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Prediction short-term photovoltaic power using improved chicken swarm optimizer - 
extreme learning machine model

ABSTRACT

Photovoltaic power generation is greatly affected by weather conditions while the 
photovoltaic power has a certain negative impact on the power grid. The power sector takes 
certain measures to abandon photovoltaic power generation, thus limiting the development 
of clean energy power generation. This study is to propose an accurate short-term 
photovoltaic power prediction method. A new short-term photovoltaic power output 
prediction model is proposed Based on extreme learning machine and intelligent optimizer. 
Firstly, the input of the model is determined by correlation coefficient method. Then the 
chicken swarm optimizer is improved to strengthen the convergence. Secondly, the 
improved chicken swarm optimizer is used to optimize the weights and the extreme 
learning machine thresholds to improve the prediction effect. Finally, the improved chicken 
swarm optimizer extreme learning machine model is used to predict the photovoltaic power 
under different weather conditions. The testing results show that the average mean 
absolute percentage error and root mean square error of improved chicken swarm 
optimizer - extreme learning machine model are 5.54% and 3.08%. The proposed method is 
of great significance for the economic dispatch of power systems and the development of 
clean energy.

Keywords: Photovoltaic power generation; Extreme learning machine; Intelligent optimizer; 
Power prediction; Model-driven method
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Nomenclature Variables
P Connection weight between hidden layer and input layer
D Connection weight between hidden layer and input layer
M Samples
A Input quantity
B Output quantity

)(X Activation function
O Network output
K Hidden layer output

K Moore-Penrose generalized inverse
ε Infinitesimal
BL Learning coefficient
randm Random number between 0 and 1
GL Random number between 0 and 2
Z Position
Cip Cosine inertia weight
z Pre-mutation particle
 Cauchy mutation operator

*z Mutated particle
R2 Decision coefficient
Acronyms list
PV Photovoltaic
SVM Support vector machine
AI Artificial intelligence
ANN Artificial neural network 
AR Autoregressive
MA                                                                             Moving average
ARMA Autoregressive moving average
DBN Deep belief network 
BP Back propagation
CSO Chicken swarm optimizer
ICSO Improved chicken swarm optimizer
GPR Gaussian process regression
GA Genetic optimizer
SVR Support vector regression
RMSE Root mean square error
ELM Extreme learning machine
SLFN Single-hidden layer feed forward neural network
PSO Particle swarm optimizer
WOA Whale optimizer
MAPE Mean absolute percentage error
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Prediction short-term photovoltaic power using improved chicken swarm optimizer - 
extreme learning machine model

1. Introduction

China's energy demand has grown rapidly as a big energy consuming country. A large 
amount of fossil fuel consumption has brought serious environmental problems to China, 
such as China facing serious smog problems (Zhang et al., 2019; Xiong et al., 2019). This is 
imperative to develop clean energy in order to solve this thorny problem. Especially, 
photovoltaic (PV) energy power generation has received the attention of the Chinese 
government with the continuous advancement of technology. To this end, the Chinese 
government has formulated relevant policies to promote the development of clean energy 
power generation. According to the 13th Five-Year development plan of clean energy made 
by China energy administration, the power plant will maintain an annual average installed 
capacity of 20-23 GW, which is not subject to the index (Guo et al., 2019).

Traditional power grid scheduling is based on reliable power supply and predictable 
load. The reliability of power grid operation can be improved by regulating the power supply 
side and the power consumption side (Li et al., 2018). However, PV power generation is 
random, intermittent and fluctuant under the influence of weather and environment 
(Seyedmahmoudian et al., 2018; Monfared et al., 2019; Sanchez-Sutil et al. 2019). These 
characteristics of PV power generation will have a negative impact on the stable operation 
of power system. When large-scale PV power is integrated into the grid, the generation side 
will be uncontrollable, which will have a negative impact on the grid's power generation 
plan (Menezes et al., 2018). At this time, the grid will adopt “PV power curtailment" 
measure to reduce the impact of PV power generation on the grid, thus limiting the 
development of clean energy power generation (Hernandez et al. 2018). The more accurate 
the PV power forecasting is, the less PV power limitation will occur in the grid, which greatly 
improves the development and utilization of clean energy, thereby reducing the economic 
losses to PV owners caused by power limitation, and increasing the return on investment of 
PV power plants. Therefore, it is necessary to accurately predict PV power generation, and it 
has important value to develop the clean energy power generation technology.

In terms of PV power prediction, the specific time scale, the PV power forecasting can 
be divided into four types: medium-term and long-term prediction (days or weeks), 
short-term prediction (hours or one day), ultra-short-term prediction (one minute or a few 
minutes). Ultra-short-term PV power prediction is mainly used for real-time dispatching of 
power grid; short-term PV power forecasting is mainly used to assist the dispatch sector to 
formulate daily generation plans and economic dispatching plans; medium and long-term 
PV power output forecasting is mainly used for the maintenance of PV power field and 
operation management of PV power plants (Han et al., 2019; Lin et al., 2018; Izgi et al., 
2012). Because short-term PV power prediction is of great significance for the power sector 
to arrange reasonable daily power generation plans, achieve efficient economic dispatch 
and promote the development and utilization of clean energy, it has become a current 
research hotspot.
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At present, the main research methods for PV power prediction can be divided into 
two types: prediction methods based on statistical analysis models and prediction methods 
based on artificial intelligence (AI) models (Raza et al., 2016). The two methods can achieve 
the prediction of PV power, but the prediction principles of the two methods are very 
different. The prediction method based on statistical analysis model can forecast the next 
stage of PV power generation according to historical data of PV power generation. There are 
three kinds of statistical regression models: autoregressive moving average (ARMA) model, 
autoregressive (AR) model and moving average (MA) model (Xie et al., 2018, Wang et al., 
2018). Data-driven AI model is trained with historical data, and then the trained model is 
used to predict PV power. The main AI models commonly used in PV power prediction are 
artificial neural network (ANN), support vector machine (SVM), extreme learning machine 
(ELM) (Lin and Pai, 2016; Nespoli et al., 2019; Zhu et al., 2017).

