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Purpose 

The Middle Eastern terrain is expected to encounter unprecedented climatic conditions emanating 

from extreme heat waves that exceed the critical threshold of inhabitable conditions before the turn 

of the next century (circa. 80 years). This threatens to cause a significant challenge that is only 

further exacerbated by a gap between supply and demand of affordable energy. Therefore, the 

purpose of this study is to investigate the potential of utilising nearly zero energy buildings (nZEB) 

to improve the performances of residential buildings in Iraq and the Middle East.  

Design/methodology/approach  

This study uses Iraq as a case study because of its breadth of climatic conditions experienced across 

its wide-reaching territory and recent critical infrastructural challenges following a geo-political 

crisis. Three virtual buildings were simulated for Baghdad, Mosul and Basra cities to narrow the 

confines of the region to achieve nZEB under current and future climatic weather scenarios of 

2080. 

Findings 

The findings showed that all three cases studies buildings located within various climatic region 

in Iraq can achieve significant annual energy reductions and nZEB standards ranging from 41% to 

87% for current climatic conditions and 40% to 84% by 2080. An operational cost analysis has 

also been carried out for the three case study cities which revealed significant operational cost 

savings achievable through nZEB buildings. 

Originality 

There currently remains a paucity of studies that investigate such positive potential for nearly zero 

energy buildings (nZEB) strategies under current and predicted future climatic scenarios in the 

Middle East.  

Keywords: Nearly Zero Energy Buildings; Residential Buildings; Middle East; Building 

Performance Simulation; Hot Arid Climate.  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/304335976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

INTRODUCTION 

Climate change poses an epidemic threat to health, safety and the environmental conditions for the 

global population by increasing the rate of infectious diseases, mortality and degrading the quality 

of air (Ebi et al., 2017; WHO, 2017). Scientific evidence points to the excessive anthropogenic 

greenhouse gas (GHG) emissions that contribute to current manifestations of climate change and 

are projected to have further impact upon potential future climatic scenarios (IPCC, 2000). Faced 

by such threats the UN General assembly responded by adopting Sustainable Development Goals 

(SDGs) in 2015 which are consisted of of 17 goals, including: i) ensuring healthy lives; ii) 

promoting well-being for all, iii) ensuring access to affordable, reliable, sustainable and modern 

energy for all; and iv) making cities and human settlements inclusive, safe, resilient and adaptable 

to climate change(Lee et al., 2016). Residential dwellings cover an all-encompassing facet of SDG 

for future of daily life, human survival and adaptability. Hence, improving building energy 

efficiency and onsite renewable energy production can go a long way to achieve many of the 

SDG’s goals in developing countries faced with extreme inhabitable climatic conditions such as 

Iraq.  

Typically energy consumption within the built environment is responsible for about 30% of the 

world’s total GHG emissions and about 40% of world’s primary energy consumption (UNEP, 

2017). These emissions have reached unprecedent levels in developing countries. For instance,  As 

such, residential buildings in Iraq consume 82% of total building related energy consumption, with 

nearly 69% used for cooling and heating with rest of 31 % consumed for other domestic purposes 

(Hasan, 2012). The residential sector presents a significant challenge and opportunity in terms of 

energy and carbon reductions. Presently, the weak building regulations have accounted for such a 

lack luster approach to building energy efficiency in developing countries. UN habitat report stated 

that Iraq’s current construction codes lack adequate sustainable and environmental measures that 

regulate energy use in buildings, a common phenomenon experienced by many countries in Middle 

East (Un-Habitat, 2006). Subsequently, developing nZEB standards can improve the prospect of 

establishing a benchmark for buildings that aim to reduce the  carbon’s footprint for buildings 

significantly. Extreme dry-bulb maximum temperature (Tmax) occurrences exceeding 60 ◦C are 

projected to become the norm in most low-lying cities of the gulf region including Iraq by 2070-
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20100 (Pal and Eltahir, 2016). Reaching such high dry bulb temperatures would pose a significant 

threat into human health by causing heart stroke and hydration (Ibid).   

Previous studies on the rising average temperatures in the Middle East have pointed towards the 

benefits of climate change mitigation measures in accordance with IPCC Representative 

Concentration Pathway (RCP) via testing  multiple simulation scenarios (Feitelson and Tubi, 2017; 

Nematollahi et al., 2016). The overheating and high indoor temperatures in Iraq are exacerbated  

by the shortfall supply of electricity during peak demands in summer. It was estimated that Iraq’s 

electricity generation in 2011 produced only 9 GW, whilst peak demands were estimated to be 15 

GW, resulting in a shortage of 6 GW (IEA, 2012).  Currently, the shortage of energy demand is 

met by using private diesel generators owned by the building occupants.  

The imminent need to achieve energy and  significant reductions in carbon emissions, has led 

many countries to establish a nZEB standards around the world (Aldossary et al., 2017; Alrashed 

and Asif, 2015; Taleb and Sharples, 2011). Most developed countries established a definition of 

low energy buildings based on: efficiency of the building fabric; climatic conditions; occupants’ 

profile and integrated renewable technologies.  

Iraq presently does not hold a standardized specifications to achieve nZEB design. Establishing a 

strategy for achieving nZEB in Iraq considering current and future weather scenarios may start the 

energy conscious revolution required in the building sector. In addition, achieving nZEB standards 

will eliminate the existential threat posed on human survival in Iraq.  

Therefore, this study examines the nZEB strategies for reducing energy consumption for 

residential buildings through nZEB standards and principles using IESV analysis software. 

