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Polymer in wedge shaped confinement: Effect on θ-temperature 

Sanjay Kumar1 Keerti Chauhan1, Sadhana Singh1 and Damien Foster21 

1Department of Physics, Banaras Hindu University, Varanasi 221005, India 
2Centre for Data Science, Coventry University, Coventry CV1 5FB, UK 

The equilibrium properties of a finite-length linear polymer chain confined in an infinite wedge 
composed of two perfectly reflecting hard walls meeting at variable apex angle (α) are presented. 
One end of the polymer is anchored a distance y from the apex on the conical axis of symmetry, 
while the other end is free. We report here, for the first time the non-monotonic behaviour of 
θ-temperature as a function of y for a finite-length chain. Data-collapse for different chain lengths 
indicates that such behaviour will exist for all finite lengths. We delineate the origin of such non-
monotonic behaviour, which may have potential applications in understanding the cellular process 
occurring in nano-confined geometries. 

Living organisms maintain homeostasis, and therefore, 
most of cellular processes occur at roughly constant tem-
perature [1]. Efforts have been made to understand 
such processes in vivo by analysing them in vitro [2–4]. 
For example, melting of DNA [5], unfolding of protein 
[6, 7], DNA unzipping [8–11], DNA denaturation [12], 
coil-globule transition of polymers [13], translocation [14] 
are a few examples, where a good understanding about 
the process has been achieved. However, in vivo the sur-
rounding environment does not change as drastically as it 
has typically been changed during in vitro experiments. 
For example, DNA melting occurs at 85 ± 5oC, where 
as normal body temperature remains at 37 ± 2oC [12]. 
Therefore, there is a need of another route similar to the 
cell, where a slight change in other thermodynamic pa-
rameters drives the system from one state to the other. 

The cell has a very crowded environment and 
biomolecules remain confined in it. Motivated by this, 
the static and dynamic properties of biopolymers have 
been investigated in the confined geometry environment 
[15–18]. A notable example is translocation, where the 
geometry of the pore can influence the rate of transloca-
tion through the pore. This geometry may be controlled 
by either choosing different structures of natural nano-
pores e.g. alpha-hemolysin (cylindrical pore) or aerolysin 
(conical pore), or through the construction of artificial 
pores, which will in general be conical. Most of the the-
oretical studies have been focused on equilibrium prop-
erties of polymers in confined geometry e.g. slit, cylin-
der, sphere, cone etc [19–25]. These studies revealed that 
biopolymers under confinement (e.g. proteins in various 
cavities in the cell or DNA molecules in viral capsids) 
adopt conformations which are unlikely to occur in the 
free space [26]. The effects of confinement on the coil-
globule transition have also been investigated by varying 

cylinder or sphere [21, 22]. Although, there are studies 
related to a polymer confined in a wedge like geometry in 
a good solvent, to the best of our knowledge, the effect of 
wedge-shaped geometries on the θ- temperature remains 
unexplored. 

It is pertinent to mention here that wedge geometries 
are quite common in living systems. Unlike the cylinder 
or slit, in the wedge-shaped geometry the reduction in 
entropy due to confinement is not a constant but varies 
as one moves along the conical axis. Such a confined ge-
ometry not only reduces entropic contribution but may 
help in gaining or reducing the enthalpic contribution to 
the free energy as one moves towards the apex. One of 
the challenges in polymer translocation experiments is 
the ability to control the speed of translocation through 
a biological pore, such as aerolysin, to enable a transla-
tion between the electrical signal of charged ions flowing 
through the pore (which rises or falls depending on the 
degree to which the polymer blocks the pore) and the de-
tails of the translocated protein, see for example Piguet 
et al. [27]. Moreover, from statistical mechanics per-
spective, such systems provide deeper understanding of 
finite-size effects, which is particularly relevant when a 
polymer is confined by a nano-scale geometry. 

Earlier studies relating to a polymer in good solvent 
were restricted to the obvious angles for a square lattice, 
i.e. π/4, π/2, π etc [23–25]. Here we consider arbitrary 
angles. For this, we consider nx bonds along ±x-direction 
followed by +ny (or −ny) bonds in y-direction and so 
on. The coordinates (nx, ny) correspond to impenetrable 
reflecting surfaces meeting at the origin having an apex 

−1( nxangle 2α, where α = tan ny 
) as shown in Fig. 1a. 