Because PV power is greatly influenced by climate conditions, PV power output has 
strong non-linearity. Statistical analysis model uses historical data to further predict the 
development trend of power output. The statistical analysis model has a large deviation 
while the PV power changes greatly. Compared with statistical analysis model, AI model has 
stronger ability of non-linear mapping. For example, SVM, ELM and other models have been 
applied to the field of PV power prediction. Among them, the ELM model has been widely 
used in the forecasting field due to its strong generalization ability and nonlinear prediction 
ability. Because the super parameters (weight values and threshold values) in ELM model 
have a great influence on the prediction results, how to optimize the super parameters of 
ELM model is the key problem. Therefore, it is necessary to propose an appropriate 
optimizer. In this study, improved chicken swarm optimizer (ICSO) is combined with ELM to 
optimize the super parameters of ELM. ICSO-ELM model is proposed for PV power 
prediction. ICSO-ELM model is used to predict the PV power under cloudy, sunny and rainy 
weather conditions respectively. At the same time, compared with many existing models, 
the superiority of the proposed model is verified. The contributions of this study are as 
follows: 
(1) The CSO optimizer has been improved to propose the ICSO optimizer.  
(2) The input of the model is determined by correlation coefficient method. 
(3) The ICSO-ELM model is proposed to forecast the short-term PV power under three 

specific weather conditions.
(4) Accurate PV forecasting can effectively help the power grid dispatching department to 

make various power dispatch schedules and promote the development and utilization 
of clean energy. 

2. Literature Review
In practical applications, when PV power affects the stable operation of the system, the 

power sector will take "PV power curtailment" measures to control the impact of PV power 
on the stability of power grid, which will limit the development of clean energy. Through 
short-term PV power prediction, the efficient economic dispatching plan and daily 
generation plan for the power sector are formulated to reduce the restrictive measures of 
PV power generation, thus promoting the development of clean energy. Therefore, 
short-term PV power prediction is very necessary and is of great significance to the 
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development and utilization of clean energy. At present, scholars have proposed many 
short-term photovoltaic power forecasting methods. Generally, these methods can be 
divided into three kinds: time series prediction model, artificial intelligence (AI) model and 
hybrid model based on time series and AI model. Based on historical meteorological data 
and power data, the time series model establishes the mapping relationship between them, 
and predicts power by the mapping relationship. The nonlinear fitting ability of the time 
series model is poor, and when the prediction period is longer, there will be greater 
prediction error. Therefore, the model is suitable for ultra-short-term PV power prediction. 
Autoregressive (AR) model and autoregressive moving average (ARMA) model are two 
common time series models. Bacher et al. (2009) presented an online short-term PV 
forecasting method. Firstly, the PV power was normalized. Secondly, the adaptive linear 
time series model was used to predict the PV power. Since traditional ARMA model cannot 
consider climate information, climate information has an impact on improving model 
prediction accuracy. To this end, Li et al. (2014) previously proposed a generalized ARMA 
model that took into account climate information and used these climate information as 
input to the model.

Compared with the time series model, more and more scholars begin to pay attention 
to AI model and hybrid model. Based on the deep belief network (DBN) and the ARMA 
model, Xie et al. (2018) proposed a hybrid model to forecast short-term PV power. Firstly, 
time series were decomposed into high frequency components and low frequency 
components. Then DBN model was used to predict the high frequency components, ARMA 
model was used to predict the decomposed low frequency components, and finally the 
predicted components were synthesized into the final results. Li et al. (2019), Bouzerdoum 
et al. (2013), Eseye et al. (2018) and VanDeventer et al. (2019) used SVM to predict 
short-term PV power, and optimizer was used to optimize the super parameters of SVM to 
reduce the influence of super parameters on the prediction effects. Since the SVM solves 
the support vector by means of quadratic programming, when the number of samples is 
large, the training time of the SVM is long. Artificial neural network (ANN) is widely used in 
short-term PV forecasting because of its strong fault tolerance and strong non-linear 
mapping ability. Based on ANN and analog integration, Cervone et al. (2017) proposed a 
combined method to forecast PV power. Dolara et al. (2015) proposed a combined model 
based on ANN and clear sky curve of PV power station. ELM is developed based on 
feedforward neuron network (FNN). The ELM model does not need to adjust the weight and 
threshold in the training process. It has the characteristics of fast training speed and strong 
generalization ability, and has a good application prospect (Huang et al. 2016; Guner et al. 
2019).

