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Abstract 

We consider the partition functions of the anisotropic dimer model on the rectangular (2M − 1) × 
(2N − 1) lattice with (a) free and (b) cylindrical boundary conditions with a single monomer residing 
on the boundary. We express (a) and (b) in terms of a principal partition function with twisted boundary 
conditions. Based on these expressions, we derive the exact asymptotic expansions of the free energy for 
both cases (a) and (b). We confrm the conformal feld theory prediction for the corner free energy of these 
models, and fnd the central charge is c =−2. We also show that the dimer model on the cylinder with an 
odd number of sites on the perimeter exhibits the same fnite-size corrections as on the plane. 
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3. 

1. Introduction 

Finite-size scaling has been of interest to scientists working on a variety of critical systems, 
including spin models, percolation models, lattice gauge models, spin glass, etc. [1]. The prop-
erties of the associated corrections to theoretical predictions for the behavior of idealized infnite 
systems play increasingly important roles in improving understanding of real statistical systems 
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in the critical regime. Therefore, in recent decades there have been many investigations on fnite-
size scaling, fnite-size corrections, and boundary effects for model systems. 

To fully understand such effects, analyses which can be carried out without delivering numer-
ical errors are of particular importance. These include systems such as the Ising model [2–4], 
spanning-tree models [5], dimer models [5–10], the critical dense polymer model [10,11], resis-
tor network [12], Hamiltonian walk [13], critical Potts model [14], etc., which allow for exact 
studies. 

Models with exact solutions, therefore, have key roles in understanding the forms of fnite-
size scaling. Ferdinand and Fisher stimulated such studies [2] by performing a fnite-size analysis 
of Onsager’s exact solution [15] of the two-dimensional Ising model on fnite-size rectangular 
lattices with periodic boundary conditions. Although the solution for the Ising model with free 
boundaries is still lacking, exact solutions for a variety of different models with various bound-
aries have been obtained and studied intensively. 

Many critical systems have been shown to have local scale invariance, so that their scaling 
limits can be described by conformal feld theory. Such a theory is parameterized by the value of 
its central charge c, which itself is related to the fnite-size corrections to the critical free energy. 
For critical two-dimensional systems, it has long been known that the free energy contains a 
term of order O(ln L) due to corner singularities, where L is the typical size of the system, with 
a universal prefactor proportional to the central charge [16]. The study of statistical systems in 
the presence of such corner singularities has emerged as a topic in its own right – one which is 
increasingly gained in importance [16–21]. 

Several years ago an effcient bond-propagation algorithm was developed for computing the 
partition function of the Ising model with free edges and corners in two dimensions [22]. With 
this algorithm, calculations have been carried out on various lattices and the results are accurate 
to a remarkable margin of 10−26 [19–21]. Fitting the standard fnite-size scaling formulae to 
associated data allowed the edge and corner terms for the free energy to be obtained very ac-
curately. For example, from the corner term for the rectangular lattice (comprising rectangular 
elementary plaquette) [19] and from the corner terms for triangular, rhomboid, trapezoid, hexag-
onal and rectangular lattices (each comprising elementary triangular plaquette) [20], the central 
charge of the Ising model was estimated to be c = 0.5 ±1 ×10−10, compared with the conformal 
feld theory result c = 0.5 [16]. 

Conformal invariance implies that on a fnite lattice with free boundaries the critical free 
energy has the generic form [17] 

F = Sfbulk +Pfsurf + f0 +O(1/S). (1) 

Here S represents the area of the lattice and fbulk is the free energy per unit area. The second 
term represents contributions from the lattice perimeter P , with fsurf the associated free energy 
per unit edge length. 

In general, the coeffcients fbulk and fsurf are non-universal, but the coeffcient f0 is supposed 
[23] to be universal, depending only on the shape of the system and, possibly, the nature of the 
boundary conditions. In some two-dimensional geometries, the value of f0 is known [24] to be 
simply related to the conformal anomaly number c of the theory. Cardy and Peschel [16] have 
shown that corners on the boundary induce a trace anomaly in the stress tensor. This gives rise to 
a term in  f0 proportional to ln S , where S is the area of the domain. Later, Kleban and Vassileva 
[17] have shown that in rectangular geometry in addition to corner contribution proportional to 
ln S the term f0 contains a term depending on the aspect ratio, namely, the term f0 contains the 
universal part funiv given by 
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c c � � �� 
funiv =−  ln S + ln η(q)η q . 