Digitally simulated weather scenarios and building design performance analysis of IESV offers a 

vignette of suitable building design measures that can be tested over the next 80-years period. The 

energy performance of the buildings will be assessed and reported through the following KPIs: (1) 

energy use intensity (kWh/m2.year); (2) carbon dioxide emissions (KgCO2/m
2.year), (3) and the 

monthly operational cost ($). The aim of this study is therefore to develop a suitable specifications 

for nZEB strategies for residential buildings in Iraq for building lifecycle .years. The wider 

implications of the study is to lay the foundation for improved building performance such as zero 

energy and energy positive buildings in Middle East and southeast Asia. 
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Definitions OF LOW ENERGY BUILDINGS  

Innovative zero energy buildings provide an exciting future and an ambitious quest to mitigate the 

adverse impacts of climate change. Despite its wider use across various regions in the world, there 

has been no consensus on their definitions by policy makers. The concomitants definitions for 

these buildings were: 

- Nearly Zero Energy Building (NZEB): a building with high energy performance that has 

lower or very little energy consumption annually, which is maintained by the use of 

on/offsite renewable energy sources (European Commission, 2017); 

- Zero Energy Homes (ZEH): a building with an annual primary energy consumption that 

is offset by positive on-site energy production(ASBEC, 2011); 

- Carbon Neutral Design (CND): a building that use no fossil fuel to operate the heating, 

cooling and lighting (American Institute of Architects, 2012); 

- Climate positive: a building that produces far more renewable energy compared with  its 

consumed energy for varies purposes such as: heating, cooling, domestic hot water and 

lighting (ASBEC, 2011).  

defining these buildings demand setting the targets for future energy consumption of buildings. 

For example, the European commission mandated all new buildings to achieve zero energy target 

by 2020, others such as ‘Architecture 2030’ (a non-profit organization) demanded all buildings to 

achieve a minimum of 90% carbon emission reduction by 2025 and zero carbon buildings by 2030 

(Architecture2030, 2019).  

Zero Energy Buildings in Hot Climates 

Myriad studies have implemented nZEB strategies in hot climates of Middle East, albeit none have 

demonstrated the impact of nZEB strategies on energy consumption for current and future weather 

scenarios. Other studies  have used  optimisation algorithms to improve  energy consumption and 

carbon emissions of buildings located in hot and warm climate with focus on the Middle East 

region as a case study (ALqadi et al., 2018; De Wolf et al., 2017). For instance, Aldossary et al. 

(2014) identified energy consumption patterns for domestic buildings in Saudi Arabia and they 

were able to  achiev 21 to 37% reductions in primary energy through improving their buildings’ 

fabrics and installing renewable energy sources on-site. Similarly, AlAjmi et al. (2016) tried to 

achieve net zero energy for educational building in Kuwait, by comparing the energy consumption 

on-site with the simulated model.  

https://www.sciencedirect.com/science/article/pii/S0306261915015238#!
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Their findings recommend the implementation of on-site renewables such as PV and solar cooling 

to achieve net zero energy targets on a monthly and yearly basis. Other researchers, Stazi et 

al.(2014) and Ascione et al. (2016) discussed designing nZEB with multi-objective optimisation 

criteria (e.g. simulation methods, cost, life cycle impact and thermal comfort) to evaluate their 

optimum design solution. Other studies focused on investigating the buildings to to withstand the 

catastrophic climate changes in future (Jentsch et al., 2008; Robert and Kummert, 2012). There 

have been scant studies in literature that discuss the implementation of zero energy and low energy 

buildings in Iraq. Abbood et al. (2015) investigated the use of off-site manufacturing as potential 

solution to reduce the energy consumption for residential buildings. The implemented solution 

reduced energy consumption by 61%. Almusaed and Almssad (2015) demonstrated the 

environmental impact of ecological buildings materials on vernacular buildings in Basra city. 

While (Naji et al., 2019) simulated existing buildings with multiple materials to reduce the high 

cooling demand in summer. All previous studies discussed use of using energy simulations with 

alternative materials in Middle East and Iraq in particular, however, they didn’t address the impact 

of future weather scenarios on existing buildings to achieve zero energy building standard. Hence, 

this paper aims to answer the fundamental question of whether nZEB can be attenable not only for 

the current weather scenario but rather during the whole life cycle of the building.  

Zero Energy Buildings Standards and Codes 

Globally set benchmarks and standards for nZEB are summarised for brevity in Table 1. The table 

lists codes and requirements for achieving nZEB in warm climatic regions across the world 

including european countries and USA. In addition, UK’s nZEB standard was included in Table 

1, because it was one of the first countries that introduced a zero carbon home standard in 2007 

(Zero Carbon Hub, 2017). The requirements for nZEB vary for each country, with a primary 

energy consumption recorded between 20 kWh/m2.year and 120 kWh/m2.year for residential 

buildings. According to Table 1, it appeared that the average primary energy consumption was 

39.3 kWh/m2.year. Additionally, and unlike other energy codes, the UK specifies the carbon 

emissions per building while other countries use vague indicator to measure renewables on site 

through determining the percentage of renewables. 

 

https://www.sciencedirect.com/science/article/pii/S0306261914008265#!
https://www.sciencedirect.com/science/article/pii/S0306261916313290#!
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 Hence the UK standard was chosen as reference to investigate the implementation of nZEB in 

Iraq. Specifying the carbon emission per year is a better indicator for renewables implementation 

on-site compared with specifying the percentage of renewables, as the building might achieve a 

very low carbon emissions annually without the need to implement renewable design solutions to 

offset these emissions.  

