n = 1/3, for a range of dimensional λ values. A plot of the variation of viscosity with shear-rate (c) 
has also been included, where γ̇max = u0(−h) = u0(+h). In this case the channel half width, pressure gradient 
and zero shear-rate viscosity have all been set equal to 1. 

Somewhat surprisingly, given the relative complexity of the generalised solution for u (8), an analytical solu-
tion for Q is obtainable 

� � 
+hZ hG φh 

+h2 φh 
− p+ 

h G(λG)2h5 
Q = u(y) dy = 2(λG)2h4 + − −3 + 3−h 12µ p (λG)2 30µ0 h 0√ √

3 Z α 
� �1/3 2 3µ2 1 + cosh(z)

+ 0 cosh(z)[3− cosh(z)] dz
8λ3G2 0 sinh2(z)
√ √ �3 2 Z α 

�1/3 2 3µ 1 − 0 cosh(z)[3 + cosh(z)] dz
8λ3G2 0 1 + cosh(z) 

√ � � − �3 �√2G(λG)2h5 3 πµ0
2 Γ( 6

1 ) Gh3 ph= 3 + + − 2 − 3 3− R(N2)15µ 20λ3G2 Γ( 2 15p0 3 ) h µ0 � � �3 � 
Gh3 p+ √ 

+ 2 h + 3 3− R(N6) .+15ph µ0 

√ √ 
Where the upper limit of the integrals is given by α = arcsinh{[ 3 2λGh/( 3µ0)]3}, and � √ �−j/12 � � �3�3 6

0 + 4(λGh)6]1/2 +3 3µ0 − [27µ 1 j + 3 j + 1 p
Nj = √ 2F1 , ; ; √ h .

3162 3µ j 3j j
0 3µ0 

Here 2F1(a, b; c; x) is Gauss’ hypergeometric function as defned by Abramowitz & Stegun (1972). Thus, in this 
case, Q = O(h5), with correction terms obtained from the evaluation of the hyperbolic integrals. Of note is the 
lone term involving the gamma function. It does not depend on the channel half width and for fows in thin 
channels with moderate values of the characteristic time constants this term dominates. It appears from the 
evaluation of the frst hyperbolic integral at the lower limit when z = 0. At frst sight this term may appear to 
be non-physical in nature, predicting a non-zero fow rate in the limit as h → 0. However, as the channel half 
width vanishes the contribution from the integrals reduces to zero and Q → 0, as h → 0, as required. It should √ √ 
be noted that one need only take the real part of the function Nj for the cases when λ > 6 2 3µ0/(Gh). 
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The analysis of the case when a = 12 (n = 1/2) is somewhat simpler than its predecessor. The expression for 
the shear-rate is determined to be � 4 �1/2 G|y| (λGy)2 + [4µ0 + (λGy)4]1/2 

γ̇(y) = 2 . 
µ0 2 

As before, the solution for u is then obtained from the integral of the velocity gradient, this calculation can be p
simplifed via a slightly different hyperbolic transformation y = µ0 2 sinh(z)/(λG). One then fnds that 

Z Z qdu µ0J = dy = − cosh(z) sinh(z) + cosh(z) dz
dy λ2G p

2µ0[2 sinh(z) − cosh(z)] sinh(z) + cosh(z) 
= − + c.

3λ2G 

Inverting the transformation gives the following 

)1/2 [(λGy)2 + χ−](χ+ 
y yJ = − √ + c,

23 2µ0λ2G 

4where χ± = (λGk)2 ± [4µ0 + (λGk)4]1/2. Once again the constant c is determined such that the solution for uk 
that satisfes the no-slip condition 

h )
1/2 − [(λGy)2 + χ− )1/2 [(λGh)2 + χ− ](χ+ 

h ](χ
+ 

y yu(y) = √ 
2 

. (9)
3 2µ0λ2G 

√ √ 
This solution is considerably simplifed when λ = 2µ0/( 4 3Gh). In this case, (λGh)2 + χ− = 0, therefore h 