8 4 
(2) 

Here c is the central charge, q = exp (−2πξ), q = exp (−2π/ξ), ξ is the aspect ratio and η 
the Dedekind eta function. However, Kleban and Vassileva mentioned that, in their derivation, a 
possible non-universal additive constant was not included [17]. 

In this paper we derive exact asymptotic expansions, to arbitrary order, for the free energies 
of critical systems described by logarithmic conformal feld theory with central charge c =−2. 
Such systems are realized as the dimer model on a rectangular lattice, the Abelian sandpile model, 
the spanning tree, Hamiltonian walks on a Manhattan lattice, rational triplet theory, symplectic 
fermions, the traveling salesman problem, as well as branching polymers. The calculation of the 
central charge, based on fnite-size corrections for the dimer model on the rectangular lattice, has 
led to some confusion in the literature, due to the (mis)interpretation of fnite-size corrections in 
terms of the central charge rather than the effective central charge [5,25]. Only quite recently it 
has been shown [8–10] that the central charge for the dimer model is c =−2. In particular, we 
consider the anisotropic dimer model on a (2M − 1) × (2N − 1) rectangular lattice with (a) free 
and (b) cylindrical boundary conditions with a single monomer on the boundary. We show that 
the exact asymptotic expansion for the free energy for these models can be written as 

∞ � fp(zξ) 
F = Sfbulk + 2N f1s(x, y) + 2Mf2s(x, y) + f0(zξ) + , (3)Sp 

p=1 

where S =MN , f1s and f2s are the free energies per unit edge length in the horizontal and 
vertical directions respectively, along which x and y are the dimer weights with z = x/y. The
quantities M and N are functions of the physical dimensions of the lattice and the aspect ratio 
is ξ =N /M. All coeffcients in the expansion (3) are expressed through analytical functions. 

The correspondences between M and N in Eq. (3) and the lattice dimensions for system (a) 
and (b) are summarized as:   

(2M,2N)  for the dimer model with free boundary conditions,
(M,N ) = 

(2M − 1,2N)  for the dimer model on cylinder. 

We show that f0 contains the universal part funiv given by Eq. (2). This confrms the conformal 
feld theory prediction for the corner free energy in models for which the central charge is c =−2. 

The paper is organized as follows. In Section 2 we show how to express the partition function 
for the dimer model on a (2M −1)× (2N −1) rectangular lattice with (a) free and (b) cylindrical 
boundary conditions with a single monomer on the boundary in the form of a partition function 
with twisted boundary conditions. In Section 3 asymptotic expansions of the free energies are 
presented. The results are summarized and discussed in Section 4. 

2. Partition function of the dimer model 

Consider a anisotropic dimer model on a fnite rectangular lattice with an odd number of rows 
and an odd number of columns. The lattice is planar if there are free boundary conditions in both 
directions. It is cylindrical if there are periodic boundary conditions in the horizontal direction, 
for example, and free boundary conditions in the vertical direction. The partition function for the 
anisotropic dimer model is given by � 

nh nvZ(x, y) = x y , (4) 



160 N. Izmailian et al. / Nuclear Physics B 884 (2014) 157–171 
	 


� 	 


	 

	 


	 


where the summation is taken over all dimer covering confgurations. Here, nh and nv are the 
number of horizontal and vertical dimers whose weights are x and y respectively. It has been 
shown that the exact partition functions of the anisotropic dimer model on fnite rectangular 
lattices with free, cylindrical, toroidal, Möbius-strip and Klein-bottle boundary conditions can 
be expressed in terms of the principal object 

N−1 M−1 � � 
2 2 sin2 (m + α)π + sin2 (n + β)π 

Zα,β(z,M,N)  = 4 z , (5)
M N 

n=0 m=0 

where (α, β) = (1/2, 0), (0, 1/2) or (1/2, 1/2) and z = x/y. Here, M and N are related to the 
lattice dimensions, the precise details depending on the lattice geometry in question [7]. 

It is clear that Z0,0(z,M,N)  vanishes due to the zero mode at (m, n) = (0, 0). In what follows, 
therefore, we remove the zero mode, and when α = β = 0 replace Z0,0(z,M,N)  in Eq. (5) by 

N−1 M−1 � � 
2Z0,0(z,M,N)  = 4 z 2 sin2 mπ + sin2 nπ 

, (6)
M N 

n=0 m=0 

where the prime on the product denotes the restriction (m, n) �= (0, 0). 
The general theory for the asymptotic expansion of Zα,β(z,M,N)  for (α, β) �= (0, 0) ap-

pearing in the anisotropic dimer model has been given in [7]. In this paper we will present the 
asymptotic expansion of Z0,0(z,M,N). 