 

CURRENT AND FUTURE CLIMATE OF IRAQ 

 

Country Requirements and energy indicators Renewable energy requirements  

Croatia For coastal region: 33.40 kWh/m2.year Not specified    

Cyprus Not defined 25% of primary energy consumption must be 

provided through renewable energy  

France Primary energy for new residential 

buildings should be no more than 50 

kWh/m2.year; 

 

Demonstration of using renewable energy though one 

of the following options: 

Provision of on-site solar panels for hot water 

purposes; 

50% of renewable energy supplied through district 

network; 

Renewables energy production on-site should 

contribute to EPC energy consumption of 5 kWh as 

minimum 

   

Italy Under development 26 kWh/m2.year Renewable energy should be 50% of total energy 

consumption for cooling, heating and hot water 

Malta Primary energy for residential buildings 

should be no more than 40 kWh/m2.year 

Not specified 

Spain Not specified 41 Not specified  

UK The building regulation did not provide 

full definition for zero carbon home; 

however, the zero-carbon hub provided a 

requirement for zero energy homes, in 

which energy used for heating and cooling 

should be equal or no more than: 

39 kWh/m2.year for mid-terraced/attached 

house; 

46 kWh/m2/year for end-terraced and 

detached house; 

39 kWh/m2/year for apartments  

 The onsite renewables use is determined for each 

building type as: 

10 KgCO2/m2.year for detached house; 

11 KgCO2/m2.year for mid-terraced house, end-

terraced house  

14KgCO2/m2.year for apartment blocks  

The remaining carbon emission should offset using 

off-site renewable energies   

USA For California: all new homes to achieve 

zero net energy by 2020 

All renewables employed on site must produce 

energy equivalent to the energy needs of the building 

to achieve zero primary energy 

Table 1-Various energy standards established by different countries adopted from (ASBEC, 2011; European 

Commission, 2017; ZEBRA2020, 2018) 
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Iraq has a total area of 438 320 km2 and it is sharing borders with Turkey, Iran, Syria, Jordan, 

Saudi Arabia and Kuwait. Its geographical regions are divided into three distinctive parts (FAO, 

2017), as shown in Figure 1 and summarised as follows: 

(1) Northern region with Mediterranean climate, which have mild summer and cold winter—its 

territory starts from south of turkey and ends in south of Mosul in Iraq; 

(2) The desert region which lay and extends from north of Baghdad to the south-west border of 

Jordan and Saudi Arabia respectively.  The region identified as hot arid climate;  

(3) The irrigated area that lay between the two main rivers, Tigris and Euphrates. It extends from 

north of Baghdad to the south of Basra.  

 

Three main cities (Baghdad, Mosul and Basrah) have been therefore selected for this study as 

representative case studies, which covers the three distinguished climates regions in Iraq. These 

climate conditions are used to evaluate the energy performance of the buildings using Integrated 

Environment Solutions (IESV). Typical metrological year for each city has been generated using 

Metonorm database (Meteonorm, 2017).  

Future weather scenarios for 2080 year were generated based on (A2) scenario developed by the 

intergovernmental panel on climate change (IPCC). The A2 weather scenario assumes significant 

GHG emission increases which were set out for 2080 year using the  ‘CCweatherGen’ weather 

generator tool (Jentsch et al., 2008). It is estimated that the average building lifespan is around 60-

90 years (Birkeland, 2002); therefore, 2080 weather scenario was chosen to test the performance 

of the building in the future to cover the duration of the building lifespan. Hence, the current and 

future weather scenarios generated for the three case study cities were implemented and tested 

using Integrated Virtual Environment (IESVE) for energy simulation.  
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Figure 1 – Map of Iraq adapted from (Google maps, 2019) and modified by the author to depict Iraq’s climatic regions 

 

Weather variables were generated and reported in Table 2 for current and future weather scenarios. 

The results showed that under current and future weather scenarios, Iraq has three climatic regions 

based on ASHRAE climate classification. The climate classifications are based on heating degree 

days (HDD) and cooling degree days (CDD). All three climatic regions have very similar heating 

and cooling degree days. Mosul is the only city with a climate that changed slightly in 2080 from 

3B Warm dry into 1A very hot Humid, while Baghdad and Basra are expected to maintain the 

same classification in the future. Heating degree days (HDD) were predicted to decrease for all 

cities in the future weather scenario, while cooling degree days (CDD) were predicted to increase 

in the future. Highest CDD were recorded for Basra in 2080, while the highest HDD were recorded 

in Mosul under current weather.  
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METHODOLOGY  

This study investigates the possibility of implementing nZEB in hot and arid climate, particularly 

within Iraq microclimatic regions. In theory, the successful utilisation of nZEB in various 

developed countries proofed to be achievable, however, the building requirements for achieving 

such standards is still unknow and untested in Iraq. Therefore, this study uses a case study 

approach, applying the principles of nZEB design on mid-terraced house. The selection of mid-

terraced house represents the most predominate housing type in Iraq with an average area of 177 

m2 according to a housing survey conducted by Un-Habitat to assess the housing market in Iraq 

(Un-Habitat, 2006). As such, an existing mid-terraced house with internal floor area of 178 m2, as 

shown in Figure  has been chosen as a base model to test the nZEB strategies via the use of IES-

VE simulation.  

