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Abstract: In neuroscience, there is substantial evidence that suggests temporal filtering of stimulus by 

synaptic connections. In this paper, a novel frequency-dependent plasticity mechanism (FDSP) for 

neurocomputing applications is presented. It is proposed that synaptic junctions could be used to perform 

bandpass filtering on the input stimulus. The unique transfer function of a bandpass filter replaces the 

conventional weight value associated with synaptic connections. The proposed model has been simulated 

and rigorously tested with standard machine learning benchmarks such as XOR and multivariate IRIS 

dataset while utilising minimum resources. The proposed model offers a unique advantage and has the 

potential to overcome the burden of hidden layer neurons from the network. Exclusion of hidden layer 

from the network significantly reduces the size of the network and hence the computational effort 

required for classification tasks. The proposed FDSP mechanism allows for complete analogue system 

design with a frequency multiplexed communication scheme. The main goal of this study is to establish 

frequency-dependent plasticity as an alternative to existing time-domain based techniques. The proposed 

method has a number of applications in neurocomputing, low power IoT devices and compute-efficient 

Deep Convolutional Neural Networks (DCNNs). 
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1 Introduction 

 How does brain process information? No one can provide a 

complete and undisputed answer to this question as no one 

has actually created it. All that could be done is to observe 

how the brain processes information and provide different 

interpretations about it.  The observations may be challenged. 

Despite the introduction of different brain signals recording 

techniques such as Functional Magnetic Resonance Imaging 

(fMRI), Electroencephalogram (EEG), and intracellular 

recording, the complete comprehension of the functioning of 

the brain at a macro level is still in early stages. Currently, 

there is a plethora of literature available that explains how 

actual biological systems function at the micro or cellular 

level (Dayan and Abbott, 2014). Hodgkin and Huxley (HH) 

were the first to propose an accurate neuron model in terms 

of the fourth-order dynamical system (Hodgkin and Huxley, 

1952) referred to as HH model. There are a number of 

excitability and bursting behaviours that are attributed 

towards HH model. HH model is computationally inefficient 

as it represents a fourth-order dynamical system. A number 

of reductions for the original HH model have been proposed 

(FitzHugh, 1961; Nagumo, et al., 1962; Morris and Lecar, 

1981; Izhikevich, 2003). These low dimensional models 

attempt to generate the similar neuronal dynamics that were 

previously achieved by complex HH model. The most 

influential model amongst all is the Morris-Lecar (ML) 

model (Morris and Lecar, 1981) which reduced the fourth-

order HH model into a second-order system. In general, the 

neurons within a cortex can be classified into three classes on 

the basis of HH model which are Class I, II and III (Hodgkin, 

1948). Most of the neurons in the cortex comprises of Class 

I and II neurons (Izhikevich, 2014). The characteristic curves 

for Class I type neuron is shown in Fig 1. 

 
Fig. 1.  The characteristic curve for Class I neuron model. 

 

The input current is plotted on the x-axis and the output 

spiking frequency is plotted on the y-axis. As shown in Fig. 

1, Class I neurons have a sub-linear curve with a threshold 

value that represents the encoding of an input stimulus into 

output spiking frequency. Whereas Class II neurons encode 

stimulus in more binary fashion by having no output for a 

lower range of input values and having near-constant output 

frequency for higher range of input. As evident from the 

characteristic curve of Class I neuron is the rate encoding 

feature of biological neurons. The stimulus applied to 

different classes of the neuron is encoded in terms of output 

spiking frequency. The frequency of output spikes may be 

interchanged into time lapse between two spikes. This time-



   

lapse is generally referred to as Inter-Spike Interval (ISI). 

Related studies (Oswald, et al., 2007; Kepecs and Lisman, 

2003) suggest that the ISI is considered as an important 

neuronal parameter for information encoding. The 

information regarding the stimulus is encoded into an output 

wave by varying the ISI parameter. The relationship between 

ISI (tISI) and output spiking frequency f is inversely 

proportional.  The ISI for a burst of spikes can 

interchangeably be referred to as output spiking frequency of 

rate encoding neuron. This encoded frequency should be 

decoded at the receiving neuron to evaluate the actual 

stimulus applied at the presynaptic neuron.  

As synaptic plasticity plays a key role in neuronal 

processing, in particular, from a neuro-computational 

perspective, an efficient plasticity mechanism must support 

the decoding of rate encoded information at the postsynaptic 

side. The Hebbian theory (Hebb, 1949) gained primary 

attention by the neurocomputational research community 

working in the field of Artificial Neural Networks (ANNs). 

This theory provides a mechanism for embedding plasticity 

in neural networks. The Hebbian theory states that the 

correlated spiking activity between the presynaptic and 

postsynaptic neuron strengthens the synaptic strength 

between the two neurons. This stimulus-driven change in 

synaptic efficacy is considered to be responsible for short-

term memory (Freeman, 1995). Similarly, in 

neurocomputational applications, a weight value is normally 

used to represent the synaptic strength (Haykin, 1999). 

