
 

 

A Model-Based Security Testing 
Approach for Automotive Over-The-Air 
Updates 

Mahmood, S, Fouillade, A, Nguyen, HN & Shaikh, S 

Author post-print (accepted) deposited by Coventry University’s Repository 
 
Original citation & hyperlink:  

Mahmood, S, Fouillade, A, Nguyen, HN & Shaikh, S 2020, A Model-Based Security 
Testing Approach for Automotive Over-The-Air Updates. in 16th Workshop on 
Advances in Model Based Testing (A-MOST 2020). vol. (In-press), IEEE, pp. 6-13, 16th 
Workshop on Advances in Model Based Testing (A-MOST 2020), Porto, Portugal, 
23/03/20. 
https://dx.doi.org/10.1109/ICSTW50294.2020.00019 
 
 

DOI 10.1109/ICSTW50294.2020.00019 
 
Publisher: IEEE 
 
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must 
be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  
 
This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it.  
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/304335554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dx.doi.org/10.1109/ICSTW50294.2020.00019


A Model-Based Security Testing Approach for
Automotive Over-The-Air Updates
Shahid Mahmood∗† Alexy Fouillade‡ Hoang Nga Nguyen∗§ Siraj A. Shaikh∗¶

∗ Systems Security Group, Institute for Future Transport and Cities, Coventry University, Coventry, United Kingdom
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Abstract—Modern connected cars are exposed to various
cybersecurity threats due to the sophisticated computing and
connectivity technologies they host for providing enhanced user
experience for their occupants by offering numerous innovative
applications. While prior studies exist that explore cybersecurity
challenges, tools and techniques for automotive systems, over-the-
air (OTA) software updates for automobiles can be exploited by
the attackers to compromise vehicle security and safety has not
been covered extensively. This paper presents our Model-Based
Security Testing (MBST) approach, designed for cybersecurity
evaluation of the OTA update system for automobiles, which
has an integrated testbed and a software tool that is capable
of automatically generating and executing test cases by using
attack trees as an input. Integrating threat modelling in the
testing provides several benefits, including clear and systematic
identification of different threats. Automation of the test-case
generation and execution has the obvious benefits of saving time
and manual effort, as manual test-case generation is both a
time-consuming and error-prone process (especially, when the
testing involves several test-cases). A simple simulated attack
is used to demonstrate the validity and effectiveness of our
testing approach. To the best of our knowledge, there is no prior
research that uses a testing approach similar to our approach
for automotive OTA security evaluation.

Keywords-over-the-air updates, OTA, automotive, cybersecu-
rity, testing, testbed, testing approach, model-based security
testing, attack tree

I. INTRODUCTION

Modern vehicles are increasingly vulnerable to cybersecu-
rity attacks due to the embedded computing and internet con-
nectivity capabilities they are equipped with. As cyberattacks
have the potential to seriously undermine the safety of an
automobile and its occupants, effective testing for detecting
software flaws and weaknesses is crucial. The software and
firmware installed on these in-vehicle embedded computing
devices need regular updates, carrying critical security patches,
bug fixes, and other enhancements for improved functionality.
Previously, installation of these updates required the vehi-
cles to visit the dealership’s service centres (which is still
the case for updating the firmware of safety-critical com-
ponents including braking, steering and engine control etc.),
via onboard diagnostic ports. OTA software update system
has emerged as a convenient, efficient, and cost-effective
alternative for delivering updates to automobiles remotely,
which offers many benefits including significantly reduced
costs and opportunity for continuous, seamless improvement.

While there are several advantages of OTA updates, security
threats that they introduce must also be considered seriously.
While existing literature on cybersecurity testing of automo-
tive systems extensively explores security challenges, relevant
solutions, testing techniques and testing environments focusing
on various attack surfaces and vectors, security testing of the
OTA for automobiles has not been considered adequately. In
fact, very few studies have been published in this important
area. In this paper, we present our approach for evaluating
OTA cybersecurity that relies on a software tool for automatic
test-case generation and execution. Our approach uses attack
trees for threat modelling which provide numerous benefits
including a clear understanding of different potential attacks
from the attacker’s perspective. Our software tool uses attack
trees for automatic test-case generation, which is a highly
useful feature in terms of saving time and manual efforts in the
testing process. This is particularly relevant and useful when
the testing has a large number of test cases.