City & 
weathe
r file 

Climate 
Classificatio
n 

Temperatu
re 

Heating & 
Cooling 

Precipitati
on 

Wind  Annual 
solar 
resource Max Min HDD CDD Annual 

rainfall 
Annu
al 
spee
d 

Directio
n 

Basra 
typical 
weathe
r file 

1B Very hot 
and dry  

48.5 
°C 

2.9 
°C 

478.8 5577.
7 

140.6 mm 3.3 
m/s 

E of N 
337.5° 

2049.9 
kWh/m2.ye
ar 

Basra 
in 2080  

1B Very hot 
and dry 

50.0 
°C 

5.5 
°C 

187.3 7070.
3 

140.6 mm 3.3 
m/s 

E of N 
337.3° 

2066.9 
kWh/m2.ye
ar 

Baghda
d 
typical 

1B 
 
Very hot 
dry  

 

50.1 
°C 

2.7 
°C 

475.7 5646.
9 

140.6 mm 3.5 
m/s 

E of N 
321.8° 

1930.7 
kWh/m2.ye
ar 

Baghda
d 2080 

1B 
 
Very hot dry  

 

50 
°C 

6.9 
°C 

138.7 7462.
9 

323.7 mm 3.5 
m/s 

E of N 
322.1° 

1942.6 
kWh/m2.ye
ar 

Mosul 
typical 
weathe
r 

3B Warm dry 43.8 
°C 

-3.8 
°C 

1574.
3 

3376.
5 

323.7 mm 3.1 
m/s 

E of N 
191.3° 

1835.2 
kWh/m2.ye
ar 

Mosul 
in 2080 

1A Very hot 
Humid 

50.0 
°C 

-0.8 
°C 

893.8 5043.
4 

710.4 mm 3.1 
m/s 

E of N 
191.7° 

1881.9 
kWh/m2.ye
ar 

Table 2-Climate variables for typical year and 2080 for three Iraqi cities (Baghdad, Basra and Mosul) 
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Various studies in the literature used IES-VE simulation as a method to test and validate various 

energy design strategies for buildings (Alrashed and Asif, 2015; Taleb and Sharples, 2011). 

Similarly, this study uses simulation as a main method to test the applicability of nZEB in Iraq for 

current and future weather scenarios. The steps followed in this research are illustrated in Figure 

3, and further explained below: 

1- Identifying the base case model for residential building in Baghdad; 

2-  Setting the model’s simulation parameters (e.g. internal heat gains, building envelope, 

cooling and heating set points, etc.); 

3- Validating the simulation through comparing the simulated primary energy consumption 

of the case study building against its actual energy consumption for the average residential 

building in Iraq; 

4- Duplicating the simulated case study building in Baghdad for Basra and Mosul after 

confirming the validation of the model in previous step; 

5- Calculating the primary energy consumption and carbon emissions for each case study 

building (Baghdad, Mosul and Basra) under current and future weather scenario to 

determine if current buildings qualify for nZEB standards. The simulated building should 

meet the nZEB standards which include: (a) heating and cooling energy equal to or less 

than 39.3 kWh/m2.year; (b) carbon emission equal to or less than 11 KgCO2/m
2.year for 

all climatic regions in Iraq. 

Figure 2-Represents (a) ground floor, (b) first floor, (c) isometric view of the case study 
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6- If the buildings don’t qualify for nZEB standards, design interventions were incorporated 

into the building  to reduce its primary energy and carbon emissions to achieve the desired 

nZEB standard; 

7-  Operational costs were calculated for each simulated scenario to provide a better insight 

to the actual cost associated with operational performance for nZEB in Iraq; 

8-  Final recommendations for designing nZEB were provided based upon the findings of the 

simulations for the case study buildings located in three cities.  

 

Figure 3-The methodological steps followed in this study  

Case study and model parameters 

To emulate a real-life scenario of typical residential dwellings in Iraq, an anonymised residential 

building was used as a case study.  The selected case study building is an existing 5-bedrooms 

mid-terraced house occupied by 6 residents in Baghdad, Iraq. The main façade is facing the south 

western orientation, the building construction is comprised of load bearing brick walls and a 

concrete flat roof. It is worth noting, that some simulation parameters were approximated during 

the energy simulation of the case studies. For instance, the air infiltration rate was assumed to be 

1 Air Changes per Hour (ACH) akin to Kuwait, which is a  neighboring country to Iraq that holds 

very similar construction methods for residential buildings as suggested by (Al-ajmi and Hanby, 

2008). We argue that such values are representative of typical airtightness in developing regions , 

particularly in Middle East, therefore the same value was assumed for Iraq.  U-values were 
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automatically calculated for the representative materials using materials and components database 

within IESVE system software. IESVE consists of built-in thermal properties such as density, 

specific heat capacity and thermal conductivity of relevant construction materials. Heat gains were 

calculated after identifying assumed equipment (e.g. electronic devices, appliances and number of 

occupants) available in the case study model. Relevant thermal properties of building model 

materials and simulation parameters are summarised in Table 3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

House key areas Description  

Land area including the built-up 

area 

127.22 m2  

Ground floor area +first floor area 187 m2  

First floor area  80 m2  

Roof floor area 66.2 m2  

 

 

 

 

Building envelope  Construction Materials U-Value (W/m2.K) 

External wall  (20 mm stucco + 130 mm brickwork + 

20 mm plaster)  

2.78  

Ground floor (25 mm floor tiles+ 25 mm screed+ 100 

mm sandstone+ 100 mm reinforced 

concrete+ 5 mm asphalt+ 50 mm 

concrete deck+ 150 mm stone+ 2 mm 

earth)  

2.14  

Roof (4 mm concrete tiles+ 2 mm sand+ 5 

mm polyurethane board+ 2 mm 

asphalt+ 20 mm cast concrete+ 13 mm 

plaster)  