Depending on the values of nx and ny, one can construct 
various apex angles ranging from 0◦ to 180◦ . One end of 

the width of the slit [19, 20] or changing the radius of the polymer chain is fixed at a distance y from the tip, 
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FIG. 1. (a) Schematic representations of different wedge-
shaped geometries:(I) α= 18.43◦ , (II) α= 26.56◦ , (III) α= 
90.00◦ , (IV) α= 123.69◦ , and (V) α= 180.0◦ . (b) Conical 
axis marked by ∗ corresponds to the site, where one end of 
polymer is anchored, while the other end is free. 

whereas the other end is left free (Fig. 1b). 
In the bulk, it is well known that the typical size of 

a polymer, either measured by the end-to-end distance 
or the radius of gyration, scales as R ∼ Nν . Here ν the 
geometrical exponent corresponding to 1/dH , where dH 

is the Hausdorff dimension of the walk. In the collapsed 
state (low temperature or poor solvent) ν = 1/d, while 
at high temperatures (swollen state) ν is given quite ac-

3curately by the Flory approximation ν = [28, 29].(d+2) 
If the size of the polymer is less than the distance to the 
cone walls from the point where polymer is anchored, 
polymer will not experience any significant confinement. 
However, if the size of the polymer is greater than this 
distance, the polymer will experience confinement, which 
may change its behaviour, and is the main focus of the 
present study. 
In statistical mechanical studies of polymers, we are 

often interested in the infinite chain scaling limit, and 
indeed the true thermodynamic phase transition occurs 
strictly in this limit. In reality, even though polymer 
chains may be very long, but they are invariably of finite 
length. In this letter, we aim to understand the general 
equilibrium features of a finite chain confined in a cone in 
a solvent of variable quality, and explore how this may af-
fect its behaviour. We also look at the scaling behaviour 
of the chain, and show that many of the qualitative fea-
tures survive in the scaling limit, and so are true for any 
polymer of finite length. In what follows, we will refer 
to the θ temperature for a finite polymer, this is to be 
understood as the finite-size estimate of the temperature 
as defined by the peak of the heat capacity C [30], which 
is expected to diverge in the thermodynamic limit. 
The model we consider is a self-attracting-self avoid-

FIG. 2. Variation of scaled temperatures as a function of 
y/Nν for the apex angle α = 18.43◦ . Note that since we are 
varying Tc(N), the variation of the curve is opposite to that 
of the temperature. 

ing walk (SASAW) model of polymer on a square lattice, 
this model consists of self-avoiding walk configurations 
with an attractive energy ε < 0 between non-consecutive, 
nearest-neighbour, visited lattice sites. We study the 
equilibrium properties through stochastic enumeration 
using the Flat-PERM algorithm[31, 32] for lengths up 
to 300 confined to a wedge of angle α ∈ [0, π], as shown 
in Fig. 1. In previous studies, one end of the polymer is 
anchored at the origin [23–25]. Here we wish to examine 
the behaviour of the chain and in particular its effect on 
the θ temperature as it is progressively constrained by 
the cone. To do this, we consider one end of polymer an-
chored along the line of symmetry at a distance y from 
the apex. In what follows we measure the temperature 
in units of |ε|/k. 
In Fig. 2, we depict the variation in θ-temperature 

with y for different lengths up to N = 300 plotted in 
terms of scaled variables Nφ|Tθ − Tc(N)| vs y/Nν for 
α = 18.43◦ (nx = 1 for every ny = 3 steps in the y-
direction). φ = 3/7 is the cross-over exponent for a 2-d 
SASAW at the θ point, where ν = 4/7[33]. Tc(N) is 
the θ−temperature corresponding to the length N and 
Tθ is it’s value in the thermodynamic limit. This is non-
monotonous with y for all values of N , but can be seen 
to tend to a constant value, equal to its bulk value, as y 
becomes large enough. The estimated θ temperature for 
length N = 30 has been found to be ≈ 0.94 [34]. Sim-
ilar plots for larger N are qualitatively similar, but the 
finite-size θ- temperatures are expected to approach the 
thermodynamic bulk value ≈ 1.509 [35, 36]. The scaled 
temperature takes into account the anticipated shift in 
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FIG. 3. Curve represents the variation of Δγα as a function 
of normalized apex angle. Triangles represent the values ob-
tained from the exact enumeration technique. Solid line is the 
analytical result proposed in Ref. [23]. The excellent agree-
ment between exact enumeration and conformal invariance in 
the entire range of α is apparent. 