In this section, we consider the anisotropic dimer model on (2M − 1) × (2N − 1) rectangu-
lar lattices with (a) free and (b) cylindrical boundary conditions with a single monomer on the 
boundary. The aim of the section is to show that the partition functions for both (a) and (b) can 
be written in terms of the principal mathematical object appearing in Eq. (6). 

2.1. Dimer model on the rectangular lattice with free boundary condition 

Let us frst consider the anisotropic dimer model on (2M − 1) × (2N − 1) rectangular lattices 
with free boundary conditions with a single monomer on the boundary. The lattice is bipartite 
and consists of two sublattice A and B. Since the total number of sites is odd the four corner 
sites belong to the same sublattice, say, A and there are one more A than B sites. The lattice can 
therefore be completely covered by dimers if we put monomer on the boundary to one of the site 
belong to the sublattice A. 

The exact partition function for the dimer model on a (2M −1) × (2N −1) rectangular lattice 
with free boundary conditions and with a single monomer on the boundary is given by [5,26] 

N−1 M−1 � � 
2 mπ 2 nπfree M−1 N−1 2 2Z y 4 x cos + y cos2M−1,2N−1 = x 

2M 2N 
n=1 m=1 

N−1 M−1 � � 
2 mπ 2 nπM−1 2MN−M−N 2= z y 4 z cos + cos . (7)

2M 2N 
n=1 m=1 

This result is independent of the location of the monomer provided that it is an A site on the 
boundary. We change the variables n →N − n and m →M −m to write the partition function 
as 

N−1 M−1 � � 
free M−1 2MN−M−NZ2M−1,2N−1 = z y 4 z 2 sin2 mπ + sin2 nπ 

. (8)
2M 2N 
n=1 m=1 



161 N. Izmailian et al. / Nuclear Physics B 884 (2014) 157–171 
	 

�

�

	 


It is easy to show that f (2N − n,m) = f (n,2M −m) = f (n,m), where 

f (n,m)  = 4 z 2 sin2 mπ + sin2 nπ 
. (9)

2M 2N �2N−1 � 2M−1
This allows us to express the double product f (n,m)  in terms of the simpler n=0 m=0 �N−1 �M−1 

m=1 f (n,m)  throughn=1 

2N−1 2M−1 � � 
f (n,m)  

n=0 m=0 � 4�2N−1 �2M−1 N−1 M−1 � � 
n=1 f (n,M)f (n,0) f (N,m)f (0,m)  = m=1 f (n,m)  , (10)

f (N,M)  
n=1 m=1 

with f (N,M)  = 4(1 + z 2). The prime on the product again denotes the restriction (m,n) �= 
(0,0). With the help of the identities [28] 

M−1 � 
4 sinh2(M ) = 4 sinh2   + sin2 mπ 

, (11)
M 

m=0 

and 

M−1 � 
24 sin2 mπ = M , (12)

M 
m=1 �2N−1 �2M−1the products f (n,M)f (n,0) and f (N,m)f (0,m)  can be written as n=1 m=1 

2N−1
4N2� 

f (n,M)f (n,0) = sinh2 (2N arcsinh z), (13)
2z

n=1 

and 

2M−1 � � � 
2f (N,m)f (0,m)  = 4M z 8M−2 sinh2 2M arcsinh 

1 
, (14) 

z 
m=1 

respectively. Now, using Eqs. (6), (8)–(10), (13) and (14) the partition function for dimers with 
free boundary conditions can fnally be written as 

free 1/2
Z2M−1,2N−1 = QZ0,0 (z,2M,2N),  (15) 

in which 

2MN−M−N 2)1/4 y (1 + z 
Q =   . (16)

Mz 2MN  sinh (2N arcsinh z) sinh (2M arcsinh 1/z) 

2.2. Dimer model on the rectangular lattice with cylindrical boundary conditions 

Now, let us consider the anisotropic dimer model on (2M − 1) × (2N − 1) rectangular lat-
tices with cylindrical boundary conditions with a single monomer on the boundary. The lattice 



162 N. Izmailian et al. / Nuclear Physics B 884 (2014) 157–171 
	 

	 


	 


is nonbipartite and cannot be divided to the two sublattice A and B. The lattice can be fully cov-
ered by one monomer and dimers. In 1974 Temperley [27] introduce a bijection between dimer 
confgurations with single monomer on the boundary of a planar lattice and spanning trees on a 
related lattice. However, the success of the Temperley bijection apparently depends on the lattice 
being bipartite; it does not work for nonbipartite lattices. By using an alternate mapping [26] the 
anisotropic dimer model on (2M − 1)× (2N − 1) rectangular lattices with cylindrical boundary 
conditions with a single monomer on the boundary has been solved in [29]. 