We also present details of a simulated attack performed
against a reference implementation of the Uptane Framework
[20], which is an OTA software update system, specially de-
signed for automotive systems. Our experiment attack involves
compromising Uptane repositories hosting firmware image
files and associated metadata. In addition to this, an overview
of our testbed, the tool for automated test-case generation and
execution, and testing approach has been provided. Our main
contributions include the following:

• cybersecurity testing of automotive OTA updates using a
systematic, model-based security testing approach

• automation of test-case generation and execution using
attack trees

• a testbed for automotive cybersecurity testing

To the best of our knowledge, there is no prior study that
uses a model-based approach for security testing of automotive
OTA updates.

The rest of the paper is organised as follows: Related work is
presented in Section II, Section III provides background infor-
mation about automotive security testing, Uptane framework,
attack trees, Communication Sequential Processes (CSP), and
our integrated test-case generation and execution tool. Section
IV gives an overview of our testing approach by describing
its four key stages, followed by Section V that presents



details of our testbed for OTA security evaluation. Details
of the simulated attack aiming at compromising the OTA
repositories are presented in Section VI, which is followed
by the conclusion in section VII.

II. RELATED WORK

Model-based security testing is concerned with specifying,
documenting and generating security test objectives, test cases,
and test suites in a systematic and efficient manner [30].

Santos et al. [29] propose their automotive cybersecurity
testing framework, which uses CSP for representing the mod-
els of the vehicle’s bus systems as well as a set of attacks
against these systems. CSP - a language with its own syntax
and semantics - is a process-algebraic formalism used to
model and analyze concurrent systems. Using CSP, they create
architectures of the vehicle’s network and bus systems along
with the attack models. One of the key challenges that authors
claim to address in their work is the scalability of the testing
in distributed environments. Their system model is comprised
of networks, bus systems connected to each network, and the
gateways. Additionally, network parameters, such as latency
can also be modelled. An attack model is also created,
defining the attackers’ capabilities as channels. An attacker’s
capabilities may include command spoofing, communication
disruption, eavesdropping and influencing behaviours of the
system. According to the authors, the ability for a detailed
definition of the scope of the attack and test cases is a key
advantage of using these models for security testing.

Wasicek et al. [23] present aspect-oriented modelling
(AOM) as a powerful technique for security evaluation of
Cyber-Physical Systems (CPS), especially focusing on safety-
critical elements in automotive control systems. AOM is based
on the ideas inspired by aspect-oriented programming, which
is concerned with crosscutting aspects being expressed as
concerns (e.g., security, quality of service, caching etc.) [9].
Aspect-oriented modelling is used to express crosscutting
concerns at a higher level of abstraction by means of modelling
elements [5]. The technique presented by [23] models attacks
as aspects, and aims at discovering and fixing potential security
flaws and vulnerabilities at design time, because it becomes
highly costly to find and fix the bugs if they are discovered
later in the development life-cycle stages for automotive sys-
tems. Some of the main benefits that can be achieved by using
AOM for security assessment of automotive systems include:
separation of functional and attack models into aspects allows
domain experts to work on different aspects without any
interference; real-world attack scenarios involving high degree
of risks can be modelled easily; general models can be reused
in other systems. An automotive case study is presented by
the authors, involving the adaptive cruise control system as
an example. They use a special modelling and simulation
framework, called Ptolemy II, for developing their models.
The authors intended to explore the effects of attacks on the
communication between two vehicles. A discussion of four
different attacks (i.e., man-in-the-middle, fuzzing, interruption,
and replay) is presented.

III. BACKGROUND

A. Automotive security testing

Modern automobiles are exposed to numerous cybersecurity
threats due to their builtin powerful computing and commu-
nication capabilities. Identifying vulnerabilities and security
flaws in the communication and other onboard technologies in
connected cars is critical, as cybercriminals can exploit those
weaknesses for gaining access to the safety-critical systems of
the vehicle.