√ √ 
3 + Y4)1/2 Gh2( 3 + Y4 − 2Y2)(Y2 + 

u(Y) = √ . 
3 4 3µ0 

The calculation for the volumetric fow rate is again simplifed when compared to the case when a = 9, 
resulting in the following 

Z +h
h )

1/2 2h[(λGh)2 + χ− 
h ](χ

+ 

Q = u(y) dy = √ 
2−h 3 2µ0λ2G 

√ �2 Z �1/2 β2 2µ sinh(z) + cosh(z)− 0 cosh(z)[2 sinh(z) − cosh(z)] dz
3λ3G2 0 sinh(z) p 41 

� 
κ[2µ h ] 

� 
0 − (λGh)2χ+ 

2 = µ0 ln(κ + 1 + κ2) − √ .
2λ3G2 4 

h ]
1/2 2[2µ0 + (λGh)2χ+ 

√ 
Where the upper limit of the integral is given by β = arcsinh{[λGh/( 2µ0)]2}, and � �1/2 χ+λGh hκ = . 

µ2 20 

In this case the correction term is logarithmic, and Q = O(h4). Unlike the previous case when n = 1/3, all 
terms are dependent on the channel half width h. 
The next shear-thinning case to consider is the case when a = 18, which is equivalent to a fow with fuid index 
equal to two-thirds. By writing δ̇ = γ̇2, it is possible to solve a cubic equation for δ̇ from which an expression 
for γ̇ can be inferred. A real solution for the shear-rate is then determined to be � �1/2 

˙ qG|y| (λGy)2 
γ(y) = R qy + , 

4 6 qy3µ0 
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where 
√� 

3 3µ3
0 + [27µ6

0 − 4(λGk)6]1/2 �1/3 

qk = .
2 

It should be noted that one need only take the real part of the expression for the shear-rate for the cases when √ √ 
λ > 3µ0/( 3 2Gh). As before the solution for u is obtained from the integral of the velocity gradient, this 
calculation can be simplifed via yet another hyperbolic transformation � √ �1/3 

µ0 3 3 sech(3z)
y = . 

λG 2 

One then fnds that 

pZ du 3µ0 
Z sinh(3z) cosh(z)K = dy = √ dz

3 [cosh(3z)]11/6 dy 2λ2G p
3µ0 [2 cosh(2z) − 3] cosh(z) 

= √ + c. 
5 3 2λ2G [cosh(3z)]5/6 

Inverting the transformation gives the following p
ψy[ψ2 − 5(λGy)2]yK = q + c, 

5 4 3µ0
6λ2G 

where � 
(λGk)2 � 

ψk = R qk + . 
qk 

Therefore the solution for u that satisfes the no-slip boundary condition is determined to be p √ 
ψy[ψ2 − 5(λGy)2] − ψh[ψh 

2 − 5(λGh)2]yu(y) = q (10) 
5 4 3µ0

6λ2G 
√ √ 

As noted previously there is special case to consider when λ = 3µ0/( 3 2Gh). In this case ψh = 2λGh. The 
expression for u can therefore be considerably simplifed 

√ √ √ 
Gh2 �√ [(1 + 1− Y6)4/3 + Y4 − 3Y2(1 + 1− Y6)2/3][(1 + 1− Y6)2/3 + Y2]1/2 � 

u(Y) = √ 2 + √ . 
1− Y6)5/6 5 6 2µ0 (1 + 

Given the form of (10) it is again possible to determine an analytical expression for the volumetric fow rate 
per unit depth, this calculation is a little more involved than its predecessors and is outlined below 

√ 
ψh[ψ

2Z +h 2h h − 5(λGh)2]
Q = u(y) dy = − q

−h 4 65 3µ0λ2G 
√ √ p
3 2 Z ∞3 2 3µ sinh(3z)[2 cosh(2z) − 3] cosh(z)0+ 
5λ3G2 [cosh(3z)]13/6 dz 

