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A new non-linear RANS model with enhanced near-wall 
treatment of turbulence anisotropy 

H. Fadhilaa,∗, H. Medinaa, S. Aleksandrovaa, S. Benjamina 

aCoventry University, Faculty of Engineering, Environment & Computing, Coventry, United Kingdom 

Abstract 

A new ω-based non-linear eddy-viscosity model is proposed. It was developed based 
on the original k − ω model and formulated using a quadratic stress-strain relation for the 
Reynolds stress tensor, with an added realisability condition. For enhanced treatment of near-
wall turbulence anisotropy, a formulation that scales only with the turbulent Reynolds num-
ber is proposed for the frst time. The new model has been implemented in the open-source 
Computational Fluid Dynamics (CFD) package OpenFOAM and validated against plane chan-
nel fow, a zero-pressure-gradient fat plate, and a U-bend curved channel confguration. To 
further assess the performance of the model for more complex geometries, it has been tested 
on confgurations relevant to automotive applications. Overall, the new model outperforms 
the standard k − ω model. For example, on a curved channel, improved predictions for 
the minimum pressure and maximum skin friction of approximately 50% are obtained. Im-
proved predictions are also obtained for quantities of practical engineering relevance, such as 
the pressure distribution along the wall of a sudden expansion diffuser, a confguration used 
to inform the design of automotive exhaust systems. This demonstrates that the proposed 
model has important practical applications for internal fows where anisotropic turbulence 
effects dominate. 

Keywords: turbulence, anisotropy, near-wall, OpenFOAM, diffuser, swirling fow 

1. Introduction 

Turbulence modelling is an attempt to predict the chaotic and anisotropic turbulent be-
haviour which is found in many practical fows that involve features such as curvature, bound-
ary layer transition, impingement, separation, or swirling. Despite the growth in computing 
power in the recent years and the continuing development in the performance and appli-
cability of Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES), Reynolds-
averaged Navier-Stokes (RANS) models continue to be the cornerstone of turbulence mod-
elling for complex engineering fows due to the inevitable compromise between accuracy and 
cost. The RANS equations can be used to fnd steady-state solutions of the fow feld where 
the infuence of turbulence is represented as a net loss of momentum by the Reynolds stress 
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Nomenclature 

Acronyms Cp Pressure coeffcient 

CFD Computational Fluid Dynamics k Turbulent kinetic energy [m2/s2] 

DNS Direct Numerical Simulation Pk Production of k [m2/s3] 

EARSM Explicit Algebraic Reynolds Re Reynolds number: U∞ L 
ν 

Stress Model uτ LReτ Wall shear Reynolds number: ν
LES Large-Eddy Simulation 

S Magnitude of strain rate tensor:
NL Non-Linear Æ 

2Si jSi j [s−1]
� �RANS Reynolds-Averaged Navier-Stokes 1 ∂ Ui ∂ UjSi j Strain rate tensor: 2 ∂ x j 

+ ∂ xiRSM Reynolds Stress Model [s−1]
Greek Symbols Tu Turbulence intensity: u0/U∞ 
δi j Kronecker delta U Mean velocity [m/s] 
ν Laminar kinetic viscosity [m2/s] 0 0+u Dimensionless Reynolds stressiui 0 0 2νT Eddy viscosity [m2/s] components: uiui /uτ 

0Ω Magnitude of vorticity rate ten- u Fluctuating velocity vector [m/s]
Æ i 

sor: 2Ωi jΩi j [s−1] u0 v0 Turbulent shear stress [m2/s2] 
−1] 0ω Specifc dissipation rate [s u Streamwise fuctuating velocity 

� � 
∂ Ui ∂ Uj [m/s]Ωi j Vorticity rate tensor: 1

2 ∂ x j 
− ∂ xi 

[s−1] uτ Wall shear velocity [m/s] 

˜ v0 Wall-normal fuctuating velocity Ω Vorticity rate tensor invariant:
Æ1 [m/s]

ω 2Ωi j Ωi j 
w0 Spanwise fuctuating velocity

" Dissipation rate [m2/s3] 
[m/s]

Roman Symbols 
x Streamwise coordinate [m] 

u0 iu
0 Reynolds stress tensor [m2/s2]j y Wall-normal distance [m] 

S̃ Strain rate tensor invariant: y+ Dimensionless wall-normal dis-
Æ1 

ω 2Si jSi j tance: uτ y/ν 

ai j Anisotropy tensor Subscripts 
τwCf Skin friction coeffcient: 

∞
∞ Refers to freestream condition 1/2ρU2 

tensor. This introduces additional unknown quantities and results in the ‘closure problem’ 
i.e. there are more unknown variables than equations. Turbulence models are used to close 
the system of equations by providing a means of estimating the Reynolds stress tensor. 

The Boussinesq hypothesis is the most widely-used approach to model the turbulent 
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Reynolds stresses, in which a linear relation between the Reynolds stress tensor and the mean 
rate-of-strain is assumed. This approach has been applied extensively in the academic 
and industrial communities over the past few decades, with relative success since as 
early as the 1970s–1980s in fow problems such as turbulent boundary layers [1, 2] and 
recirculating fows [3–6]. However, the Boussinesq approximation has been known to fail 
in many cases. Flows involving highly three-dimensional and anisotropic features cannot be 
represented accurately using this linear relation. Notable examples include the presence of 
secondary fows in non-circular ducts which arise from the anisotropic nature of the normal 
Reynolds stresses [7], the marked infuence that wall-normal velocity fuctuations have on 
the structure of a boundary layer [8], the effects of streamline curvature on the asymmetric 
velocity profle in fows over curved sufaces [9, 10], the non-linear effects of imposed system 
rotation on turbulent fows [11], and the anisotropic velocity fuctuations in the stagnation 
region of an impinging jet [12]. 

Due to the well-known defciencies of linear eddy-viscosity models, Schmitt [13] has used 
DNS, LES, and an experimental database to quantify the degree of validity of the Boussinesq 
proportionality assumption to a number of cases including simple shear fows, fow over 
a square cylinder, and a double annular turbulent jet fow. The results show consistently 
the limitations of this assumption. These limitations help to explain why in complex fows, 
e.g. ones in which high mixing rates and stagnation regions are present, the predictions 
of the mean fow felds by linear models can be inaccurate [14]. Even for simple cases, 
such as a simple shear fow, they have been known to incorrectly predict the Reynolds stress 
components due to their isotropic formulation [15–17]. Even though this is a simple case, 
the redistribution of the different Reynolds stress components has important effects when 
the model is used to capture complex features near the wall on more complex test cases 
[18, 19]. Durbin [19] also observed based on the DNS data of Kim et al. [20] that the 
near-wall damping of eddy viscosity is caused by the suppression of the wall-normal velocity 
fuctuation, v0 v0, which when modelled accurately as a velocity scale can be used to avoid the 
overprediction of turbulent viscosity near the wall, hence promoting separation [21]. This 
redistribution is also important for modelling of fows over curved surfaces, since in such 
cases a transfer of kinetic energy exists that leaves the total kinetic energy unchanged, but 
affects the distribution of the different fuctuating velocity components [22]. 