Most cars today host many computing devices, known as
Electronic Control Units (ECUs). Each ECU has specific
responsibilities, and they may need to communicate with each
other and with the external world for successful completion
of their tasks. For local communication, they rely on one
or more of the in-vehicle communication networks, such as
Controller Area Network (CAN), Local Interconnect Net-
work (LIN), FlexRay, and Media-Oriented Systems Transport
(MOST). Each type of network has been designed to support
applications with different needs. For example, while LIN is
mostly used for low-speed applications, applications requiring
high-speed data-transfers use MOST [14]. Legally mandated
Onboard Diagnostic (OBD) ports in the modern vehicles are
used for ECU firmware updates, repairing and inspections of
the vehicle. They are also used for reporting the data gathered
by various sensors in the car to the outside world, providing
information on the health status of the vehicle [31].

There are several entry points that attackers can take advan-
tage of for breaking into a vehicle’s internal system, which
have been extensively explored and presented by previous
studies. For example, [4], [16], [27] explore CAN exploitation,
[24] reports attacks leveraging OBD port, and security issues
related to in-vehicle infotainment are presented in [18]. Over-
the-air (OTA) software update systems for automobiles can
also be targeted by hackers in several different ways, as
described in [20] for compromising the security and safety
of the connected vehicles.

While automotive OTA offers numerous benefits (e.g.,
seamless delivery of software updates remotely), presence of
security flaws and vulnerabilities in such systems can be ex-
ploited by adversaries to undermine the security of connected
cars. For example, attackers can compromise the repositories
that host the software updates, as described by Kuppusamy et
al. in [20]. Various testing methods (for example, [2], [3], [6]–
[8], [11], [12], [15], [22], [29]) and testing environments (e.g.,
[10], [13], [32], [35], [36]) have been proposed for the security
testing of automotive systems. These testbeds and techniques
have been designed primarily for discovering security flaws in
vehicular networks (e.g., CAN, MOST, LIN, etc.), ECUs, and
IVIs. Cybersecurity testing of the automotive OTA software
update systems has not been considered by these works.

B. The Uptane framework

Uptane, developed in collaboration with automotive industry
stakeholders in the US, is an automotive software update
framework, which is claimed to address automotive-specific



Fig. 1. An overview of the Uptane framework, illustrating the intercon-
nections and flow of information among the Time Server, Image Repository,
Director Repository, Primary ECU and Secondary ECU.

security flaws, and provide protection against a wide range of
security attacks.

As shown in Figure 1, Uptane framework has three key
components: the Image Repository, the Director Repository,
and the Time Server. The Image repository holds all the images
deployed by the OEM along with metadata files for proving
the authenticity of the hosted images. The Director Repository
is responsible for tracking and determining what update to
be delivered to each ECU based on the current status of the
repository. As time is a critical aspect in automotive software
updates, knowledge of current, accurate time is crucial for
the vehicle. Many ECUs are unaware of current time because
they do not have clocks, this is where the Time Server plays
an important role in providing current time to the vehicle
in a cryptographically secure manner. More comprehensive
introduction of the framework can be found in [33].

A primary ECU is typically the one that is more capable in
terms of storage capacity and connectivity as compared to a
secondary ECU which needs help from the primary ECU for
receiving and installing software updates.

C. Attack trees

Attack trees contain a goal (the root of the tree), a set of
sub-goals, structured using the operators conjunction (AND)
and disjunction (OR), and leaf nodes, which represent atomic
attacker actions. The AND nodes are complete when all child
nodes are carried out and the OR nodes are complete when
at least one child node is complete.

Extensions have been proposed using Sequential AND (or
SAND) [17]. We follow the formalisation of attack trees given
in [17], [21]. If A is the set of possible atomic attacker actions,
the elements of the attack tree T are A∪{OR,AND,SAND},
and an attack tree is generated by the following grammar,
where a ∈ A:

t ::= a | OR(t, . . . , t) | AND(t, . . . , t) | SAND(t, . . . , t)

Attack tree semantics have been defined by interpreting the
attack tree as a set of series-parallel (SP) graphs [17].