The ELM model can effectively solve complex nonlinear regression problems, so it is 
used for irradiance prediction and PV power output prediction. Han et al. (2019) proposed a 
prediction method based on ELM model considering the characteristics of PV power 
fluctuation. Firstly, the seasonal characteristics of PV output power fluctuating with time 
were analyzed. Then, the PV output power was predicted by the ELM model. Hossain et al. 
(2017) used the extreme learning machine (ELM) to predict the short-term PV power. The 
test results show that compared with support vector regression (SVR) and ANN, ELM model 
has higher prediction accuracy. Liu et al. (2018) and Ni et al. (2017) combined ELM model 
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with other methods to predict short-term PV power. This combination method can avoid 
the defects of a single model, which is relatively complex and has high computational cost. 
The core of ELM is how to select hyper-parameters, which will affect the prediction accuracy 
of ELM model. At present, the main method adopted by scholars is to optimize super 
parameters through intelligent optimizer. For example, genetic optimizer (GA), whale 
optimizer (WOA) and particle swarm optimizer (PSO) are used to optimize the super 
parameters of ELM model (Xue et al. 2018; Li et al. 2019; Wang et al. 2019). The improved 
chicken swarm optimizer (ICSO) is used to optimize the super parameters of the ELM model 
to improve the prediction effect. At present, the proposed models have achieved good 
prediction results. The R2 of the SARIMA-SVM model proposed by Bouzerdoum et al. (2013) 
is 99.08%; the average MAPE of the HIMVO-SVM model is 5.12% (Li et al. 2019); the RMSE 
of the GA-SVM model is 11.22% (VanDeventer et al. 2019); the MAPE of the WT-PSO-SVM 
model proposed by Eseye et al. 2018 is 4.2%; the average RMSE, MAPE and of ICSO-ELM 2R
model are 5.54%, 3.08% and 99.32% respectively for three different weather conditions. 
Compared with the proposed models, the ICSO-ELM model has advantages in prediction 
effect and fitting accuracy.

3. Prediction model of PV power

3.1. The Principle of Extreme Learning Machine 

The single-hidden layer feed forward neural network (SLFN) has the characteristics of 
simple structure and fast convergence. SLFN is used in prediction, classification, pattern 
recognition and other fields. However, SLFN has the disadvantages of slow training speed, 
sensitivity to learning rate. The ELM is a new type of SLFN. The connection weight between 
the hidden layer and the input layer is randomly determined. The threshold of hidden layer 
neurons is also randomly determined (Hossain et al., 2017). 

ELM is faster and more generalizable than other predictive models (Li et al., 2019; Liu 
et al., 2018). The SLFN consists of three layers. And three layers are connected by neurons. 
The input layer has  neurons, the output layer has t  neurons and the hidden layer has e
v neurons. The threshold value of hidden layer neurons is . The connection T

vqqq ]...,,,[ 21q
weight between hidden layer and input layer is , and the connection weight between P
output layer and hidden layer is .D
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 is the activation function and  is the network output.)(X O
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The hidden layer activation function uses the sigmoid function, and its calculation 
equation is as follows.
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The solution of  is as follows.D

                                                                (7)TOKD 
^

Where  is the Moore-Penrose generalized inverse of .K K

3.2. Chicken Swarm Optimizer (CSO)

Meng et al. (2014) proposed the CSO optimizer. The CSO optimizer is a group 
intelligent optimizer that simulates the hierarchical system and the foraging behavior of the 
chicken swarm. The optimizer divides chickens into groups. Every group includes a cock, 
several hens and a few chicks. In the CSO optimizer, the following rules are used to simulate 
the behaviors of the flock (Shi et al., 2018).
(1) There are several subpopulations in the chicken population. Each subpopulation 

includes a cock, multiple hens and chicks. Cocks have the strongest foraging ability and 
dominate the flock. The hen's foraging ability is the second, and the chick's foraging 
ability is the worst.

(2) The flocks are classified according to fitness values. A few of chickens with good fitness 
values are selected as cocks and a few of chickens with poor fitness are selected as 
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chicks. The remaining chickens are selected as hens. The hens are arbitrarily added to a 
subgroup. Chicks and mother hens are randomly selected.

(3) The mother-child relationship and leadership relationship remain unchanged under a 
specific hierarchy. But as the chicks grow, these states are updated every G time (G is 
the update time, which is a certain value).

(4) Hens follow the roosters in their group to forage, and can steal food from other 
chickens. The chicks follow the hens and look for food around the hens.
When solving an optimization problem, the position of each chicken represents a 

feasible solution. Because each chicken has different foraging capabilities, different chickens 
have different update strategies. Assuming that the search space of chickens is d, there are 
N chickens in total. There are Nc chicks, Nh hens and Nr cocks. At time t, 

 represents the position of the  chicken in the  ),,2,1;,,2,1(, NidjZ t
ji   thi thj

dimension.
The update equation of the  rooster is as follows.thi
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The update equation of the  hen is as shown in Equation 9.thi
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Where  represents a random number between 0 and 1.  is the cock in the group randm 1r
where the  hen is located.  is the cock in the other group.thi )21(2 rrr 

The equation for updating chick particles is as follows.

                                                (10))(*)( ,,,
1
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Where  is the mother chicken followed by the  chick;  represents a random t
jmZ , thi GL

number between 0 and 2.