Almost all ANNs are based on weight values, considered as 

synaptic connections. Learning algorithms have been applied 

on ANNs to modify these weight values whereas the weight 

value represents a linear function between zero and a 

maximum value that is normally considered as one. In 

retrospect, zero represents a full disconnect between the 

presynaptic and postsynaptic neuron whereas one value 

represents a complete connection between the two neurons. 

Any intermediate value between zero and one represents the 

relative strength of the connection. If the weight value is 

incremented monotonically with time then the weight value 

can be represented as a linear function.  

The paradigm of ANNs represents a numerical simulation 

model that runs on a sequential processor. The last two 

decades have witnessed a rapid growth in parallel 

implementation of ANNs utilising different platforms such as 

Clusters, GPUs and Multicore processors (Seiffert, 2004). 

The most predominant technique is to design a neural 

network on dedicated electronic hardware, termed as 

neuromorphic hardware (Mead, 1989).   

  Spike Time Dependent Plasticity (STDP) (Song, et al., 

2000; Bi and Poo, 1998) has emerged as the most popular 

plasticity mechanism for neuromorphic hardware. There are 

a number of research groups currently working to embed 

plasticity in neuromorphic hardware through STDP (Jin et al., 

2010; Schemmel et al., 2006, Indiveri, et al., 2006; Jo et al., 

2010; Afifi, et al., 2009). STDP has its own advantages and 

disadvantages for hardware implementation. Disadvantages 

may include the inclusion of additional correlation detection 

circuitry as used in (Schemmel et al., 2006), implementation 

of weight value with 4-bit memory which provides a 

resolution of 16 possible weight values (Pfeil et al., 2012), 

and offline learning algorithms. This paper offers an 

alternative technique, named as Frequency-Dependent 

Synaptic Plasticity (FDSP) which is not entirely based on 

Hebbian theory. It attempts to contribute and suggest an out 

of the box solution for neurocomputational applications. 

Furthermore, it is explained in the following sections that a 

synaptic junction based on FDSP model has a non-linear 

transfer function which facilitates the classification of non-

linear problems as compared to a network based on linear 

weight values. 

The computational burden in the proposed work is on 

rather simple synaptic connections and dendrites. In the 

proposed architecture, the synapses perform bandpass 

filtering on inputs received from the axon of the presynaptic 

neuron. Whereas the dendrites of postsynaptic neurons 

perform integration on the synapse output and adder is 

employed where it is required to connect multiple inputs to a 

single neuron. In the proposed network, neurons are used to 

perform encoding. Therefore, the compute-intensive tasks 

such as filtering and integration are performed by the 

connections between the presynaptic and postsynaptic 

neuron. It is also in line with the biological evidence which 

states that the connection between the presynaptic and 

postsynaptic neuron performs major computation tasks. 

There are some interesting areas of the machine learning (Cui 

et al., 2019; Wang et al., 2019; Cai et al., 2019a; Cai et al., 

2019b) where the proposed model may be employed.  

 

2 FDSP Model 

There is ample evidence that suggests that synaptic 

plasticity can be realised as temporal filtering by synapses. 

Markram states that the Hebbian theory, the most sought after 

theory by the neurocomputational research community, is an 

incomplete explanation of synaptic plasticity (Markram et al., 

1998a). Markram further elaborates that during the 

formulation of famous Hebbian theory, Hebb overlooked 

some of the existing literature at that time which indicates the 

variation in synaptic response to different stimuli (Feng, 

1941; Hutter, 1952; Liley and North, 1953; del Castillo and 

Katz, 1954; Liley, 1956). Despite the strong evidence put 

forward by Markram in favour of Frequency-Dependent 

Plasticity, there has not been a significant effort by the 

research community to adopt the same plasticity models for 

ANNs. It has been established (Markram et al., 1998b) that 

short-term synaptic plasticity performs temporal filtering on 

input feed to the synaptic junction. Synaptic junction under 

depression acts as a low-pass filter and attenuates high-

frequency presynaptic firing whereas a synaptic junction 

under potentiation acts as a high-pass filter as it attenuates 

low-frequency presynaptic firing. As a result, a synapse that 

exhibits both short-term depression and potentiation acts as a 

bandpass filter. 

  



   

 
Fig. 2. Filtering operations at the synaptic level (Lisman, 1997). A synapse 

exhibiting both short term potentiation and depression acts as a bandpass 

filter.  

In this context where synaptic junction functions as 

bandpass filters, a resonant frequency is associated with each 

synaptic junction. This resonant frequency may be different 

for different synaptic junctions associated with the same axon 

of a presynaptic neuron (Markram et al., 1998b; Lisman, 

1997; Gupta, 2000). This selective filtering by the synaptic 

junctions facilitates selective triggering at the postsynaptic 

side on the basis of distinct frequency spikes generated by 

presynaptic neurons. 

