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Impact of matrix deformations on drying of granular materials 

Oshri Borgmana,∗, Ran Holtzmana,b,∗∗ 

aDepartment of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel 
bCentre for Fluid and Complex Systems, Coventry University, Coventry, CV15FB, United Kingdom 

Abstract 

Drying of deformable porous media is encountered in soil, paints, coatings, food, and build-
ing materials. During drying, capillary forces can displace solid particles and modify invasion 
thresholds, opening preferential paths for air to invade. Since drying rates are crucially de-
pendent on liquid connectivity through the porous medium, they are affected by the drying 
patterns. We study the interplay between solid matrix deformation and drying patterns and 
rates, and the impact of pore-size heterogeneity and the confining stress in a granular material. 
We couple a pore-scale model of drying with a particle-scale mechanical model, to capture the 
two-way coupling between the evolving drying pattern and solid particle displacements. Our 
simulations show that for a low pore-size disorder, and low confining stress, matrix deformations 
are favorable and lead to preferential drying patterns which maintain high drying rates. This 
effect is observed throughout the drying process when the disorder is low, but disappears after 
breakthrough for low confining stress, indicating a different mechanism by which deformation 
can impact drying. These results could be significant for various industrial applications, includ-
ing fabrication of advanced nano-materials, where patterned drying can be used to obtain the 
desired structure. 

Keywords: Drying, granular material, deformation, immiscible displacement, porous media, 
pore-network model. 

1. Introduction 

Drying of granular materials is essential in many natural and industrial processes, control-
ling soil moisture [1, 2], curing of paints, coatings [3], food [4] and building materials [5], and 
manufacturing of ceramics [6], among others. Often, drying induces deformation of the solid 
matrix, which in turn affects the transport properties. This coupling between flow and defor-
mation can have important consequences, for instance desiccation cracks in soils can facilitate 
preferential transport of water, nutrients and contaminants [7], and reduce the efficiency and 
quality of paints, ceramics and coatings [6, 8]. 
The manner by which isothermal drying can induce matrix deformation is as follows. Evap-

oration reduces the liquid pressure in the pores, increasing the pressure difference (capillary 
pressure) across the interface between the liquid and the air which remains at atmospheric 
pressure. Once the capillary pressure exceeds the entry threshold of a pore, air invades it and 
displaces the liquid. The pressure difference across the air-liquid interface creates an imbalance 
of mechanical forces on the adjacent solid particles, which can lead to their displacement depend-
ing on the interplay with other forces like interparticle friction and elasticity. Such progressive 
deformation modifies the transport properties (pore apertures and local invasion thresholds), 
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and can result in the emergence of preferential pathways for the invading air in both drainage 
[9, 10] and drying [11, 3]. 
Drying rates and patterns are intimately linked. The rate of drying remains relatively high, 

and fairly constant, during an initial period (the so-called “constant rate period”) in which con-
nected liquid pathways between the porous medium’s interior and its open surface (the boundary 
between the porous medium and the outer atmosphere) are maintained, and evaporation is de-
termined by atmospheric demand [12]. Disconnection of these pathways marks the onset of 
the second (“falling rate”) period, when drying rates are limited by diffusion from a receding 
drying front through the porous medium [13, 14, 8]. Consequently, preferential drying maintains 
liquid connectivity to the surface hence higher drying rates, whereas a compact front will dis-
rupt liquid connectivity causing a decline in drying rates earlier on [15]. Since capillary-induced 
deformation of the solid, granular matrix can lead to preferential invasion patterns, we expect 
it to impact the drying rates as well. To the best of our knowledge, this paper is the first test 
of this hypothesis. 
The coupling of drying and deformation has been mostly studied for the case of cohesive 