3.3. Improved Chicken Swarm Optimizer 

The traditional CSO optimizer has poor global search and local search capabilities when 
dealing with more complex problems. To solve this problem, this study improves the CSO 
optimizer and strengthens the global and local search capabilities of the CSO optimizer. In 
the CSO optimizer, the cock dominates the flock and has the strongest foraging ability. 
When the cock in the flock is caught in a local optimum and causes the whole flock to fall 
into local optimum. The cosine inertia weight  is introduced to strengthen the local Cip
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search ability of cock particles. 
The optimal particle learning part is introduced in the chick particle position update 

equation in order to expand the search range of chick particles. The search range of the 
flock is gradually narrowing at the later stage of iteration. Cauchy mutation operator is 
introduced to enhance the diversity of population in the later stage of iteration.

After introducing the cosine inertia weight, the position update equation of the  thi
cock particle is as follows.
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Where , . 3.0min Cip 8.0max Cip
During the whole iteration process, the cock particles first globally search and then 

locally search. The local and global search ability of cock particles are improved by cosine 
inertia weight .Cip

After improvement, the position update equation of the  chick is as follows.thi
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Where  is the learning coefficient;  is the best particle in the flock.BL bestS

The chick particles not only learn from the hen particles around them, but also learn 
from the best particle in the flock. The search range of the chick particle can be enlarged by 
learning from the best particle, which can avoid the chick particle falling into the local 
optimum to some extent.

In the later stage of population search, the flock is more likely to fall into the local 
optimal value. Therefore, the current iteration number exceeds 90% of the total number of 
iterations and the Cauchy mutation operation is introduced. The diversity of chicken flocks 
can be increased by mutating populations. Cauchy mutation operator has more mutation 
ability compared with normal distribution, which can expand the search range of 
population. The calculation process of Cauchy mutation operator is as follows.

                                                        (13))(** tCauchyzz 

Where  is the pre-mutation particle;  is the mutated particle;  is the Cauchy z *z )(tCauchy

distribution random variable;  controls the variation intensity of the Cauchy mutation 
operator.

3.4 Establishment of ICSO-ELM prediction model

At present, the commonly used forecasting methods are SVM model, ARMA model and 
BP model and so on. The SVM model has strong nonlinear mapping ability, but the SVM 
model is suitable for small samples, so the SVM model is more used to forecast 
ultra-short-term PV power. The ARMA model is based on statistical regression. When the PV 
power is greatly affected by weather conditions, the prediction error of the ARMA model is 
larger. The gradient descent method adopted in BP model leads to slow training speed and 
sensitivity to the choice of learning rate. Compared with these traditional prediction 
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models, ELM model has faster learning speed and stronger generalization ability.
Improving the prediction accuracy of the short-term PV power prediction model has 

positive significance for realizing economic dispatch and promoting the development of 
clean energy generation technology. However, the connection weight  and the threshold D

 in the ELM are randomly selected. If the values are not properly selected and directly q
affect the prediction effect of the ELM. Therefore, the optimizer is needed to optimize the 
super parameters of the ELM model, the performance of the optimizer has a great influence 
on the prediction accuracy of the ELM model.

Compared with the traditional optimizers, ICSO optimizer has stronger convergence 
ability and has a greater impact on improving the prediction effect of ELM model. In this 
study, ICSO is used to optimize  and . The optimal  and  of ELM are obtained by D q D q
ICSO optimizer, which improves the prediction accuracy of ELM. The prediction process of 
ICSO-ELM model is illustrated in Figure 1 and explained as follows:
(1) Determine PV power output samples. 
(2) Normalize sample data.
(3) Initialize parameters of ICSO optimizer.
(4) Update the position of each particle according to the location update strategy.
(5) ICSO optimizer is used to optimize the super parameters of ELM model.
(6) The trained model is used to predict the PV power output.
(7) Evaluate the predictive effect.
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Determine PV power 
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Predict PV 
power

Predicted PV Power 
Inverse Normalization

Evaluate the 
predictive effect

Search the optimal 
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PV power prediction 
and prediction effect 

evaluation

Y

Figure 1. The optimization process of ICSO

4. Influencing Attributes of PV Power Output

4.1. Analysis of PV Power Output Curves in Sunny, Rainy and Cloudy weather

The PV power output is greatly affected by the weather conditions. Different weather 
conditions have different effects on PV power output. So the PV power output is unstable. 
The experimental data of this study is from the Desert Knowledge Australia Solar Centre 
(DKASC). DKASC is a demonstration facility for commercial solar technology in the central 
region of Australia. The sunny weather power output data of August 14, 2016, the cloudy 
weather power output data of December 1, 2016 and the rainy weather power output data 
of August 15, 2016 are selected to plot the PV output power curve. The study period of the 
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PV power historical data is 8:00-17:00, which is counted every five minutes. The amount of 
sunlight in other periods is small, so it is not in the statistical range.
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(c) Power output in cloudy day
Figure 2. The PV power output curves

Figure 2 indicated the fluctuation of power output curve in sunny weather is smaller 
than that in rainy weather. In sunny weather, the output power increases with the increase 
of illumination intensity from 8:00 to 13:00. The PV power output reaches its maximum at 
about 13:00. After 13:00, the output power decreases with the decrease of illumination 
intensity as time goes on. 

In rainy weather and cloudy weather, the power output curves of PV power generation 
system do not show a cycle trend. There is no specific law of power output in rainy weather, 
and the fluctuation of power output curves in rainy and cloudy weather are greater than 
that in sunny weather.