The exact partition function for the dimer model on a (2M −1)× (2N −1) rectangular lattice, 
with cylindrical boundary conditions, with a single monomer on the boundary is given by [29] 

N−1 M−1 � �cyl M−1 2mπ 2 nπN−1 2Z2M−1,2N−1 = x y 4 x 2 sin2 + y cos
2M − 1 2N 

n=1 m=1 

N−1 M−1 � � 2mπ 2 nπM−1 2MN−M−N= z y 4 z 2 sin2 + cos . (17)
2M − 1 2N 

n=1 m=1 

Using the transformation n → 2N − n and the relation 

M−1� � M−1� � � �2mπ mπ 
a + sin2 = a + sin2 , (18)

2M − 1 2M − 1 
m=1 m=1 

the partition function given by Eq. (17) can be expressed in the form 

N−1 M−1 � � mπcyl M−1 2MN−M−NZ2M−1,2N−1 = z y 4 z 2 sin2 + sin2 nπ 
. (19)

2M − 1 2N 
n=1 m=1 

Following the same procedure as in the case of free boundary conditions, we obtain 

cyl 1/2 
Z2M−1,2N−1 = RZ0,0 (z,2M − 1,2N),  (20) 

with 

2MN−M−N 

R =   y
. (21)

M−1/2z 2N(2M − 1) sinh [(2M − 1) arcsinh 1/z] 
Eqs. (15) and (20) give how the partition functions of the dimer model on a (2M − 1) × 

(2N − 1) rectangular lattice with (a) free and (b) cylindrical boundary conditions, with a single 
monomer on the boundary, can be expressed in terms of the principal object Z0,0(z,M,N). 
Based on such results, one can use the method proposed by Ivashkevich, Izmailian, and Hu [4] to 
derive the asymptotic expansion of the Z0,0(z,M,N)  in terms of Kronecke’r double series [30], 
which are directly related to elliptic θ functions (see Appendix A). 

3. Asymptotic expansion of free energy 

In Section 2, we have shown that the partition functions of the dimer model with free and 
cylindrical boundary conditions with a single monomer on the boundary can be expressed in 
terms of the principal partition function with twisted boundary conditions Z0,0(z,M,N)  (see 
Eqs. (15) and (20)). The asymptotic expansion of the Z0,0(z,M,N)  is given in Appendix A. 
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After reaching this point, one can use Eq. (A.14) to write down all the terms of the exact 
asymptotic expansions of the free energy, F =− ln Z for all models under consideration in the 
form of Eq. (3). 

The bulk free energy fbulk for the dimer model on a (2M − 1) × (2N − 1) rectangular lattice 
for both free and cylindrical boundary conditions is given by 

π �
1 1 

fbulk =−  ln y −  z(x)dx 
2 2π 

0 
π �

1 1 =−  ln y − arcsinh(z sin x)dx 
2 2π 

0 

1 Φ(−z 2 ,2, 12 )=−  ln y − , (22)
2 4π 

where  z(x) is lattice dispersion relation defned in Eq. (A.3) and Φ(x, s,α) is the Lerch 
transcendent defned in Eq. (A.7). In particular for the isotropic dimer model (z = 1), 
Φ(−1,2,1/2) = 4G, where G is the Catalan constant given in Eq. (A.8) as 
G = 0.915965594 . . .  . The surface free energy f1s and f2s defned by Eq. (3) are �1 1 � �free 2f = ln y + ln z + 1 + z , (23)1s 4 4 

cyl 
f1s = 0, (24) � 

free cyl 1 1 � 
2
� 

f = f2s = ln y + ln 1 + 1 + z . (25)2s 4 4 

For the leading correction terms f0(zξ) we obtain 

1 1 3 1 � �free 2f0 (zξ) = ln S − ln ξ − ln η(izξ) − ln 2 − ln 1 + z 
4 4 2 4 
1 1 � � 3 1 � � 1 = ln S − ln η(izξ)η i/(zξ) − ln 2 − ln 1 + z 2 + ln z, (26)
4 2 2 4 4 