D. Communicating Sequential Processes (CSP)

We give here a brief overview of the subset of CSP used
in this study. A more complete introduction may be found in
[28]. Given a set of events Σ, CSP processes are defined by

the following syntax:

P ::= Stop | e→ P | P1 2 P2 | P1; P2 | P1 ‖
A

P2 | P1 ||| P2

where e ∈ Σ and A ⊆ Σ. For convenience, the set of CSP
processes defined via the above syntax is denoted by CSP.
To mark the termination of a process, a special event X is
used. In the above definition, the process Stop is the most
basic one, which does not engage in any event and represents
deadlock. In addition, Skip is an abbreviation for X → Stop.
It only exhibits X and then behaves as Stop. The prefix e→ P
specifies a process that is only willing to engage in the event
e, then behaves as P. The external choice P1 2 P2 behaves
either as P1 or as P2. The sequential composition P1; P2

initially behaves as P1 until P1 terminates, then continues as
P2. The generalised parallel operator P1 ‖

A
P2 requires P1 and

P2 to synchronise on events in A ∪ {X}. All other events
are executed independently. Finally, the interleaving operator
P1 ||| P2 allows both P1 and P2 to execute concurrently and
independently, except for X.

There are different semantics models for CSP processes, for
further detail please refer to [28].

IV. MBST APPROACH

Systematic cybersecurity evaluation of automotive systems
is a non-trivial, critical task. Comprehensive security assess-
ment requires a disciplined and well thought out approach.
As opposed to an ad-hoc testing approach which often suffers
from subjective prioritization of test cases leaving numerous
undiscovered vulnerabilities in the system, a methodical ap-
proach increases the chances of detecting more flaws.

In this section, we present details of our testing approach1

that incorporates a software tool for generating and executing
test cases automatically. A testbed is also a part of our
approach which is described in the next section.

Our testing approach is inspired by the Penetration Testing
and Execution Standard (PTES) [26] and model-based security
testing [8]. A key feature of the PTES testing methodology
is the use of threat modelling techniques. We use attack
trees for threat modelling since they support and facilitate
our automated test case generation and execution process.
Our approach, comprising four different stages, is depicted
in Figure 2. In general, specifications and implementation
details of the automotive systems are not accessible due to
commercial sensitivity and obscurity of subsystems; therefore,
reconnaissance or intelligence gathering must be performed in
order to discover potential vulnerabilities in the target system.
Our approach is primarily concerned with revealing potential
known flaws and undesirable behaviour of the system by
looking at it from the perspective of an attacker.

An overview of the stages of our approach is presented in
the following subsections.

1The source code for the test-case generation/execution tool and Uptane
reference implementation along with a guide for setting up all components
can be downloaded from https://tinyurl.com/rydjmqa.



Fig. 2. An overview of our testing approach for automotive OTA update
system, showing key stages, inputs and outputs of each stage. First two stages
involve activities that are performed manually. Test case generation and test
case execution are fully automated.

A. Intelligence gathering

This stage involves gathering as much information about the
target system as possible, particularly, any known weaknesses
and exposed attack surfaces. This may also include looking
into published documentation as well as the specification or
source code of the system if available.

B. Threat modelling

Once enough information has been collected, the attack
trees can be created using the ADTool, a threat modelling and
analysis tool developed by researchers from the University of
Luxembourg [19]. Attack trees are used for the identification
of various potential threats to a system from the perspective of
an attacker. Being a structured approach, attack trees enable
systematic security evaluation by focusing on threats and
associated actions that can be performed by the attacker for
launching attacks.

C. Test case generation

Security test cases are generated by model-checking, which
is a model-based technique. It is worth noting that we modeled
the potential threats by using attack trees, we did not create a
model of the system under test (SUT).

The test-case generation process begins with creating an
attack tree that provides the basis for subsequent steps in the
process. Attack tree creation requires clear identification of the
attack goal and possible relevant actions that can be performed
to launch the attack.

An initial prototype of our test-case generation tool was
first introduced in [6], which has been adapted for the current
study. The alterations made to the software tool include some
enhancements related to input and output. Changes to the input
system have been made to allow the tool to accept XML-based
attack tree files. Similarly, essential amendments have been
applied in order to ensure that the generated test scripts are
compatible with the target system (i.e. the system under test).

Test cases are automatically generated using FDR, the
refinement checker for CSP. To this end, attack trees must

be first translated into CSP processes. In principle, the logic
gates of the attack tree can be considered CSP operators [28]
as follows:
• Since the AND logic gate demands that all actions must

be successful for the branch to be considered complete,
the interleave operator ( ||| ) is used. This operator joins
processes that operate concurrently but without them
necessarily interacting or synchronising.