To achieve a more accurate modelling of the Reynolds stresses, one approach is to aban-
don the Boussinesq approximation and directly solve for all the individual components of 
the Reynolds stress tensor, a concept known as Reynolds Stress Modelling (RSM) [15, 23]. 
However, this approach results in the introduction of 6 additional highly-coupled, non-linear 
partial differential equations, which makes solving the problem diffcult and costly. Conse-
quently, an approach to simplify the RSM concept is proposed by obtaining an implicit 
algebraic approximation to it under the weak-equilibrium assumption, as suggested 
by Rodi [24, 25]. However, this also poses some numerical and computational challenges, 
which makes obtaining converged solutions to it diffcult in practical fow problems. Nev-
ertheless, this approach motivates the use of an algebraic expression for the Reynolds stress 
anisotropy as a function of turbulent kinetic energy, dissipation rate, and mean velocity gradi-
ents — an approach that is used in the development of another group of turbulence models: 
non-linear eddy-viscosity models. Non-linear eddy-viscosity models retain the simplicity of 
linear eddy-viscosity models whilst providing the means for modelling the anisotropy of the 
Reynolds stresses. Extending the tensorial stress-strain relation of the Reynolds stresses to 
a more appropriate non-linear form has been proven to improve the predictions in complex 
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fows, as has been reviewed in [26–30]. One of the earliest non-linear eddy-viscosity formu-
lations, the quadratic k − " model by Nisizima and Yoshizawa [31], demonstrates the effec-
tiveness of the non-linear Reynolds stress formulation in producing the correct anisotropic 
turbulence intensities in a turbulent channel fow and a Couette-Poiseuille fow. Speziale [32] 
also proposes a quadratic k − " model which shows improved separation and reattachment 
predictions in a backward-facing step problem. The cubic k − " model of Craft et al. [12] 
gives a more accurate prediction of the asymmetric velocity profle resulting from stream-
line curvature effects when tested on a curved channel fow compared to the linear version. 
The later version of the model [33], which includes an added transport equation for a stress 
anisotropy invariant, shows more realistic normal stress levels near the stagnation point of 
an impinging jet, whereas linear models are known to give erroneous predictions. Suga and 
Abe [34] add a transport equation for the invariants of the stress anisotropy tensor in their 
cubic k − " model and show encouraging performance in capturing anisotropic turbulence 
and thermal felds near both wall and shear-free boundaries. A cubic k − " model by Aps-
ley and Leschziner [35] gives a more accurate prediction of cross-channel asymmetry of the 
velocity and turbulent stress profles on a plane asymmetric diffuser compared to the linear 
k − " model. 

In contrast with the Explicit Algebraic Reynolds Stress Models (EARSM), e.g. [36–38], 
which are derived from solving an equilibrium approximation to a Reynolds stress transport 
model, most non-linear eddy-viscosity models use a constitutive relation for the Reynolds 
stress tensor obtained from a generic, expanded expression for the anisotropy, derived frst 
by Pope [17] using a tensor invariant theory, and their coeffcients are functions of the in-
variants. This approach is also adopted in this work. However, the specifc dissipation (or 
turbulence frequency), ω, is used as the turbulence scale since it has been shown to perform 
better for modelling boundary layers and fows under adverse pressure gradients [39, 40]. 
To the authors’ knowledge, with the exception of the works of Larsson [41], Song et al. [42], 
and Abe et al. [43], non-linear eddy-viscosity models have not been based on the specifc 
dissipation rate, ω, but instead are based on the dissipation rate, " (although the non-linear 
k − ω model by Larsson [41] is a modifed version of the non-linear k − " model of Shih et 
al. [44] for use in a k − ω framework). The cubic k − ω model by Song et al. [42] shows an 
improvement over the linear k − ω model but returns an underprediction of the anisotropy 
level of the Reynolds stresses in the near-wall region and it is highlighted that a near-wall 
modifcation is needed. The quadratic k −ω model of Abe et al. [43] includes a modifcation 
for strong Reynolds stress anisotropy in the near-wall region; however, the model uses addi-
tional strain and rotation terms for the wall modifcation and includes wall-normal distance 
in its formulation, which is generally known to show limitations in applications involving 
complex geometries. 

In this work, a new non-linear turbulence model is developed based on the classic k − ω 
model [45]. Since this is the simplest version of an ω-based model, applying it as the base 
model allows a direct observation of the effectiveness of the proposed modelling approach. 
A simple scaling term to provide a consistent formulation of the non-linear model is pro-
posed. The resulting model is extended to incorporate an enhanced treatment of near-wall 
turbulence anisotropy. The modifcation proposed relies only on local variables to ensure its 
robustness for complex confgurations. The performance of the proposed model is demon-
strated by testing it on a number of simple and complex 2-D and 3-D fow confgurations. A 
number of canonical cases involving simple shear, boundary layers, and curvature features 
are presented, followed by more complex cases which involve separation and swirling to 

4 



show the applicability of the new model to more complex geometries. 

2. New model development 

This section describes the philosophy and development of the proposed model. The non-
linear stress-strain relation for the Reynolds stress tensor used in the model is presented frst. 
The formulation of the proposed model is then discussed followed by its initial calibration. 
Finally, a modifcation for modelling the near-wall anisotropy is presented. 

2.1. The closure problem and the non-linear stress-strain relationship 

RANS equations for the three-dimensional fow of an incompressible, viscous, and isother-
mal fuid are: 

∂ Uj 
= 0 (1)

∂ x j 

� � 
∂ Ui ∂ Ui 1 ∂ P ∂ ∂ Ui + Uj = − + ν 0− uiu

0 
j (2)

∂ t ∂ x j ρ ∂ x j ∂ x j ∂ x j 

Here x j are the spatial Cartesian co-ordinates. U and P are the mean velocity and pres-
0 
iu

averaging the Navier-Stokes equations. It introduces additional unknown quantities resulting 
in the so-called ‘closure’ problem since there are more unknowns than equations available 
to solve the system. RANS turbulence models incorporate the effects that turbulence has 

0sure, respectively. The term u is the Reynolds stress tensor that arises from Reynolds-j 

0 
iu

tions. In this work, ‘closure’ is achieved using a non-linear stress-strain approach based on 
an anisotropy tensor formulation. 

0on the mean fow via u , whilst simultaneously providing ‘closure’ to the system of equa-j 

0Linear eddy-viscosity models assume that uiu
0 is proportional to the local mean rate of j 

strain (Si j ). Implicitly, they also assume that turbulence is isotropic i.e. the mean velocity 
fuctuations components are equal (u0 = v0 = w0). The departure of the Reynolds stress 
tensor from isotropy is defned by the Reynolds stress anisotropy tensor, ai j , described in its 
non-dimensional form as: 

00uiuj 
=ai j k

− 2 
δi j (3)

3 

00 
iui )/2. The anisotropy 

tensor formulation above can be used to develop non-linear eddy-viscosity models. It extends 
in a rigorous manner the one-term tensor representation used for linear eddy-viscosity models 
into a more generalised form. Using the formulation frst suggested by Pope [17], ai j can be 
formally expressed as a function of mean velocity-gradient tensor (separated into mean strain 
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and vorticity rate, Si j and Ωi j , respectively) and turbulent quantities, e.g. using the turbulent 
kinetic energy (k) and the specifc dissipation rate (ω): 

ai j = f (k, ω, Si j , Ωi j ) (4) 

Based on the principle of reducibility of higher order tensors according to the Cayley-
Hamilton theorem, the anisotropy tensor can be expressed as a polynomial. Using the in-
variant theory in [46, 47], higher order tensor terms for a symmetric traceless second-order 
tensor, such as ai j , can be described as a fnite tensor polynomial containing ten independent 
terms: 

10
X 

ai j = βn−1 Ti j 
(n) (5) 

n=1 

where βn−1 are the anisotropy expansion terms and Ti j 
(n) are tensor bases formed from Si j 

and Ωi j . The reader is referred to [17, 27] for more details on the derivation of the tensor 
bases. They are: 