Apart from Markram, Izhikevich also provides strong 

evidence regarding selective triggering attained through 

Frequency-Dependent Plasticity (Izhikevich et al., 2003) in 

the cortex. It is argued that the synaptic junctions acting as 

bandpass filters facilitate selective communication between 

presynaptic and postsynaptic neurons which solely depends 

on the resonance feature of spikes generated by the 

presynaptic neuron (Fig. 2). The depiction for selective 

communication via resonance is shown in Fig 3. 

 
Fig. 3.  A scenario to depict selective communication via resonance.  
. 

In Fig. 3, presynaptic neuron ‘A’ communicates 

selectively to postsynaptic neuron ‘B’ and ‘C’ via resonance. 

A 12 ms resonance output is considered as resonant for 

postsynaptic neuron ‘B’ whereas 18 ms resonance output is 

considered as resonant for postsynaptic neuron ‘C’. 

Alternatively, it can be stated that the presynaptic neuron ‘A’ 

generates spikes with a resonance of 12ms which triggers 

only postsynaptic neuron ‘B’. Whereas when presynaptic 

neuron ‘A’ generates spikes with the resonance of 18ms, it 

will only trigger postsynaptic neuron ‘C’. All these evidence 

suggest that synaptic junctions may act as bandpass filters 

facilitating selective communication between presynaptic 

and postsynaptic neurons. 

The substantial evidence presented above from the 

neurophysiological studies suggest that plasticity solely 

depends on temporal filtering of spikes generated from the 

presynaptic neurons. Hence synaptic efficacy can be 

expressed in terms of frequency bandwidth and not 

necessarily with linearly scaled strength. It has been reported 

(Markram et al., 1998a) that the resonant frequency is unique 

for distinct synaptic junctions connected with the same 

axonal link. This unique resonant frequency is believed to 

play a key role in plasticity in biological neural networks. 

Frequency-dependent changes also play a key role in N-

methyl D-aspartate receptor (NMDAR)-dependent synaptic 

plasticity, as suggested by (Kumar and Mehta, 2011), which 

is considered to play a key role in different learning processes 

within the cortex. From the above discussion, it is evident that 

the interpretation of synaptic plasticity is more biologically 

plausible in terms of frequency dependence as compared to 

the linear strength values represented as weight. 

The depiction of a model that comprises of single axon 

connected to synaptic connection with distinct resonant 

frequency along with its biological counterpart is shown in 

Fig. 4 a and b.  

 
 
Fig. 4.a.  A biological synaptic connection between pre and postsynaptic 

neuron  

 
  

Fig. 4.b.  Frequency-Dependent Synaptic Plasticity (FDSP) model 

 

As shown in Fig. 4.b, synaptic junctions in the proposed 

model are realised with a bandpass filter, each having a 

distinct resonant frequency. The dendritic connection is 

considered to perform integration operation on the output 

from the synaptic connection. The pre and the postsynaptic 

neuron are considered to perform the same rate-encoding as 

observed by class I type of neurons. Note that the thick line 

in the model (depicted in Fig. 4.b) represents an axon link 

similar to the one shown in the biological model in Fig. 4.a. 

In the biological model, the single axon link is then 

distributed into axon tips. Each axon tip is connected to a 

distinct synaptic junction. These synaptic junctions are 

realised by a bandpass filter in the proposed FDSP model. 

The dendrite of a post-synaptic neuron is considered to 

perform integration operation on the output of synaptic 

junctions (Tran-Van-Minh et al., 2015). The postsynaptic 

neuron is considered as of the same type as the presynaptic 

neuron. However, the output neuron may also be considered 

as a typical threshold-based neuron. The adoption of an 

output neuron model depends on the application that is under 



   

consideration. A detailed mathematical explanation for 

synaptic processing through different aforementioned 

modules is covered in the following section. 

As reported in (Wong-Riley, 1989) that dendrites consume 

60 percent of the overall energy in the brain which indicates 

that the dendrites consume more power than a soma during 

an information processing task within the brain. In general, 

dendrite refers to the connection between the presynaptic and 

the postsynaptic neurons (Urbanska et al., 2008). This 

connection can be further divided into axon of the 

presynaptic neuron, synaptic cleft and dendrite of the 

postsynaptic neuron. In the proposed model, synaptic cleft is 

assigned the utmost responsibility of processing by 

selectively filtering out spikes to pass through the network 

while attenuating others.  

 

3 Mathematical Model for Synaptic Processing 

It is helpful to consider a complete synaptic connection 

along with presynaptic and postsynaptic neuron before 

considering mathematical formulation for synaptic 

processing. A synaptic connection that is utilised in this paper 

is shown in Fig. 5. 

 

 
 

Fig. 5.  A single synapse network 
 

The single synaptic connection-based network model 

shown in Fig. 5 is a single connection representation of the 

network previously discussed in Fig. 4. It comprises of five 

modules, a summation unit, a rate encoding neuron labelled 

as ‘N’ which is based on the rate encoding feature of Class I 

neuron, bandpass filter to embed plasticity in the model 

which is realised as a synapse, an integrator unit to convert 

sinusoidal output from bandpass filter into a scalar value, 

realised as dendrite of the postsynaptic neuron and finally an 

output activation unit which is considered as the output or 

postsynaptic neuron in the proposed model. The adder units 

are included for accommodating multiple inputs to the same 

destination.  

