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Abstract—This paper presents an introductory yet compre-
hensive study of the combined signal and geometrical properties
of Indoor Positioning Systems (IPSs) based on ultra-wideband
(UWB) technology. These IPSs consist of a network of more than
three transmitting anchors and a (tagged) single receiving object
to be localised. The specific algorithm used in this paper is the
Time Difference of Arrival (TDoA) with round-robin scheduling.
The analysis is structured in a systematic manner in order to lay
the foundations for the optimal number, location and orientation
of anchors aiming for maximum precision, and also for maximum
size of the working area with a desired prescribed precision.

Index Terms—UWB, IPS, indoor positioning systems, preci-
sion, CRLB, TDoA, geometry, optimal layout.

I. INTRODUCTION

Positioning systems comprise a significant enabling technol-
ogy in robotics and automation. There are numerous available
systems in the market which use a myriad of algorithms
and different forms of energy (e.g. electromagnetic or sound
waves), each with its own set of strengths and weaknesses. For
instance, the Global Positioning System (GPS) is appropriate
for efficient outdoor positioning but tends to fail in indoor
spaces because radio waves cannot penetrate obstacles. Con-
versely, ultra-wideband (UWB) technology is short-range and
inadequate for outdoor positioning, whilst it presents critical
advantages for Indoor Positioning Systems (IPSs) such as
high-accuracy and the ability to pass through walls, equipment
and other obstacles [1]. In fact, UWB is one of the most recent,
accurate and promising technologies for IPSs [2]. Given the
task of evaluating the position of a node within a restricted
indoor space and in real-time, UWB-based systems are widely
considered to be the best choice [1]. Nonetheless, a couple of
disadvantages worth mentioning are their high cost and their
susceptibility to interference caused by metallic materials and
by systems working on similar frequencies.

In this paper, the task of the IPSs is to localise a moving
object (a node or drone) based on a spatial distribution of
transceivers (anchors) using the Time Difference of Arrival
(TDoA) algorithm. The problem of planar source localization
in a homogeneous medium with negligible interferences or

reverberation is addressed. The traditional way to study the
precision of these systems is performing a Cramér–Rao Lower
Bound (CRLB) analysis from the signal perspective and then
applying coefficients such as Geometric Dilution of Precision
(GDOP) in order to capture the geometrical features. CRLB
is widely accepted for systems where the node to be localised
is far away from the anchors – e.g. in GPS systems – but
fails for IPSs [3], [4]. In line with this concerns, we propose
a preliminary but rigorous analysis based on [3]–[7] which is
expected to enable the optimization of the positioning of the
anchors so as to achieve robustness against noise and mea-
suring errors; to perform a statistical analysis of error prop-
agation in TDoA-based positioning systems; and to approach
more complex problems accounting for uncertainties in sensor
synchronisation and/or sensor placements. An example is the
geometrical-statistical approach to remove outliers [8], which
shows the strength of this rigorous mathematical approach [3].

Thus, a comprehensive study of combined signal and geom-
etry features of an IPS with a generic number of anchors using
round-robin TDoA scheduling is presented, with the purpose
of enabling a future optimisation algorithm to seek the optimal
distribution and orientation of antennas in a three-dimensional
environment. Potential objectives are maximising the precision
of the system within the convex hull delimited by the anchors,
and maximising the working area with a desired prescribed
precision.

The remainder of this paper is organised as follows: in
section II, UWB-based IPSs that use the TDoA algorithm are
analysed from both the signal and the geometrical perspectives
(sections II-A and II-B, respectively); section II-C provides an
example of a simple optimisation problem formulated based
on the presented analysis of the TDoA-based system, where
the objective is to find the maximum square inscribed in the
flyable area spanned between four anchors; finally, conclusions
are outlined in section III.
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II. ANALYSIS OF TDOA-BASED SYSTEM

In the following analysis the object to be localised is
behaving as a receiver (RX) and all the other anchors as
transmitters (TXs) – i.e. source of sound or electromagnetic
waves. The reference studies [3]–[7] are still valid even if
the object to be localised is treated as TX. This analogy
stands as far as the RXs are very sensitive and approximately
omnidirectional.