4.2. The influence of different meteorological elements on PV power output

The radiation intensity, relative humidity, wind speed and temperature affects the PV 
power output. Because of the influence of these meteorological elements, PV power has the 
characteristics of instability and intermittence. But each meteorological element has 
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different influence on the PV power output. 
This study uses correlation coefficient method to analyze the influence of 

meteorological elements. The relationship curves between output power and wind speed, 
temperature, relative humidity and radiation intensity are drawn based on the historical 
data of April 13, 2016. The relationship between the meteorological elements and the 
power is shown below.
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Figure 3. Relationship curves

Figure 3 indicated the fluctuation trend of wind speed curve is not close to that of 
output power curve. And the fluctuation of wind speed curve is greater. In practical 
applications, the dust on the PV panels will affect the conversion efficiency of the PV 
system, higher wind speed can remove non-cohesive dust from PV panels, which can 
improve power output (Jaszczur et al., 2019; Styszko et al., 2019; Hernandez et al., 2019). 
There is little correlation between temperature and power. The relative humidity and power 
show a negative correlation, while the relative humidity decreases with the increase of 
output power. The illumination intensity and power show positive correlation and strong 
correlation. The output power increases with the increase of illumination intensity, and 
decreases with the decrease of illumination intensity.

The Pearson correlation coefficient  is used to calculate the influence of each 
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meteorological element on the power. 
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When  is close to 1, there is a stronger correlation between the two attributes; 

when  is close to 0, there is a weaker correlation between the two attributes. Generally, 

the range of values in Table 1 is used to indicate the strength of correlation.
The correlation coefficient between output power and wind speed, temperature, 

relative humidity and radiation intensity are calculated. The results are showed in Table 2.

Table 1. Relevant degree judgment

 Degree of association

0.0-0.2 Exceedingly less or no association
0.2-0.4 Less association
0.4-0.6 Moderate association
0.6-0.8 More association
0.8-1.0 Exceedingly more association

Table 2. Correlation coefficient between output power and various influencing attributes

Attributes 

Wind speed 0.6494
Temperature 0.2757

Relative humidity -0.1771
Radiation intensity 0.9963

Table 2 presented the radiation intensity and power show the strongest correlation, 
reaching 0.9963. Two attributes are exceedingly more association according to Table 1. The 
relative humidity and power show a negative correlation, which is -0.1771. Temperature 
and output power are weakly correlated. Wind speed and power are strongly correlated. 

This analysis found that the temperature, radiation intensity and wind speed have 
great effect on the power output, and the relative humidity has little effect on the power 
output. Therefore, the radiation intensity, wind speed and temperature are taken as 
predictive model input, and the PV power is taken as predictive model output.

5. Simulation Experiment and Experimental Data Analysis

5.1. Optimizer performance analysis

The test functions are used to test the optimization effect of ICSO optimizer in 
30-dimensional and 100-dimensional. The optimization effects of PSO, WOA, ICSO and CSO 
optimizers are compared. The PSO optimizer is a classical evolutionary optimizer. Mirjalili et 
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al. (2016) proposed the WOA optimizer. The WOA optimizer is a new bionic intelligent 
optimizer. All simulations in this study use unified equipment to make the experimental 
results more reliable.

Table 3. Function range and optimal value (Yang et al., 2019; Wang and Song, 2019)
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The parameters of the four methods are as follows.

Table 4. Parameters of PSO, WOA, CSO and ICSO

Method Setting parameters

PSO N=10*d, T=500, Z1=Z2=1.494,C=0.729
WOA N=10*d, T=500,B=1
CSO N=10*d, T=500,G=5, Nr=0.3*N, Nh=0.5*N, Nc=0.2*N
ICSO N=10*d, T=500,G=5, Nr=0.3*N, Nh=0.5*N, Nc=0.2*N

Table 4 presented the population size N of the four optimizers is 10*d (d is the 
dimension), and maximum number of optimizations is 500.The acceleration attributes Z1 
and Z2 of PSO optimizer are 1.494 and the weight C is 0.729. In WOA optimizer, parameter B 
is used to restrict the constant coefficients in logarithmic helix form, which is taken as 1 in 
this study. In the CSO and ICSO optimizers, the state update interval G is 5. And cocks, hens, 
and chicks account for 30%, 50%, and 20% of the population size. The test results of the four 
methods are shown as table 5.
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Table 5. Comparison of optimization results

M Optimizer
Optimum
30d/ 100d

Worst value
30d/ 100d

Average value
30d/ 100d

Average running 
time /s

30d/ 100d

PSO 9.16e-06/ 9.78 5.66e-04/ 30.64 2.21e-04/ 19.07 11.84/ 40.87

WOA
2.86e-115/
5.63e-124

5.88e-109/
1.81e-116

6.27e-110/
1.86e-117

17.53/ 1.33e+02

CSO 9.94e-30/ 0.11 1.62e-27/ 35.48 2.81e-28/ 10.99 16.55/ 58.36
1M

ICSO 0/ 0 0/ 0 0/ 0 19.37/ 67.41

PSO 0.63/ 15.29 2.16/ 20.22 1.57/ 18.23 12.43/ 42.62
WOA 1.93e-66/ 3.59e-69 2.23e-62/2.51e-64 3.56e-63/ 5.73e-65 23.13/ 1.72e+02
CSO 7.35e-23/ 3.87e-15 3.75e-22/ 1.49e-08 1.90e-22/ 6.21e-09 17.35/ 60.71