media such as clayey soils and slurries in the context of desiccation crack formation, e.g. [1, 2, 
16, 8, 17]. Much less attention has been given to drying-induced deformation in non-cohesive, 
confined granular materials. Discrete pore-scale numerical simulations of drying in non-cohesive 
materials, demonstrated the emergence of crack-like patterns [18], with a transition from a more 
compact (capillary fingering) to a crack-like pattern favored for a system with lower elasticity 
and heterogeneity [19]. Despite these advancements, our understanding of the coupling of drying 
and deformations in granular materials is incomplete. In particular, the link between drying rate 
and deformations remains elusive. 
This paper provides a systematic examination of the two-way coupling between deformation 

and drying of non-cohesive granular materials. We present a discrete, pore-scale model that 
exposes how the external confinement and the initial pore-size disorder affect the drying patterns 
and rates. Our simulations show that lowering either the confinement or the initial disorder 
promote matrix deformation, which consequently leads to more preferential drying patterns, 
maintaining higher drying rates. 

2. Methods 

We develop here a discrete, pore-scale model of a drying granular material, where the coupling 
of fluid flow, drying and deformation is achieved by integrating two models: (i) a pore-network 
model to simulate isothermal drying [15]; and (ii) a granular mechanics model for matrix defor-
mation induced by fluid displacement [20]. Both models provide a simplified two-dimensional 
(2-D) representation of the actual three-dimensional (3-D) geometry and forces, considering a 
horizontal domain in which the effect of gravity on the fluids and the particles is excluded. Below 
we provide the essential details of the two underlying models, and the manner by which they 
are integrated; for further details of models (i) and (ii) see [15] and [20]. 

2.1. Pore-network model of drying 

We formulate a pore-scale model of a porous medium by dividing it into discrete cells 
(“pores”) to which the fluid volume is assigned, connected by “throats” representing the con-
strictions between the pores that control the transport properties (Fig. 1). Our model accounts 
for the boundary layer that develops just above the open surface of the porous medium, through 
which vapor diffuses to the outer environment; the width of this layer sets the initial drying rate 
[21]. This is introduced by extending our pore-network to include a thin layer of interconnected 
air “cells” above the medium, and solving for vapor diffusion in the entire domain including 
both the porous medium and the boundary layer [22]. For simplicity, all model cells, including 
in the boundary layer, are referred to hereafter as pores which are connected by throats. 
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Figure 1: (a) Model schematics. The porous medium is open at one of its faces, where a vapor concentration 
gradient drives evaporation from the air-liquid interface, and out to the atmosphere through a diffusive boundary 
layer. As evaporation reduces liquid pressure, air invades into liquid-filled pores. Some of the liquid becomes 
disconnected and forms isolated clusters. The drying front (in red) represents the most advancing part of the 
interface. (b) We model evaporation and capillary invasion via a pore network model, which we couple with a 
block-spring model that captures the effect of capillary pressures on matrix deformation. Pore bodies represent 
the space between solid particles placed on a square lattice (with spacing of 2a), and are interconnected by throats. 
Solid particles are illustrated here as dented blocks, a 2-D illustration that emphasizes that our model considers 
a network of contact forces between particles (represented by springs), while allowing fluid connectivity between 
the pores. Displacement of solid particles modifies the pore throats, impacting their capillary thresholds. 

Vapor concentrations are obtained by enforcing mass balance in each pore i, X 
Jij Aij = 0, (1) 

j 

where the summation is done over all neighboring pores j. Here � 
−ρsat �Jij = v Drφ 

ij (2) 

is the vapor mass flux between two adjacent pores i and j, driven by the local gradient of 
/ρsatrelative vapor concentration, rφ|ij = (φj − φi)/lij , where φ=ρv v is the local vapor density 

ρv normalized by the saturated vapor density ρsat (so that φ ∈ (0, 1)), and D is the binary v 
diffusion coefficient of vapor in air. Throat ij, connecting pores i and j, has an effective cross-
sectional area of Aij = πr2 , where rij is the effective throat radius. For the boundary layer ij 

we use Aij = 4a
2, where 2a is the lattice spacing. The length scale for vapor transport lij = 