• The sequential composition operator ( ; ) is used for the
SAND logic gate. The former echoes the SAND logic gate,
in that the first process must terminate successfully before
the next is allowed;

• The external choice operator ( 2 ) (where any process
could be chosen dependent on the environment in which
it operates) is used for the OR logic gate.

Formally, we define the following transformation function
trans : TSAND → CSP where Σ = A:
• trans(a) = a→ Skip for a ∈ A;
• trans(OR(t1, . . . , tn)) = trans(t1) 2 . . . 2 trans(tn);
• trans(AND(t1, . . . , tn)) = trans(t1) ||| . . . ||| trans(tn);
• trans(SAND(t1, . . . , tn)) = trans(t1); . . . ; trans(tn);

Once trans(t) is obtained, trace refinement is used to extract
test cases following [25]. To this end, trans(t) acts as a filter
criterion to select test cases among all possible runs of the
system captured by Sys. As in [25], we define a fresh event
attackSucceed to mark the end of an attack, which indicates
that an attack is successfully executed. We form the following
filter

TestPurpose = trans(t); (attackSucceed→ Stop)

which captures all attacks extended with the marking event
attackSucceed at the end. Then, we establish the following
trace refinement:

Sys 2 TestCases vT Sys ‖
Σ\{attackSucceed}

TestPurpose

In this refinement, TestCases encodes test cases that have
previously been generated. By combining it with Sys using
the external choice operator, a fresh test case, i.e., different
from the generated ones, will be generated if one exists.
Sys ‖

Σ\{attackSucceed}
TestPurpose encapsulates all attack traces

that can be carried out with respect to the formal model
Sys. These attack traces are ended with the marking event
attackSucceed, which does not belong to Sys, hence, gives rise
to counterexamples of the refinement. Initially, TestCases =
TestCases0 = Stop, i.e., corresponding to an empty set of
test cases. This refinement is checked by calling FDR [1].
If an attack trace exists, FDR provides a counter example
of the form 〈a1, . . . , an, attackSucceed〉 where a1, . . . , an ∈
Σ\{attackSucceed}. We encode this trace as a test case tc1 =
a1 → . . . → an → attackSucceed → Stop. After TestCases
is rebuilt as TestCases = TestCases1 = TestCases0 2 tc1, the
above refinement check is called again and again to extract
further test cases tc2, . . . and to construct TestCase2, . . . until



no further counter example can be found. In this imple-
mentation, the calls to checking refinements and extracting
counterexamples are facilitated by API functions provided by
FDR [1].

D. Test case execution

Once all the preceding activities (e.g., intelligence gathering,
threat modelling, etc.) are complete, execution of the test cases
or test scripts is the next step to be undertaken in the process.
As the Figure 2 shows, test generation and test execution are
fully automated, they are performed by our software tool. It is
worth noting that test case execution is the key element that
directly interacts with the target system under test.

V. TESTBED IMPLEMENTATION

In this section, we provide implementation details of our
testbed, software and hardware components used to construct
it, and how it supports our testing approach by carrying out
an attack on the automotive OTA using the Uptane reference
implementation. The diagram in Figure 3 shows the main
components of our testbed.

A. Hardware setup

The image in Figure 4 provides an overview of our pro-
posed testbed. The laptop hosts the server components of the
reference implementation of the Uptane framework. Raspberry
Pi, the credit-card sized computers, have been used for sim-
ulating the primary and secondary ECUs. These computers
are equipped with powerful CPUs, various interfaces including
LAN and WLAN ports. The primary ECU is attached to the
back of a 7-inch touchscreen monitor. A standard network
switch has been used for connecting all the devices to each
other.

B. Software setup

The code for the Uptane reference implementation has been
made available online by its developers at [34]. A guide ex-
plaining how to set up and configure the environment to be run
on a virtual platform is also available. All the components are
assumed to be residing and running on the same environment
(i.e., on Linux), with the server being on one console, primary
and secondary ECUs on separate consoles. We downloaded
the reference implementation code, installed and configured
it on each device. Our laptop computer hosting the servers
has Ubuntu operating system running on it, whereas both
Raspberry Pi computers have the NOOBS operating system.