2M

ICSO 0/ 2.00e-323 0/ 3.26e-320 0/ 6.97e-321 20.47/ 73.18

PSO 16.21/ 1.31e+03 86.23/5.48e+03 40.60/ 2.33e+03 39.05/ 340.64

WOA
9.68e+02/
2.00e+05

1.01e+04/
4.02e+05

4.61e+03/ 2.93e+05 48.07/ 4.62e+02

CSO 15.50/ 9.27e+02 335.77/1.65e+03 181.12/1.30e+03 37.27/ 2.82e+02
3M

ICSO 0/ 0 0/ 0 0/ 0 48.89/ 4.23e+02

PSO 1.71e-04/ 1.17 0.06/ 1.47 0.02/1.28 14.48/ 53.10
WOA 0/ 0 0/ 0 0/ 0 20.24/ 1.52e+02
CSO 0/ 0.09 0/ 0.85 0/0.42 19.63/ 69.72

4M

ICSO 0/ 0 0/ 0 0/ 0 18.31/ 83.49

PSO 1.33e-04/46.97 0.14/136.93 0.02/79.73 15.48/ 53.65
WOA 1.33e-39/5.11e+03 1.16e-25/1.53e+04 1.18e-26/1.16e+04 19.72/ 142.24
CSO 1.16e-21/78.50 1.17e-19/2.06e+02 2.68e-20/ 1.37e+02 18.63/ 82.03

5M

ICSO 0/ 0 0/ 0 0/ 0 21.84/ 80.18

PSO 21.88/135.26 69.64/296.97 48.55/208.18 13.32/ 48.46
WOA 0/ 0 0/ 0 0/ 0 17.88/ 1.35e+02
CSO 0/ 2.22e-05 0/4.74e-04 0/1.82e-04 16.41/ 59.82

6M

ICSO 0/ 0 0/ 0 0/ 0 19.12/ 68.05

The running speed of PSO program is the fastest among the four optimizers, and each 
optimization takes the least time. However, by comparison, it is found that the convergence 
effect of PSO optimizer is poor. For six test functions, PSO does not converge to the global 
optimum, whether in 30 or 100 dimensions. The analysis results show that the optimization 
effects of PSO and CSO optimizers become worse with the increase of dimension of 
standard test function, which indicates that the convergence stability of CSO and PSO 
optimizers is poor. The WOA optimizer converges to the global optimal value for  and 4M

. 6M
The optimization effect of the WOA optimizer does not change significantly, which 

shows that the stability of the WOA optimizer is higher. However, with the increase of the 
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dimension, the computational cost of the WOA optimizer increases significantly. At 100 
dimensions, program running time of the WOA optimizer is almost twice that of the CSO 
and ICSO optimizers for the standard test functions , , ,  and . The 1M 2M 4M 5M 6M
running time of WOA optimizer is three times faster than the PSO optimizer for , , 1M 2M

 and .5M 6M
This analysis found that the optimization effect of ICSO optimizer is the best. For the 

standard test functions , , ,  and , the optimization results of the ICSO 1M 3M 4M 5M 6M
optimizer are all 0 in both 30-dimensional and 100-dimensional. For the standard test 
function , in the 30-dimensional, the optimization result of the ICSO optimizer is 0; in 2M
the 100-dimensional, although the optimization result of the ICSO optimizer is not 0, the 
convergence accuracy is still the highest compared to the other three optimizers. When the 
test dimension increases, the optimization result of the ICSO optimizer does not change 
significantly, which indicates that the optimization stability of the ICSO optimizer is higher. 
By comparing the data in the table, the ICSO optimizer has the higher convergence accuracy 
and convergence stability.

5.2 Prediction of short-term photovoltaic power output under different weather conditions

The output power of PV system is different due to different weather conditions. Three 
experimental samples from DKASC are used in this study. The study period of the output 
power is from 8:00 to 17:00. Statistics are taken every 5 minutes. 

The PV power is predicted by the ICSO-ELM prediction model. At the same time, classic 
models such as BP neural network, support vector machine (SVM) and Gaussian process 
regression (GPR) model are used as comparison models.

The mean absolute percentage error (MAPE) and root mean square error (RMSE) are 
used to evaluate the prediction effect of prediction models. Decision coefficient ( 2R ) is 
used to judge the fitting degree. 
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Where the actual value is  and the predicted value is .g ^g

The decision coefficient  of the model is a very common statistical information in 2R
regression analysis. The lower bound of  is 0 and the upper bound is 1. When the 2R
decision coefficient  is 0, the model is completely unpredictable. When the decision 2R
coefficient  is 1, the model can perfectly predict the target variable.2R

Firstly, the ICSO-ELM model is tested by using the sunny weather power output data 
during 2016.10.9-13. The power output data of 2016.10.9-12 is selected as the training set, 
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and the PV power of 2016.10.13 is used as the test sample. The prediction results of the 
ICSO-ELM, CSO-ELM, BP, SVM and GPR models are shown in Figure 5.
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(a) Predicted power output curves on sunny day
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(b) Prediction relative error on sunny day
Figure 5. Prediction results on sunny days

The prediction curves of power output of the ICSO-ELM, CSO-ELM, BP, SVM and GPR 
models for the sunny weather during 2016.10.10-16 are presented in Figure 5 (a). The 
prediction curves of the five models can basically reflect the changing trend of the PV power 
curve. Analysis of the data in Figure 5 (b) shows that the prediction error of the BP model in 
the early stage of prediction is larger, and the relative error exceeds 20%; the prediction 
errors of the four other models in the prediction medium are controlled at [-10%, 10%]; the 
prediction errors of the BP, GPR and SVM models at the end of the forecast fluctuate 
greatly, and the prediction error of the SVM model is nearly 30%.