2.70  

Doors (40 mm wooden door)  2.29  

Windows (6 mm single glazing)  6.39  

Infiltration 1 ACH  

Buildings systems and internal gains  

HVAC system Flow rates= 8 l/s/person  

Domestic hot water 0.95 efficiency  

Auxiliary ventilation Bathroom and kitchen = 64 l/s  

Heating set point 20.0 °C  

Cooling set point 24.0 °C  

Bedrooms internal gains Max power consumption of (Lighting + 

miscellaneous) =6.58 W/m2 

 

Kitchen internal gains Max power consumption of (Lighting + 

miscellaneous) =33.28 W/m2 

 

Reception internal gains Max power consumption of (Lighting + 

miscellaneous) = 6 W/m2 

 

Office internal gains Max power consumption of (Lighting + 

miscellaneous) = 6 W/m2 

 

Living area Max power consumption of (Lighting + 

miscellaneous) = 7 W/m2 

 

Table 3-Thermal properties for building envelope and parameters used for simulation 
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VALIDATION OF SIMULATION   

In order to validate the energy consumption for the simulation in IES-VE, the base model was 

validated using actual annual electricity consumption data collected from electricity bills for the 

real case study building in Baghdad..   compares the total simulated energy consumption with an 

actual annual electricity bill for the case study building. The total annual energy consumption for 

the simulated building was 15600 kWh.year compared with the actual electricity consumption 

obtained from the electricity bills which was 14890 kWh.year; the comparisons, showed a variance 

of 16% between actual and simulated electricity consumption. In addition, the annual simulated 

electricity consumption was within 1% of error margin when compared with the World Bank 

estimation of energy consumption for average houses in Iraq, which accounted for 15500 

kWh.year (World Bank, 2017). Therefore, it is reasonable to suggest that the simulation has 

predicted the energy consumption of the building with reasonable accuracy, showing very close 

agreement with both actual annual electricity consumption and the average house energy 

consumption indicator by the World Bank.  

 RESULTS AND DISCUSSIONS 

Base model in Baghdad with no intervention   

The simulated results for Baghdad base model within the current climate scenarioshowed the 

primary energy consumption was 88.20 kWh/m2 and 67.97 kWh/m2 was used for heating and 

Figure 4-Comparisons between the actual consumed energy and the simulated one in kWh 

14890
15600 15500

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

A
n

n
u

a
l 
E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

k
W

h
)

Actual Simulation World Bank



14 
 

cooling. A parametric design evaluation was carried for optimum orientation of the building, which 

when south facing shows a reduction of primary energy to 85 kWh/m2 and 62.35 kWh/m2 for 

heating and cooling. It was thus deemed that the southern orientation was an optimum choice for 

the rest of the case study simulations in Basra and Mosul. This base model in Baghdad was then 

simulated for 2080 weather scenario, showing a primary energy usage of 99.43 kWh/m2 with 11% 

increase in total energy consumptions compared with current climate simulation (See Error! 

Reference source not found.). Conversely, the calculated carbon dioxide emission for the current 

climate scenario was 53.97 KgCO2/m
2.year while the total annual emission for 2080 was predicted 

to be as high as 65.42 KgCO2/m
2.year. Error! Reference source not found. shows that the pattern 

of energy consumption in future scenarios was heavily influenced by the cooling demands of the 

summer months. More importantly though, the results demonstrated that the current and future 

energy consumptions did not meet the nZEB standard threshold.  

 

 

 

Base model in Basra 

The base model of the residential dwelling validated for Baghdad was geo-located and simulated 

for Basra under current and predicted future weather scenarios. The total primary energy 

consumption for current conditions showed slightly higher energy consumption compared with the 
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Figure 5- Current monthly vs. future monthly energy consumption comparison for Baghdad without 
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same model for Baghdad. As such, the primary energy consumption was accounted for 85.39 

kWh/m2.year, while same consumption increased for 2080 by 12% as shown in Figure .  

 

The cooling demands were predicted to significantly increase under 2080 weather scenario, 

whereas during winter seasons heating demands were predicted to be 26% lower in 2080. As such, 

the energy consumption for heating and cooling were 65.16 kWh/m2 and 76.40 kWh/m2 for current 

and future weather scenarios respectively. Carbon emissions for the current and future scenarios  

were predicted to be 52.80 KgCO2/m
2.year and 62.47 KgCO2/m

2.year respectively. Similar to 

Baghdad’s simulation, the hypothetical simulated model for Basra failed to achieve nZEB 

threshold. 

 

 

 

Base model in Mosul 

The simulated model in Mosul showed a higher primary energy consumption in comparison with 

Baghdad and Basra, with a primary energy consumption of 104.49 kWh/m2.yearand 101.68 

kWh/m2.yearfor current and 2080 weather scnearios (See Figure ). Importantly, the nature of the 
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Figure 6-Current monthly vs. future monthly energy consumption comparison for Basra 
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weather in the northern Iraq and particularly Mosul are dogged by higher heating demands under 

current weather conditions. The cooling energy consumption was projected to increase while 

heating energy consumption was expected to decreases slightly under 2080 conditions, therefore 

the energy consumption for the current year was higher than the same simulated model for 2080. 

The simulated results showed similar pattern of heating and cooling demands which predicted to 

be 84.26 kWh/m2.year and 80.89 kWh/m2.year for current and future weather scenarios 

respectively. Carbon emissions in a similar vein were higher with 58.34 KgCO2/m
2 and 60.50 

KgCO2/m
2 for current and 2080 weather scenarios..   