T (1) i j = Si j 

T (2) i j = SikSk j − I IS δi j /3 

T (3) i j = SikΩk j − ΩikSk j 

T (4) i j = ΩikΩk j − I IΩδi j /3 

T (5) i j = SikSkl Ωl j − ΩikSkl Sl j 

T (6) i j = SikΩkl Ωl j + ΩikΩkl Sl j − 2IV δi j /3 

T (7) i j = SikSkl Ωl pΩp j + ΩikΩkl SlpSp j − 2V δi j /3 

T (8) i j = SikΩkl SlpSp j − SikSkl Ωl pSp j 

T (9) i j = ΩikSkl Ωl pΩp j − ΩikΩkl SlpΩp j 

T (10) 
i j = ΩikSkl SlpΩpqΩq j − ΩikΩkl SlpSpqΩq j (6) 

The independent scalar invariants are defned as: 

I IS = Skl Slk 

I IΩ = Ωkl Ωlk 

I I IS = Skl SlmSmk 

IV = Skl ΩlmΩmk 

V = Skl SlmΩmnΩnk (7) 
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The frst term in the anisotropy tensor formulation (T (1) = Si j ) can be shown to be the i j 
only term retained in linear eddy-viscosity models, which use the Boussinesq hypothesis to 
model the Reynolds stress tensor, u0 0 , resulting in: iu j 

20 0uiuj = −2νT Si j + kδi j (8)
3 

where νt is the turbulent eddy viscosity and its defnition depends on the choice of tur-
bulence model. For example, using the k − ω model, this is defned as νt = k/ω. 

For implementation purposes, the Reynolds stress tensor for a non-linear formulation can 
be expressed using the standard defnition of the Boussinesq hypothesis, as shown in Eq. (8), 
with an added tensor, afi j , to incorporate the non-linear terms from Eq. (5), such that: 

0 0 0 0u
Þ = u j + e (9)iu j iu ai j k 

The extra anisotropy tensor term above, aei j , is simply the general form presented in (5) 

without the frst tensor base (Ti j 
(1)), that is: 

10
X 

e = βn−1 T
(n) (10)ai j i j 

n=2 

The separation of the isotropic and anisotropic parts of the Reynolds stress tensor allows 
a relatively straightforward incorporation of the extra anisotropy tensor, eai j , into an exist-
ing linear eddy-viscosity model implementation. In the context of non-linear eddy-viscosity 
modelling the extra anisotropy expansion terms, βn−1, are determined using using physical 
constraints combined with experimental and numerical data, e.g. [12, 26, 31, 32, 48]. 

2.2. Proposed model formulation 

The new non-linear turbulence model is based on the original k − ω model [45]. The 
model solves for the turbulent kinetic energy, k, and specifc turbulence dissipation rate, ω, 
using the following transport equations: 

�

� �

� 
Dk ∂ k ∂ k 
= PÒk − β ∗ kω + ν + σk (11)

Dt ∂ x j ω ∂ x j 

�

� �

� 
Dω ω ∂ k ∂ω 
= Cω,1 Pk − Cω,2ω

2 + ν + σω (12)
Dt k ∂ x j ω ∂ x j 

k 
νT = (13)

ω 

7 



The closure constants preserve the same values as the original k−ω model i.e. β ∗ = 0.09, 
Cω,1 = 0.52, Cω,2 = 0.072, σk = 0.5, and σω = 0.5. The production of turbulent kinetic 
energy used in the ω equation is modelled using the classical stress-strain approach: 

∂ UiPk = −u0 iu
0 
j (14)
∂ x j 

0 0where uiu is estimated using the Boussinesq hypothesis as shown in Eq. (8). A produc-j 
tion limiter [49] is used in the k equation to prevent excessive production in regions where 
ω has low values, such as in the freestream or near the edge of boundary layers. This lim-
iter has also been found to be useful for eliminating unphysical buildup of eddy viscosity in 
stagnation regions [50]. The limiter is defned as: 

PÒk = min(Pek, 20β ∗ ωk) (15) 

The production of turbulent kinetic energy is modelled using the classical stress-strain 
approach. However, the Reynolds stress tensor is approximated using Eq. (9) through which 
the non-linear formulation is introduced. Therefore: 

Þ ∂ Ui0 0Pek = −uiuj ∂ x j 
� � ∂ Ui = − u0 iu

0 
j + eai j k (16)

∂ x j 

Although the use of Eq. (14) and Eq. (16) for the production of ω in Eq. (12) has been 
found to produce similar results, the use of Eq. (14) is found to show improved numerical 
behaviour and convergence. Eq. (16) is used in the production of k in Eq. (11) to introduce 
the non-linear Reynolds stress anisotropy tensor. 

The extra anisotropy tensor, aei j , defned in Eq. (10), is a tensor polynomial. For the 
new model, a quadratic formulation is proposed. Therefore, aei j reduces to the following 
formulation which retains up to n = 4 in the polynomial: 

� � � � ��

1 � � 1 
e = C β1 I IS δi j + β2 + β3 I IΩδi j (17)ai j µ SikSk j − 

3 
SikΩk j − ΩikSk j ΩikΩk j − 

3 

Since aei j takes into account the mean strain and vorticity rates at a quadratic level, it can 
cause the production of turbulent kinetic energy to decrease signifcantly, especially at the 
start of a calculation. This can result in k becoming negative, hence non-physical. Therefore, 
a realisability condition is applied. The realisability formulation used for the present model 
is similar to that proposed by Kimura et al. [51], which ensures non-negativity of the normal 
Reynolds stresses and the Schwarz’ inequality for the Reynolds shear stresses. It is based 
on the realisability condition proposed by Shih et al. [52] which employs time scale ratios 
based on the mean strain and vorticity rates. The realisability constraint is included in the 
new model using: 

1
C = (18)µ 1 + 0.1M2 
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M is a parameter that takes the maximum between the strain and rotation rates in the 
form of their dimensionless invariants, S̃ and Ω̃, respectively: 

1 Æ 1 Æ 
M = max(S̃, Ω̃) , S̃ = 2Si j Si j , Ω̃= 2Ωi j Ωi j (19)

ω ω 

It is important to note that the expansion terms β1, β2, and β3 (or βn for convenience) 
in Eq. (17) are not constants. In addition to satisfying dimensional analysis, βn must relate 
to turbulent scales in a consistent manner. A number of formulations have been used in 
literature. More complex approaches include the non-linear models of Abe et al. [53] 
and Hellsten [54] in which the expansion terms are derived based on the EARSM concept 
[36, 38, 55]. A simpler approach uses a formulation related only to the turbulent scales, 
e.g. k2/"2 multiplied by a dimensionless scalar [12, 26, 31, 56]. A similar approach is 
proposed here, however, using a scaling term proportional to 1/ω2 to provide dimensional 
consistency. This is also consistent with fow behaviour near solid boundaries since it allows 
the anisotropy tensor to become negligible at the wall where turbulence length scales 
become smaller as the wall is approached until isotropy is reached at the smallest scales. 
The proposed functional form for βn is: 

Cβ ,n 
βn = (20) 

max(ω, κS)2 

where S is the magnitude of the mean strain rate. The limiter in the denominator is intro-
duced to ensure stability by reducing the infuence of the non-linear formulation in regions 
where the mean strain and vorticity rates are high, in particular, stagnation regions and de-
veloping boundary layers. The constant κ is set to 2.5. This resulted in stable solutions whilst 
ensuring that the anisotropy formulation remained active in the freestream and developed 
boundary layers. Finally, Cβ ,n are the expansion coeffcients which require calibration. 