γ 
√ � �6h ψh 27µ ψh 

2 + (λGh)2 
0= q − 2[ψh 

2 − 5(λGh)2] 
4 6 (λGhψh)2 [ψh 

2 − 3(λGh)2]7 3µ0λ2G 

3 �4/3 9
√ 

3µ2 � 
0 ψh+ ζ ,

56λ3G2 λGh 
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where � � �3� 
1 2 λGh 

γ = arcsech √ ,
3 3 3 µ0 

and � � � �2�� � � � �2�� √1 2 5 1 ψh 1 2 5 1 ψhζ = I 2F1 , ; ; − 3R 2F1 , ; ; .
6 3 3 3 λGh 6 3 3 3 λGh 

In this case, to leading order, one observes that Q = O(h7/2). It is also interesting to note that the hypergeo-
metric term plays a signifcant role in minimising the overall value of the constant Q. 
As noted previously, the fnal two cases, when a = 8 (n = 1/4) and a = 24 (n = 3/4), will be considered 
together. By writing δ̇ = γ̇2, it is possible to solve a quartic equation for δ̇ from which an expression for γ̇
can be inferred. In both cases an expression for the shear-rate function can be determined from a solution of 
a polynomial of the form δ̇4 + Aδ̇3 + Bδ̇2 + Cδ̇ + D = 0. Where the factors A, B, C and D differ depending 
on the case in question. In the interest of brevity, these multiplicative factors are given in the Appendix. The 
required solution from the quartic equation noted above is then determine to be 

A 1 
� 

4D2 + (3A2 − 8B)D + 4Δ2 
�1/2 

δ̇ = − +
4 4 3D � � �1/2 � ��1/2 1 3D 4D2 − 2(3A2 − 8B)D + 4Δ2 
+ Δ3 − ,

4 4D2 + (3A2 − 8B)D + 4Δ2 3D 

where � 
2)

1/2 �1/3 Δ1 − (Δ2
1 − 4Δ3 

D = ,
2 

with 

Δ1 = 2B3 + 27A2D − 9ABC + 27C2 − 72BD, 

Δ2 = B2 − 3AC + 12D, 

Δ3 = −2A3 + 8AB − 16C. 

The shear-rate function is then given by the positive square root of this expression for δ̇. Therefore it remains 
possible to determine an analytic expression for γ̇ in terms of µ0, λ, G and y in these more complex cases. 
Given the relationship between the velocity gradient and the shear-rate function it is also possible to directly 
integrate (6) with respect to γ̇, subject to (3), to arrive at a closed-form solution for the fuid velocity as a 
function of the shear-rate only 

µ0{[1− n(λγ̇)2][1 + (λγ̇)2](n−1)/2 − [1− n(λs)2][1 + (λs)2](n−1)/2}
u(γ̇) = , (11)

λ2G(n + 1) 

where s = γ̇(h). Integrating (11) once more with respect to γ̇, results in the following expression for the 
volumetric fow rate per unit depth 

22µ0s{(1− n2)H2 + n2(2H1 − H0) − [1− n(λs)2][1 + (λs)2](n−1)}
Q = , (12)

λ2G2(n + 1) 
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where � � 

HK = 2F1 
1

, K − n;
3

;−(λs)2 .
2 2

Given that in each case an analytic expression for γ̇ is obtainable, it is then possible to write down solutions 
for u and Q that depend only on the constants µ0, λ, G and h, and in the case of the fuid velocity, also the 
wall-normal coordinate y. To improve readability these solutions are not given explicitly stated here. 
This short analysis reveals that it is possible to arrive at closed form solutions for the cases when the shear-rate 
function is determined from an eighth-order polynomial expression. However, unlike the cases when n = 1/3, 
1/2, or 2/3, the relative complexity of these solutions makes determining special cases, when the expression 
for the fuid velocity can be reduced to a combination of simpler radical functions, a very diffcult prospect 
indeed. Nevertheless, it remains possible to determine the leading order dependence of the volumetric fow 
rate on the channel half wide. In the case when n = 1/4, to leading order Q ∼ h6, whereas Q ∼ h10/3, when 
n = 3/4. 