 

 

 

ACHIEVING nZEB FOR CASE STUDIES 

Building Performance Improvement 

The simulated energy consumption and carbon emission results for three building case studies  

suggests that the simulation did not meetnZEB standards, due to the following reasons: (1) higher 

energy consumed for heating and cooling which exceeds 39.3 kWh/m2.year; (2) higher carbon 
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Figure 7-Current monthly vs. future monthly energy consumption comparison for Mosul  
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emissions > 11 kgCO2/m
2.year. Therefore, the following building performance improvements 

have been proposed: 

1. Building fabric efficiency improvements as suggested in Table 4; 

2. Building air tightness improvements; 

3. The installation of on-site renewable energy (south facing Monocrystalline silicon PV); 

The changes have been implemented within the IESVE model and simulated for the three case 

studies. 

Construction U-value  Description 

Ground Floor (750 mm London clay+ 250 mm brickwork+100 cast concrete+50 mm 

insulation+50 chipboard+ 10 mm synthetic carpet) U-value= 0.27 

W/m2. K 

External wall (15 mm plaster+175mm brickwork+275mm ploystyrene+20 render) U-

value=0.13 W/m2. K 

Roof (20 mm asphalt +120 mm insulation+89 vapor barrier+ 50 screed+220 

concrete deck+12 mm cavity+12.5 mm plasterboard) U-value=0.13 

W/m2. K 

Table 4-Optimised thermal properties of the building envelope for the case study buildings 

 

Interventions for Baghdad’s model  

After implementing the building fabric efficiency values, several air infiltration values were tested 

with the optimum air infiltration rate of 0.4 ACH for which the building can achieve the nZEB 

threshold standard. The building primary energy consumption reduced down to 47.19 kWh/m2 and 

56.17 kWh/m2 representing a 44% reduction for both current and 2080 weather scenarios, as 

shown in  Figure .  

The predicted annual energy consumption for heating and cooling were 27.52 kWh/m2 and 37.07 

kWh/m2 for currrent and future weather scenarios respectively. The value of carbon emissions 

were reduced below the required target of <11 KgCO2/m
2 for nZEB standards. The results showed 

that the building improved the annual carbon emissions with 9.4 KgCO2/m
2 and 9.68 KgCO2/m

2 

for current and 2080 upon installation of a south facing Monocrystalline PV (installed at a tilt of 

34° with an area of 34m2 and 48m2).The PV’s values were configured for the optimal design of 

simulation after iterating through range of values to find the optimal values. It is worth noting that 

the primary energy consumptions were predicted to significantly reduce after the PV interventions 

by up to -3.58 kWh/m2.year and -43.47 kWh/m2.year for current and weather scanrios comapred 
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with the base model prior to the design interventions. The results showed that there was potential 

increase in PV performance under future weather scenarios, the reason for the excellent 

performance in 2080 PV energy production was owed to the increase of the annual solar energy in 

2080 for Baghdad as illustrated in  Figure .   

 

 Figure 8-Current monthly vs. future monthly energy consumption comparison in Baghdad with design interventions 

 

Interventions for Mosul’s model  

Predicted simulations for Mosul showed a significant reduction in primary energy consumptions 

for heating and cooling after implementing the design interventions. The design interventions 

included the utilisation of air infiltration values ranged from (0.6 – 1.0) ACH in conjunction with 

enhanced U-values for the building envelop. The primary energy consumptions in Mosul were 

reduced by 55% and 46% for current and future weather conditions respectively (See Figure ).  As 

such, the heating and cooling energy demands for current and future conditions were projected to 

be 33.70 kWh/m2 and 34.26 kWh/m2. To keep the carbon emissions within the narrow confines of 

nZEB threshold, an additional 37m2 of PV were added to achieve 9.36 KgCO2/m
2  of annual carbon 

emissions. For 2080 weather scenario, an increase in primary energy consumption were anticipated 
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therefore, to offset this, an additional of 40m2 PV were added to the model to achieve 10 

KgCO2/m
2. Following the addition of PV in the reported annual energy consumptions for were 

4.83 kWh/m2.year and 13.14 kWh/m2.year for current and future weather scenarios.   

 

 

 

Interventions for Basra’s model  

The design interventions implemented for the simulated model in Basra were comprised of low U-

value and airtightness values ranged from from (1 to 0.7) ACH. These interventions contributed 

to reducing the annual energy consumptions to 50.56 kWh/m2 and 58.42 kWh/m2 representing 

41% and 40% for current and 2080 weather scenarios (as shown in Figure ). Whilst the heating 

and cooling energy have been found to be 30.33 kWh/m2.yearand 38.20 kWh/m2.yearunder similar 

weather scenarios. On the other hand, the carbon emissions were found to be within the less than 

the required threshold of nZEB. The total carbon emissions for current were reported as 9.90 

KgCO2/m
2 with 35m2 area of utilised Pv on-site.  While the carbon emissions for 2080 were 

projected to be 11 KgCO2/m2 with an area of 45m2 of PV. The energy performance of buildings 
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Figure 9-Current monthly vs. future monthly energy consumption comparison in Mosul with design 

interventions 
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improved significantly after the installations of PV, which subsequently led to improvement in 

primary energy consumptions for 2080 with 5.22 kWh/m2.year compared to 16.70 kWh/m2.year 

for a current weather scenario.  

 

 

 

 

Operational cost analysis and savings  

The operational costs of all simulated scenarios were analysed for the three case studies: Baghdad, 

Mosul and Basra. The calculations for the operational costs were determined through comparing 

the monthly energy consumptions of kWh recorded for each simulated scenario with electricity 

price quotation from the Iraqi ministry of electricity (Shafaaq, 2016). In some of the simulated 

scenarios the generated energy from the PV exceeded the building energy consumption, therefore, 

a numerical value of 0 was assigned to these months to indicate the building with no energy 

consumption from the national grid. There is currently no policy or established mechanism for 

selling electricity to the national grid in Iraq, therefore, the cost of selling the excessive energy to 

the grid has not been considered yet. The analysis for for the base case model in Baghdad showed 
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the highest operational cost for 2080 with an estimated cost of $228.71. However, improving the 

building fabric and utilising the PV on the roof contributed to reduce the energy consumption 

significantly for 2080 scenario in Baghdad, as demonstrated in Table 5. 