2a in the case of neighbouring pores which are within the bulk air phase, i.e. between air-filled 
pores and in the boundary layer. Between pores along the air-liquid interface we set lij = a to 
represent the shorter vapor transport path between a meniscus and the adjacent air-filled pore. 
The local evaporation rate from each interface pore (Eq. 2) is provided from the vapor 

concentrations in air-filled pores (Eq. 1). For each liquid cluster (body of interconnected liquid-
filled pores), we sum the local evaporation rates from all interface pores (those along the liquid-air 
interface, marking the cluster’s edge), to obtain the total cluster’s evaporation rate; multiplying 
by the current time step provides the total evaporated volume for that step. The overall drying 
rate from the entire sample is the sum of evaporation rates from all liquid clusters, and it is 
equivalent to the time derivative of the saturation. 
The boundary conditions required to solve for vapor concentrations are as follows. We set 

a fixed concentration value along the air-liquid interface, φj = φsat = 1, and φ = φext (here 
0) at the edge of the boundary layer. The other two domain faces are impermeable, and we 
set there J = 0. The resulting set of coupled linear equations is solved for φ in each air-filled 
pore including the boundary layer. Our model captures the reduction in evaporation rate from 
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pores which are further away from the open surface (accounting for their larger overall diffusion 
length), or which are adjacent to another liquid-filled pore (a diffusion screening effect). 
We use separation of timescales to simplify the computations of the liquid and vapor trans-

port. First, we note that the timescale for liquid pressure diffusion by flow, is much shorter 
than that of evaporation, which here is set by the vapor diffusion (see the Supplementary Ma-
terial for details). This leads to the widely-used approximation of instantaneous liquid pressure 
equilibration [23], such that each liquid cluster (network of connected pores) has a single uni-
form pressure p and meniscus curvature C, which changes instantaneously with evaporation 
and following pore invasion events. We further adopt the quasi-static approximation for vapour 
transport, using a sequence of steady-state vapour concentrations [24, 25] to compute the evap-
oration rates excluding the effects of viscous liquid flow towards the evaporating menisci; again, 
a common approximation in pore network models of drying [26, 27, 28, 23]. For the case of 
rigid porous media, using these assumptions to model drying compared very favorably with 
microfluidic drying experiments [15, 29]. 
Pore invasion and altering the fluid distribution pattern occurs when evaporation reduces the 

liquid pressure such that the capillary pressure—the pressure difference between the air (which 
remains at atmospheric pressure) and the liquid—exceeds the local capillary threshold. The 
spatiotemporal pressure evolution following evaporation (Eqs. 1–2) is computed here as follows. 
In each liquid cluster the meniscus curvature C at the interface throats and the liquid pressure 
p are related by the Young-Laplace law, p = −γC, where γ is the interfacial tension. We relate 
the meniscus curvature to the volume of liquid evaporated from it, by assuming the meniscus 
takes the shape of a spherical cup (for details see [15]): r !2 r ! � �2 � �2π(2/C)3 

ΔVij = 1 − 1 − C/C∗ 2 + 1 − C/C∗ . (3)ij ij3 

Here ΔVij is the total (cumulative) volume evaporated from a flat meniscus (C = 0), computed 
as the sum (over time) of the incremental changes in the volume of meniscus ij. Approximating 
each throat as a cylindrical capillary tube of radius rij , and assuming perfect wetting (van-
ishing contact angle), provides the critical curvature at each interface throat, Cij 

∗ = 2/rij . At 
each time step we calculate the uniform value of C in each cluster of liquid-filled pores, using P 
ΔVtot = ΔVij , where ΔVtot is the total liquid volume evaporated from the cluster during ij 
that time step (obtained from Eqs. 1–2), and ΔVij is computed for each interface throat (Eq. 
3). We account for the effect of liquid redistribution following pore invasion events [30, 11], by 
redistributing the liquid volume associated with an invaded pore to all other interfacial pores in 
the same cluster, which decreases the cluster’s curvature (according to Eq. 3). 
Simulations begin with a liquid-saturated sample. The computational algorithm is as follows: 