Nin which ξ = ,
M 

cyl 1 1 1 1 
f0 (zξ) = ln S − ln ξ − ln η(izξ) − ln 2 + ln y

4 4 2 2 
1 1 � � 1 1 1 = ln S − ln η(izξ)η i/(zξ) − ln 2 + ln y + ln z, (27)
4 2 2 2 4 

2Nin which ξ = 2M−1 . Here  η is the Dedekind eta function and we use the behavior of the this 
function under the Jacobi transformation τ → τ =−1/τ , � �   

η τ = −iτη(τ ), (28) 

for τ = izξ . 
For the subleading correction terms fp(zξ) for p = 1,2,3, . . .  , we obtain 

K2
0
p
,0 
+2(izξ) 2p+1ξp+1 Λ2p

fp(zξ) = π , 

(2p)! 2p + 2 
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Nwhere for free boundary conditions, we again use ξ = and for cylindrical boundary conditions 
M 

ξ = 2N . As an example, we list frst few expansion coeffcients fp(zξ) for p = 1,22M−1 

� � π3ξ2 � �2 4 4 4 4 4 4f1(zξ)= z 1 + z θ2 θ3 + θ3 θ4 − θ2 θ4 ,1080 
f2(zξ) 

π5ξ3 z(1 + z 2)(1 + 9z 2) z 2(1 + z 2)2 ∂ � �� �� �4 4 4 4 4 4= + θ2 + θ θ2 − θ θ3 + θ , (29)3 4 412 096 5 3 ∂z  

where θi = θi(zξ) with i = 2,3,4. 
Note, that with the help of the identities 

∂ π ∂ ∂ π ∂ 
ln θ3 = θ4

4 + ln θ2, and ln θ4 = θ3
4 + ln θ2, 

∂ξ  4 ∂ξ  ∂ξ  4 ∂ξ  

∂ 1 ∂E  π2 π2 2 4 4ln θ2 =−  θ3 E, and = θ3 θ4 − θ4 E, ∂ξ  2 ∂ξ  4 2 

one can express all derivatives of the elliptic functions in terms of the elliptic functions θ2, θ3, θ4 
and the elliptic integral of the second kind E. 

From Eqs. (26) and (27) we can see that universal part of the f0 is  given by Eq.  (2) with 
central charge c = −2. This proves the conformal feld theory prediction for the corner free 
energy and shows that the corner free energy, which is proportional to the central charge c, is
indeed universal. 

It is interesting to note that leading fnite-size corrections f0 for the dimer model on a (2M − 
1)× (2N − 1) square lattice with single monomer on the boundary is similar for both free and 
cylindrical boundary conditions. This similarity is unusual in integrable models and requires 
explanation [8]. Consider the dimer model on a (2M − 1)× (2N − 1) square lattice L with a 
single monomer on the boundary and with periodic boundary condition in the horizontal direction 
and free boundary conditions in the vertical direction. The lattice L then forms a cylinder of 
perimeter (2N − 1) and height (2M − 1). Let us enumerate the sites of the lattice L as (m,n), 
where m = 1,2, . . . ,2N − 1 and m = 1,2, . . . ,2M − 1. There is a bijection between dimer 
coverings on L with one boundary site removed and spanning trees on the odd–odd sublattice 
G⊂ L with sites labeled as (2n− 1,2m− 1) with n= 1,2, . . . ,N  and m= 1,2, . . . ,M . 

Let us select the odd–odd sublattice G and put monomer on the boundary. It is easy to see that 
two columns of G will be neighbours in G and in L (connected by horizontal bonds). Therefore 
a dimer may cover zero, one or two sites of G. The dimers covering no site of G are completely 
fxed by the others and play no role. For the others, we do the following construction. If a dimer 
touches only one site of G, we draw an arrow directed along the dimer from that site to the nearest 
neighbouring site of G. However, for a dimer laid on two sites of G, the two arrows would point 
from either site to the other, ruining the spanning tree picture. It can nevertheless be restored in 
the following way. Instead of seeing the two arrows as pointing from one site to its neighbour, 
we say that they point towards roots inserted between the neighbour sites, thus replacing the 
arrows �� � �by �� � �� �. This in effect amounts to opening the cylinder by removing 
the horizontal bonds of L which connect sites of G, unwrapping it into a strip, and to adding 
columns of roots on the left and on the right side of the strip. The new arrow confgurations defne 
spanning trees, rooted anywhere on the left and right boundaries. So dimer coverings on the 
original cylinder are mapped to spanning trees on a strip, with close horizontal boundaries, and 
open vertical boundaries. Therefore, although the dimer model is originally defned on a cylinder, 
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it shows the fnite-size corrections expected on a strip, and must really be viewed as a model on 
a strip. 