The adder unit is placed only when there are more than one 

inputs applied to the single input neuron. The operation at the 

accumulator unit can be expressed by a simple summation as 

shown in equation (1). 

 

𝑎 =  ∑𝑥𝑖

𝑛

𝑖=1

 
 
(1) 

 
 

The output of the adder unit, ‘a’, is processed as an input 

to the rate encoding neuron that generates output sinusoidal 

wave with frequency ω. The main purpose of a rate encoding 

neuron is to convert stimulus value into output spiking rate. 

In order to test this hypothesis, a software model of Integrate-

and-Fire neuron (Wagatsuma, 2017) is selected. The neuron 

threshold was set at ‘0.6’ which generates a sawtooth wave 

for stimulus above the threshold value. The expression for the 

neuron model is expressed by equation (2) and (3).  

 

𝑚(𝑡) =

{
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0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 
 
(2) 

 

 

ω = −3.6123 + (10.5824 × 𝑎) (3) 
 

Whereas A is the maximum amplitude of wave and k 

represents the threshold value. The values of constants shown 

in (3) are evaluated by using a linear regression technique. 

The neuron model is simulated in MATLAB environment. 

Input and output values are noted and constants are 

calculated. The output sinusoidal wave, m(t), from the 

neuron, is applied to the bandpass filter. The output of the 

bandpass filter is expressed in equation (4). 

 

𝑔(𝑡) = {

𝑚(𝑡)       if  ω𝑙 <  ω < ωℎ

 
𝑚(𝑡)

√2 𝑀
                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
 
(4) 

 

Here g(t) = m(t) if the frequency ω of m(t) falls in the 

passband of the bandpass filter where passband is spread 

from the lower cutoff frequency, ωl, and the upper cutoff 

frequency, ωh. Otherwise, the output of filter g(t) gets 

attenuated by a factor 𝑚(𝑡) = √(2)𝑀, where M is a scaling 

factor that depends on the width of the transition band of the 

bandpass filter. The output of the bandpass filter is integrated 

at the integrator unit according to equation (5). 

 

w =  ∫𝑔(𝑡)𝑑𝑡 (5) 

 

The output from the integrator unit, w, is applied to the 

postsynaptic neuron. The postsynaptic neuron comprises a 

threshold unit which varies for different applications. The 

output of the hard-limiter threshold unit can be expressed by 

equation (6).  

 

𝑌 = {
1                    if w > V𝑇
0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (6) 

 

Here VT represents a threshold value. The above equations 

(2-6) mathematically express the processing by a single 

synaptic connection. A slight variation in this processing can 

be made as required by the application.  

 

4 Learning 

The synaptic junction may be expressed in the frequency 

domain as models perform bandpass filtering operation. The 

bandpass filter has a non-linear transfer function that can be 

expressed in the frequency domain as shown in Fig. 6. 



   

 
Fig. 6.  The transfer function of a bandpass filter in the frequency domain.  

 

The transfer curve shown for a bandpass filter has a center 

frequency, ω, two cutoff frequency points at -3db, lower 

cutoff frequency, ωl and upper cutoff frequency point, ωk. 

The bandwidth of a filter is defined between the lower and 

upper cutoff frequency points. Any frequency that falls 

within the bandwidth of bandpass filter is considered as 

passband frequency and appears on the fan-out of a bandpass 

filter without attenuation.  All other frequencies are referred 

to as stopband frequencies and are significantly attenuated by 

the bandpass filter. A typical weight value which represents 

a singular scalar value may be adjusted to gain different 

efficacy for a synaptic connection. In the case of a tunable 

bandpass filter, the center frequency can be modified to 

update the efficacy of a synaptic connection in frequency 

domain considering a constant bandwidth of a filter. In case 

where variable bandwidth is desired, both values of lower 

cutoff frequency and upper cutoff frequency should be 

provided for defining synaptic efficacy. 

In the proposed FDSP model, learning is currently 

implemented offline by evaluating the two cutoff frequencies 

that are lower cutoff frequency and the higher cutoff 

frequency. The evaluation of these two cutoff frequency 

points is relatively easy to interpret. Consider a vector X 

which represents input feature vector associated with a class 

Ci. It is considered here that the synaptic connection should 

allow all feature values associated with a particular class Ci 

while blocking all other values.  The relationship between the 

feature vector and the associated class can be expressed by 

equation (7).  

 

𝑓[𝑋] = [ 𝑥1, 𝑥2, 𝑥3, 𝑥4, … . . 𝑥𝑖 …… 𝑥𝑛]  𝜖 𝐶𝑖 (7) 
 

The minimum and maximum values from the feature set 

associated with a particular class can be evaluated by using 

dedicated functions such as shown in equation (8) and (9) 

 

𝑏1 = min(𝑓[𝑋]) 
 

(8) 

𝑏2 = max(𝑓[𝑋]) 
 

(9) 

The values of b1 and b2 can be used in equation (3) in place 

of a to evaluate the frequency value for lower and upper 

cutoff frequency points such as shown in equation (10) and 

(11). 