Month Baghdad 

typical year 

(south 

orientation) 

and no 

intervention 

 

Baghdad 

typical year 

(south 

orientation) 

with building 

envelope 

intervention 

Baghdad 

typical year 

with building 

envelope 

intervention 

and PV 

Baghdad in 

2080 with no 

intervention 

Baghdad in 

2080 with 

building 

envelope 

intervention 

Baghdad in 

2080 with 

building 

envelope 

intervention 

and PV 

 

Jan 34.52 4.32 4.32 8.63 4.32 0.00 

Feb 8.63 4.32 0.00 8.63 4.32 0.00 

Mar 4.32 4.32 0.00 4.32 4.32 0.00 

Apr 8.63 4.32 0.00 8.63 8.63 0.00 

May 17.26 8.63 4.32 34.52 17.26 4.32 

Jun 34.52 8.63 4.32 34.52 17.26 4.32 

Jul 34.52 20.71 8.63 34.52 17.26 8.63 

Aug 34.52 18.99 4.32 34.52 17.26 4.32 

Sep 17.26 7.77 4.32 34.52 17.26 4.32 

Oct 8.63 6.04 4.32 17.26 8.63 4.32 

Nov 4.32 3.45 0.00 4.32 8.63 0.43 

Dec 17.26 3.45 0.00 4.32 4.32 0.00 

Total 224.39 94.94 34.52 228.71 129.46 30.64 

Table 5-Operational cost represented by electricity bill in USD for Baghdad's simulated scenarios 

 

The operational energy costs for all scenarios in Mosul were shown in Error! Reference source 

not found., the highest annual operational cost was reported as $250 for current weather condition 

using the base model. The building fabric and PV interventions reduced the current annual 

operational energy by 55% and a further 81% accordingly. It was apparent from the compared 

operational values that the lowest energy consumption was recorded in 2080 scenario with an 

estimated annual cost of $18.78, which was 92% less compared with the base model prior to the 

design interventions. The reason behind achieving that low operational cost for 2080 was mainly 

caused by reducing the heating demands in winter while increasing the surface area of PV as shown 

in Error! Reference source not found.. 
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Month Mosul's 

model for 

typical year 

with no 

intervention 

Mosul's 

model for 

typical year 

with building 

envelope 

intervention 

Mosul's model 

for typical 

year with 

building 

envelope 

intervention 

and PV 

Mosul's model 

for 2080 with 

no 

intervention 

Mosul's 

model for 

2080 with 

building 

envelope 

Mosul's 

model for 

2080 with 

building 

envelope 

intervention 

an PV 

Jan 34.52 17.26 8.63 34.52 2.59 0 

Feb 34.52 17.26 8.63 17.26 2.59 0 

Mar 8.63 8.63 4.32 4.32 4.31 0 

Apr 8.63 4.32 0.00 8.63 6.03 0 

May 17.26 4.32 0.00 17.26 18.96 2.23 

Jun 17.26 8.63 4.32 34.52 20.68 2.77 

Jul 34.52 8.63 4.32 34.52 25.86 5.28 

Aug 34.52 8.63 4.32 34.52 24.13 4.31 

Sep 17.26 8.63 0.00 17.26 20.68 2.78 

Oct 4.32 4.32 0.00 4.32 7.76 0.95 

Nov 4.32 4.32 4.32 4.32 5.17 0.46 

Dec 34.52 17.26 8.63 34.52 2.59 0 

Total 250.28 112.20 47.47 245.97 141.35 18.78 

       

Table 6-Operational cost represented by electricity bill in USD for Mosul's simulated scenarios 

The simulation for Basra on the other hand, showed that annual operational costs for typical year 

with no building interventions were the highest compared with Mosul and Baghdad. Employing 

PV on the roof as well as  optimising the building fabric for Basra reduced the operational cost for 

current scenarios by 78% which was the lowest cost recorded among all scenarios for this city as 

illustrated in Table 7.  

Month Basra model 

with no 

intervention 

for typical 

year 

Basra's model 

for typical 

year with 

building 

envelope 

interventions 

Basra's model 

for typical 

year with 

building 

envelope 

interventions 

and PV 

Basra's 

model for 

2080 with no 

intervention 

Basra's 

model for 

2080 with 

building 

envelope 

intervention 

Basra's 

model for 

2080 with 

building 

envelope 

intervention 

with PV 

Jan 3.45 8.63 4.32 8.63 4.32 0 

Feb 8.63 4.32 0.00 8.63 4.32 0 

Mar 4.32 4.32 0.00 4.32 4.32 0 

Apr 8.63 4.32 0.00 8.63 8.63 4.32 

May 17.26 8.63 4.32 34.52 17.26 4.32 

Jun 34.52 17.26 4.32 34.52 17.26 8.63 

Jul 34.52 17.26 8.63 34.52 17.26 8.63 

Aug 34.52 17.26 8.63 34.52 17.26 8.63 

Sep 17.26 17.26 4.32 34.52 17.26 8.63 

Oct 8.63 8.63 4.32 17.26 8.63 4.32 

Nov 8.63 4.32 0.00 4.32 4.32 0.00 

Dec 17.26 4.32 4.32 4.32 4.32 0.00 

Total 197.64 116.51 43.15 228.71 125.14 47.47 

Table 7-Operational cost represented by electricity bill in USD for Basra's simulated scenarios 
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Comparisons with energy codes 

It was imperative to compare all three simulations due to the various codes and international nZEB 

standards from (ASBEC, 2011; Taleb and Sharples, 2011) study. Some of these countries with 

nZEB standards have not specified the target for the primary energy consumptions that ought to 

be achieved in the near future.  Whereas, some countries such as Ireland and Austria focused on 

increasing the percentage share of renewable resources with 35% and 56% to offset the energy 

consumptions.  Little is known on how these standards affect the buildings of the near future. 