(i) the evaporation rates from the air-liquid interfaces, for a given drying pattern, are computed 
from Eqs. (1–2); (ii) the time step until the next pore invasion event is calculated from the total 
evaporation rate from the pores, and the evaporated volume needed to reach the next critical 
curvature; (iii) once an invaded pore is emptied, the pore occupancy (drying pattern) is updated; 
(iv) the interface curvature and liquid pressure values are calculated for each liquid cluster; (v) 
particle displacement and consequent modification to the throat apertures are computed. The 
process is repeated by returning to step (i) until breakthrough or a desired final saturation are 
reached. 

2.2. Modeling matrix deformation and its impact on transport properties 

To capture the effect of deformation on drying, we use a mechanical grain-scale model to 
compute the particle displacements induced by the fluid pressure variations, from which we 
evaluate the consequent changes to the network properties, i.e. throat apertures. The updated 
pore network is then used to determine the critical invasion pressure and location at the next 
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time step. This staggering scheme—alternating between the computations of fluid flow and me-
chanical deformation—provides the two-way coupling between drying and matrix deformation. 
Our model is 2-D in the sense that it considers interparticle forces, displacements, and 

fluid flow in 2-D, however it provides an essential property inherent to 3-D geometry: it allows 
flow between two touching particles, as fluid can still flow around the contact area. This can 
be illustrated by considering a square lattice of dented blocks, interconnected with springs 
that represent their mechanical interaction (e.g. contact forces), where the narrow constriction 
between the blocks (pore throats) allows fluid to flow past the contact region (Fig. 1b, see [20]). 
Changes in the spring contraction represent deformation of solid particles, as a result of their 
relative displacement (the change in position of one particle with respect to its neighbor), which 
also affect the throat apertures. 
We consider a non-cohesive granular material, undergoing small (linearly-elastic) deforma-

tions due to particle rearrangements. Since our aim is to obtain fundamental understanding 
of a multiphysics problem—the interplay between evaporation, vapor and liquid transport and 
mechanical matrix deformation—rather than an accurate prediction for a specific system, we 
simplify our computations of the deformation by adopting the following assumptions. We em-
ploy the widely-used frictionless contact (“Hertzian”) model, which resolves the normal, com-
pressive component of the contact force [31, 32]. This implies that the frictional forces resisting 
interparticle displacements are much smaller than the increment in elastic forces due to the re-
arrangements, which is applicable to strongly confined, densely packed particles. While friction 
can be important in many granular systems, to a first approximation the essential aspects of the 
mechanical behavior can be captured by considering the normal force component only [33, 32]. 
In terms of the forces exerted by the fluids, we account for the capillary pressure jump 

across the fluid-fluid interface which pushes the particles along the interface apart, excluding 
the cohesive effect of interfacial tension. While the latter could significantly affect the mechanical 
stability of a granular packing at low humidity (due to capillary bridges that remains in inter-
particle crevices after the liquid has drained from the bulk of the pore volume), its effect on 
advancement of the air-liquid interface is secondary to that of the capillary pressure jump [34]. 
This, together with the complexity of computing the magnitude and direction of the interfacial 
force, leads to its exclusion from pore-scale models coupling multiphase flow and mechanical 
deformation (e.g. [18, 35]). Our model can be adapted to account for other types of materials 
and conditions, for example cohesion due to interparticle cement or plastic deformations, by 
introducing the respective mechanical constitutive relations. 
Matrix deformation in response to evaporation is obtained by resolving the system’s me-

chanical equilibrium. Here, this is provided through a force balance on each particle, X� � 
~ ~ = ~fp + fc 0, (4) 