3.2 Shear-thickening fows 

Recall the discussion in §2 that in order to be able to predict shear-thickening behaviour it is a necessary 
requirement of the Carreau fuid model that µ0 > µ∞. In the frst instance, it will be assumed that the zero 
shear-rate viscosity is larger than the infnite shear-rate viscosity but that they are of approximately the same 
order, i.e., the assumption that µ∞ � µ0 no longer holds. Integrating (2) and applying the shear-rate condition 
one then fnds that 

−Gy = {µ∞ + (µ0 − µ∞)[1 + (λγ̇)2](n−1)/2} du ⇐⇒ γ̇ = 
G|y| 

. 
γ)2](n−1)/2dy µ∞ + (µ0 − µ∞)[1 + (λ ˙

Given that in shear-thickening cases the fuid index will always be greater than unity, the right-hand side of 
the above can be rewritten in the following manner 

[(µ0 − µ∞)γ̇]
b/3[1 + (λγ̇)2] = (G|y| − µ∞γ̇)b/3, 

where b = 6/(n − 1). Given the relative complexity of this expression it proves fruitful only to consider the 
case when b = 3, which is equivalent to a highly shear-thickening fow with fuid index equal to three. In the 
case when n = 3, one obtains the following simple expression for the shear-rate r � � 

µ0 1 1 
γ̇ = ry − ,

3(µ0 − µ∞) λ ry 

where 

3 �1/3 1 
� 

3
p

3(µ0 − µ∞)λG|k| + [4µ0 + 27(µ0 − µ∞)(λGk)2]1/2 
rk = √ . 

µ0 2 

As with the shear-thinning analysis the solution for u is then obtained from the integral of the velocity gradient, 
this calculation requires the use of yet another hyperbolic transformation s 

4µ0 µ0 y = sinh(3z).
27(µ0 − µ∞) λG 

As before, this transformation serves to signifcantly simplify the integration process 

Z Z2 2du 4µ 4µ0 cosh2(z) − cosh(4z)L = dy = − 0 sinh(z) cosh(3z) dz = + c.
dy 3(µ0 − µ∞)λ2G 6(µ0 − µ∞)λ2G 
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Figure 3: Plots of the analytical solutions for the variation of velocity (a) and viscosity (b) across the channel for 
fows with n = 3/2, for a range of dimensional λ values. A plot of the variation of viscosity with shear-rate (c) 
has also been included, where γ̇max = u0(−h) = u0(+h). In this case the channel half width, pressure gradient 
and zero shear-rate viscosity have all been set equal to 1. 

Inverting the transformation gives the following � � � � �� 
µ2 1 10 2 4L = 4 + 2 r + − r + + c.y y12(µ0 − µ∞)λ2G ry 

2 ry 
4 

Therefore the solution for u that satisfes the no-slip boundary conditions is determined to be � � � � �� 
µ2 1 1 1 10 2 2 4 4u(y) = 2 ry − rh + − − ry − rh + − . (13)

12(µ0 − µ∞)λ2G ry 
2 r2 r4 r4 

h y h 

It should be noted that this expression is valid for 0 ≤ µ∞ < µ0. Exact solutions for other shear-thickening 
fows are only obtainable if one continues to assume that µ∞ � µ0. In this case analytical solutions exist in 
the instances when n = 4, 2, 3/2, and 4/3. In the interest of brevity the remaining analysis is excluded. The 
solution methodology for the cases when n = 2 and n = 3/2, is very similar to that which has gone before. In 
the case when the fuid index is equal to two, the variation of velocity across the channel has the form 

√ √ 
µ0{µ0 + [µ2

0 + 4(λGy)2]1/2}1/2 − µ0{µ0 + [µ2
0 + 4(λGh)2]1/2}1/2 

u(y) = √ 
2 2λ2G � � 

µ0 1 13 3− sy − sh + − , (14)
12λ2G s3 

y s3 
h 

where � 2 �1/2 2λG|k| + [µ0 + 4(λGk)2]1/2 
sk = . 