2.3. Boundary conditions 
At wall boundaries, no-slip conditions apply which sets the velocity components and the 

turbulent kinetic energy to be equal to zero. The specifc dissipation rate, ω, is resolved using 
the classic solution for smooth walls: 

6ν 
ωwall = (21)

Cω,2 y2 

2.4. Baseline model: calibration and initial assessment 
In order to complete the model formulation, three coeffcients need to be calibrated: Cβ ,1, 

Cβ ,2, and Cβ ,3. The coeffcient Cβ ,3 originates from the third term on the right-hand side of 
Eq. (17) (which contains the expansion term β3). This term, however, has been found to 
cause unphysical behaviour in rotating isotropic fow [57], as well as, to cause a model to 
violate realisability [14]. Therefore, Cβ ,3 is taken as 0. 

In the baseline non-linear k − ω model, Cβ ,1 and Cβ ,2 are considered to be constants. 
They were calibrated for parallel channel fow at various Reynolds numbers using DNS results 
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from [58]. The calibrated model was subsequently tested on a fat plate to ensure that the 
predictions agreed with the theoretical turbulent skin friction distribution. The calibrated 
values are presented in Table 1. 

Table 1: Summary of coeffcients for the baseline non-linear k − ω model 

Cβ ,1 Cβ ,2 

10.2 8.0 

In a simple channel fow case, it can be observed, from Figure 1, that the baseline non-
linear k − ω model offers improved predictions of the Reynolds stresses compared to the 
standard k − ω model. The spanwise velocity fuctuations, w0w0, are predicted by the base-
line model at values closely matching the DNS data. There is also an improvement in the 
prediction of streamwise velocity fuctuations, u0u0, and a decrease in wall-normal fuctua-
tions, v0 v0. However, closer to the wall ( y/h < 0.2) the anisotropy level is under predicted. 
The approach to calibrate Cβ ,n as constants is one that many existing non-linear models have 
proposed, e.g. [31, 32, 48, 59]. Its inclusion in the present work allows a direct assessment 
of the effectiveness of extending the non-linear k − ω model to account for strong anisotropy 
near solid boundaries. This extension will be discussed in the next section. 

0.0 0.1 0.2 0.3
0.0

2.0

4.0

6.0

8.0

y/h

u′ iu
′ i+

u′u′

v′v′

w′w′

u′u′

v′v′

w′w′

u′u′, v′v′, w′w′

DNS

k−ω

Baseline non-linear k−ω

Figure 1: Reynolds stresses in a plane channel fow at Reτ = 180. Markers correspond to DNS data [58]. 

2.5. Modifcation for strong near-wall anisotropy 

Abe et al. [43] proposed a formulation to model near-wall anisotropy using tensorial 
terms, in addition to strain and rotation rates, which depend on wall-direction indicators. 
This approach is not pursued in the present model since it increases complexity and com-
putational time. Instead, strong near-wall anisotropy is incorporated into the model using 
functional forms of the expansion coeffcients Cβ ,1 and Cβ ,2 that depend only on the modelled 
turbulent scales, k and ω. 

The turbulent boundary layer can be broadly divided into 3 distinct regions: the vis-
cous sublayer, the buffer layer, and the log layer. Within the viscous sublayer, the fow can 
be considered to be laminar and velocity fuctuations vanish at the wall due to the no-slip 
condition. Therefore, the expansion coeffcients, Cβ ,n, need to account for viscous damping 
towards the wall. Moving away from the wall, as the buffer layer is approached and due to 
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strong non-equilibrium, turbulent perturbations penetrate the viscous sublayer. This results 
in a signifcant transport of Reynolds stresses towards the wall. Thus, Cβ ,n should account 
for an increase in turbulence production here. Finally, entering the log layer, anisotropy lev-
els decrease as observed in DNS [58]. Therefore, the expansion coeffcients should decrease 
through the buffer layer towards a constant value in the log layer. In the log layer, Cβ ,n should 
return to the calibrated values used in the baseline non-linear k−ω (Table 1). To incorporate 
these effects, the expansion coeffcients, Cβ ,n, are modelled as: 

Cβ ,n = fV,n + fB,n + fL,n (22) 

The functions fV,n, fB,n, and fL,n control the value of the expansion coeffcients within the 
viscous, buffer, and log regions, respectively. They are defned as: 

fV,n = CV,n f1 f2 

fB,n = CB,n f1 f3 

fL,n = CL,n(1 − f3) (23) 

where 

� � � � � � −ReC1 −ReC3 ReC5 
T T Tf1 = 1 − ex p , f2 = ex p , f3 = 1 − tanh (24)

C2 C4 C6 

The damping functions f1, f2, and f3 have been formulated such that they are only func-
tions of the turbulence Reynolds number, ReT = k/νω. The coeffcients CV,n, CB,n, CL,n, and 
C1 to C6 need to be calibrated. 

2.6. Near-wall modifed model: calibration and initial assessment 

For the calibration of the coeffcients that originate from the near-wall modifcation pro-
posed above, it is assumed that the expansion coeffcients, Cβ ,n, can be treated as ‘universal’ 
i.e. they are not dependent, or are only weakly dependent, on the Reynolds number of the 
fow. Furthermore, it is assumed that any effects due to turbulence are also independent 
of Cβ ,n since the non-linear term, afi j k, that is included in the non-linear formulation of the 
Reynolds stress tensor in Eq. (9), is proportional to the turbulent eddy viscosity, νT . The va-
lidity of these assumptions will be explored in this section. The calibration method is briefy 
presented frst. 

The near-wall model was calibrated for plane channel fow using DNS data [58] at a 
Reynolds number of 180 (based on half-width of the channel and the wall shear velocity). 
This simple fow can be described by the only non-zero velocity gradient: λ = dU/d y . An 

Þ0 0 0 0analytical solution can be found for the non-linear Reynolds stress tensor (i.e. u = uiuj iu j + 
aei j k). Therefore, for fully developed fow, it can be shown that the proposed non-linear model 
predicts the normal stresses as: 
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� �

1 1 1 2 
u0u0 ≈ λ2 k Cβ ,1 + Cβ ,2 + k 

ω2 12 2 3
� �

1 1 1 2 
v0 v0 ≈ λ2 k Cβ ,1 − Cβ ,2 + k 

ω2 12 2 3
� �

1 1 2 
w0w0 ≈ λ2 k − Cβ ,1 + k (25)

ω2 6 3 

An optimisation algorithm was used to determine the distributions of the expansion co-
effcients, Cβ ,n, that minimise the least-squares error of the model predictions obtained with 
the equations above compared with the DNS benchmark results. The result is presented in 
Figure 2. The profles for Cβ ,1 and Cβ ,2 are similar and therefore for clarity, only the Cβ ,1 
profle is shown here. The velocity profle in wall coordinates as well as the law of the wall 
profle are also shown for reference. 
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Figure 2: Profle of the expansion coeffcient calculated using the near-wall modifcation in reference to the law of 
the wall. 

The fnal step in the calibration procedure is to fnd the coeffcients, C1, C2 . . . C6, of the 
damping functions defned in Eq. (24). They were estimated using curve ftting based on the 
default Trust-Region Dogleg Method implemented in Matlab. The recommended coeffcients 
for the non-linear k − ω model with enhanced near-wall anisotropy are summarised in Table 
2. Notice that the value of the coeffcients in the log region, i.e. CL,1 and CL,2, are equal to the 
constant values adopted in the baseline non-linear k−ω model for the expansion coeffcients, 
Cβ ,1 and Cβ ,2, shown in Table 1. 