Therefore, a comparison was established to highlight the variance between these nZEB codes. The 

level of improvements for the international standards ranged from (0 to 120 kWh/m2.year) for 

current weather conditions with an average of 60 kWh/m2.year as shown in Error! Reference 

source not found.. The implemented solutions for Baghdad, Basra and Mosul showed achieving 

nZEB standards was possible in Iraq can even having a positive climatic effect by producing more 

energy than consumed in some simulated scenarios, as shown in Figure 11. Hence implementing 

the suggested solutions for nZEB buildings in hot climates particularly in Middle East (with similar 

construction materials used in Iraq) can improve the buildings energy performance and transform 

them into a 

climate 

positive 

building in the 

future weather 

scenarios. 

 

 

 

 

 

 

Figure 11-Comparisons of established international nZEB codes in the world  
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CONCLUSION  

For Middle-Eastern territories improving building energy efficiency and onsite renewable energy 

production can go a long way to achieving many of the UN’s outlined SDG’s particularly in 

countries such as Iraq facing unprecedented heat waves in the next 80 years. Iraq has had 

significant economic social and environmental ailments least of which includes an energy demand 

crisis. Iraq, dogged to incrementally develop in the aftermath of conflict and an energy crisis, 

requires new measures to enable more sustainable and self-reliant energy efficient residential 

dwellings in the near future to withstand extremities of temperature increases. Such future 

dwellings of Iraq can be achieved by simple measures of building design to achieve nZEB 

standards to enable more self-reliant dwellings.   

Under current and projected future climatic conditions - this paper examined hypothetical and 

simulated thermal modelling strategies for attaining nZEB standard of building performance 

improvements in three climatic zones in Iraq. With an absence of low-energy rating system or 

guidance for nZEB application in Iraq this study has sought to create the early standard guidelines 

for such in a typical residential dwelling in Iraq.   

An existing case study building in Baghdad has been used as a basis for developing the typical 

dwelling as a virtual model within IESVE software and geo-locating this model to two other Iraqi 

cities, of Mosul and Basra.  Energy performance analysis has been carried out for the current and 

future climatic conditions of 2080.  After the recommended improvements, the predicted results 

reveal that under current climatic conditions the primary energy consumption for nZEB in the three 

climatic zones of Iraq ranges from 16.70 kWh/m2.year to –3.58 kWh/m2.year which suggests that 

it is feasible to achieve nZEB standard and positive energy buildings under current climatic 

conditions in all three zones. The overall energy consumption for 2080 climate ranges from 13.14 

kWh/m2.year to -43.47 kWh/m2.year, demonstrating the possibility to achieve nZEB target under 

both current and projected future climatic conditions.  

The findings from the study demonstrate that to achieve a unified nZEB building standard for Iraq, 

the following considerations should be made during design and construction based on the 

corresponding geographical location: 
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1. Building envelope in all three cities should have (roof U-value= 0.27 W/m2. K, external 

wall & roof U-value= 0.13 W/m2. K for);  

2. The optimum air infiltration for all three cities should be (0.6 ACH for Mosul, 0.7 ACH 

for Basra and 0.4 ACH for Baghdad);  

3. PV oriented to the south and tilted to 34° with for all three cities based on its geographical 

location and orientation to meet the carbon target for the nZEB standards; 

4. Glazing U-value for all three locations should be 0.8 W/m2. K  

The estimated operational cost reveals that all buildings with current construction materials have 

high operational costs, the highest operational cost being in Mosul under current climatic 

conditions due to high heating demands in winter. All annual operational costs showed significant 

reductions for all cities after improving the building envelope efficiency and the application of on-

site PV systems.  The estimates of operational costs assume that all residents rely upon grid 

electricity, however presently majority of building residents use on-site diesel or petrol generators 

to overcome shortage of electricity in Iraq.  This study provides an embryonic roadmap for future 

building owners and policy makers to implement and specify nZEB standards for residential 

developments in Iraq. In achieving this aim, more sustainable and resilient residential buildings 

can be introduced to these regions to withstand current and potential future climatic changes. This 

study has inherent methodological limitations, albeit it forms as bourgeoning research in nZEB 

strategies for three climatic regions in Iraq. Key limitation of this study include the exclusion of 

any social, economic and political factors that may influence future adoption of nZEB in Iraq. 

Authors hope to establish a nascent movement of research in this domain to motivate policy makers 

and building owners and occupants to take active measures in applying best practice from nZEB 

to craft more energy efficient and resilient buildings in Iraq, a country with an already fragile 

resource scarcity.  

However, even nZEB standards alone cannot guarantee total immunity for residential dwellings 

from extreme climatic conditions of the near future in the Middle-East so future research is 

required to: improve understanding of policy change in developing countries facing growing 

energy demands in extreme climates; address the specific operational changes in residential 

dwellings currently plausible in Iraq; address the current dependency upon on-site diesel or petrol 

generators; analysis of social, economic and political barriers to nZEB in Iraq; and consolidate 

greater international oversight of Middle-Eastern residential construction methods and design of 

new build developments.   
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