Therefore, according to the usual TDoA studies, the pseu-
doranges – i.e. range differences – for a localisation system
based on only three anchors are:

τij(x) = dj(x)− di(x), i, j = 1, 2, 3 (1)

where di is the distance between the drone (x) and the
ith anchor position (xi). As suggested in [3], the speed of
propagation in the medium is considered to be 1 without loss
of generality. The τij can be assembled together by defining
a TDoA mapping that transforms from the two-dimensional
space of source location to a space of pseudoranges called
τ -plane, as suggested in [8]:

τ2 : R2 → R2

x → (τ12(x), τ13(x))
(2)

Studying the TDoA map is crucial for the mathematical
characterisation of the localisation problem at hand. Con-
sidering an IPS that consists of a network of N anchors
and one node, M measurements (number that depends on
the localisation algorithm) are performed every time step,
accordingly to the frequency at which messages are sent from
anchors to node. Every measurement is modeled as a normal
distribution which is a function of both the real measurements
and an additive Gaussian noise, which standard deviation
changes in space with the distance from any transmitting
anchor. The collection of M measured pseudoranges, τ̂ (k),
can be expressed as:

τ̂ (k) ∈ RM ,
τ̂ij ∼N

(
τij(x), σ̄2

ij

)
, σ̄ij = f(σi, σj),

τij = ‖x− xi‖ − ‖x− xj‖ ,
i, j ∈ {1, . . . , N} with i 6= j,

(3)

where τ̂ij is the individual pseudorange measurement (con-
sidering the two times-of-arrival to the node from the ith
and jth anchors) and τij is the real range difference, and the
superscript (k) is the considered time step (to be omitted but
implicit in further analyses). Please note that τ̂ is a column
vector, not a matrix. The τ̂ij components can be as many as
the binomial coefficient

(
N
3

)
= N !

3!(N−3)! .

A. Signal properties

In this section the CRLB analysis for TDoA based IPSs is
presented, specifically for round-robin scheduling (subscript
rr) which, for N anchors, relies on a TDoA measurements set
of the form τrr = {τ12, τ23, ..., τN1}.

The elements of the total Fisher Information Matrix (FIM)
for the general positioning problem according to [6], [9] are:

FIMij =

(
∂τ (x)

∂xi

)T

F−1
τ (x)

(
∂τ (x)

∂xj

)
+

1

2
tr

(
F−1
τ (x)

∂Fτ (x)

∂xi
F−1
τ (x)

∂Fτ (x)

∂xj

) (4)

where Fτ is the covariance matrix of the τ̂ measurements,
and tr(M) is the trace of a matrix M. Since each standard
deviation is considered to be changing in space – i.e. σi(x, y) –
the correction term (second row in (4)) is acknowledged in the
following analysis.

1) CRLB for round-robin scheduling: The informa-
tion matrix of the considered TDoA measurements set
τrr = {τ12, τ23, τ34, τ41} (round-robin scheduling) in the
case of four coplanar anchors, using an efficient unbiased
estimator, shall be the covariance matrix:

Fτ =


s1 + s2 −s2 F13 −s1
−s2 s2 + s3 −s2 F42

F31 −s3 s3 + s4 −s4
−s1 F42 −s2 s4 + s1


4×4

with
F13 = F31 = −

√
(s1 + s2)(s3 + s4)

F24 = F42 = −
√

(s2 + s3)(s4 + s1).

(5)

where si = σ2
i . The elements F13, F24 and symmet-

ric ones have been evaluated by manipulating the Cauchy-
Bunyakovsky-Schwarz inequality on the expected value of the
product of two random variables – i.e. if X and Y are the
random variables, (E[XY ])

2 6 E[X2] · E[Y 2]. Moreover,
the presence of negative correlation between different TDoA
measurements in the covariance matrix is specific of the round-
robbin scheduling. For instance, if the TDoA algorithm was
centred with respect to anchor 1, all the values, except the
main diagonal, would be equal to +s1 as shown in [6], [7],
[10].