µ0 

Whilst in the case when n = 3/2, the following is obtained �� � ��� �1/2 � � ��� �1/2� 
µ0 1 1 1 1 

u(y) = √ R 3− t2 + ty + − 3− t2 
h + th + , (15)

3λ2G t2 ty t2 th5 4 y
y h 
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Figure 4: In (a) & (b) the volumetric fow rate per unit depth is plotted as a function of λ for each non-zero value 
of the fuid index that admits an analytical solution. The Newtonian solution is provided as a point of reference 
and is given by the dotted black line. To ensure consistency between the results the infnite shear-rate viscosity 
µ∞, is set to zero. In (c) a selection of shear-thinning results are compared to the large λ approximate solutions 
(dashed black lines). In this case the channel half width, pressure gradient and zero shear-rate viscosity have 
all been set equal to 1. 

where 

tk = q1 
� 

3 
√ 

3(λGk)2 + [27(λGk)4 − 4µ0
4]1/2 �1/3 

. 
3 2 2 µ0 

It should be noted that the real part of the above expression must be considered only for the cases when√ √ 
λ < 2 4 3µ0/(3Gh). Solutions for u for a range of non-zero λ values are presented in Figure 3. 
The cases when n = 4 and n = 4/3 prove to be very similar to the shear-thinning cases when n = 1/4 and 
n = 3/4. The shear-rate function is again determined form an eighth-order polynomial expression that can 
be recast as a quartic equation. The factors that multiply each of the terms within this equation are noted 
alongside their shear-thinning equivalents in the Appendix. Expressions for the fuid velocity and volumetric 
fow rate per unit depth can then be directly inferred from (11) and (12), respectively. 
Analytical solutions for Q are obtainable in all the shear-thickening cases mentioned, those not owing from 
the quartic equation analysis can be found in the Appendix. The variation of Q with λ for different values of 
the fuid index, and a fxed value of the channel width, is presented in Figure 4. 

4 Discussion and Conclusions 

The analysis presented here details one methodology for obtaining exact solutions to the problem of the pres-
sure driven fow, between parallel plates, of a fuid with viscosity that is governed by the Carreau relation-
ship. Excluding the non-physical case (when n = 0), explicit solutions can be obtained in ten cases, fve 
shear-thinning cases and fve shear-thickening cases. In each of these cases one fnds that it is possible to 
isolate, from a given polynomial, an expression for the shear-rate function. Expressions for the fuid velocity 
and volumteric fow rate per unit depth can then be inferred from once and twice integrating the shear-rate 
function, respectively. Given the complexity of the prescribed viscosity law it is somewhat surprising to fnd 
that in each of the cases considered, the solutions for the fuid velocity are composed only of simple radical 
functions. The solutions for the volumetric fow rate are a little more convoluted and, in some instances, are 
expressed in terms of Gauss’ hypergeometric function. 
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In the limit as λ → 0, each of the solutions tend to the familiar Newtonian results 

G|y| G(h2 − y2) 2h3G 
γ̇(y) = , u(y) = , Q = . 

µc 2µc 3µc 

Conversely, as λ → ∞, the solutions can be approximated in the follow manner 

2nΩh(2n+1)/n 

γ(y) → Ω|y|1/n nΩ[h(n+1)/n − |y|(n+1)/n]
˙ , u(y) → , Q → ,

(n + 1) (2n + 1) 