For a fairly realistic representation of the system, allowing
interaction and observation of individual and whole system
behaviour, we decided to split the system into three physical
tiers, as such servers would run on a laptop and ECUs on
separate micro-controllers. Since the reference implementation
relies on the TCP/IP for the communication, we used a
network switch for interconnecting the server and the ECUs
to facilitate communication among them. Figure 4 shows
the actual hardware components of our testbed simulating
the reference implementation. It is important to note that in

Fig. 3. Schematic diagram of the testbed illustrating the server, the primary
and secondary ECUs, and the switch that interconnects them.

Fig. 4. The testbed for the testing of OTA software update system
for automobiles. The setup comprises of (a) a laptop computer (hosting
server components for the Uptane framework), (b) the primary ECU, (c)
the secondary ECU (both of which implemented on Raspberry Pi 3 micro-
controllers), and (d) a switch for interconnecting the components.

the real world, the automotive OTA normally uses mobile
communication for delivering updates to the ECUs. However,
our simulated setup currently relies entirely on wired medium.
This configuration is irrelevant to the simulated attack which
is concerned with attacking and compromising Image and
Director repositories on the server, rather than targeting the
vehicle or its internal components.

To ensure the correct functioning of the reference imple-
mentation in a physically distributed environment, essential
changes to the configuration files had to be made, which
involved IP address configurations of the servers, the primary
ECU and the secondary ECU.

VI. EXPERIMENTATION

There are several types of potential attacks that could
be launched against the OTA systems, including eavesdrop
attack, replay attack, deny update installation attack, rollback
attack, arbitrary software attack and so on. Our simulation
attack attempts to compromise both the Image and Director
repositories in order to add malicious contents to the firmware
images (or new images with malicious contents embedded).



Our threat model assumes that the attacker has gained full
access to the OEM repositories (i.e. Image Repository and
Director Repository), and has been able to compromise the
keys. Following are the details of our attack that we launch by
following the four stages of our testing approach (see Figure
2), comprising four different stages.

A. Intelligence gathering in action

This stage is concerned with gathering as much information
about the target system as possible by looking into publicly
available information, foot-printing, static and dynamic anal-
ysis of the code if available and so on. In our case, we have
access to the source code and implementation details, and
other relevant documentation. After reading publicly available
documentation and performing a thorough analysis of the
source code along with observation of the system behaviour,
we identified several potential threats to the OTA server-
side system, one of which is compromising both Image and
Director repositories to deploy a malicious firmware image
to a target ECU in the vehicle. We chose this particular
threat for demonstrating our MBST approach. Since our
threat model assumes adversary’s unrestricted access to the
repository servers, and with the implementation source code
availability online, we were able to write some custom code
that could be executed from a remote machine to create, sign,
and deploy a new firmware image to an ECU in the vehicle.

B. Threat modelling in action

Following this, we then populated our attack tree for a
clear and complete understanding of the potential associated
actions for the chosen threat. For this study, we chose to
experiment and investigate the threat involving compromising
a firmware image on the server-side of the OTA system. Using
the ADTool, we created and populated our attack tree as
displayed in Figure 5. The root node represents the main goal
of the attack that is, compromise image. There are two separate
subtrees, representing two alternatives to compromising the
image file: add new image OR modify an existing image. Both
of these trees are SAND (short for Sequential AND) by type,
as they both have actions that must be executed in a specific
order. Symbolically, it is depicted by an arrow, as can be seen
in Figure 5. Both subtrees in our attack tree diagram have four
identical nodes and one different node. The actions/sub-goals
for the first subtree (on the left) are listed below:

• Add image file - which involves creating a new image
file on the Image repository

• Add Image to Repo - this step adds the newly created
file to the Image Repo

• Sign image - signs the added image by using the correct
signatures

• Add image to Director Repo - the file must be added to
the Director repo, after it has been added to and signed
by the Image repo.

• Director sign image - this is the last step, which involves
signing the image by the Director repo.

The second subtree (on the right) has exactly the same steps
except for the first one, which is ”make changes” instead of
”add new image”.

Each of the actions listed above has an associated method
that we wrote to execute as an action step. For example,
we defined a method for creating an image file, which is
responsible for creating a physical image file on the Image
repo. Similarly, a method was written for each corresponding
action and tied with by entering the name of the method into
the description field of the leaf node while creating leaf nodes
of the subtree using the ADTool.