where fp is the force exerted by the pore fluid pressure and fc is the interparticle contact force. 
The force exerted on a particle by the fluid occupying an adjacent pore body is fp = pAp, where 
p is the pressure in that pore, and Ap ∼ R2 represents the effective particle surface area upon 
which the pressure acts. The pressure p and force fp are updated following evaporation of liquid 
and the evolution of the drying pattern (see Section 2.1). The Hertzian contact model provides 
a closed-form, analytical expression for the force fc as a function of the local strain in terms p
of interparticle displacement h, fc = (4/3) (R/2)Eh3/2 , where E is the constrained Young 
modulus of the particles, and R is their radius [31]. We simplify our computations by using 
Taylor’s expansion to obtain a piece-wise linear relationship between the incremental changes in 
the force, fc(t +Δt) − fc(t), and in the strain, Δh = h(t +Δt) − h(t), 

fc(t +Δt) = fc(t) + KΔh, (5) 

where K(t) is the contact stiffness [20]. This is analogous to a nonlinear spring contracting by 
Δh, with stiffness of p

K = 2E h (R/2). (6) 
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We note that while deformation here is elastic and therefore fully reversible, the preferential 
pathways it creates remain open due to the capillary pressures. Finally, the change in throat 
apertures at each time step, Δr = r(t + Δt) − r(t) is evaluated from the relative particle 
displacements by 

Δh(1 − �)
Δr = − p , (7) 

2 1 + (1 − �)2 

where � = h(t)/2a; this expression is obtained by considering a cubic packing of spherical 
particles [20]. 
The boundary conditions for the mechanical problem are given in the form of fixed external 

confinement. Here confinement is measured in terms of strains, imposed by simulating fixed, 
rigid walls.To highlight the effect of disorder in the flow properties, we assume that the system is 
initially pre-stressed homogeneously, such that all springs are subject to the same compression 
h = h0. With this, the spatially uniform local (microscopic) strain h0 can be linked with the 
macroscopic strain via �0 = h0/2a, providing the initial conditions. The above provides a linear 
system of equations in terms of Δh, from which we resolve the particle displacements. 

2.3. Simulation parameters 

The macroscopic strain �0 and throat size disorder λ are the main control parameters here. 
Pore-scale heterogeneity is introduced through the disorder parameter λ ∈ (0, 1), which controls 
the distribution of pore throat apertures: at t = 0 (prior to the deformation), the throat radii 
are uniformly distributed according to r ∈ [r(1 − λ), r(1 + λ)], where r is the average throat 
size. Changing λ allows us to vary the sample heterogeneity by stretching the radii distribution 
while maintaining the same network topology—the same spatial distribution of large and small 
throats. This allows us to systematically examine the impact of throat size variation without 
the additional effect of the specific random placement of throats. To obtain statistically repre-
sentative results, for each set of parameter values (λ, �0) we generate 20 realizations (randomly 
varying the spatial distribution of throats). In all simulations, we keep the following param-
eters fixed: system size of 100×100 pores for the porous medium, a boundary layer width of 
δ = 200a, with lattice spacing 2a = 2×10−6 m, mean throat radius r = 0.4a, particle radius R 
= 1×10−6 m, constrained Young modulus [36] E = 1×108 N/m2, molecular diffusion coefficient 
D = 2.07×10−5 m2/s, interfacial tension γ = 70×10−3 N/m, and saturated density of water 
vapor ρsat = 0.0279 kg/m3 .v 

3. Results 

3.1. Drying patterns 

Our simulations show that lowering the initial confinement �0 and degree of disorder λ leads 
to more preferential drying patterns at breakthrough (when air reaches the bottom boundary), 
leaving significant portions of the medium wet. In the extreme case of very small �0 and λ, thin, 
straight fingers of dry (air-filled) pores emerge (Fig. 2). Our findings are aligned with published 
numerical simulations showing the effect of disorder in forced drainage [20] and drying [19], as 
well as experiments demonstrating the impact of confinement on drainage [9]. Experimental 
observations of drying patterns and rates in a non-cohesive granular material, while of great 
interest for future research, are outside the scope of this paper. To highlight the impact of λ 
and �0, in all cases presented in Fig. 2 we use the exact same initial sample geometry (spatial 
distribution of pore throats). In the case of low λ and �0, this causes the highly preferential 
patterns to emerge from the same location: the largest throat at the top surface. 
The preferential drying patterns result from progressive pore opening by matrix deforma-