Table 2: Coeffcients for the present model 

C1 C2 C3 C4 C5 C6 

0.92 0.01 0.40 0.18 1.90 70.00 

CV,1 

160.0 

CB,1 

25.0 

CL,1 CV,2 

10.2 122.0 

12 

CB,2 

15.0 

CL,2 

8.0 



The Reynolds stresses predicted using this extension of the proposed model for plane 
channel fow are presented in Figure 3, plotted against the wall-normal distance. It can 
be observed that, for y/h < 0.2, the prediction of wall-normal fuctuations near the wall 
is signifcantly improved compared to the baseline non-linear k − ω model. The predicted 
peak level of u0u0 is improved by approximately 30%. Overall, all three components are 
underpredicted compared to the DNS data. This is due to the inherent underprediction of 
turbulent kinetic energy, k, made by the underlying k − ω model (upon which the present 
model is based). 
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Figure 3: Reynolds stresses in a plane channel fow at Reτ = 180. Markers correspond to DNS data [58]. 

Anisotropy profles, ai j , resulting from the proposed near-wall modifcation are presented 
in Figure 4 alongside the predictions from the baseline k−ω model. The new model is shown 
to perform well in predicting the near-wall anisotropy levels. This shows that the combination 
of the quadratic Reynolds stress tensor formulation and the proposed near-wall modifcations 
result in a marked improvement in the prediction of anisotropy. In particular, improvements 
in the peak values of approximately 100% can be observed compared to the baseline model. 
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Figure 4: Reynolds stress anisotropy in a plane channel fow at Reτ = 180. Markers correspond to DNS data [58]. 

To ensure that the ‘universality’ assumption made when calibrating the near-wall modi-
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fcation is valid, the model has been tested at different Reynolds numbers. The results are 
presented in Figure 5. Again, the model shows improved predictions in the distribution of 
the anisotropy level within the near-wall region, particularly for y/h < 0.05 compared to the 
DNS data for both cases. 
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Figure 5: Reynolds stress anisotropy in a plane channel fow at Reτ = 550 and Reτ = 1000. Markers correspond to 
DNS data [58]. Line notations are the same as Figure 4. 

3. Test cases 

The initial performance of the proposed non-linear k−ω model (with the near-wall mod-
ifcation) has been established in the previous section using a simple shear fow. It is now 
validated and tested further by applying it to a range of cases with different fow features. 
The confgurations tested in this section include: (i) a fat plate at zero-pressure-gradient, 
(ii) a U-bend channel, (iii) a planar diffuser with a downstream monolith, and (iv) a swirling 
fow in sudden expansion diffuser with a downstream monolith. The last two confgurations 
are particularly challenging and relevant to automotive exhaust systems. 

The predictions of the proposed model are assessed in comparison against the predictions 
of the standard k − ω model. To compare the performance of the new model with existing 
non-linear eddy-viscosity models, two other non-linear (NL) models are also included. These 
are: the high-Re realisable quadratic k − " model of Shih et al. [52] and the low-Re cubic 
k − " model of Lien et al. [60]. 

3.1. Numerical method 

Due to the relative ease of implementing new turbulence models, the model equations 
are implemented in and tested using the open-source CFD package OpenFOAM 6 [61]. It has 
been gaining popularity in academia and industry, and its validity for scientifc research has 
been established [62, 63]. The implementation of the model follows the methodology sug-
gested in [64]. A steady state incompressible fow solver simpleFoam (consistent), based 
on the SIMPLEC algorithm, available in OpenFOAM is used to perform the calculations. The 
various terms in the model equations are discretised using the standard fnite volume discreti-
sation of Gaussian integration. The gradient terms are computed using linear interpolation. 
For Laplacian terms, diffusion coeffcients are discretised using linear interpolation. Finally, 
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divergence terms are evaluated using a blended linear upwind scheme offering frst/second 
order accuracy. This scheme is selected because it provides a suitable compromise between 
stability and accuracy. The simulations were considered converged if the normalised residuals 
dropped below 10−5, with the exception of the cases involving a porous region (convergence 
was monitored based on the pressure drop and a fattening of the residuals). For these sim-
ulations, the gradient terms for the turbulence quantities (k and ω) were limited using a 
cell-based limiter. This is common practice in commercial packages to improve solution sta-
bility for complex confgurations by ensuring that the face values that are interpolated from 
cell values are bounded by the values of the neighbouring cells [65, 66]. 

3.2. Zero-Pressure-Gradient fat plate 

This is a classical test case for testing the performance of a turbulence model in predicting 
boundary layer fow and is also useful for testing the correct implementation of a model. 
The simulation is set up to match the T3B case by ERCOFTAC [67] which is a zero-pressure-
gradient fat plate at freestream turbulence intensity of Tu∞ = 6.0%. A schematic of the 
domain is shown in Figure 6. At the inlet, the freestream velocity is U∞ = 9.4 m/s and 
the turbulent kinetic energy is calculated based on the turbulence intensity. The specifc 
dissipation rate, ω, and dissipation rate, ", are estimated using eddy viscosity ratio of νR = 
νt /ν = 100. A slip condition was used on the top boundary. A velocity inlet and a pressure 
outlet are prescribed. At the wall, the turbulent kinetic energy, specifc dissipation rate, and 
velocities are set up as detailed in Section 2.3 for the proposed model and the k − ω model 
and as prescribed in the original works for the other non-linear models [52, 60] (since this 
is true for all the simulations presented here, it will not be restated). Grid independence is 
achieved by ensuring that the change in the mean velocities across a number of axial stations 
and the change in the average skin friction coeffcient across the plate is suffciently low (less 
than 0.5%). This results in a grid of 635 × 140 × 1 cells, giving a total of 88,900 cells, for the 
low-Re models (the new model, the standard k − ω model, and the Lien cubic k − " model). 
The corresponding maximum y+ value was 0.61. For the high-Re model (the Shih quadratic 
k −" model), the grid has 635×42×1 cells, giving a total of 26,600 cells. The corresponding 
maximum y+ value was 35. 
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Figure 6: Computational domain of the T3 fat plate case 

Figure 7 presents the skin friction coeffcient distribution along the plate predicted using 
the tested models. The results from the new model and the k − ω model are identical and 
closely match the experimental values for Rex > 0.5 × 106. This result demonstrates that the 
formulation of the new model retains the ability of the underlying k − ω model to correctly 
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predict the skin friction of a turbulent boundary layer. It also provides confdence that the 
model has been implemented correctly. The Shih NL k − " and Lien NL k − " models show 
lower skin friction coeffcient predictions compared to the theoretical turbulent line for Rex < 
0.3×106, and closely match the turbulent line and the experimental values downstream. This 
behaviour has been observed previously on fully-turbulent k − " models [68, 69]. 

0.0 0.2 0.4 0.6 0.8 1.0

·106

0.0

0.2

0.4

0.6

0.8

1.0
·10−2

Rex

C
f

Laminar Turbulent

Exp k−ω
Shih NL k− ε Lien NL k− ε
New model

Figure 7: Streamwise skin friction distribution on the T3B case. Markers correspond to ERCOFTAC experimental 
data [67]. 