Studies, such as [6], state that the lower bound of the
squared standard deviation of the TOA measurements due to
an additive Gaussian white noise is bounded by:

σ2 >
c2

SNR ·B2
w

(6)

where SNR is the signal-to-noise ratio, c is the speed of light,
and Bw is the bandwidth of the considered channel.

While [6] proposes a quadratic relationship with the dis-
tance from the source with a C0 continuity, a more rigorous
formulation is considered in the presented analysis.

The SNR in (7) is the ratio between the power of the signal
reaching the receiver (Pr) and the noise power (PN). It can
be written as function of the distance (d) between transmitter
(t) and receiver (r), the representative transmission frequency
(fref) and bandwidth of the selected channel, the temperature
of the environment (T ), the transmitting power (Pt) and the
gain of the transmitting antenna (Gt) and receiving antenna.
While the latter can be neglected in this analysis (since usually



the receiving antenna is very sensitive), the gain Gt can be a
function of the azimuth (θt) and elevation (φt) angles with
respect to the frame of reference centred on the antenna.

SNR (d, θt, φt, fref, T, Pt) =
Pr

PN
(7)

The power at the end of the transmission line can be expressed
using the contemporary Friis law shown in (8).

Pr =
Pt ·Gt ·Gr

Lt · Lr
·
(

c

4π · fref · d

)2

(8)

where Lt and Lr are the electric losses in the electronics of the
TX and RX modules, respectively. These have been embedded
in the gains Gt and Gr.

It is convenient to express everything in logarithmic form.
Note that the unit [dBm] stands for ’dB milli-watts’. Com-
bining (8) and (6), one could obtain the upper bound of the
standard deviation, as expressed in the system in (9). Note
that the noise power is expanded as thermal noise power term,
kBTBw.


SNRdB = PtdBm(T, Vi) +GtdBi(θt, φt)

−10 log10(kBTBw103)− 20 log10 (4πfrefd/c)

σ2 = c2

B2
w
· 10−SNRdB/10

(9)

where PtdBm(T, Vi) is an experimental curve approximating
the relation of the transmission power with the ambient
temperature and the input voltage (Vi) [11], and GtdBi(θt, φt)
is the measured transmitting antenna gain (with respect to an
isotropic antenna ’i’), which is a three-dimensional radiation
pattern function of the azimuth and elevation angles [12]. The
presented CRLB analysis has been applied for two different
distributions of four anchors: a symmetric positioning and a
random one, as shown in Figure 1.

B. Geometrical properties

In this section, geometrical issues intrinsic to the underlying
mathematics of the TDoA algorithm are analysed according
to [3]. For instance, a known problem of IPSs that has
geometrical origin is the flipping uncertainty, as shown in [4].
In the following sections, the flyable area is defined based
on the combination of the previous CRLB analysis and the
envelope of the bifurcation curves, which define the limits of
the used localisation algorithm.

1) Bifurcation Curve: The bifurcation curve is the projec-
tion of the TDoA map boundaries from the τ -plane (pseu-
dorange space) to the 2D (or 3D) space of source location.
The bifurcation curve, as defined in [3], is the quintic curve
Ẽ(x) depicted by the roots of a polynomial P (x) which is the
representation of the TDoA map constraints. The definition of
P (x) and some examples of algebraic equations of Ẽ(x) can
be found in [5], whilst its rigorous derivation is explained in
[3], using tools like exterior algebra formalism and Minkowski
space. This formulation is invariant under permutation of the
TDoA measurements, hence the scheduling does not affect this
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(a) Symmetric anchors’ positioning
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Fig. 1: Precision level sets for two cases, (a) and (b). The best
precision (in this case about ±5 cm with 99% confidence level -
i.e. k = 2.58) is obtained in the convex hull delimited by the anchors.
A realistic non-isotropic TX-antenna gain (DWM1000 module [12])
is also applied for the estimation of the SNR, hence the slight
fluctuations in the represented values. In (c), the precision field is
shown only for the random case; the convex hull is the dotted magenta
trapezoid.