For odd–even (2M − 1) × 2N and even–even 2M × 2N cylinders with perimeter 2N , the
problem of having two arrows pointing from and to neighbor sites does not arise; however, the 
arrows one obtains do not defne spanning trees but rather a combination of loops wrapped around 
the cylinder and tree branches attached to the loops. 

4. Conclusion 

We have derived the exact fnite-size corrections for the free energy of the anisotropic dimer 
model on the (2M − 1)× (2N − 1) rectangular lattice with free and cylindrical boundary con-
ditions with a single monomer on the boundary. We found that the exact asymptotic expansion 
of the free energy of the dimer model can be written in the form given by Eq. (3). We also show
that the dimer model on the cylinder with an odd number of sites on the perimeter exhibits the 
same fnite-size corrections as on the plane. 

We proved the conformal feld theory prediction about the corner free energy and have shown 
that the corner free energy, which is proportional to the central charge c, is indeed universal. We 
fnd the central charge in the framework of the conformal feld theory to be c=−2. 
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Appendix A. Asymptotic expansion of Z0,0(z,M,N)  

In this section we shall obtain the exact asymptotic expansion of the logarithm of the 
Z0,0(z,M,N). The logarithm of the Z0,0(z,M,N)  can be expanded in the similar way as it 
has been done in Ref. [4] for the isotropic dimer model (zh = zv or z= 1). 
Z0,0(z,M,N)  can be transform in the following way 

N−1 M−1 � � 
2Z0,0(z,M,N)= 4 z 2 sin2 mπ + sin2 nπ 

M N 
n=0 m=0 � � 
N−1 N−1 M−1 � � � 

= 4 sin2 nπ 
4 z 2 sin2 mπ + sin2 nπ 

N M N 
n=1 n=0 m=1 

N−1 M−1 � � 
2=N 4 z 2 sin2 mπ + sin2 nπ 

. (A.1)
M N 

n=0 m=1 

With the help of the identity given by Eq. (11), Z0,0(z,M,N)  can be transformed into a simpler 
form 
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	M−1 � �
 � mπ 
Z0,0(z,M,N)  =N 2 sinh  N z (A.2)

M 
m=1 

where lattice dispersion relation is 

 z(k) = arcsinh(z sin k). (A.3) 

Considering the logarithm of Z0,0(z,M,N), we note, that it can be transformed as 

M−1 � � M−1 � πm  � � 
( πm  �−2N z )ln Z0,0(z,M,N)  = ln N +N  z + ln 1 − e M . (A.4)

M 
m=1 m=1 

The second sum here vanishes in the formal limit N →∞ when the system turns into infnitely 
long strip of width M . The asymptotic expansion of the frst sum can be found with the help of 
the Euler–Maclaurin summation formula [31] 

M−1 � � � π ∞ � �p � � π2ξπm S z2p B2p+2 
N  z =  z(x)dx − πzξB2 − 2πξ  , (A.5)

M π S (2p)! 2p + 2 
m=0 p=10 

where Bp are so-called Bernoulli numbers (B2 = 1/6,B4 =−1/30,B6 = 1/42, . . .) and 

π � � � 
1 1 ! z(x)dx = Φ −z 2 ,2, , (A.6)
2 2 

0 

where Φ(x, s,α) is the Lerch transcendent defned as 

∞ � 
Φ(x, s,α) = (α + n)−sxn. (A.7) 

n=0 

In particular, for isotropic dimer model (z = 1), the Lerch transcendent is now Φ(−1,2,1/2) = 
4G, where G is the Catalan constant given by 

∞ � (−1)n 

G = = 0.915965594 . . . .  (A.8)
(2n + 1)2 

n=0 

We have also used the symmetry property,  z(k) =  z(π − k), of the lattice dispersion relation 
(A.3) and its Taylor expansion � �∞ � z2p 2p z(k) = k z + k , (A.9)