Profles of the Reynolds stress components are shown in Figure 8, normalised with the 
freestream velocity. Reynolds stress predictions are observed at two stations on the plate 
at which the Reynolds numbers based on the streamwise distance are Rex = 183, 000 and 
556, 000. These correspond to locations where the fow is found to be fully turbulent in 
the experiments, which are suitable for the validation of the proposed model (since it is a 
fully-turbulent model). The three tested non-linear models correctly predict the experimen-
tal trend of the anisotropic Reynolds stress profles at both locations. Although the Shih NL 
k − " model correctly shows the rise in streamwise fuctuations and decrease in the other two 
components of the Reynolds stresses, it can be observed to suffer from its high-Re formula-
tion, and consequently the high y+ grid that it requires. The Lien NL k − " model returns an 
underprediction of the Reynolds stress anisotropy level, highlighted by the underprediction 
of the streamwise fuctuations and the close predictions for the other two components at both 
locations. The new model shows predictions of the Reynolds stresses closer to the experimen-
tal data at Rex = 183, 000 compared to the other tested models, although it underpredicts 
the streamwise fuctuations closer to the wall. This can be attributed to the rise of turbulent 
kinetic energy, and specifcally streamwise fuctuation, during transition. Further along the 
plate at Rex = 556, 000, away from the transition region, the new model predictions are 
closer to the experimental values overall on all three components. Such an agreement is 
remarkable, especially considering the relative simplicity of the proposed near-wall modif-
cation and the fact that it has been calibrated based on a single case. 
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Figure 8: Velocity fuctuations at local Reynolds numbers Rex = 183, 000 (left) and Rex = 556, 000 (right) on the 
T3B case. Markers correspond to experimental data [67]. 

3.3. Curved channel 

The U-bend curved channel confguration is widely used for validating turbulence mod-
els against the effects of curvature, as well as internal shear layers. The case tested here 
reproduces the experiment by Monson et al. [70]. A schematic of the domain used for the 
simulation is shown in Figure 9. The Reynolds number is 106 based on the inlet velocity and 
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the height of the channel, h. The fow is simulated using a two-dimensional domain since the 
aspect ratio of the rectangular channel in the experiment is 10 and the fowfeld is found to 
be reasonably two-dimensional throughout. A precursor computation is carried out to match 
the boundary layer thickness recorded in the experiment, that is, 0.25h at the inlet. The inlet 
is located at x/h = −4 from the start of the bend and the outlet is placed at a distance of 
6h from the end of the bend. The turbulence intensity at the inlet of the channel reported in 
the experiment is 1.16%. The turbulent kinetic energy is calculated from the freestream tur-
bulence intensity, and the eddy viscosity ratio is set to 38.7. Grid independence is achieved 
by ensuring that the changes in the mean velocities across a number of locations along the 
channel as well as the pressure drop across the domain are suffciently low (around 2.5% 
here). This results in a hybrid grid consisting of 85,000 cells for the low-Re models with a 
prism layer of 60 cells for capturing the boundary layer. The corresponding maximum y+ 

value was 0.69. For the high-Re model, a hybrid grid of 43,000 cells was used with a prism 
layer of 20 cells. The corresponding maximum y+ value was 34. 
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Figure 9: Computational domain of the curved channel fow case 

Non-dimensional velocity profles are presented in Figure 10. They are plotted against 
the wall-normal distance from the inner wall of the channel, y , and are non-dimensionalised 
with h. The exit of the bend is located at θ = 180 deg and x/h = +2 denotes a location 2h 
downstream of the bend (see also Figure 9). 

As the fow goes into the bend, the fow accelerates at the inner wall and decelerates at 
the outer wall. In the last half of the bend fow separation is known to occur at the inner 
wall due to a severe adverse pressure gradient [71]. In Figure 10, at θ = 180 deg, the 
experimental results show the presence of reversed fow near the inner wall at the exit of the 
bend. The velocity profles predicted by all the tested models show that separation at the 
inner wall is captured. However, the level of fow separation is generally underpredicted, 
with the new model showing some improvement compared to the other models. Across the 
rest of the channel, the velocity profle is almost fat, except near the concave wall where 
the boundary layer is thin as a result of the destabilising curvature [72]. Downstream of the 
bend, at x/h = +2, the fow reattaches at the inner wall and accelerates at the outer wall. 
The new model predicts a slower recovery than the k−ω model at the inner wall, comparable 
to the other non-linear models. However, it predicts the acceleration at the outer wall more 
accurately, as shown in Figure 10 (b). 
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Figure 11 (a) shows that at the exit of the bend all the tested models fail to capture the 
characteristic turbulent kinetic energy profles for 0.2 < y/h < 0.9, possibly as a result of un-
derpredicting the onset of fow separation. Nonetheless, this requires further investigation. 
The peak in the value of k at the inner wall is captured by all models. Although signifcantly 
underpredicted, the new model and the Lien NL k − " models return closer predictions to the 
experimental data compared to the other models. Unfortunately, there is no experimental 
data for the turbulent shear stress at this location to explore how turbulence anisotropy is pre-
dicted by the new model. However, it is encouraging that further downstream at x/h = +2, 
the turbulent kinetic energy, which has now diffused outwards in the inner half of the chan-
nel, is predicted well by the proposed model compared to the other models. This is shown in 
Figure 11 (b). The new model shows an important advantage in the prediction of the max-
ima here. This is echoed by a similar improvement of approximately 25% in the prediction 
of the peak value of the turbulent shear stress (Figure 12) compared to the standard k − ω 
model, which is also a 14% and 21% more accurate peak shear stress prediction compared 
to the Shih NL k − " and Lien NL k − " models, respectively. 
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Figure 10: Longitudinal velocity profles at two stations along the curved channel. Markers correspond to experi-
mental data [70]. 
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Figure 11: Turbulent kinetic energy profles at two stations along the curved channel. Markers correspond to 
experimental data [70]. 
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Figure 12: Turbulent shear stress at x/h = 2 along the curved channel. Markers correspond to experimental data 
[70]. 

The predictions for global quantities through the entire domain are illustrated through 
the skin friction and pressure coeffcients at the outer and inner walls in Figures 13 and 14, 
respectively. They are plotted against the downstream distance, s, measured from the channel 
entrance on the centreline between the inner and outer walls and non-dimensionalised using 
h. The bend is located at 21.7 ≤ s/h ≤ 24.8. These plots provide a means to assess of the 
performance of the new model. 

From a practical engineering point of view, an accurate prediction of skin friction is im-
portant since heat transfer is proportional to skin friction whilst the prediction of pressure is 
important for measuring losses in the domain, for example due to curvature. In comparison 
to the experiment, the new model predicts the two quantities well upstream and through the 
bend. Downstream of the bend, at the location of minimum pressure on the outer wall where 
the fow accelerates, the new model predicts the pressure minima approximately 50% more 
accurately compared to the standard k − ω model and approximately 20% more accurately 
compared to the other non-linear models. This is accompanied by a prediction of the maxi-
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mum skin friction coeffcient within 1.5% of the experimental data, compared to the k − ω 
which underestimates it by 14%. The Shih NL k−" model also predicts this skin friction peak 
well, showing comparable prediction to the new model, while the Lien NL k − " model over-
predicts it. Further downstream from the bend, the pressures on the inner and outer walls 
reach the same level at a value much lower than the upstream value, signifying pressure losses 
in the fow due to the curvature. The new model provides a 15% improvement compared 
to the standard k − ω model in the prediction of this pressure drop. As mentioned earlier, 
this has important practical implications. he Lien NL k − " model predicts a similar level of 
pressure coeffcient in this region compared to the new model, although it overpredicts the 
skin friction coeffcient here. The Shih NL k − " model returns comparable predictions to the 
standard k−ω model in terms of the pressure coeffcients here, underpredicting the pressure 
drop through the bend. 
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Figure 13: Skin friction coeffcient distribution of curved channel fow on the outer and inner walls. Markers 
correspond to experimental data [70]. 
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Figure 14: Pressure coeffcient distribution of curved channel fow on the outer and inner walls. Markers correspond 
to experimental data [70]. 
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3.4. Planar diffuser with a downstream monolith 
The new model is applied to a system consisting of a planar diffuser with a monolith 