 

ω𝑙 = −3.6123 + (10.5824 × 𝑏1) (10) 
And; 

ωℎ = −3.6123 + (10.5824 × 𝑏2) (11) 
 

These two cutoff frequency points will allow stimulus 

values associated with a particular class to pass through them 

while blocking others. The feature values are initially applied 

to a rate encoding neuron and encoded into frequencies in 

accordance with equation (2), the output wave from the rate 

neuron is a wave representing the original stimulus value 

applied to the neuron in terms of frequency. 

There is one important assumption to the feature values 

expressed in equation (7) that they all belong to a single class 

Ci. It is now considered that the feature vector has intermixed 

values from two different classes, Ci and Cj as shown in 

equation (12) and (13). 

  

𝑓[𝑋] = [ 𝑥1, 𝑥2, 𝑥3, . . . 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑗+1, 𝑥𝑗+2, 𝑥𝑘 , 𝑥𝑘+1  … 𝑥𝑛]  (12) 

 

Where; 

  [ 𝑥1, 𝑥2, 𝑥3, 𝑥4, … . . 𝑥𝑖  ] 𝜖 𝐶𝑖   

  [  𝑥𝑗 , 𝑥𝑗+1, 𝑥𝑗+2 ] 𝜖 𝐶𝑗     

  [ 𝑥𝑘 , 𝑥𝑘+1  …… 𝑥𝑛]  𝜖 𝐶𝑖   

 
(13) 

 

The feature vector now has spatial discontinuity for class 

Ci as it now contains some intermediate values from class Cj. 

A single synapse cannot be employed for such distributed 

feature set containing values from different classes because 

the minimum and maximum functions cannot be applied to 

the feature vector as it contains values from other class as 

well. To resolve this problem, the feature vector must be 

divided into two subclasses Ci such as Ci1 and Ci2. The 

updated feature vector will be represented by equation (14). 

 

  [ 𝑥1, 𝑥2, 𝑥3, 𝑥4, … . . 𝑥𝑖  ] 𝜖 𝐶𝑖1  

  [  𝑥𝑗 , 𝑥𝑗+1, 𝑥𝑗+2 ] 𝜖 𝐶𝑗     

  [ 𝑥𝑘 , 𝑥𝑘+1  …… 𝑥𝑛]  𝜖 𝐶𝑖2   

 
(14) 

 

These three feature vector requires three synaptic 

connections and learning can now be performed according to 

equations (8)-(11). 

 

5 Benchmarking 

i. XOR problem 

In FDSP model, the XOR gate operation is performed by 

the network shown in Fig. 5. 

    The adder unit shown in Fig. 5 combines the two inputs 

and provides accumulated stimulus values to the rate neuron. 

The accumulated values for different input patterns are listed 

in Table I.  

   Here the binary value ‘0’ is encoded as ‘0.5’. Form Table I, 

it is evident that the adder unit provides three possible values 

of ‘1’, ‘1.5’ and ‘2’ for any combination of inputs. The 

accumulated stimuli value is then passed to the rate neuron 

which further encodes the applied value into output spiking 

frequency in accordance with (2). 

 

 
TABLE I 

STIMULUS ACCUMULATION AT ADDER UNIT 

X1 X2 Accumulated Output 

0.5 0.5 1 
0.5 1.0 1.5 

1.0 0.5 1.5 
1.0 1.0 2 

    



   

  The encoding frequencies for the accumulated input are 

mentioned in Table II. 

 
TABLE II 

RATE ENCODING BY INPUT NEURON 

Input to neuron Output Frequency 

1.0 ω1 
1.5 ω2

 

2.0 ω3 

     

 As stated in eq (3), ω1 is equal to 6.9701 rad/s, ω2 is equal 

to 17.5525 rad/s and ω3 is equal to 28.1349 rad/s. These three 

frequencies distinctly identify the applied stimulus to the 

input neuron in terms of output spiking frequency. 

The relationship between XOR output and the frequencies 

generated by encoding neuron can be summarised in Table 

III. 
TABLE III 

FREQUENCY-BASED TRUTH TABLE FOR XOR GATE 

Output Frequency XOR 

ω1 False 
ω2 True 

ω3 False 

 

It is evident from Table III that the true condition for the 

XOR gate is signalled when frequency ω2 is generated by the 

encoding input neuron. The frequency ω2 corresponds to 

accumulated input value ‘1.5’ applied to the rate encoding 

neuron. The accumulated value of ‘1.5’ is obtained by adding 

two possible complimentary values of binary ‘0’ and ‘1’ 

applied at either of the input connections X1 and X2. 

The learning for XOR gate is followed in accordance with 

the mechanism explained in section 4. Since there is only one 

feature value for the true class for XOR gate therefore min(x) 

= max(x) = 1.5 which corresponds to frequency ω2. The 

bandpass filter is tuned for ω2 as center passband frequency.  