(2p)! 
p=1 

with z2 =−z(1 + z 2)/3, z4 = z(1 + z 2)(1 + 9z 2)/5, z6 =−z(1 + z 2)(1 + 90z 2 + 225z 4)/7, etc. 
The second sum in Eq. (A.4) can be analyzed in the following way: we frst expand 

ln(1 − eA) as a power series in eA and then split the sum in two part: m ∈ [0, [M/2] − 1] and 
m ∈ [[M/2],M  − 1] and fnally we change variable m in the second part viz. m →M −m. As  
result we obtain 
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M−1 � � 
M
) �−2N z( πm  

ln 1 − e 
m=1 � �∞ [M/2]−1 M−[M/2]� � � −2nN z( πm  =−  1 

e −2nN z( πmM )] + e M
)] . (A.10) 

n 
n=1 m=1 m=1 

The argument of the exponent can be expanded in powers of 1/S if we replace the lattice disper-
sion relation  z(x) with its Taylor expansion (A.9) � � � �
 � ��πm  

∞ 
z2p π2ξ

p 
2p+1exp −2nN z = exp −2πmnzξ  − 2πnξ  m , 

M (2p)! S 
p=1 

where ξ = M/N . Taking into account the relation between moments and cumulants (see Ap-
pendix B), we obtain asymptotic expansion of the frst exponent itself in powers of 1/S � �� 

( πm  
∞ 

π2ξ p Λ2p−2nN z M
) −2πnmzξ  − 2πnξ  2p+1 −2πnmzξ  e = e m e . 

S (2p)! 
p=1 

The differential operators Λ2p that have appeared here can be expressed via coeffcients z2p of 
the expansion of the lattice dispersion relation as 

Λ2 = z2, 
∂2 ,Λ4 = z4 + 3z2 ∂z  
∂ ∂2 

Λ6 = z6 + 15z4z2 + 15z2
3 

∂ ∂z2 
. 

. . . 

Plugging the expansion of the exponent back into Eq. (A.10) we obtain � � 
M−1 ∞ [M/2]−1 M−[M/2]� � 

( πm  � � 1 � � −2N z ) −2πnmzξ  + −2πnmzξ  ln 1 − e M =−  e e 
n 

m=1 n=1 m=1 m=1 �∞ � �p ∞ [M/2]−1 � π2ξ Λ2p � � 
2p+1 −2πnmzξ  + 2πξ  m e 

S (2p)! 
p=1 n=1 m=1 �

M−[M/2]� 
2p+1 −2πnmzξ  + m e . 

m=1 

In all these series, summation over m can be extended to infnity. The resulting errors are expo-
nentially small and do not affect our asymptotic expansion in any fnite power of 1/S. As result 
we obtain 

M−1 ∞ ∞ � � 
( πm  � �� 1−2N z ) −2πnmzξ  ln 1 − e M =−2 e 

n 
m=1 n=1 m=1 

∞ � �p ∞ ∞ � π2ξ ��Λ2p 2p+1 −2πnmzξ  + 4πξ  m e . 
S (2p)! 
p=1 n=1 m=1 
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�

The key point of our analysis is the observation that all the series that have appeared in such 
an expansion can be obtained by resummation of either the Dedekind eta function, η(τ), or

0,0Kronecker’s double series, Kp (τ ). 
The Dedekind eta function is usually defned as 

∞ � � �
πiτ/12 2πiτnη(τ ) = e 1 − e . 

n=1 

Considering the logarithm of η(τ) of pure imaginary aspect ratio, τ = iξ , we obtain the identity 

∞ ∞ � �πξ  1 −2πmnξ  ln η(iξ) + =−  e . (A.11)
12 m 

n=1 m=1 

Kronecker’s double series can be defned as [30] �p! 10,0K (τ) =−  ,p (−2πi)p (n + τm)p 
m,n∈Z 

where the prime over product denotes the restriction (m,n) �= (0,0). In this form, however, they 
cannot be directly applied to our analysis. We need to cast them in a different form. The fnal 
result of our resummation of double Kronecker sum is 

∞ � � 
0,0 p−1 2πimnτ  K (τ) = Bp − p n e .p 

m �=0 n=0 

Considering the Kronecker sums with pure imaginary aspect ratio, τ = iξ , we can further rear-
range this expression to get summation only over positive m ≥ 1 

∞ ∞ � �
0,0 2p−1 −2πmnξ  B2p −K (iξ) = 4p n e . (A.12)2p 

m=1 n=1 

0,0Note, that Kronecker functions K (τ) can all be expressed in terms of the elliptic θ -functions2p 
only (see Appendix C). 