λ(1−n)/nG1/n/µ1/nwhere Ω = 0 . The agreement between these approximate solutions for larger λ values has 
been highlighted in Figure 4. Given that the channel fow of non-Newtonian fuids are commonplace in MEMS 
(Micro-electromechanical Systems) it is proves instructive to know exactly how the fow rate depends on the 
channel half width and also the measurable non-Newtonian parameters. The exact solutions presented here 
provide an insight as to how to control Q for certain fxed values of the fuid index. As highlighted in Figure 4 
(c), there is a reasonable discrepancy between the approximate and exact solutions for the volumetric fow rate 
for shear-thinning fows when 0 < λ . 2. As noted by Bird et al. (1977), these values of the characteristic time 
constant are well with the range of what one may expect to measure experimentally. In the context of MEMS, 
where channel half widths are often of the order of micrometers in length, it is imperative that quantities such 
as the volumetric fow rate can be predicted with a high level of precision. Exact analytical solutions such 
as those presented here are able to do just this and, equally importantly, are able to offer insights as to how 
variables such as the pressure gradient can be tuned to achieve desired experimental outputs. For example, 
given the fow of a shear-thinning fuid with fuid index equal to one-half and a physically relevant value of √ 
the characteristic time constant (λ = arcsinh(1)/ 2 = 0.6232 s), one fnds that if the pressure gradient is set √ 
such that G = µ0/( 4 2λh) kg m−2s−2, then Q = h2 m2. This result proves to be a signifcant departure from √ 

2the approximate solution that would suggest that Q ∼ h2/(2 2λ) ' 0.5673h2 m . 
This study could certainly be extended to consider Couette-Poiseuille fows, i.e. fows where either the upper 
or lower boundary (or both) are moving with some prescribed velocity. This article demonstrates that exact an-
alytical results for non-Newtonian fow problems are achievable in simple geometries and hopefully provides 
some insight as to the methodology one may wish to adopt when seeking to fnd such solutions. 

5 Appendix 

Expressions for the shear-rate function are obtained in the cases when n = 1/4, 3/4, 4/3, and 4, from the 
following quartic equation 

δ̇4 + Aδ̇3 + Bδ̇2 + Cδ̇ + D = 0, (16) 

where δ̇ = γ̇2, and the multiplicative factors (A, B, C, D), change depending on the case in question. These 
factors are outlined in Table 1 for the four cases considered. 

Table 1: The factors of the quartic equation (16) for the four fow cases considered. 

n A B C D 
1/4 −λ6(Gy/µ0)8 −3λ4(Gy/µ0)8 −3λ2(Gy/µ0)8 −(Gy/µ0)8 

3/4 0 0 −λ2(Gy/µ0)8 −(Gy/µ0)8 

4 3λ−2 3λ−4 λ−6 −λ−6(Gy/µ0)2 

4/3 λ−2 0 0 −λ−2(Gy/µ0)6 

The shear-rate function is then determined to be the positive square root of the resulting expression for δ̇, as 
noted in §3.1. 
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Below are the three expressions for the volumetric fow rate per unit depth for the cases when n = 3, n = 2, 
and n = 3/2, respectively. 

�� � � �� 
h µ2 1 10 4 2n = 3 : Q = rh + − 2 rh + 

λ2G r4 r26(µ0 − µ∞) h h s � � � � � � �� 
µ3 µ2 1 1 1 1 1 10 0 5 7+ rh − + rh − − rh − ,

27(µ0 − µ∞)3 λ3G2 2 rh 5 r5 14 r7 
h h√ 

µ0h {µ0 − [µ0 + 4(λGh)2]1/2}2 
n = 2 : Q = √ 23 2λ2G {µ0 + [µ0 + 4(λGh)2]1/2}1/2 � � � � � � �� 

µ0h 1 µ2 1 13 0 5+ sh + − 5 sh − + sh − ,
6λ2G s3 

h 60λ3G2 sh s5 
h �� � � � �2�� �1/2 

µ2 1 √ λGh 1 
n = 3/2 : Q = 9 th + − 6 3 h + − 1

40λ3
0 
G2 R 

th µ0 
t2 

t2 
h � � �1/2�� 

+ 5 ln th + 
1 
+ t2 

h + 
1 − 1 

th t2 
h 

2 �� � ��� �1/2�ln(3)µ 2µ0h 1 10− − √ R 3− t2 
h + th + ,

16λ3G2 5 4 3λ2G t2 
h th 

where the constants rh, sh and th are as defned in §3. 
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