downstream. The confguration tested here is based on one of the cases investigated experi-
mentally and numerically by Porter et al. [73–75]. The geometry is presented in Figure 15. 
This confguration represents the setup of a simplifed automotive exhaust catalyst system. 
An automotive catalytic converter uses a ceramic monolith consisting of many small parallel 
channels to provide a large surface area for the conversion of exhaust pollutants. The wide-
angled diffuser, in this case 30 deg, is used to connect the inlet channel to the entrance of 
the monolith. This is a challenging case as the simulation should not only adequately cap-
ture fow separation in the diffuser, but also account for the pressure loss associated with 
the monolith itself. The Reynolds number of the case presented here is 2.2 × 104 based on 
the mean velocity and the hydraulic diameter of the nozzle upstream of the diffuser which is 
Dh = 0.0384m in the experiment. The length of the monolith used here is 27mm. The fow 
is modelled using a two-dimensional confguration with a symmetry boundary condition set 
along the x axis at centreline, y = 0, since the velocity profles at the exit for various span-
wise positions show symmetry and little variation in the experiment. The inlet turbulence 
intensity is set to 1% and the eddy viscosity ratio is 10. Grid independence is achieved by 
ensuring that the changes in the mean velocity and non-uniformity of the velocity profle 
near the outlet, as well as the pressure drop across the domain are suffciently low (less than 
2% here). This results in a hybrid grid consisting of 39,000 cells for the low-Re models. The 
corresponding maximum y+ was 0.75. For the high-Re model, the grid consists of 28,000 
cells. The corresponding maximum y+ value was 7.1. 
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Figure 15: Computational domain of the planar diffuser case 

There are a number of methods for modelling the monolith [73–75]. The approach used 
here is to treat the monolith as a porous medium with a prescribed resistance to reduce 
the computational effort. The resistance of the monolith is derived from the experimental 
measurements as discussed in [73] and ftted using the Darcy-Forchheimer equation which 
treats the porous zone as a sink term Sm in the momentum equation and is defned as: 

� �

1
Sm = − νD+ Ui (26)|Uj j |F 

2 

where D = 3.96 × 107/m2 and F = 23.74/m, and the velocity used here is superfcial 
velocity in the monolith. The turbulence quantities continue to be solved within the porous 
region using the default transport equations described by the turbulence model. The interface 
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between the fuid space and the porous region is treated using a boundary condition which 
sets the mean felds and turbulent quantities at the inlet of the monolith to be the same as 
the fow feld immediately upstream of it. 

The axial and transverse velocity profles at 10.13 mm and 5.55 mm upstream of the 
monolith are shown in Figure 16. As the fow enters the diffuser, it essentially resembles a 
planar jet which impinges on the monolith. The fow turns transversely as it approaches the 
monolith. A portion of the fow is pushed through the monolith. The rest of the fow recir-
culates along the walls of the diffuser. This behaviour can be observed in Figure 16 (where 
the axial or transverse velocities are negative near the wall). The axial velocity profles show 
that the predictions of the new model are generally in agreement with the experiment. Par-
ticularly, the predictions for the recirculation zone at x = 5.55 mm where the standard k − ω 
model fails to predict fow recirculation (i.e. the axial velocity component is positive). The 
proposed model returns a closer prediction to the experimental values in this recirculation 
region at 10.13 mm upstream compared to the other non-linear models, while the other non-
linear models show closer predictions at 5.55 mm. As the fow gets closer to the monolith, 
the fow decelerates and spreads transversely. The proposed model shows an overall 20% 
improvement in the prediction of this the spreading when compared to the k − ω model 
which signifcantly overpredicts the distribution of the transverse velocity component. All 
the non-linear models show comparable predictions in the transverse velocity component at 
10.13 mm, while the tested non-linear k − " models show an advantage over the proposed 
model at 5.55 mm where the new model overpredicts. 
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Figure 16: Axial (U) and transverse (V ) velocity profles at two stations upstream of monolith. Markers correspond 
to experimental data [73]. 

This seemingly simple confguration involving a planar diffuser and a monolith results 
in complex fow interactions. The monolith affects the fow distribution within the diffuser, 
and in turn, the fow distribution upstream of the monolith dictates how it resists the fow. 
The practical consequence is that the fow through the monolith, and indeed, downstream is 
non-uniform or maldistributed, as shown in Figure 17. This fgure shows the axial velocity 
profle at a downstream distance of 40 mm from the end of the monolith, normalised using 
the mean velocity. The new model shows a marked improvement compared to the k − ω 
by successfully capturing the maldistribution trend and the secondary peak near the wall in 
particular. Both of the tested non-linear k − " models also show the correct maldistribution 
trend here, returning comparable predictions to the proposed model, with the new model 
showing some advantage on the prediction of the secondary peak near the wall. Capturing 
this maldistribution correctly has important practical implications for the design of effective 
automotive after-treatment devices. 
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Figure 17: Axial velocity profle 40mm downstream of monolith. Markers correspond to experimental data [73]. 

3.5. Swirling fow 

The model is now tested on a three-dimensional swirling fow confguration. The cases 
tested here were frst investigated experimentally and numerically by Rusli et al. [76]. The 
geometry is shown in Figure 18, and includes: (i) a swirl generator with an annulus pipe, (ii) 
a sudden expansion diffuser, (iii) a monolith, and (iv) an outlet sleeve. For automotive appli-
cations, this simplifed confguration can be used to study the infuence that residual swirling 
fow from turbocharged engines have on the catalyst system. This confguration is also use-
ful for assessing the performance of the proposed turbulence model on a three-dimensional 
application that involves rotational effects. The diffuser-monolith setup is similar to that 
presented in the previous section. However, the diffuser angle is 90 deg, i.e. a sudden ex-
pansion. The mass fow rate of the cases considered here is 63g/s and the mean velocity 
at the inlet is calculated based on the radius of the inlet channel, which is 0.022m, and the 
fuid density, which is 1.18kg/m3 to match the experiments. Experimentally, the swirling 
inlet profle is produced by using a swirl generator. In order to match the experiment, it is 
included in the simulations. Two swirl generator angles are tested, 7 and 18 deg. As the swirl 
generator consists of 8 identical blocks spread azimuthally [77], a 45-deg wedge is used as 
the computational domain with periodic boundary conditions set on each side. The monolith 
is modelled using the porous medium approach and implemented as detailed in the previous 
section. Grid independence is achieved by monitoring the changes in the mean velocity, Um, 
and swirl level, S (the defnition of which is explained later) in the annulus, as well as the 
pressure drop, ΔP, across the domain. A summary of the grid independence test is presented 
in Table 3. The percentage of difference between the grids is calculated as | f1 − f2|/ f1 with 
f1 representing the variable prediction of the fner mesh and f2 is that of the coarser mesh. 
The ‘Fine’ mesh is chosen and it can be observed that the changes in the predicted variables 
between this mesh and the fner mesh is suffciently low (around 2%). This results in a mesh 
consisting of polyhedral grid with a prism layer of 15 cells at the wall with a total of 2.7–3.0M 
cells. The corresponding maximum y+ was 3.62. 