Now, with the help of the identities (A.11) and (A.12) we obtain 

M−1 � � 
M
) �−2N z( πm  

ln 1 − e = 2 ln  η(izξ) + πzξB2 

m=0 

∞ � �p 0,0 � π2ξ Λ2p K2p+2(izξ) −B2p+2 − 2πξ  . (A.13)
S (2p)! 2p + 2 

p=1 

Substituting Eqs. (A.5) and (A.13) into Eq. (A.4) we fnally obtain exact asymptotic expansion 
of the logarithm of Z0,0(z,M,N)  in terms of the Kronecker’s double series 

π � �S 
ln Z0,0(z,M,N)  =  z(x)dx + ln Sξ + 2 ln  η(izξ) 

π 
0 

∞ � �p 0,0 � π2ξ Λ2p K2p+2(izξ) − 2πξ  , (A.14)
S (2p)! 2p + 2 
p=1 
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where S = MN , ξ = N/M . Note, that Bernoulli numbers Bp have fnally dropped out from the 
asymptotic expansion. 

Appendix B. Relation between moments and cumulants 

In this appendix we consider the relation between moments Zk and cumulants Fk which enters 
the expansion of exponent � �∞ ∞ � k � k x x 

exp Fk = 1 + Zk. 
k! k! 

k=1 k=1 

These are related in the following manner [32] 

Z1 = F1, 

Z2 = F2 + F1
2 , 

Z3 = F3 + 3F1F2 + F1
3 , 

2 2 4Z4 = F4 + 4F1F3 + 3F2 + 6F1 F2 + F1 , 
. . . 

k � ��i1 
�ir �� Fk1 Fkr k! 

Zk = . . .  , 
k1! kr ! i1! . . . ir !

r=1 

where summation is over all positive numbers {i1, . . . , ir} and different positive numbers 
{k1, . . . , kr} such that k1i1 + . . .+ kr ir = k. 

Appendix C. Reduction of Kronecker’s double series to theta functions 

The Laurent expansion of the Weierstrass function is given by �1 1 1 
℘(z)= 

2 
+ − 

z (z− n− τm)2 (n+ τm)2 
(n,m)�=(0,0) 
∞ �1 2p−2= 

2 
+ ap(τ)z . 

z
p=2 

The coeffcients ap(τ) of the expansion can all be written in terms of the elliptic θ -functions with 
the help of the recursion relation [33] 

3 
ap = (a2ap−2 + a3ap−3 + . . .+ ap−2a2),

(p− 3)(2p+ 1)

where frst terms of the sequence are 

π4 � �4 4 4 4 4 4 a2 = θ2 θ3 − θ2 θ4 + θ3 θ ,415 
π6 � �� �� �4 4 4 4 4 4 a3 = θ2 + θ θ4 − θ θ3 + θ ,3 2 4189 
1 2 a4 = a2,
3 
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3 
a5 = (a2a3),

11 
1 � � 

a6 = 2a2
3 + 3a 2 ,339 

. . . 

Kronecker functions K0,0
(τ ) are related directly to the coeffcients ap(τ) 2p 

0,0 (2p)! ap(τ) 
K (τ) =−  .2p (−4π2)p (2p − 1) 

From the general formulas above we can easily write down all the Kronecker functions that have 
appeared in our asymptotic expansions in terms of the elliptic θ -functions, e.g. 

1 � �0,0 4 4 4 4 4 4K (τ) = θ 4 − θ 3 − θ ,4 2 θ 2 θ 3 θ430 
1 � �� �� �0,0 4 4 4 4 4 4K (τ) = θ2 + θ θ4 − θ θ3 + θ ,6 3 2 484 

1 � �20,0 4 4 4 4 4 4K (τ) =−  θ2 θ3 − θ2 θ4 + θ3 θ ,8 430 
5 � �� �� �� �0,0 4 4 4 4 4 4 4 4 4 4 4 4K10 (τ ) = θ2 + θ θ4 + θ θ3 + θ θ 3 − θ 4 + θ ,3 2 4 2 θ 2 θ 3 θ4132 

. . . 

Note that when ξ →∞ we have limits θ2 → 0, θ4 → 1, θ3 → 1 and the Kronecker’s function 
reduce to the Bernoulli polynomials. 
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