C. Test case generation and execution in action

As indicated earlier, the test generation and execution are
both fully automated, that is, the tool is capable of automati-
cally generating and executing the test scripts. The output of
the preceding stage is an XML (eXtensible Markup Language)
file that is then used by our test generation and execution tool.
The tool has been programmed to read, interpret and parse the
input XML file for identifying individual actions to be carried
out. After parsing the attack tree file, the tool generates a list
of actions extracted from the leaf nodes of the attack tree along
with a list of corresponding method names. As the methods
had already been defined, we supplied the code file containing
all the methods to the tool as an input, which is subsequently
utilised by the software tool to generate an executable test
script file as an input to the next step.

To launch the attack, the XML version of the attack-tree (de-
picted in Figure 5) was supplied to our software tool followed
by executing the script file test generator.py. The tool parses
the attack tree and extracts the actions to be carried out as part
of the exploitation to compromise the image repositories. As
shown in the screenshot in Figure 6, the test script invokes
the corresponding custom methods. For example, Action 1
involves creating a new image file for which the method
create image will be executed by the script; similarly, the
second action (i.e., Add Image to Image Repo) invokes the
method named add image to imagerepo in the custom-code
file. As a result of this action, the newly created firmware
image (as shown in Figure 7) file is then added to the Image
Repository as depicted in Figure 8. Subsequently, the image
file is signed by the Image Repository and copied to and signed
by the Director Repository as can be seen in Figure 9.

The primary ECU periodically checks (in our case, we
configured the primary and secondary ECUs to look for
updates every 60 seconds) for the update and finds that an
update is available to download. As shown in Figure 10, the
primary ECU successfully downloaded the malicious image
file from the server to be supplied to the secondary ECU
subsequently.

Finally, the malicious firmware image is downloaded and
installed on the secondary ECU as displayed in Figure 11,
which proves the attack succeeded by compromising both
the repositories (i.e., Image and Director repositories), and
consequently the ECU as well. After the successful execution
of the test scripts, a report (as shown in Figure 12) is



Fig. 5. The attack-tree diagram showing the overall goal (compromise Image), and associated required steps/actions to reach the intended attack goal. There
are two possible ways to compromise the firmware image file on the OTA server: by adding a brand new image or by modifying an existing one.

Fig. 6. A screenshot of the test-case execution.

Fig. 7. A screenshot, showing the dummy malicious content of the firmware
image file (named ”image1.img”) created by our script.

generated by the tool summarizing whether the attacks have
been successful.

VII. CONCLUSION

This paper has presented our model-based security testing
approach, incorporating an automated software tool for test
case generation and execution, and a testbed for cybersecurity
evaluation of the automotive OTA. Our approach leverages
attack trees for automatic test case generation and execu-
tion. Attack trees for threat modelling in our approach help
with systematic threat identification and automatic test-case
generation, which not only saves time and manual effort,
but also helps prevent errors. We used a basic simulated

Fig. 8. A screenshot showing the malicious firmware image file (named
”image1.img”) successfully copied to the Image Repository.

Fig. 9. A screenshot showing the malicious firmware image file (named
”image1.img”) successfully copied to the Director Repository.

Fig. 10. A screenshot of the Primary ECU, showing the malicious firmware
image file (named ”image1.img”) successfully downloaded from the server.

attack to demonstrate the effectiveness and validity of our
testing approach, the software tool, and the testbed. For this
purpose, we used a reference implementation of the Uptane.
Major contributions of this study include security testing
of automotive OTA updates using a systematic model-based
approach, automated test-case generation and execution, and

Fig. 11. A screenshot of the Secondary ECU, showing the malicious firmware
image file (named ”image1.img”) successfully downloaded from the Primary
ECU and installed.



Fig. 12. A screenshot of the test report summarising the test results. It shows
that in total two attacks executed and all succeeded.

a cybersecurity testbed. Although, only one type of attack has
been demonstrated in this study, more sophisticated attacks
can be launched for a more comprehensive evaluation of the
OTA updates security. We plan to continue to improve our
testing approach, the software tool and the testbed to support
our ongoing and future research.
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