By this synaptic modification, the network shown in Fig. 5 

will behave as an XOR gate. 

ii. IRIS plant classification 

Iris plant dataset represents a classical problem of 

multivariate data classification. It comprises of feature 

vectors involving petal length, petal width, sepal length and 

sepal width. These four feature sets are used for classifying 

three different types of Iris plants namely setosa, virginica 

and versicolor. The dataset for this problem is obtained from 

UCl machine learning repository (Fisher, 1936). A network 

is considered to be capable of classifying multivariate data if 

it properly classifies the aforementioned three plants. The 

generic FDSP model for N input and N output multivariate 

data classification problem is shown in Fig. 7. 

 

 
Fig. 7. Generic FDSP Model for multivariate data classification 

The Iris plant classifier is a two-layer network comprising 

of input and output layer neurons. The input layer neuron is 

a rate encoding neuron explained in section III where the 

number of input layer neurons is equal to the number of 

variables in feature space. In IRIS classification, there are 

four feature vectors namely petal length, petal width, sepal 

length and sepal width assigned to input nodes X1, X2, X3 

and X4, respectively. The number of output neurons is 

proportional to the number of classes. There are three classes, 

representing three different flowers setosa, versicolor and 

virginica assigned to output nodes O1, O2 and O3 

respectively. Each synaptic connection is realised with a 

bandpass filter and an integrator, shown with a small oval in 

Fig. 7. 

The Iris plant dataset contains a total 150 samples which 

are equally divided into three classes, 50 samples for each 

class. There are four feature values for each sample.  In order 

to implement learning according to FDSP mechanism, min(x) 

and max(x) is calculated over the set of 40 out of 50 values 

designated to each class. Ten values are kept for functional 

testing purpose. Table IV entails information regarding max 

and min feature values associated with each class. 
TABLE IV 

IRIS PLANT CLASS BOUNDARY VALUES 

Class Value 
Feature 

1 
Feature 

2 
Feature 

3 
Feature 

4 

Setosa 
Min. 4.3 2.3 1.1 0.1 

Max. 5.8 4.4 1.9 0.6 

Versicolor 
Min. 4.9 2.2 3.0 1.0 

Max. 7.0 3.4 5.1 1.8 

Virginica 
Min. 4.9 2.2 4.5 1.4 

Max. 7.7 3.8 6.9 2.5 

The minimum and maximum values help to identify the 

cutoff frequency values for each synaptic connection 

according to the FDSP learning mechanism stated in section 

4. The values of feature 4 are close to the threshold of the 

encoding neuron which is ‘0.6’ therefore a bias value of ‘1’ 

is added to the encoding neuron for feature 4. The feature min 

and max values along with their corresponding frequency 

value in radian per second is listed in Table V. The frequency 

values are evaluated using equation (3). The conversion of 

feature set values into rate-neuron encoding frequency values 

as shown in Table V help to identify the target frequencies 

for individual synaptic connections. 

 



   

TABLE V 

STIMULUS VALUE V/S FREQUENCY VALUE (IN RAD/S) 

Feature 
1 

Freq
. 

Featur
e 2 

Freq
. 

Featur
e 3 

Freq. 
Featur

e 4 
Freq. 

4.3 41.8 2.3 20.7 1.1 8.0 1.1 8.0 

5.8 57.7 4.4 42.9 1.9 16.4 1.6 13.3 

4.9 48.2 2.2 19.6 3.0 28.1 2.0 17.5 

7.0 70.4 3.4 32.3 5.1 50.3 2.8 26.0 

4.9 48.2 2.2 19.6 4.5 44.0 2.4 21.7 

7.7 77.8 3.8 36.6 6.9 69.4 3.5 33.4 

 

These frequency values provide lower and upper cutoff 

frequencies for synaptic connections in the network model as 

shown in Fig. 7. The bandwidth of each synaptic filter 

depends on the distance between the two cutoff frequency 

points. From Table V, the filter associated with a very first 

synaptic connection that is between the first feature X1 and 

the first output neuron O1 has the lower cutoff frequency 

point set at 41.8 rad/s and the upper cutoff frequency point 

set at 57.7 rad/s. This will provide a total bandwidth of 15.9 

rad/s for the said filter. Similarly, the bandwidth of each 

synaptic connection for the network shown in Fig. 7 can be 

summarized in Table VI. 

 
TABLE VI 

INDIVIDUAL SYNAPTIC CONNECTION BANDWIDTH 

Input 
node 

Output 
node 

Lower cutoff 
Frequency 

Upper cutoff 
Frequency 

Bandwidth 

x1 O1 41.8 57.7 15.9 

x2 O1 20.7 42.9 22.2 

x3 O1 8.0 16.4 8.4 

x4 O1 8.0 13.3 5.3 

x1 O2 48.2 70.4 22.2 

x2 O2 19.6 32.3 12.7 

x3 O2 28.1 50.3 22.2 

x4 O2 17.5 26.0 8.5 

x1 O3 48.2 77.8 29.6 

x2 O3 19.6 36.6 17 

x3 O3 44.0 69.4 25.4 

x4 O3 21.7 33.4 11.7 

 

Table VI provides information regarding variable 

bandwidth requirement for individual synaptic connection 

where the frequency value is in radian per second. Another 

important aspect is the overlapping between the passband 

frequencies associated with a single feature value and 

different output neurons. This overlapping will hinder the 

proper identification of a particular class at the output side. 