tion. The capillary pressure jump across the air-liquid interface causes local force imbalance, 
which is equilibrated mechanically through particle displacements. The particles at the tip of 
the invading air finger are pushed apart, enlarging the throat apertures, cf. Eq. 7 (Fig. 3). The 
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consequent effect on the pattern depends on the competition between the initial (undeformed) 
microstructural heterogeneity and the deformations. For quasi-static displacement (with negli-
gible viscous effects) in a rigid medium, the initial microstructure dictates the drying pattern: 
at each step, air invasion would occur at all pores which are both accessible (along the interface) 
and admissible (capillary pressure meets the local thresholds). Deformations alter the local cap-
illary thresholds, which would impact the drying pattern if these changes are sufficiently large 
to overcome the initial heterogeneity, namely the order of pore invasion. When this mechanism 
becomes dominant, a fingering instability emerges, with preferential growth at the finger tips. 
The resulting thin air fingers provide earlier breakthrough at higher liquid saturation. 

3.2. Drying rate and time 

Since the drying rate is governed by liquid connectivity to the evaporation surface [14, 12], 
the effect of deformations on the patterns also has implications for the drying rate. Reducing the 
initial confinement �0, which promotes preferential drying patterns (Fig. 4a–d), results in higher 
drying rate, shorter time and higher liquid saturation at breakthrough (Fig. 4e–g). Fig. 4e–g 
shows the critical impact of confinement. For smaller �0 values particle displacements become 
large, and matrix deformation overcomes the pore-size disorder and dictates the drying pattern; 
increasing �0 reduces the deformation, such that the drying pattern is controlled by the initial, 
undeformed mircostructure. The patterns presented in Fig. 4a–d are the most representative 
realizations in the following sense: for each �0 value, we select the one with the saturation 

Figure 2: Drying patterns at breakthrough, demonstrating that lowering the initial disorder in throat sizes λ 
and the initial confinement �0 promotes preferential drying patterns through matrix deformation, with thinner 
fingers of air that reach breakthrough while most of the medium is still wet. Black and white represent air- and 
liquid-filled pores, respectively; red line indicates the drying front. A single sample was used for all simulations 
in this diagram; that is, we used the exact same spatial distribution of throat sizes r (when varying �0), and the 
same relative magnitudes of r (when varying λ). 
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t1

t2

(a) (b)

Figure 3: Preferential drying is associated with matrix deformation. The air finger in panel (a) is the consequence 
of progressive pore opening due to pressure imbalance (capillary pressure) acting on the particles at the finger tip. 
The insets show the particle positions (gray circles), before (t1) and after (t2) a particular pore invasion event, 
featuring the enlargement of the throat formed between the particle pair (highlighted in light gray) at the finger tip 
due to the pressure imbalance pushing the particles apart. Red arrows indicate the resultant pressure force acting 
on the particles, increasing the throat aperture and facilitating the next pore invasion at the finger tip, unless a 
larger throat is already accessible elsewhere. Air and liquid filled pores appear in white and blue, respectively. 
Panel (b) shows the change in the throat apertures, Δr, rescaled by the particle radius R (for simplicity only the 
vertical throats are plotted). If this deformation-assisted mechanism is dominant, the macroscopic drying pattern 
follow the path of the modified throat apertures, making it highly preferential, leaving most of the liquid behind 
at breakthrough. 