25 

http:2.7�3.0M


Inlet

Swirl generator

Sudden expansion

Monolith
Sleeve

OutletPeriodic boundary

Wall
Inlet

Swirl generator

Sudden expansion

Monolith
Sleeve

Outlet
Periodic boundary

Wall

(a) Swirl generator angle = 7 deg (b) Swirl generator angle = 18 deg 

Figure 18: Geometry of the swirling fow rig confguration at several swirl generator angles and swirl numbers. 

Table 3: Summary of grid independence test for the swirling fow test case 

Number of Um % Diff Um ΔP % Diff ΔP S % Diff S 
cells [m/s] [Pa] 

Very coarse 383,000 27.826 – 856.432 – 0.452 – 
Coarse 1,210,000 27.742 0.30 822.570 4.11 0.445 1.57 
Medium 1,790,000 27.751 0.03 816.988 0.68 0.448 0.67 
Fine 3,000,000 27.738 0.05 804.341 1.57 0.449 0.22 
Very fne 4,600,000 27.722 0.06 788.296 2.04 0.448 0.22 

The swirl level produced by the swirl generator can be characterised by calculating a 
non-dimensional swirl number, S, within the annular extension that connects the outlet of 
the swirl generator to the sudden expansion diffuser. The swirl number is defned as: 

GθS = (27)
Gx ro 

where Gθ and Gx are the tangential and axial momentum fuxes, respectively. They are 
given by: 

Z

ro 
Z

ro 

Gθ = ρUW r2πrdr , Gx = ρUU2πrdr (28) 

ri ri 

Here r is the radius of the annular channel from the centreline, ri and ro are the radii 
of the inner wall and the outer wall, respectively. The fuxes above are calculated from the 
axial and tangential velocity components in the annulus at a streamwise distance of 0.0775 
m upstream of the expansion, which are shown in Figure 19. The calculated swirl numbers 
for the different swirl generator angles are presented in Table 4. Similar swirl numbers are 
predicted by the new model and the k − ω model. This allows a comparison of model predic-
tions in the diffuser downstream. For convenience, the swirl number from the experiment is 
used for reference in the subsequent discussion. 
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Table 4: Summary of swirl number for swirling rig test case 

Swirl generator angle S (exp) S (k − ω) S (new model) 

7 (intermediate swirl) 0.44 0.43 0.42 
18 (high swirl) 1.65 1.32 1.32 

Figure 19 shows the velocities normalised using the mean axial velocity in the annu-
lus, and plotted against r, the radial distance from the inner wall of the annulus, non-
dimensionalised using ro and ri . The new model shows good agreement with the experi-
ment for the axial velocity profle at S = 0.44 while the redistribution of the axial velocity 
at S = 1.65 is underpredicted. For the S = 0.44 case, the model shows improvement in the 
tangential velocity profle predictions while for the higher swirl level case both models do 
not capture the maximum value near the inner wall of the annular section. This can be at-
tributed to a known weakness of the k − ω model for rotating fows, for example as observed 
in [78]. Some approaches to correct this behaviour have been proposed in literature, such as 
by including an explicit rotation correction term that uses non-inertial frames of reference, 
e.g. [36, 79]. This is not included in the present model since the focus of this work was 
to develop the non-linear formulation and the enhanced near-wall treatment for turbulence 
anisotropy. 
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Figure 19: Mean axial (U) and tangential (W ) velocity profles within the annulus, at an axial distance of 0.0775m 
upstream of the expansion, at several swirl numbers. Markers correspond to experimental data [76]. 

The effect of swirl on the fow feld within the diffuser can be examined through the 
pressure coeffcient along the diffuser wall, as plotted in Figure 20 against the streamwise 
distance from the expansion. At both swirl levels, a decrease in pressure at the wall upstream 
of the expansion (for −30 < x < 0 mm) is shown in the experiment as the fow transitions 
from an annular cross-section to a circular cross-section. This trend is more pronounced at the 
higher swirl level, S = 1.65. The new model shows improvement in predicting this decrease 
in pressure compared to the k − ω model. At S = 0.44, as the fow enters the diffuser, there 
exists a recirculation region behind the expansion [76], which manifests as a drop in pressure 
along the wall. The pressure then recovers until the swirling jet reattaches at the wall which 
is marked by the pressure peak at the wall. The model predicts the extent of the recirculation 
zone and pressure level at the reattachment point well. At the higher swirl level, S = 1.65, 
the separated region behind the diffuser decreases in size and the fow stays attached along 
most of the diffuser wall, resulting in a "fatter" pressure coeffcient profle. The profle and 
quantitative level predicted by the model closely matches the experiment in contrast to the 
k − ω model, which shows a more pronounced pressure variation along the wall. 
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Figure 20: Pressure coeffcient along the diffuser wall of the swirling fow setup at several swirl numbers. Markers 
correspond to experimental data [76]. 

4. Conclusion 

This work introduced a new k−ω non-linear eddy-viscosity model in which the anisotropy 
tensor formulation for strain and rotation rates up to their quadratic level is retained. It is a 
non-linear extension of the classic k − ω model [45] with an added realisability condition. A 
new formulation for calculating the anisotropy expansion coeffcients is proposed with focus 
on modelling the high level of turbulence anisotropy near the wall. Model predictions are 
validated and benchmarked against a range fow confgurations involving boundary layers, 
curvature, separation, and swirl. 

The proposed model correctly predicts a turbulent boundary layer in a zero-pressure-
gradient fat plate test case, consistent with its formulation as a fully-turbulent model. The 
modifcation for enhanced treatment of near-wall turbulence anisotropy is shown to be ef-
fcient. In simple shear fow, compared to the baseline non-linear model, in which constant 
values are used, the near-wall modifcation improves the predicted Reynolds stress anisotropy 
by approximately 100%. In a curved channel fow, the model shows closer predictions to ex-
perimental data on the pressure and skin friction coeffcients in general compared to the 
standard k − ω model as well as the other tested non-linear models, namely the Shih et al. 
quadratic k − " model [52] and the Lien et al. cubic k − " model [60]. In the acceleration re-
gion just downstream of the bend, the model produced improved predictions of the pressure 
minima of approximately 50% compared to the standard k − ω model, and approximately 
20% more accurately compared to the other tested non-linear models. In a two-dimensional 
planar diffuser with a downstream monolith, the model shows good prediction of the fow 
maldistribution behind the monolith, successfully capturing the secondary velocity peak near 
the wall and returning comparable predictions to the other tested non-linear models. For a 
more complex confguration, involving a swirling fow case, the model predicts the pres-
sure distribution along the diffuser wall closely matching the experimental data, showing 
improvement against the linear k − ω model on the swirl levels tested. The results obtained 
serve to showcase the capabilities of the new model for internal fows in particular. Specif-
cally, they show the effectiveness of the proposed modifcation for predicting Reynolds stress 
anisotropy near the wall, which has been shown to be underpredicted by existing models, 
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e.g. [12, 42]. While there is some increase in the computation time by the proposed model 
in comparison with the standard k −ω model (around 12.8% for the more complex test case, 
which is the swirling fow case), the straightforward (and general) method for coupling the 
model with the underlying k−ω eddy-viscosity model, as well as the relative simplicity of the 
near-wall modifcation, opens a wealth of potential applications, particularly, since the mod-
ifcation relies only on local variables (in contrast to models that use wall-normal distance 
for example, e.g. [43]), which ensures its robustness for applications in complex geometries. 
The performance of the model for swirling fows could be improved by incorporating explicit 
corrections for fow rotation, such a modifcation will be the subject of future work. 
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