the peak in the heat capacity and the scaled distance 
measures the distance as a proportion of the gyration ra-
dius (up to a scale-factor). The curves can be seen to 
show a good data collapse to one curve, indicating that 
the general features observed in Fig. 2 subsist for all 
finite-length chains, even though there is one thermody-
namic temperature. 
The non-monotonic (finite-size) behaviour of the θ-

temperature with y is novel, and gives insight into the 
behaviour of a polymer translocating through a wedge 
shaped pore, which is a common geometry both in natu-
rally occurring and man-made nano-pores. If we consider 
forced translocation where one end is pulled slowly along 
the conical axis. In this case, the polymer will be close 
to equilibrium at each stage of the translocation process. 
We can see that it is possible, with suitably tuned param-
eters, for a collapsed polymer at large y to melt as the 
local θ-temperature drops, to recollapse and then melt 
as the polymer reaches the tip. Alternatively, at higher 
temperatures, the polymer can be made to collapse by 
bringing it into the pore, but then the chain will melt 
again as the polymer tip reaches the apex of the wedge. 
Perhaps fine tuning of the solvent quality can be used to 
control accurately this repeated successions of collapse 
transitions, in order to slow the passage of the polymer 
through the pore, a necessary condition for accurate, fast 
DNA sequencing through translocation. 
The results from the stochastic enumeration method 

are checked using exact enumeration, where results for 
the small chain can be derived exactly. This lack of sim-

ulation errors enable, with the use of suitable extrapola-
tion techniques, to obtain results in the thermodynamic 
limit. First, we consider self avoiding walk (SAW) for 
which exact results are available [23, 24]. In free space, 
the number of configurations CN of N−step lattice walk 

N Nγ−1starting from the origin scales as ≈ µ . Here, µ 
represents the connectivity constant of the lattice for the 
SAWs, and γ is the critical exponent, which depends on 
the dimensionality d. The statistics of the polymer con-
formations in the presence of such confining geometry is 
found to be changed. Using conformal invariance the-
ory, a similar relationship for a linear polymer confined 
in the wedge-shaped geometry CN ≈ µN Nγα−1 has been α 
proposed [23, 24]. In the presence of a wedge opened at 
an angle (apex angle) of magnitude α, loss of the con-
formation is adjusted by γα, whereas µ remains almost 
same [37]. It is straight forward to have log(CN /Cα

N ) ∼ 
Δγα log N relationship, where Δγα = γ − γα is the slope. 
In Fig. 3, we show the plot of Δγα with α, which is in 
good agreement with the values predicted in Ref. [23, 24]. 
A slight difference in the value obtained from the exact 
enumeration technique and the analytical result is due 
to the nature of the wall. In the present model, walls 
have been taken as perfectly reflecting, whereas walker 
was allowed to visit the walls in Ref.[23, 24]. 

One of the major advantages of an enumeration tech-
nique (exact or stochastic) is that the density of states 
can be probed directly to get precise information of the 
system at any temperature [38]. The partition function 
can be expressed in terms of the density of states asP 
Zy(T ) = D(Np), where D(Np) = Cy (Np)u

Np is(Np ) N 

the weighted density of states, which contains all infor-
mation on energetic quantities of a statistical system. In 
order to explore the origin of non-monotonic behaviour 
of θ-temperature, we have plotted D(Np) as a function of 
Np at the θ-temperature for the angle α = 26.56◦ in Fig. 
5(a-c). The plots are for a walk of length 30 and are cal-
culated using exact enumeration, to avoid any statistical 
errors inherent with the Flat-PERM. 

The most dominant contribution to the partition func-
tion or the free-energy (−T ln Zy(T )) is from the peak 
value of D(Np) (Fig. 5). It is apparent from the Fig. 4 
that when starting point moves towards the origin (up to 
y = 32), the θ-temperature remains constant and the sys-
tem exhibits the bulk behaviour. In the range y = 32−22, 
there is a decrease in the θ-temperature (Fig. 4). This 
can be attributed to the gain in entropy, which can be 
seen from Fig. 5 (a), where the peak value of the most 
dominant term is increasing as y moves from 32 → 22, 
whereas the peak position remains constant. It is im-



4 

0 10 20 30 40 50

y

0.80

0.85

0.90

0.95

1.00

T
c(N

)

18.43 
ο

 (EE)
26.56 

ο

 (EE)
18.43 

ο

 (SE)
26.56 

ο

 (SE)

A B C D E F

0.8

0.9

1.0

1.1

0 10 20 30 40 50

Y

T
c
(N

)