profile (defined here as the vertical distribution of liquid-filled pores) which is closest to the 
ensemble-averaged profile. 
Lowering pore-size disorder λ has a similar effect to that of reducing �0: it maintains higher 

drying rates, with a shorter time and higher liquid saturation at breakthrough (Fig. 5e–g; panels 
a–d show representative patterns). Low λ amplifies the effect of small particle displacements: 
in a homogeneous sample, small deformations are suffice to change the arrangement of throat 
sizes and therefore the order of invasion. At low confinement (�0 = 0.01 in Fig. 5), alteration 
of pore sizes by the large particle displacements overwhelms the effect of the initial disorder for 
low λ values, resulting in a plateau between λ = 0.01 and λ = 0.1. We stress that since the 
representative patterns are selected according to their saturation profile, the ensemble-averaged 
values may appear inconsistent with the patterns themselves. For example, the average drying 
rate at breakthrough for λ = 0.01 is almost similar for �0 = 0.01 and 0.05 (Fig. 5e), while the 
chosen representative patterns in Fig. 5a differ significantly. This illustrates both the intricate 
link between drying patterns and rates, e.g. the strong impact of saturation at the surface and 
its interplay with the diffusive boundary layer [21], as well as the importance of using ensemble 
averages, to avoid bias of the results due to sensitivity to the details of a specific realization. 
Later on in the drying process, in particular past breakthrough, the impact of �0 becomes 

limited, as demonstrated by the similarity and eventually overlap of the drying rate-saturation 
relationship (“drying curves”) for different �0 at lower saturations S (Fig. 6a), and even more 
so for the drying time where the effect of �0 is smaller throughout (along a wider range of S, 
see Fig. 6b). The drying rates show an overall larger sensitivity to λ. This is captured by a 
more gradual drop in drying rate for a longer duration (rate remains higher at lower S) as λ 
is decreased (Fig 6c), resulting in shorter drying times (Fig 6d). In our analysis we use non-

(ρsatdimensional quantities for: (1) drying rate ẽ = e/e0, where e and e0 = v /ρl)Dφsat/δBL are 
the absolute and potential drying rates; and (2) time t̃ = t/t0, where t and t0 = nL/e0 are the 
absolute time, and the characteristic time to evaporate all the liquid from a sample of depth L 
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(a) (b) (c) (d)

(g)(e) (f)

Figure 4: Reducing the confinement �0 promotes preferential drying patterns (a–d), which result in faster drying 
rate, ẽBT, shorter time, t̃BT, and higher saturation at breakthrough, SBT (e–g). Symbols and error bars in (e)–(g) 
represent mean values and standard error from 20 realizations for each �0, with a fixed disorder λ = 0.1. Symbol 
colors match those of the boxes in (a)–(d). 

and porosity n at rate e0. 

4. Discussion 

4.1. The impact of confinement versus disorder 

Confinement affects the drying behavior in a different manner than disorder, especially past 
breakthrough (Fig. 6), because of the different mechanisms that are responsible for the emergence 
of preferential pathways in the two cases. In non-deformable media, disorder dictates the drying 
pattern for a quasi-static process like the one considered here. The mechanism of deformation-
assisted preferential invasion relies on the deformations being sufficiently large to overcome the 
initial disorder. Therefore, preferential invasion is favoured by both (i) reduction of the initial 
disorder – requiring smaller deformations to overcome them – and (ii) reduction of confinement, 
allowing larger deformations to take place (Fig. 7). 
Since the system here remains at fixed total volume (fixed boundaries, i.e. no-strain boundary 

conditions), large deformations in one region prohibit further deformations elsewhere. Air fingers 
formed by large particle displacements (as in the case of low confinement �0) cause compaction 
and stiffening of the surrounding matrix (Fig. 7b, as observed experimentally [10]). This 
negative feedback is much less apparent at low disorder, due to the relatively small particle 
displacements required for the emergence of preferential pathways. Therefore, fingers continue 
to open even past breakthrough. As preferential invasion and the consequent connectivity of 
wet pores promotes faster drying, in uniform samples (low λ) a faster rate persists at later times 
(lower liquid saturation; Fig. 6c). 