However, for setosa class, there are at least two feature values 

(3rd and 4th) which do not overlap with the same feature 

values of other classes. The main problem lies with the 

Frequency-based of versicolor and virginica as they have 

overlapping feature values in all four feature sets. This 

overlapping is responsible for most of the misclassification 

between the two classes. The misclassification has been 

briefly discussed in next section.  

The output neuron model used for classification of Iris 

plant contains two units, adder and activation. The adder unit 

accumulates the values from all synaptic connections. It 

should be noted that the output from the integrator unit is 

labelled as ‘w’ in (5). The accumulation at the adder unit 

placed before the output neuron can be expressed by equation 

(15)  

𝑢𝑖 = ∑𝑤𝑖

𝑛

𝑖=1

 
 
(15) 

The output of the adder unit is fed to the activation unit of 

the postsynaptic neuron. The activation unit has a different 

transfer function as compared to the one described in 

equation (6). Here rather than specifying a constant threshold 

value a more dynamic function is used to determine output. 

The activation function used for this model may be expressed 

by equation (16).  

 

𝑌𝑖 = {
1   if max(𝑢1, 𝑢2, 𝑢3) == 𝑢𝑖
0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       i = 1,2,3 (16) 

 

It can be said that Y=1 is generated for a node that provides 

maximum accumulated output from the adder unit. This 

output from the adder unit is only possible when all synaptic 

connections associated with a particular output node provide 

maximum integrated output from the integrator units. The 

integrator unit is associated with each synaptic link. 

 

6 Simulations 

Simulation for the FDSP models presented in section 5, 

have been carried out in MATLAB environment. In all 

MATLAB simulations, a modulus operator is inserted after 

each integrator block. The basic requirement for including 

the modulus operator is the phase shift property of a bandpass 

filter. Due to the phase shift, the integrator sometimes 

produces negative values in the MATLAB environment. In 

order to avoid negative values from inclusion into the overall 

result of the network, a modulus operator is placed in every 

synaptic connection after the integrator block. A model to 

implement XOR gate operations was designed similar to the 

one shown in Fig. 5. Neuron model was designed separately 

for Integrate-and-Fire neuron as mentioned in section 3. For 

analogue bandpass filter, Butterworth second-order bandpass 

filter (Butterworth, 1930) was selected. It was calculated that 

if the frequency by the encoding neuron falls in the passband 

of the bandpass filter then the output from the integrator unit 

is greater than scalar value ‘0.005’. Therefore, the threshold 

value for the comparator block is kept at ‘0.005’. The 

bandpass filter is adjusted in accordance with the values 

listed in Table III. For the implementation of XOR gate, ω2 

is selected as the center frequency. The test accuracy of XOR 

is 100 percent. An XOR gate implementation in the proposed 

model has such high accuracy due to the appropriate selection 

of frequency for the single synaptic connection, which is ω2.  

The Iris plant classifier implementation using the FDSP 

model is shown in Fig. 7. The same rate encoding neuron as 

mentioned in section 3 is utilised for encoding feature values. 

The bandpass filter adopted is a second-order Butterworth 

bandpass filter. The two cutoff frequency points are selected 

in accordance with values listed in Table V. The performance 

of the classifier can be evaluated with the help of a confusion 

matrix. The confusion matrix for the Iris plant classifier is 

shown as Table VII. 



   

TABLE VII 

CONFUSION MATRIX FOR IRIS PLANT  

  Observed  

 
               n=150 

 
Setosa Versicolor Virginica 

Correct 
output 

C
o

rr
ec

t 

Setosa 
 

50 0 0 50 

Versicolor 
 

0 37 13 37 

Virginica 
 

1 7 42 42 

  
 

Total correct output out of 150 samples 129  

 

The above confusion matrix represents that classifier 

performed with 86% accuracy in Iris plant classification task. 

Note that the Setosa plant has the best classification accuracy 

of 100%. The main problem lies with the classification 

between versicolor and virginica plants. The input features 

for these two plants overlap for all the four feature sets. On 

the other hand, setosa has at least two feature values (3rd and 

4th) which do not overlap with feature values of other classes. 

The accuracy of the network is increased by minimising the 

overlap between feature values of versicolor and virginica. 

The 4th feature vector of both these plants has been selected. 