The relative error histograms are obtained to more clearly analysis the magnitude of 
the prediction errors of the five prediction models, showed in Figure 6.
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Figure 6. Relative error histograms on sunny days

Figure 6 showed the interval distribution of the relative errors of the five prediction 
models. The prediction relative errors of the CSO-ELM model and the ICSO-ELM model are 
mainly distributed in the [-2%, 2%]. The relative error values of CSO-ELM model and 
ICSO-ELM model in the [-2%, 2%] account for 85.18% and 91.66% of the total test samples. 
The prediction relative errors of the SVM model, the BP model and the GPR model are 
mainly distributed in the [-5%, 5%]. The relative error values of SVM model, BP model and 
GPR model in the [-2%, 2%] account for 59.63%, 47.71% and 72.47% of the total test 
samples. Through error interval analysis, it is found that the prediction errors of CSO-ELM 
and ICSO-ELM models are lower.

Secondly, the ICSO-ELM model is tested by using the cloudy weather during 
2016.11.27-2016.12.01. The power output data during cloudy weather of 
2016.11.27-2016.11.30 is selected as the training set, and the power data from 2016.12.01 
is used as the test sample. The test results of the CSO-ELM, ICSO-ELM, SVM, BP and GPR 
models are shown in Figure 7.
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 (a) Predicted power output curves on cloudy day
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(b) Prediction relative error on cloudy day
Figure 7. Prediction results on cloudy days

This study finds the prediction errors of SVM, BP and GPR models are large in the early 
stage of prediction by comparing the predictive curves in Figure 7 (a). The fitting effect of 
the predictive curves of the five models and the actual power output curve in the middle 
stage of prediction is higher, and the predictive curves of BP and GPR models in the late 
stage of prediction deviate from the true value curves. Through analysis, it is found that the 
prediction curve of the ICSO-ELM model can still reflect the trend of the actual power 
output curve in cloudy weather. The prediction errors in Figure 7(b) increase significantly 
compared with the relative error values in Figure 5(b). In the later stage of prediction, the 
forecasting errors of GPR model and BP model increase significantly, and the maximum 
prediction error of GPR model exceeds 100%, indicating that the model's prediction stability 
is poor for cloudy weather.

Figure 8 shows the distribution histogram of the relative errors of the five models in 
cloudy weather.
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Figure 8. Relative error percentage on cloudy days

The result found that the prediction error intervals of the five models in Figure 8 
increased compared with the histogram in Figure 6. The relative error values of CSO-ELM, 
ICSO-ELM, SVM, BP and GPR models in the [-2%, 2%] account for 39.44%, 51.37%, 22.93%, 
17.43% and 10.09% of the total test samples. The number of relative error values predicted 
by the five models in the range of [-2%, 2%] further decrease. Compared with the 
proportion of the relative error in the interval [-2%, 2%] in Figure 6, the proportion of the 
relative error in the interval [-2%, 2%] in Figure 7 is reduced by 45.74%, 40.29%, 36.70%, 
30.28% and 62.38%. This is due to the quasi-periodic characteristics of PV power in clear 
weather, and the irregularity of power output in cloudy weather increases. It shows that 
compared with the prediction errors in sunny weather, the prediction errors of the models 
in cloudy weather increase.

Finally, the ICSO-ELM model is tested by using the rainy weather during 2016.9.24-28. 
The power output data during rainy weather of 2016.9.24-27 is selected as the training set, 
and the power data from 2016.9.28 is used as the test set. The prediction curves of the 
CSO-ELM, ICSO-ELM, SVM, BP and GPR models are shown in Figure 9.
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(a) Predicted power output curves on rainy day
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(b) Prediction relative error on rainy day
Figure 9. Prediction results on rainy day

The PV power output curve has the characteristics of large fluctuation during rainy 
days. The prediction curves of the five models basically reflect the fluctuation trend of the 
actual power output curve. It can be seen from the local enlargement that the fitting degree 
between the blue curve and the black curve is the highest. At the sixteenth sample point, 
the SVM, BP and GPR models have large prediction errors, which is due to the uncertainty of 
power output in rainy days. 