5 10 15 20
0

5e+15

1e+16

1.5e+16

5 10 15 20
0

5e+15

1e+16

1.5e+16
y = 32
y = 28
y = 22

5 10 15 20
0

0.05

0.1

0.15

0.2

5 10 15 20
0

0.05

0.1

0.15

0.2
y = 32
y = 28
y = 22

5 10 15 20
0

5e+15

1e+16

1.5e+16

5 10 15 20
0

5e+15

1e+16

1.5e+16
y = 20
y = 14
y = 12

5 10 15 20
0

0.05

0.1

0.15

0.2

5 10 15 20
0

0.05

0.1

0.15

0.2
y = 20
y = 14
y = 12

5 10 15 20
0

5e+14

1e+15

1.5e+15

5 10 15 20
0

5e+14

1e+15

1.5e+15
y = 10
y = 6
y = 4
y = 2
y = 0

5 10 15 20
0

0.05

0.1

0.15

0.2

5 10 15 20
0

0.05

0.1

0.15

0.2
y = 10
y = 6
y = 4
y = 2
y = 0

(a) (d)

(b) (e)

(c) (f)

D
(N

p
)

P
(N

p
)

N
P

N
P

FIG. 4. In the first plot above, curves show the θ-temperature 
profile of a polymer chain N = 30, whose starting points have 
been varied systematically from y = 50 to 0 for different apex 
angles. Solid and open symbols are data obtained from ex-
act and stochastic enumeration, respectively. The lower plot 
shows the result obtained from the Langevin dynamics sim-
ulations, along with typical conformations above and below 
the curve. 

portant to realise here that the total free-energy of the 
system is changing as the number of conformations con-
tributing to the partition function is decreasing because 
of the confinement as one moves towards the origin. 

In the range y = 20 − 12, one observes in Fig. 4 that 
the θ-temperature is increasing. This is because of the 
decrease in the peak value of the dominating term (Fig. 
5b). Interestingly, in this region the peak position also 
remains constant. In fact, in this region the shape of the 
polymer gets deformed due to the confinement though 
the value of NP remains almost the same. y = 10 − 0 
corresponds to the maximum confinement on the shape of 
the polymer. In this region, polymer can visit less num-
ber of sites, which inhibits the formation of the contact. 

FIG. 5. Figures (a-c) shows the weighted density of states as 
a function of nearest neighbour contacts at fixed apex angle 
26.56◦ . (a) for a region y = 32 to 22, one can see increase 
in entropy, which leads to decrease in the θ-temperature in 
this region (Fig.4). (b) In the region y = 20 to = 12, entropy 
decreases which results increase in temperature. (c) From y = 
10 to the origin, the peak value occurs at different Np, which 
corresponds to decrease in enthalpy, and thus one observes 
the sharp fall in the θ-temperature. Figs. (d-f) have been 
scaled with corresponding CN (Np) to show the shift in peak 
positions. 

As a result, the number of nearest neighbour contacts 
decreases, and a fraction of chain forced to be in the ex-
tended state. This can be seen from Fig. 5 (c), where 
the peak position shifts towards the lower value of Np. 
This causes a net decrease in enthalpy. As a result, the 
θ-temperature decreases sharply. In fact the complete θ-
y profile is an interplay between enthalpy and entropy, 
which could be visualized by analyzing the density of 
states. 

The consequences of confinement arising due to the dif-
ferent values of α are the another striking result shown 
in Fig. 4. It can be seen from the plot that the θ-
temperature for the α = 26.56◦ in the region y = 45 − 25 
is higher than the α = 18.43◦ . However, in the region 
y = 25 − 10, the θ-temperature for the α = 18.43◦ is 
higher than the α = 26.56◦ . Interestingly, in the range 
y = 10−0, the θ-temperature for the α = 26.56◦ is found 
to be higher than the α = 18.43◦ . The miss-match be-
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tween the maxima and minima at different angles would 
enable the passage from swollen to collapsed by chang-
ing the apex angle α , which may be used in designing 
molecular gate or switch, where instead of varying the 
temperature or the quality of solvent, a polymer chain 
may be brought to the collapsed state from the swollen 
state or vice versa by varying the confinement. Such 
behaviour may be important in biological processes e.g. 
transport of bio-molecules from one region to the other at 
a constant temperature, where energy barrier may hinder 
the transport. Such energy barrier may be overcome by 
varying the confinement and lead progressive movement 
of bio-molecules from one region to the other. 
To understand the appearance of free-energy barriers 

as a result of geometry is important in a number of nano-
technological applications and in the understanding of 
the functioning of biological systems. The scaling be-
haviour of the system provide a deeper insight. The de-
tails will be presented elsewhere [39]. The use of exact 
and stochastic enumeration together appeared to be a 
very useful tool, as in one case the coefficients of the 
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