4.2. Implications of matrix deformation on drying of natural and engineered systems 

Our findings improve the understanding of various drying processes in natural and engineered 
porous and granular systems, for instance the dependency between drying rate and deforma-
tion in soils or in paints and coatings [3], and therefore could be used to predict, control and 
monitor these processes. Specifically, controlling heterogeneity and confinement can be used 
to manipulate drying rates, as well as the amount of deformation a porous medium experi-
ences. Manipulating heterogeneity and confinement could also be a way to produce a desired 
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(e)

(a) (d)(c)(b)

(f) (g)

Figure 5: Low pore-size disorder λ increases the sensitivity of drying patterns to matrix deformation, resulting 
in preferential drying patterns (a–d) which maintains liquid connectivity to the open surface (top of the sample). 
This provides higher drying rates and shorter time at breakthrough (e–f), which is achieved at higher saturation 
(g). Lower �0 increase the magnitude of particle displacement, thus maintaining the preferential drying behavior 
for higher λ. Symbols and error bars represent mean values and standard error from 20 realizations for each λ 
and �0. Colors of symbols match the boxes in (a)–(d). 

deformation pattern, which could be useful, for instance, in the manufacturing of nanomaterials 
[37]. 
In soils, matrix deformation and fracturing can impact their hydraulic properties, by chang-

ing the throat sizes and their correlation. Deformation of the granular material can change the 
distribution of pore sizes, and affect the permeability of the medium [38]. Opening of fracture-
like pathways, provides correlated regions of connected large pores, which can become conduits 
for rapid transport of water and solutes by the infiltrating water, significantly enhancing the soil 
permeability. Furthermore, some of the deformation that accumulates during recurring drying 
and wetting cycles is irreversible, adding to the already hysteretic water retention behavior, i.e. 
the path-dependency of capillary pressure-saturation relationship [39]. 

5. Summary and Conclusions 

The presented model captures in a new way the coupling of drying and matrix deformation 
in noncohesive granular material at the pore-scale. Our simulations elucidate the impact of 
drying-induced matrix deformation on the drying patterns and rates. Specifically, we show that 
lowering the heterogeneity and the confining stress promote preferential drying patterns, due to 
deformation of the solid matrix, which in turn maintain liquid connectivity to the open surface 
of the drying sample, hence preserving higher drying rates for longer times and lower liquid 
saturations. 
Our findings point to the different mechanisms for deformation-induced preferential dry-

ing when altering the initial disorder or the confinement. While lowering confinement simply 
increases the amount of deformation, lowering the disorder promotes preferential drying by en-
hancing the effect of small deformations. These different mechanisms also impact the long-term 
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(a) (b)

(c) (d)

Figure 6: Drying curves (rate vs. saturation), and the temporal evolution of the saturation. The drying rate ẽ 
decreases more gradually for lower �0 values (a), mostly in the initial stages of drying, with a relatively limited 
effect on t̃ (b). Similarly, ẽ decreases more gradually for lower λ (c), resulting in shorter drying time t̃ (d). Solid 
lines and shaded area represent the mean value and standard error, respectively, calculated from 20 realizations 
for each λ or �0 value. We use a fixed value of λ = 0.1 for the simulations in a-b, and �0 = 0.05 for c-d. 

behavior: low confinement enhances drying rates mostly at early stages (low liquid saturations, 
prior to breakthrough), whereas the relatively small deformations required for preferential dry-
ing at low disorder allow for further deformations and fingering to occur past breakthrough, 
thus preserving higher drying rates for longer periods. 
This work highlights the significant effects of capillary-induced deformations on drying, and 

the different roles played by the microstructure and the mechanical conditions. The presented 
model provides a simple yet physically-sound account of the physics underlying drying in de-
formable granular medium, paving the way to study drying in more complex systems where 
additional processes become important, for instance solute transport and reactions in cements, 
foods and soils. 
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