Similar to cloudy weather, the prediction errors of the five models increase relatively 
on rainy day. In Figure 9(b), the prediction stability of the five models is higher in the middle 
and late stages of prediction, but the prediction stability of the CSO-ELM, SVM, BP and GPR 
models is poor in the early stage of prediction. Figure 10 shows the distribution histogram of 
the relative errors of the five models in rainy day.
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Figure 10. Relative error percentage on rainy days

The result found that the prediction error intervals of the five models in Figure 10 
further increased compared with the histograms in Figure 6 and Figure 8. The relative error 
values of CSO-ELM, ICSO-ELM, SVM, BP and GPR models in the [-2%, 2%] range account for 
17.33%, 22.01%, 12.84%, 11.01% and 12.44% of the total test samples. The proportion of 
the relative error in the interval [-2%, 2%] in Figure 10 is reduced by 22.11%, 29.36%, 
10.09%, 6.42% and 2.35% compared with the proportion of the relative error in the interval 
[-2%, 2%] in Figure 8. The randomness of power output in rainy weather is greater than the 
randomness of power output in sunny and cloudy weather. Therefore, the prediction errors 
of five models further increase. 

Table 6. Evaluation of the prediction effects of five models 

Weather Model RMSE/ % MAPE/ % / %2R
CSO-ELM 4.43 1.51 99.61
ICSO-ELM 2.84 0.85 99.84

SVM 6.96 1.93 99.48
BP 9.01 2.86 98.59

Sunny weather

GPR 5.24 1.57 99.62

CSO-ELM 8.06 3.09 99.30
ICSO-ELM 7.19 2.51 99.45

SVM 15.58 5.76 97.55
BP 20.06 8.10 95.90

Cloudy weather

GPR 27.12 13.93 95.97

CSO-ELM 7.04 6.42 98.50
ICSO-ELM 6.60 5.89 98.68Rainy weather

SVM 9.94 10.54 98.76
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BP 10.24 12.15 98.66
GPR 10.71 9.85 97.94

The test results of the CSO-ELM, ICSO-ELM, SVM, BP and GPR models are assessed by 
evaluation indicators. The evaluation results are shown in Table 6. Table 6 compared the 
RMSE and MAPE values of each model in different weather conditions. Compared with 
sunny weather, the RMSE and MAPE obtained in rainy and cloudy weather are relatively 
larger. The RMSE values and the MAPE values of the ICSO-ELM model are the smallest 
whether it is rainy, cloudy or sunny. For three different weather conditions, the average 
RMSE value of CSO-ELM, ICSO-ELM, SVM, BP and GPR models are 6.51%, 5.54%, 10.83%, 
13.10% and 14.35%. For three different weather conditions, the RMSE of ICSO-ELM model is 
the smallest, which indicates that the predictive stability of ICSO-ELM is higher.

The MAPE obtained in cloudy and rainy weather is significantly higher than the MAPE 
obtained in sunny weather. Because the PV power output curve has uncertainty and 
randomness in rainy and cloudy weather, which increases the prediction error of the model. 
For three different weather conditions, the average MAPE values of CSO-ELM, ICSO-ELM, 
SVM, BP and GPR models are 3.67%, 3.08%, 6.08%, 7.70% and 8.45%. By comparing the 
average MAPE of each model, it is found that the MAPE value of the ICSO-ELM model is 
smaller, indicating that the ICSO-ELM model maintains high prediction accuracy under three 
weather conditions.

For the evaluation index , the  obtained in sunny weather is significantly higher 2R 2R
than the  in cloudy weather and rainy weather. For three different weather conditions, 2R
the average  of CSO-ELM, ICSO-ELM, SVM, BP and GPR models are 99.13%, 99.32%, 2R
98.59%, 97.72% and 97.78%. The  of the ICSO-ELM model is higher than the other four 2R
models, indicating that the ICSO-ELM model has a strong fitting effect on the output power 
under three different weather conditions.

6. Concluding Remarks

     In order to reduce the PV power curtailment rate and realize the economic dispatch of 
the power system, improving the accuracy of short-term PV power output prediction is an 
urgent subject to be studied. Therefore, the ICSO-ELM is modeled to forecast PV power in 
this study. The test results show that the prediction effect of ICSO-ELM model is better than 
CSO-ELM, SVM, BP and GPR model. And the main contributions of this study are as follows: 
(1)  The ICSO-ELM model is firstly proposed to predict the short-term photovoltaic power. 
(2)  The operating and management efficiency of photovoltaic power station can be 

improved by accurate prediction of photovoltaic power. 
(3)  For three different weather conditions, the average RMSE value and the average MAPE 

value of ICSO-ELM model are 5.54% and 3.08%. The average MAPE values of CSO-ELM, 
ICSO-ELM, SVM, BP and GPR models are 3.67%, 3.08%, 6.08%, 7.70% and 8.45%; the 
average MAPE values of CSO-ELM, ICSO-ELM, SVM, BP and GPR models are 3.67%, 
3.08%, 6.08%, 7.70% and 8.45%. The result indicates that the ICSO-ELM model has a 
better forecasting effect.

(4)  The operating and management efficiency of photovoltaic power station can be 
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improved by accurate prediction of photovoltaic power. And by accurately predicting 
PV power, the measures of abandoning solar can be reduced and the development of 
clean energy can be promoted.
Although this study predicts the short-term PV power under three weather conditions, 

there are still many extreme weather conditions (such as haze, ice and snow) that are not 
taken into account. In the future, we should study the PV power prediction under extreme 
weather conditions and improve the stability of the prediction model.
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Highlights

 The ICSO-ELM model is firstly proposed to predict the short-term photovoltaic 

power.

 The proposed model is used to predict photovoltaic power under weather 

conditions. 

 ICSO optimizer's convergence ability is strengthened.

 The PV power curtailment rate is reduced and the development of clean energy 

can be promoted.
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