Considering the 4th feature value, the overlap for both classes’ 

ranges from ‘1.4’ to ‘1.8’. The upper cutoff point evaluated 

for versicolour is evaluated at 1.8 whereas the lower cutoff 

frequency point evaluated for virginica is at ‘1.4’. If ‘1.6’ 

evaluated as the center point between ‘1.4’ and ‘1.8’ then the 

upper cutoff frequency for versicolor can be evaluated at 

‘1.6’ and the lower cutoff frequency for virginica may also 

be evaluated at ‘1.6’. This will reduce the overlap between 

the two classes for the 4th feature value. Similarly, the 3rd 

feature vector has a range of overlapping values from ‘4.5’ to 

‘5.1’ between classes versicolor and virginica. If this 

overlapping range is assigned to virginica then the upper 

cutoff frequency point for versicolor is evaluated at ‘4.5’ and 

the lower cutoff frequency point for virginica is also 

evaluated at ‘4.5’. The confusion matrix shown as Table VIII 

after simulating updated network configuration is as under: 

 
TABLE VIII 

REVISED CONFUSION MATRIX FOR IRIS PLANT  

  Observed  

 
               n=150 

 
Setosa Versicolor Virginica 

Correct 
output 

C
o

rr
ec

t 

Setosa 
 

50 0 0 50 

Versicolor 
 

2 40 8 40 

Virginica 
 

2 4 44 44 

  
 

Total correct output out of 150 samples 134  

 

The accuracy of the IRIS classifier is increased to ‘89.33’ 

percent. Further modifications such as increasing the order of 

the bandpass filter will also facilitate in increasing the 

accuracy of the network. Also a bias value of ‘1’ is added to 

the 4th feature vector values. The said values are below the 

threshold of the neuron which is ‘0.6’. Adding bias to the 

feature values will provide the necessary offset to push all the 

feature values above the threshold point of encoding neuron.  

 

7 Discussion 

The FDSP model for Iris plant classification problem is 

compared with the existing neuromorphic and neural 

network-based models. The comparison is shown in Table 

IX. 
TABLE IX 

COMPARISON TABLE FOR IRIS PLANT (VALUES ADOPTED FROM (GHANI ET 

AL., 2012)) 

Algorithm 
Encoding 
neurons 

Inputs Hidden Output 
Total 

neurons 
Accuracy 

(%) 

Spike Prop 
(Bohte, et al., 

2002) 
50  10 03 63 96.1 

Wu et al. (Wu et 
al., 2006) 

09  06 01 16 96.6 

SRM based SNN 
(Belatreche, et 

al., 2006) 
16  10 01 27 97.3 

Dynamic synapse 
based SNN 

Belatreche et al. 
(Belatreche, et 

al., 2006) 

 04 10 01 15 96.0 

Matlab BP  04 10 03 17 94.8 

Matlab LM  04 10 03 17 94.7 

Matlab RP  04 10 03 17 94.73 

Spiking Synapse 
Hardware 

Weight Adaption 
(Ghani et al., 

2012) 

 04 06 01 11 95.0 

FDSP Model 04  0 03 07 89.33 

 

As shown in Table IX, there exists a significant advantage 

of using the FDSP model. The main advantage is the 

exclusion of the hidden layer from the network. This 

exclusion of the hidden layer reduces the number of synaptic 

connections required for the same task. This will, in turn, 

reduce the computational burden at the system level.  

To the best of author’s knowledge, the presented model 

supersedes the existing neural network models in terms of 

computational efficiency by completely avoiding hidden 

layer for classification of non-linearly separable tasks. This 

omission of the hidden layer from the network, in turn, 

reduces the number of interconnection required for the 

network.  In retrospect, it directly impacts the number of 

weight values required by the network to train. In the 

proposed model each input node is connected to every output 

node by a synaptic connection which provides non-linear 

response desirable for neural computation. In the authors’ 

most recent work (Khan, et al., 2017) an area-efficient 

hardware implementation of population coding using the 

synaptic model has been demonstrated. This population 

coding model exhibits the noise-tolerant and efficient 

implementation of the neural network for decoding sensory 

information through neuromorphic hardware.  

 



   

8 Conclusion 

In this paper, a novel Frequency-Dependent Synaptic 

Plasticity (FDSP) mechanism is presented as an alternative 

approach to embed plasticity in neural networks. The 

synaptic plasticity is realised by placing a bandpass filter as 

a synaptic connection. The bandpass filter replaces the 

weight value that is associated with previously mentioned 

neural network models to represent synaptic strength. Two 

standard benchmark problems such as an XOR gate and Iris 

plant have been simulated and tested for the presented FDSP 

model. It has been demonstrated that the models which may 

only be implemented through multilayer perceptron could be 

implemented by a single synaptic connection through 

proposed FDSP model without employing complex learning 

algorithms. The learning algorithm is currently performed 

offline with the simplest function of calculating the minimum 

and maximum from the feature vector associated with a 

particular class.  

In multivariate data classification, it has been shown that 

the classification is possible with only input and output layers 

without incorporating any hidden layer neurons. This is the 

most compressed implementation that involves the least 

number of neurons that can be implemented in any neural 

network for the classification task. This is primarily due to 

the inclusion of synaptic function that is nonlinear in nature. 

As compute time and power consumption are one of the key 

factors in low power IoT devices, front-end signal 

conditioning and DCNNs, authors envisage a number of 

applications in applied machine learning and low power IoT 

devices that could potentially benefit from the proposed 

method.  
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