analysis. Any TDoA-based localisation system has a unique
solution of the positioning problem if P (x) is negative – i.e. le
localisation region between the bifurcation curves surrounding
the anchors. The TDoA maths within the bifurcation curves
gives either two mirrored solutions, which cannot be distin-
guished, or complex solutions, which have no physical sense.
An example of bifurcation curves is shown in Figure 2(a) for
the set of only three anchors {m2,m3,m4}

2) Bifurcation Envelope & Flyable Area: As explained in
the previous section, the concave regions of the bifurcation
curves are places where the position of the vehicle cannot
be measured. Hence, being strictly conservative, there is the
need of finding the maximum envelope of all the triplets of
bifurcation curves on each node. Here this curve is called bi-
furcation envelope and it is represented by Ω. In Figure 2(b,c)
the flyable area (in yellow) is defined as the intersection of
two areas: the unique-solution area enclosed by the envelope of
the bifurcation curves (in green) and the acceptable-precision
region, which is the outcome of the previous CRLB analysis.

C. Towards an optimisation of anchors’ positioning

The introductory rigorous analysis presented in the previous
sections sets the foundation for enabling the optimisation of
the positioning of the antennae within an available space. For
example in a three-dimensional experiment’s environment, an
optimisation problem could consist of finding the maximum
cube inscribed in a convex flyable hull while also maximising
the precision of the localisation of a drone. For instance, the
explanatory optimisation problem shown in Figure 3 aims to
find the centroid (x∗c , y

∗
c ) of the maximum square inscribed

in the polygon bounded by the envelope of the bifurcation
curves, Ω, and the hull delimited by the antennae. This nested
optimisation problem, depicted in Figure 4, has as its inner
level an ’inflation problem’ (Opt.2). The solutions for the
two cases considered in the previous CRLB and geometrical
studies are shown in Figure 3.

III. CONCLUSIONS

A theoretical study of the signal properties and an analysis
of the geometrical limit of an Indoor Positioning System (IPS)
was presented based on the Time Difference of Arrival (TDoA)
algorithm with round-robin scheduling. This comprehensive
analysis is critical for the formulation of the optimal IPS de-
sign. In its simplest form, this may be aimed at the best layout
of the anchors in terms of spatial locations and orientations
to maximise the system’s precision. An initial example was
formulated and solved, consisting of finding the maximum
square area inscribed in a polytope that encloses the region
where localisation is defined - e.g. flyable area.

At present, this work is being extended towards a more
comprehensive formulation of the optimal design problem,
which may be defined as follows: given the position of
one anchor comprising the origin of the frame of reference,
find the optimal position of the remaining anchors in order
to obtain the maximum flyable region with the prescribed
acceptable precision. In addition, we are currently building
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Fig. 2: In (a), three distinctly highlighted root loci representing the
bifurcation curves around three anchors for the selected couple of
TDoA measurements τ23 and τ34. The points mi for i = 1, . . . , 4
are the assigned positions of the transmitting anchors, Cijk are the
centroids of the considered triplet, and C is the collective centroid. In
(b) and (c), the flyable area is highlighted in yellow, the envelope of
the bifurcation curves is the continuous green curve, and the convex
hull with acceptable-precision is the dotted magenta trapezoid.



(a) Symmetric anchors’ positioning

(b) Random anchors’ positioning

Fig. 3: Some solutions of the maximum square inscribed in the flyable
areas depicted in Figure 2. In this numerical example in (b) the square
is 1 m2 smaller than in the (a) symmetric case.

Fig. 4: Algorithm formulated for the optimisation problem of finding
the maximum square inscribed in Ω. L is the edge of the square, and
Aout is the area of the region, of the attempted square, that is outside
Ω.

an experimental platform for tests and validation of these
and future theoretical developments. In the future, this will
also be used as a positioning system for indoor experiments
to test self-coordination and multi-agent collision-avoidance
algorithms (e.g. in [13]).
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